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Abstract

On the Use and Performance of Communication Primitives in

Software Controlled Cache-coherent Cluster Architectures
by Xiaohan Qin

Chairperson of Supervisory Committee: Professor Jean-Loup Baer

Computer Science and Engineering

Two recent trends are affecting the design of medium-scale shared-memory multi-
processors. The first is the use of nodes which themselves consist of clusters of
processors. Clusters, already available as commodity parts, not only make powerful
nodes, they also let the system scale up gracefully. The second trend is the use of
programmable protocol processors and software for maintaining cache coherence to
shorten the hardware design cycle and to provide flexibility and extensibility.

One problem arising from software cache coherence is that remote memory ac-
cesses suffer a longer latency than with a pure hardware scheme. Another issue
raised by software schemes in cluster environments is that of contention on the pro-
tocol processor due to the high service demand for this device.

Our solution to the first problem offers users or compiler writers a set of explicit
communication primitives to provide hints for moving data properly and promptly.
The communication primitives, running on protocol processors, introduce a flavor of
message-passing and permit protocol optimization. To the second issue, we investi-
gate three architectural choices that strive to achieve resource balance: (1) selecting

an appropriate cluster size to control resource sharing, (2) adding a remote cache (per




node) to keep remote data in clusters, and (3) adding a forwarding logic to reduce

the load on the protocol processor and to speed up the processing of simple messages.

This dissertation studies how the overhead of a software scheme and its contention
on the protocol processor can be reduced by various combinations of the design op-
tions and how the software overhead can be further hidden by the communication
primitives. In the absence of communication primitives, we employ an MVA-based
analytical model to estimate the protocol processor’s contention and overall perfor-
mance for a fast turn-round. When communication primitives are present, we employ
simulation method. We find that the software implementation supplemented with re-
mote cache and forwarding logic can deliver a performance competitive with the rigid
and pure hardware scheme. With the judicious use of communication primitives. the
enhanced software scheme can improve performance beyond the limit of the hardware
implementation. In addition, the software cache coherence is more flexible, scalable

and easier to optimize.
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Chapter 1

INTRODUCTION

The design of medium-scale shared-memory multiprocessors has been influenced
by two recent trends. The first is using clusters of processors as basic building blocks.
The second trend is using programmable protocol processors and software for main-
taining cache coherence. This thesis concerns with performance issues arising from
employing software cache coherence in cluster environments. Our goal is to evalu-
ate the overhead of a software scheme and investigate ways to reduce the software

overhead through either simple hardware assists or software means.

1.1 Motivations

During the last decade, advances in semiconductor technology have contributed stead-
fastly to the shrinking of transistor size and the speeding of clock rates. The per-
formance of microprocessors has benefited greatly from the resulting increase in real
estate and clock speed. At the same time, the amount of data generated by personal
computers, workstations, and other high-speed electronic devices has increased enor-
mously. The flourishing internet is connecting more and more computers. [nexpen-
sive and immediate accesses to the global network have motivated both consumers
and producers to use more online processing and services, e.g., electronic newspa-
per /publishing and electronic commerce. To provide competitive products or high
quality services, raw computing power is not sufficient. Commercial and govern-

ment institutions must find ways to deal with the growing volume and use of data.



The demand for powerful and scalable enterprise-wide computing resources is at a

premium.

In the enterprise server market, bus-based shared-memory multiprocessors, or
multis [11], have already enjoyed a tremendous success. Many computer vendors ship
their servers in this form, e.g., IBM’s PowerPC-based RS/6000 J40 and J50 multi-
processor servers and HP’s PA-RSIC-based 9000 K-class servers connecting up to six
processors. Despite its success, the single-bus system has a major drawback: It can
only accommodate a small number of processors because the bus soon becomes an
overcommitted resource. This lack of extensibility due to bus contention is exacer-
bated by the fact that processor speed increases faster than the corresponding growth
in bus bandwidth and reduction in memory latency.

One way to expand the number of processors without sacrificing the shared-
memory paradigm is to consider each multi as a cluster node and to link nodes
using an interconnection network such as a mesh [41] or a SCI ring [43]. The clus-
ter architecture is more scalable than the single-bus multiprocessor for two reasons.
First, the number of links or the aggregated bandwidth of the interconnection net-
work can grow as cluster nodes are added to the system. Second, shared resources
in each node, e.g.. the bus, memory, and the I/O node, serve only a small number of
processors; they are distributed in the system.

There exists a wide spectrum of implementations based on the shared-memory
programming model, from tightly coupled hardware-based cache-coherent schemes
(DASH [41], Alewife [2], Origin [39], and Exemplar [14]) to software-based shared-
memory systems. Some of the latter rely on page management mechanisms in the
operating system to fault on illegal accesses (IVY [42] and Treadmarks [4]). Others
exploit compiler analysis techniques to detect stale data in cache [65, 17, 32]; another
group modifies the program’s executable to perform cache consistency checking before
accessing each shared variable (Blizzard-S [57], Shasta [56]).

This dissertation studies a class of cluster architectures that employs communi-



cation processors and software” to implement fine-grain cache coherence protocols,

similar to those of DASH. In the DASH prototype, cache coherence is maintained
at two levels. Within a cluster node, the caches of individual processors are kept
coherent via a snoopy bus protocol. When a memory reference cannot be resolved
by the intra-cluster snoopy protocol, it is intercepted by the communication/memory
management unit (CMMU), which connects the cluster to the network and maintains
inter-cluster cache coherence using a directory-based protocol.

Many systems with an interconnect [41, 2, 39, 14] implement the communica-
tion/memory controller in hardware as ASIC logic. The hardware-based CMMU
usually includes a limited set of functions, e.g., a high-performance messaging mecha-
nism (optimized for small messages), a fixed protocol, and, perhaps, some prefetching
capability [41]. Most optimizations geared at reducing the communication cost, such
as protocol improvements and weak consistency memory models, require non-trivial
hardware modifications. Furthermore, the rigidity of the hardware scheme prevents
the protocol policies and optimizations from being adapted to the needs of a given
application.

Recent developments in shared-memory multiprocessor systems have led many
computer architects to advocate using programmable protocol processors rather than
ASIC to provide basic communication mechanisms and using software to enforce cache
coherence policies. Efforts in that direction include Flash (38, 28] at Stanford, s3.mp
[49, 48] at Sun Microsystems, Typhoon [55] at Wisconsin, and more recently NUMA-Q
[43] at Sequent. The biggest advantage of software cache coherence is its flexibility and
extensibility. Multiple protocols can be easily incorporated in one system. Additional
functions may be obtained by programming the protocol processor. Furthermore,
while a hardware full-map directory scheme limits the number of nodes in a system,
a software scheme avoid such limitations, because the data structures for maintaining
cache coherence are software-based.

This flexibility, however, comes at a cost in performance, since one can always




build a hardwired controller that outperforms the software scheme for any given

protocol. Software overhead can diminish performance in two ways. First, it directly
contributes to the longer latency of some memory transactions (e.g., remote memory
accesses) that require services from the protocol processor. Second, since the protocol
processor is shared by several compute processors, the high service demand for the
unit makes it a potential bottleneck of the cluster node.

This dissertation investigates ways to make use of the flexibility of protocol pro-
cessors to provide users with some advantageous features of asynchronous message-
passing, or explicit communication primitives, that hide memory latency with compu-
tation. Our study is performed in three phases. First, we study via trace-driven sim-
ulations the overhead of software cache coherence schemes and the performance gain
of the programmer/compiler-controlled communication primitives in an architecture
whose cluster node contains a single compute processor. This simplifying architec-
tural assumption lets us isolate the effect of software overhead from that of shared
resource contention. Second, we develop an analytical model to assess contention on
shared resources such as the communication processor, the bus, memory, etc. The
analytical approach allows us to search a large design space and identify quickly the
architectural configurations worth further investigation. Finally, we evaluate in clus-
ter environments the software implementation of the base cache coherence protocol

as well as the software implementation enhanced by the communication primitives.

1.2 Contributions

This dissertation makes the following contributions to the study of cluster architec-
tures that employ communication processors and software to maintain cache coher-

ence.

e We proposed a set of explicit communication primitives to be executed on the

protocol processors. These primitives can be used by the programmer or com-



piler writer to provide hints that enable the memory system to place data where

they are needed. We demonstrated with examples and simulations the use and
performance of the communication primitives in an architecture with a single
compute processor per cluster node. Given the parameters that we chose for
the communication processor, the memory latency of the software solution is at
least 50% higher than that of the hardware implementation. With communi-
cation primitives, the optimized software scheme approximates, and sometimes
exceeds, the hardware solution’s performance in the simplified “cluster” archi-

tecture.

We developed a model based on Mean Value Analysis (MVA) [40, 67] to assess
the contention on cluster-shared resources and to estimate the impact of con-
tention on the overall performance of normal cluster architectures. We used the
model to evaluate a number of architectural choices, i.e., varying cluster size
and adding simple hardware support (remote cache and forwarding logic) to
ease contention. The analytical model indicates that the base software imple-
mentation of cluster architectures can outperform the single bus system. How-
ever, unless an application has good cluster locality, increasing cluster size often
harms performance, due to the high software protocol processing overhead. The
remote cache can improve performance significantly; it is most effective for ap-
plications suffering primarily from capacity or conflict misses. For applications
that have a large portion of coherence misses, forwarding logic is more impor-
tant. We validate the analytical model against simulation results and show that

the accuracy of our model is within 5-30% of simulation results.

We investigated the performance of communication primitives in cluster envi-
ronments. We found results similar to those of uni-processor node implementa-
tion. However, when the cluster size increases, the memory overhead reduction

brought by the communication primitives decreases because the growing native




intra-cluster data sharing deceases the utility of the primitives. The remote

cache is very important to communication primitives even when applications
suffer mainly from coherence misses. The forwarding logic is crucial to commu-

nication primitives that require the processing of many small requests.

1.3 Organization of the Thesis

The remainder of this thesis is organized as follows. Chapter 2 describes the base
architecture and its major components and discusses design and implementation is-
sues. Chapter 3 introduces the communication primitives absent from a pure cache
coherent shared-memory scheme. The goals of the chapter are to assess: (1) the over-
head of software-based cache coherence protocol, and (2) the performance benefit of
the communication primitives in an architecture where there is abundant hardware,
hence little contention over shared resources. Chapter 4 develops an MVA-based
analytical model for estimating the contention on shared resources. With the fast
and reasonably accurate evaluation technique, we evaluate a number of architectural
choices, i.e., varying cluster size and adding additional hardware. We also validate
the model against simulation results. Chapter 5 studies the performance of com-
munication primitives in cluster architectures. We then examine the effects of three
architectural choices (discussed in Chapter 4) on the performance gain achieved by
the communication primitives. Finally, we summarize the thesis and propose future

work in Chapter 6.



Chapter 2

ARCHITECTURAL FRAMEWORK

This chapter, describes the baseline architecture, its major components. and the
two-level cache coherence protocol. The cluster architecture employs two-split trans-
action devices: the interconnection network and the split transaction bus. These
shared resources cause complications in implementing a cache-coherent shared-memory.,
which this chapter also addresses. Finally, we discuss issues involved in software im-

plementation of a directory protocol.

2.1 Baseline Architecture and Components

Our study is based on an architecture consisting of clusters connected to each other by
an interconnection network such as a mesh (Figure 2.1). Each cluster is a bus-based
shared-memory multiprocessor augmented with a communication processor (CPP).
The communication processor replaces the hardwired CMMU; it performs under soft-
ware control the functions of the directory protocol. Every processor has a private
cache (or cache hierarchy). Cache coherence is maintained at two levels. Within a
cluster node, a snoopy protocol keeps the local caches coherent. Across cluster nodes,
a directory-based protocol tracks the caching information and maintains coherence
on a cache-line basis. To achieve a high bus bandwidth, we assume that data and
addresses use separate split transaction buses. Our machine model is CC-NUMA,
which has a global physical address space; each piece of data is assumed to live in
only one of the memory modules, i.e., the data’s home node. Furthermore, we assume

that memory is sequentially consistent.




The remainder of this section examine three components of the cluster archi-

tectures: the communication processor, the memory and its access path, and the

interconnect. Our interest in the network chiefly pertains to its performance.

Cluster node

p| [p] [P P

L2 2| |L2

Other nodes

Network

Figure 2.1: Model of the cluster architecture.

2.1.1 Communication Processor

The communication processor in the base architecture, Figure 2.2, contains an em-
bedded protocol processor (PP) for running protocol handlers, a network interface
(NI) for draining/pumping messages from/to the network, a bus interface (BI) for
communicating with local processors, and a memory controller (MC) that lets the
protocol processor access memory. The BI and NI each have two queues. The input
queue of the BI stores requests and replies from the compute processors, e.g., miss
requests and writeback data. It will also be used to save user-initiated communication

primitives as we expand the functions of the protocol processor (discussed in Chapter




Cluster bus

4
A 4
Bus Interface (BI)

] 1

E
M Protocol
g > Processor &
R C Cache
Y

T v

Network Interface (NI)

!

Interconnection
Network

Figure 2.2: Model of the communication processor.

3). The output queue of the BI stores replying data and invalidation/writeback re-
quests, etc. The input and output queues of the NI store the same types of messages
from/to another node.

Handling small messages is one of the most critical functions of the communication
processor. Therefore, we employ an integrated memory-mapped network interface for
the CPP. We also believe that the messaging mechanism should be flexible enough
to accommodate system evolutions. As a result, we chose to use interrupts to notify
the embedded protocol processor of message arrivals and to schedule and dispatch
messages in software based on their priorities. This is different from MAGIC, a cus-
tomized communication co-processor in FLASH [38], which executes both message
scheduling and dispatching in specialized hardware. The motivation for our choices

is that the types and formats of messages may change as the system evolves. The



versatile interrupt and software dispatching mechanisms let the system easily adjust

to such changes. Interrupts were chosen over polling (the NI and BI) to free the com-
munication co-processor from the overhead involved in periodical message checking.
As we shall see in Section 3.2, this is important when we extend protocol processor
functions to lower-priority execution of communication primitives.

When an arriving message interrupts the protocol processor, the interrupt handler
dispatches the message to an appropriate message handler based on its type. The
message handler either executes the message directly or moves the message from the
BI or NI to a software message queue. To handle an interrupt efficiently, we require
a processor architecture to have at least one hardware contexts dedicated to the
message-receiving interrupt handler and cache coherence handlers. Thus, the service
for interrupts and the cache coherence messages always avoids the overhead of register

saving and restoring.

2.1.2 Memory and Its Access Path

Memory usually stores data and instructions for the compute processors. In the soft-
ware cache coherence scheme, it also contains the local memory’s directory accessed
by the protocol processor exclusively. There are two possible ways to design an access
path to memory. One is to attach the memory directly to the shared bus (Figure
2.3a). This design lets local memory references bypass the communication proces-
sor. On the other hand, it puts a stringent timing constraint on the communication
processor: if a memory block is not in a desired state, the CPP must intervene in
the ongoing memory operation by performing a fast lookup of the memory state. In
hardware-based cache-coherent systems, such as DASH, the directory access cycle
can be designed to match that of the main memory. For a software cache coherence
scheme, however, it may not be possible to complete the memory state lookup (in
software) in time to abort the illegal memory operation. A plausible solution, em-

ployed in STiNG [43], is to add SRAM that stores the memory state and performs



snoopy operations in hardware. The SRAM controller can easily meet the timing

constraint to detect and intercept requests to invalid memory blocks.

PPP 29

M CPP M CPP

(a) (b)

Figure 2.3: Choices of memory access path.

An alternative is to connect the memory to the communication processor (Fig-
ure 2.3b). In this case, all references that cannot be satisfied by the local caches go
through the communication processor. Both hardware and software implementations
of the directory protocol are feasible without the additional SRAM to store the mem-
ory state. For example, in Alewife [2], when a cache miss is encountered, the CMMU
(hardware directory logic) first looks up the directory state; it then either issues a
memory read if the block is in a clean state or a writeback if the data have been mod-
ified. The s3.mp [49] implementation is similar, except that both the state lookup
and cache coherence are performed by microcode running on the protocol engine.

The memory design in our architectural model lies between these two alterna-
tives (see Figure 2.1). We first assume that applications can distinguish shared data
references from private data references. For private references, the memory can sup-
ply data without consulting the CPP on memory state. For this purpose, then, the
memory module is directly connected to the shared bus. For shared references, the

memory is prevented from answering the bus request directly; the communication



processor is always involved in looking up the memory state and supplying data, if

necessary. This design avoids using costly SRAM and slowing down private data
references. It also saves on memory otherwise needed to store the protocol states
for private data. However, if a thread migrates from one processor to another, its
private pages should be purged from the cache. The protocol processor may need to
access the memory to obtain directory information or data if they are not in its own
cache. To avoid having the PP contend with compute processors for the shared bus,
we employ a dedicated link between the CPP and memory.

Since private and shared data accesses can be distinguished, we require for private
accesses that only read misses block the compute processor; write misses use write
buffers. For shared references, we require that both read and write misses and write
hits to shared lines block the compute processor. For write operations, the processor
cannot proceed until all other nodes have acknowledged the invalidations sent on
behalf of the write. Since private references are important to the issuing processors
only, how they interleave with references from other processors dos not affect the
execution of other processors. Therefore, the overall memory system is guaranteed

to be sequentially consistent.

2.1.8 Interconnection Network

Two important metrics gauge the performance of interconnection networks: band-
width and latency. One way to measure the aggregate bandwidth (Biota) is to con-
sider the total data transfer rate of all channels!. By definition, it is a product of
the number of links (L¢ota;) and the link bandwidth (B;). Assuming that data are
transferred on only one of the clock edges?, then B; = ClockRate x BitWidth. Ob-

I Alternatively, one can measure aggregate bandwidth by the bisection bandwidth. Bisection
bandwidth is the maximum data rate between two halves of a network, which is a product of link
bandwidth and the number of links that sever a network into two equal halves.

2 Some networks can transfer data on both edges of the clock [44, 69].



viously, the wider the link, the larger the link bandwidth. For this reason, many

high performance networks employ parallel data links (23, 61, 26, 13, 44]. Suppose
an end-to-end message traverses h hops on average, the effective bandwidth available
to a cluster node is approximately Bioai/(h X 1) = (Bi X Liotat)/(h x n) = By x k/h,
where n is the total number of nodes in the system and k& = Lyga/n is the number
of links per node.

Examples of high-performance networks for tightly coupled parallel systems are
Caltech’s Mesh Routing System [23] (whose variations have been used in Paragon
[31], DASH [41], and Alewife {2]) and IBM’s Vulcan Switch [61] (used in SP1 and
SP2 [70, 3]). Table 2.1 presents the performance data for two networks: DASH's 2-D
Mesh Routing Chip (or MRC) and SP’s MIN Vulcan Switch.

Table 2.1: Network performance data for DASH and SP2.

Mesh Routing Chip Vulcan
used in DASH used in SP2

Nodes 16 16
Clock rate (MHz) 28.5 40
Bitwidth of data link (bits) 16 8

Link bandwidth (Mbits) 456 320
Aggregate bandwidth (Gbits) 58 41
Bandwidth per processor (Mbits) 910 853
Mean number of hops (nodes) 4 3

Switch and wire delay (ns) 50 75
Average network delay3(ns) 200 225

3 The average network latency given in Table 2.1 does not include network interface latency.




It is worth noting that although the high-performance networks used in prior par-

allel systems are proprietary, they are becoming commodity parts. For example, the
NUMA-Q [43] employed SCI (Scalable Coherent Interface) [26] to connect multipro-
cessor cluster nodes. The basic topology of SCI is a ring, in which the output of one
SCI node is connected to the input of the downstream node. In the ring topology, a
SCI node performs very simple functions. It either removes incoming packets whose
destination id matches the node id or passes packets to the next node. The simple
functionality and point-to-point style connection make it possible to achieve a very
high clock rate. For example, the SCI switches manufactured by Vitesse Semiconduc-
tor Corporation run at 500MHz. However, the bandwidth available to each processor
is only 2 x B;/n (k=1 and h = n/2). As the number of clusters (n) increases, the
effective bandwidth per processor decreases quickly, and the average message latency
increases linearly. To increase the bandwidth, multiple rings or higher dimension

topologies may be necessary.

2.2 Cache Coherence Protocols

As mentioned earlier, cache coherence in a cluster architecture is maintained at two
levels. Cache coherence within a cluster node is enforced via a snoopy protocol.
Across clusters, cache coherence is maintained by a directory-based protocol. This
section describes the detailed operations of these protocols and specifies the interface

between them.

2.2.1 Intra-cluster Snoopy Protocol

In a snoopy cache coherence protocol, a cache line can be in one of five states* [62]:

41 The EXCLUSIVE state suggests that the data live in one and only one cache. A write hit to
an EXCLUSIVE line is performed without issuing any bus request. The OWNERSHIP state

indicates that the memory does not have valid data for the block. The cache that owns the line




M (MODIFIED): Exclusive and owned

O (OWNERSHIP): Non-exclusive but owned
E (EXCLUSIVE): Exclusive but not owned
S (SHARED): Non-exclusive and not owned
I (INVALID)

A o e

If classified by cache state, the Write-once and Illinois protocols {6, 62] each have
four states (M, E, S, and I) and therefore belong to the family of MESI protocols.
The Berkeley protocol [6, 62], on the other hand, is a member of MOSI.

The EXCLUSIVE state in a stand-alone bus-based multiprocessor is easy to im-
plement: all processors snoop on the shared bus, and each can observe all memory
transactions. In a cluster architecture, this is no longer the case. When a processor
requests a line to share, the request is seen on the bus of the requesting node and,
possibly, on the bus of the home node. The home node must contact the node with
an EXCLUSIVE cache line and request it to change the line to a SHARED state.
Because of this extra overhead, we decided to use a MOSI protocol.

Our protocol is a variation of the Berkeley protocol. The main differences are
twofold. First, our protocol enables more cache-to-cache transfers. For example, the
Berkeley protocol only lets the owner of a line, i.e., the cache line in MODIFIED or
OWNERSHIP state or the memory, supply the data. Our protocol lets SHARED lines
respond as well. Second, our protocol defines the interface between intra-cluster and
inter-cluster protocols. More specifically, when a memory request cannot be satisfied
in a cluster node, the intra-cluster protocol generates a message of a specific type for
the inter-cluster directory protocol. We describe the operations of our intra-cluster

snoopy protocol as follows. The message’s type is given in italics.

e Read miss: If the line is MODIFIED, OWNERSHIP, or SHARED in the cluster, one
of the local caches supplies the data. A MODIFIED is changed to OWNERSHIP. If

is responsible for updating the memory, if necessary, when it replaces data.




none of the local caches has the data, a ReadMiss message is generated and entered

into the communication processor. After the request is serviced, the block is loaded

into the cache (of the requesting processor) in a SHARED state.

e Write hit: If the line is MODIFIED, the write proceeds with no delay. Otherwise,
the line must be SHARED or OWNERSHIP®. If the cluster has the ownership, it is
transferred to the requesting processor after the local copies are invalidated. Other-
wise, an ObtainOwnership message is generated and entered into the communication
processor. After the request is completed, the state of the cache line is set to MOD-

IFIED.

e Write miss: If the line is MODIFIED or OWNERSHIP? in one of the local caches,
the cache supplies the data and grants ownership after the local caches invalidate
their copies. If the line is SHARED in the cluster, the local caches invalidate their
copies, one of them supplies the data, and an ObtainOwnership is generated and
entered into the communication processor. If none of the local caches has the block,
a WriteMiss message is generated and entered into the communication processor.
After the request is serviced, the block is loaded into the requesting processor’s cache

in a MODIFIED state.

2.2.2 Inter-cluster Directory Protocol

The intra-cluster protocol generates an explicit message for the inter-cluster protocol
when a memory reference request cannot be satisfied by the former. In the directory
protocol, a memory block can be in one of three states, MODIFIED, SHARED,
and UNCACHED. In addition to the state, the directory keeps a complete list of

5 When a cache line is in the OWNERSHIP state, the line may be shared by other caches in
the same cluster, but not by caches in any other clusters. The memory block must be in the
MODIFIED state in the directory (cf. Section 2.2.2). Therefore, no inter-cluster invalidation is

generated.



nodes that may have a copy of the block. From the directory’s viewpoint, nodes are
clusters, not individual processors. When the protocol processor receives a memory
reference request (i.e., a message of ReadMiss or ObtainOwnership or WriteM iss)
from the bus interface. it first determines the home node based on the address, and, if
appropriate, forwards the request to the home node. At the home node, the protocol

processor looks up the state of the memory block and performs operations as follows.

e ReadMiss: If the memory block is SHARED or UNCACHED, the protocol processor
reads data from memory and sends it to the requesting node. If the memory block is
MODIFIED, the protocol processor looks up the node that modified the block and
requests that the node write back the data. As the data arrives, it is forwarded to
the requesting node and written back to memory. The directory state of the block is

set to SHARED.

e ObtainOwnership: The memory block must be SHARED. The home node sends
invalidations to all nodes sharing the line except the requesting node. After receiving
all the acknowledgements, the home node grants ownership to the requesting node.

The directory state is set to MODIFIED.

e WriteMiss: If the memory block is UNCACHED, data are read from memory and
sent to the requesting node. If the memory block is SHARED, the home node sends
invalidations to all nodes sharing the line. Also, data are read from memory. Upon
receiving all the acknowledgments, the data and ownership are sent to the requesting
node. In both cases, the state of the memory block becomes MODIFIED. If the
block is MODIFIED, the protocol processor requests that the owner write back and
invalidate the line. After the data arrives, the data and ownership are granted to the

requesting node. The directory state of the block is still MODIFIED.




18

2.3 Cache Coherence and Split Transaction Devices

In a shared-memory system, two processors may request access to a piece of data at
the same time. If both requests are reads, the order in which they are executed is
unimportant. However, if one request is a read and the other is a write, the system
must guarantee that one request is executed before the other for the sequential consis-
tency model is to be maintained. In a system that relies heavily on split transaction
devices, e.g. the split transaction bus and the interconnection network, a memory
operation and the cache coherence protocol are carried out as a sequence of sub-
operations. Maintaining the order of two memory operations can be tricky in certain
circumstances. This section explores issues involved in maintaining memory opera-
tion ordering on split transaction devices. We then discuss the network properties

required by directory-based protocols.

2.83.1 Memory Operation Ordering

Memory operations are executed as a sequence of sub-operations. Sub-operations such
as cache snooping and response are executed in parallel by multiple devices. For the
cache coherence protocol to function correctly, the sub-operations of two conflicting
memory accesses should appear to be in the same order. In other words, the sub-
operations of one memory request are executed in the same order with respect to
the sub-operations of another memory request on each device. For example, suppose
P, encounters a read miss R at the same time as Pj; encounters a write miss W
to the same address. R is granted service first. Obviously, P, cannot perform the
invalidation on behalf of P;’s write before transferring the data for the prior read.
Figure 2.4 depicts the correct ordering of sub-operations for two conflicting memory
requests:

In a stand-alone bus-based multiprocessor, memory sub-operation ordering

can be enforced by the bus arbitrator and by the FIFO queue in each bus device
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Figure 2.4: Memory sub-operation ordering.

that stores the coherent transactions received from the bus. If two processors raise
concurrent requests, the requests’ sub-operations enter the FIFO in the order granted
by the bus arbitrator. The FIFO queue guarantees that the sub-operations of one
request are executed before the sub-operations of the other request on each respective
device. Furthermore, the scheme ensures that the two requests are completed in the

same order as they were issued to the bus.

This approach is unnecessarily conservative: if two concurrent requests reference
independent locations, their sub-operations need not follow the bus arbitration or-
der strictly. A more sophisticated implementation that can relax the sub-operation
ordering of two independent memory accesses is to remove long latency pending sub-
operations (such as memory reads) from the FIFO queue and store them in a small
fully-associative cache buffer. The subsequent sub-operations match their addresses
to those of the pending sub-operations in the cache before being executed. If there

is no conflict, they can proceed; otherwise, they can be retried later.



In a cluster architecture, the preceding optimization becomes more important,

since a pending memory reference could take a few hundred cycles to complete. How-
ever, if the bus devices simply hold the addresses of pending requests, they may cause
deadlock. To explain why deadlock can occur, let us look at the situation in Figure
2.5. In the scenario, P, in Node 0 issues a request to write (Wpo) a shared line 4. The
request is intercepted by the communication processor and forwarded to home Node
1. Before receiving Wy, the home node receives another request from P; of Node 1
to write to the same line (W},). In servicing Wy, the home node sends invalidations
to clusters sharing the line, including Node 0. Because Wy is still pending, if P
holds the invalidation of W, a cyclic dependence is formed: W), cannot carry on
because P, is holding the address for W,o. Meanwhile, W,o cannot continue because

the home node is guarding the line for Wp;.

Node 0O Address space Node 1

Py P

Homed at

Wpo (hit-shared) \ node 1 W p1 (hit-shared)
Block A

Figure 2.5: A deadlock-prone scenario.

We know that if a memory operation O cannot be resolved within a cluster C,
it enters into the communication processor. While the request is pending, two kinds
of conflicts can occur: (1) a local compute processor raises a read or write miss
request (O;) to the same address, or (2) a communication processor (home node)

issues a writeback or invalidation request (O,) to the same line. These two cases



must be handled differently. In the former case, since the operation of O can affect

the snoopy result of O,, O; should retry. In the latter case, the fact that O, arrives
at node C while O (from node C) is still pending implies that the home node issues

O, prior to processing O; therefore, O, should take precedence. and O should retry.

2.8.2 Directory Protocol and Network Properties

Since the directory protocol frequently uses the interconnection network, the behavior
of the network affects to a great extent the implementation of the directory protocol.
This section lists the network properties required by a directory protocol and states
our assumptions that simplify protocol implementation.

Reliability. Although the directory protocol can be implemented on unreliable
interconnection networks, the implementation would be complicated and incur signif-
icant overhead if every outgoing message needed to be saved in order to recover from
network errors. In most high-performance interconnects, however, data links usually
operate under a well-controlled environment and span only a few meters. Therefore,
the occurrences of bit errors or lost packets are extremely rare. Even if transmission
errors do occur, networks such as Mercury [69, 44] and S-connect [47] provide reliable
network service through hardware retransmission. Hence, in our study, we assume a
reliable interconnection network layer.

In-order delivery. Under the sequential consistency memory model, correct
operation of the directory-based protocol depends not only on a reliable network layer,
but also on in-order message delivery. To elaborate, suppose node A issues a request
to share a memory block, which is to be serviced by home node H. Meanwhile, node
B issues a write request to the same line. At home node H, B’s write arrives after
4’s read. As a result, H sends the replying data first to A, then an invalidation on
behalf of B. If the invalidation arrives at .4 before the data does, node A would
have an erroneous cache state. Even in networks that guarantee in-order message

delivery, the split transaction style of memory accesses is still vulnerable to thrash-



ing situations under extreme conditions, which can happen more easily in systems

adopting multithreading processors. Kubiatowiz [37] illustrated several scenarios of
“yulnerable windows” and discussed a range of solutions to the problems®.
Deadlock. Interconnects such as Caltech’s Mesh Routing Chip [23] are guar-
anteed to be deadlock free if messages are consumed at their destination. Problems
arise when this condition is not satisfied due to the limited number of buffers in the
network interface. To sink the messages and clear the network interface buffers as
quickly as possible, designers usually prioritize messages based on their demand on
network resources and their chances of causing deadlock. Acknowledgements or re-
plying data are often given higher priorities, because processing them usually does
not consume network resources, and their completion helps remove pending requests
and release other resources. But message prioritization only reduces the likelihood of
deadlock; it does not eliminate the problem. In case deadlock does occur, the system
may have to drop messages in order to move forward. To avoid this complication,
our study assumes that the network interface has sufficiently large input queues to

sink messages.

2.4 Software Implementation of the Directory Protocol

We next discuss issues and details pertaining to the software implementation of a
directory protocol. These include directory memory management, message handlers,

and cache replacement.

2.4.1 Directory Memory Management

The coherence directory data structure we use is the dynamic pointer scheme [58, 38].

Each memory block has a directory header and a linked list of shared nodes. The

6 These solutions are beyond the scope of our thesis, and the author refers you to (37] for further

information.



directory header saves the state of the memory and the pointer to the shared node

list. The directory headers of a (shared) page are organized as an array, an entry in
which corresponds to one cache line-size memory block (Figure 2.6). The memory
overhead of the directory header array is a function of the size of the directory header
and the size of a cache line. Suppose the directory header is 8 bytes and the cache
line size is 64 bytes, a 4KB page then needs a directory header array of 0.5KB, or
12.5% overhead.

Free node list

Hash table S\

A shared page Directory header

==

Y.

W Y

Figure 2.6: Coherence directory data structures.

Memory for the directory header array is allocated dynamically from a free directory-
header-array pool. A hash table maps the physical address of a shared page to the
address of a directory header array. When a shared page is referenced for the first
time, the mapping is invalid. At that time, a directory header array is allocated, and
a map is established for that page. Subsequent accesses to blocks in this page find
the directory header array by a hash lookup and the directory header of a specific
block by adding a displacement. Note that the communication processor does not
recognize virtual addresses. Only physical addresses are passed to the communication

processor.




Memory for the shared node lists is also dynamically allocated from a free node-

list store. Initially, the OS assigns a certain number of physical pages (for the free
directory-header-array pool and the free node-list store) to the communication proces-
sor based on the amount of memory applications request for shared data structures.
This number can increase at runtime if the OS detects that it is allocating more

shared pages than expected on a particular node.

2.4.2 Message Handlers

The protocol processor starts a message handler after receiving a message interrupt.
The message handler can either process the message to completion if all coherence
actions can be taken in the node or process the message partially if other nodes of the
system are needed (e.g., write hit on a shared line). In the latter case, the handler
needs to suspend itself, yielding control to other threads.

Before a message handler suspends itself, it sets the directory of the memory
block to a transient state to prevent subsequent requests to the same line from being
processed prematurely. In addition, the message handler creates a data structure
to be used upon receiving the expected messages. This data structure contains the
handler’s name and state (indicating a point where the handler should continue once
the expected messages arrive), a pointer to the directory header of the memory block
in progress, and necessary bookkeeping information, e.g., the number of acknowl-
edgements received. To resume the suspended handler appropriately, the replying
messages carry a pointer to this data structure. During execution of the message

handler, interrupts are disabled, as in Active Messages [68].

2.4.8 Cache Replacement

Cache replacement can cause instantaneous inconsistency between the directory in-

formation and the cache states. Inconsistencies occur between the time a node sends



a request for replacing a cache line and the time the home node processes the request.

Such inconsistency complicates implementation of the directory protocol. Consider
the situation in which a home node requests a block to be written back from node C}.
The data are in MODIFIED or OWNERSHIP state in processor p; of C,. Before p,
receives the writeback request, it replaces the same line and sends the modified data
to the home node while the home node is waiting for a reply to its writeback request.
When the writeback request actually arrives at Cy, the data would no longer exist in
the node. Consequently, C; sends a negative acknowledgement (Nack), containing no
data, to the home node. When this happens, the home node can be certain that the
modified data must have arrived earlier than the Nack, because the network provides
in-order delivery service (cf. Section 2.3.2). The home node must preserve the data
sent back by cache replacement so that it can retrieve the data when processing the
Nack.

In case a line in the SHARED state is replaced, there are two options. The first is
to replace the line without notifying its home node; the other is to report the replace-
ment to the directory. The former case causes directory information to be inaccurate
with respect to the state of the cache; the directory protocol can still function cor-
rectly, however. The penalty is that home nodes may generate needless invalidation
messages. In the latter case, the processor that replaces the last shared copy in a
cluster node needs to inform the home node. To do that, the bus signaling must have
a capability similar to that of the snoopy protocol supporting the EXCLUSIVE state.

Our implementation uses the second approach.

2.5 Summary

This chapter described the base cluster architecture and its major components, ie.,
the communication processor, the memory, and the interconnection network. In ad-

dition, we outlined our intra- and inter-cluster cache coherence protocols. Since the




cluster architecture relies heavily on split transaction devices, we also examined is-

sues vital to both hardware and software implementations of a cache-coherent shared-
memory. Finally, we discussed the issues unique to software implementation of the

directory protocol.



Chapter 3

COMMUNICATION PRIMITIVES IN UNI-PROCESSOR
NODE ARCHITECTURES

Although the use of communication processors and of software cache coherence
permits protocol optimization and saves hardware design time, it increases the la-
tencies of memory references that need the assistance of communication processors.
This chapter addresses the memory latency problem. We propose a set of explicit
communication primitives that exploit the flexibility of the programmable proto-
col processors. These primitives provide the user with the advantageous features of
asynchronous message-passing while retaining the simplicity of the cache-coherent

shared-memory paradigm.

Our goals are to assess the overhead of a software implementation of the base
cache coherence protocol relative to an ideal hardware scheme and to measure per-
formance gains when the proposed communication primitives are applied. For these
purposes, we compare, via execution-based trace-driven simulation, a subset of the
SPLASH-2 benchmark suite in four environments: (1) a PRAM model, (2) an ideal-
ized hardware cache coherence scheme, (3) a software scheme implementing only the
basic cache coherence protocol, and (4) an optimized software solution supporting
the additional communication primitives and running with applications annotated
with those primitives. To isolate the effect of software overhead from that of shared
resource contention, we assume in this chapter an architectural model in which each

cluster node contains a single compute processor.

The rest of the chapter is organized as follows. Section 3.1 introduces the proposed




communication primitives and their semantics. Section 3.2 discusses issues involved

in implementing the primitives on the communication processor. We describe our
experimental methodology in Section 3.3: design of experiments, selection of bench-
marks, and the simulation environment and parameters. In Section 3.4, we show how
the benchmarks were modified with the introduction of the communication primitives
and present simulation results of the proposed scheme and the baseline architecture.

We summarize related work in Section 3.5 and conclude the chapter in Section 3.6.

3.1 Explicit Communication Primitives

Under usual cache coherence policies, the fetching of data is performed on demand
only, i.e., when a cache miss occurs. Similarly, the storing of data in memory is done
only when a replacement is needed '. The primitives that we propose extend, under
programmer or compiler control, these basic data movement operations. Table 3.1
shows the primitives and their semantics. Each primitive is a non-blocking operation.
Furthermore, we require that global cache coherence be maintained for the requested
data.

The first two primitives, get(addr, size) and getez(addr, size), let the programmer
prefetch a set of consecutive cache lines and request that these lines be either in
SHARED or EXCLUSIVE state. Granting ownership to the receiving processor can
significantly reduce write latency in subsequent accesses to that data. Note that the
get operations are not equivalent to page migration or DMA transfers since the data
are transferred to the cache of the requester and global cache coherency is maintained.

While get/getex are consumer oriented, the next two primitives, put(pid, addr, size)
and putez(pid, addr, size), are producer oriented. These operations are akin to an
asynchronous send in message-passing; they can be used when the producer knows

the identity of the consumer. By using a put operation, the producer process can

! Most of the lower-level caches in the memory hierarchy follow a write-back policy.




Table 3.1: Communication primitives. addr is the starting address of a block of data.

size is its size in bytes. pid is a processor number. pids is a mask indicating a list of

processors. mode is either write-back (wb) or write-through (wt).

Primitives Semantics

get(addr, size) fetch data into requesting processor’s cache
getex(addr, size) fetch data with ownership

put(pid, addr, size) place data in the cache of processor pid
putez(pid, addr, size) transfer data with ownership to processor pid
multicast(pids, addr, size) disseminate data to a set of processors
putmem(addr, size) return data to memory

writemem(mode, addr, size) | set the write policy

store a set of cache lines, in a given state, in the cache of the processor running the
consumer process. When there is more than one consumer and their identities are

known, the multicast(pids, addr, size) primitive can be used.

When the producer knows that it will not use the data any longer, but does
not know what process will consume it, the data can be stored in memory with the
putmem(addr, size) primitive. This may save half of the request-reply bandwidth in
the network when the data are next used. A similar effect can be achieved on a word-
per-word basis by changing the default write-back policy to a write-through one. The
writemem primitive can restrict this policy to a range of addresses; if its parameters
addr and size are both null, it can be applied to all write misses. By selecting the

mode, the user has the choice of alternating between the two write policies.

When utilized appropriately, these primitives benefit the application for the fol-

lowing reasons:



1. Overlap of communication with computation. This overlap can be extensive

since the operations dictated by the communication primitives are non-blocking,

and multiple requests can be outstanding.

2. Bulk data transfers. The network can be better used by pipelining transmis-

sions.

3. Tailoring the cache coherence protocols. For example, superfluous data transfers
present in write-update protocols can be avoided, or early requests for owner-
ship in write-invalidate protocols can reduce the number of control messages in

migratory-like patterns.

However, there are dangers in using these primitives unwisely. These dangers re-
semble those that exist when using prefetching or post-storing too aggressively: cache
pollution, increase in coherence traffic, and saturation of the network. Therefore, the
programmer or compiler writers must insert the primitives with discretion, taking

into account the cache configuration and usage of the application’s data.

3.2 Implementation Issues

The communication primitives differ from cache miss requests in four significant ways.
First, the compute processor issues communication primitives directly to the com-
munication processor without checking the state of its own cache. Second, no local
snoopy operations have been performed for the lines being requested. Third, the
communication primitive requests are not limited to one cache line. Fourth, they
do not block the issuing processor. This section discusses the effect these differences

have on the hardware and protocols and outlines our implementation strategies.



3.2.1 Change in Cache Controllers

Since the compute processor issues primitives without checking its own cache, the
cache controller is not aware of such pending requests. Therefore, a major change
that the communication primitives require from the cache controller and the bus

protocol is that they allow unsolicited data to be pushed into the cache.

3.2.2 (Commaunication Primitive Protocols

Because the compute processor does not validate the requests of communication prim-
itives with its own cache or the caches of other local processors, the protocols used
for the primitives differ from those for cache miss requests. For instance, assume that
a processor writes to a shared line, and the request cannot be satisfied in the local
cluster; it is therefore forwarded to the home node. The home sends invalidations to
all sharing nodes ezcluding the requesting node, because the requesting processor has
already issued a local invalidation. On the other hand, if a processor issues a getex
to a shared line, the home node sends invalidations to all sharing nodes including the
requesting node.

One of the functions of the communication primitive protocols is to filter useless
user requests. With the communication primitives, it is possible that a processor
may request a piece of data that exists in one of the local processors. When this
situation occurs, the communication primitive protocols can choose not to send the
data, because the processor can get the data locally when referencing the block.
The protocols can further require that the processor issuing put, putez, or rmulticast
requests own the data; otherwise, no data are transferred upon such requests. In any
case, since cache coherence policies are governed by software rather than hardware,
they can be changed quite easily.

As can be seen, the communication primitive protocols rely entirely on directory

information. Therefore, the accuracy of this information is crucial in determining



efficient coherence policies for the protocols. In a simplified cluster architecture of one

processor per node, we maintain an accurate list of the sharing nodes in the directory
(cf. Section 2.4.3); we can therefore actually deduce the cache states of individual
processors. The fact that the issuing processor does not validate the requests with
the local caches does not create problems. However, in a general form of cluster
architectures, the fact that there are multiple compute processors in a node does
present challenges to the efficient implementation of the protocols. We discuss the

issue further in Chapter 5.

3.2.8 Bulk Data Requests

In Section 2.4.1, we mentioned that the communication processors see physical ad-
dresses only. This implies that compute processors are responsible for all the address
translation. If the size of the data being requested is larger than a page or not aligned
to a page boundary, the compute processors also need to decompose the request into
several smaller requests and align each to the page boundary.

Each communication primitive is forwarded to the home node based on the address

of the request. At the home node, a bulk request is treated on a cache-line basis.

Message Priorities

Once the communication primitives are implemented, the communication processor
receives and processes two kinds of messages: (1) mandatory messages required in the
base cache coherence protocol, and (2) user communication primitives. Because the
user primitives do not block the compute processors, we give them low priority, and
their corresponding message handlers are interruptible by the mandatory messages,
which have high priority.

High priority messages are executed as soon as the communication processor is

not processing another high priority message. Low priority messages are removed



from the BI and NI interfaces and stored in a software-managed message queue in

memory, most likely in the communication processor’s cache. When the communica-
tion processor becomes idle, it polls the (software) message queue to see if there are
any pending messages. If so, the first one in the queue is processed in the hardware
context for low priority messages.

Just as conflicts can happen among mandatory messages, they can also occur
between miss requests and communication primitives. Each communication primi-
tive is processed on a cache line basis. Therefore, the sub-operation ordering of two
requests to the same line—one due to a cache miss request, the other to a communica-
tion primitive—can be resolved in the same way as it is for two conflicting mandatory
messages. In other words, the order of the respective sub-operations is determined

by the order in which the home node starts processing the conflicting requests.

3.3 Experimental Methodology

Generally speaking, the execution of an application running on a parallel system
consists of computation time and communication and synchronization overhead. Even
under a PRAM architectural model, where the overhead of communication reduces
to zero, an application can still suffer from synchronization overhead due to serial
sections or load imbalance. Therefore, we can divide the execution time? of a parallel

application into four components:

1. Computation time (labeled CPU busy in the figures in Section 3.4)

2. Synchronization time under a PRAM model. This part is due to the intrinsic prop-
erties of the algorithm, e.g., producer-consumer relationships, serial sections of the

program, load imbalance (labeled Sync-algo)

2 In our measurements, we exclude the initialization time from execution time, because the initial-

ization is often performed on one processor.




3. Communication time due to memory latency (Mem latency)

4. Extra synchronization time due to the effects of memory latency (Sync-mem)

These four components are not independent. For example, a mismatch between
the partitioning of computation and partitioning of data can easily cause excessive
communication overhead. Likewise, an inefficient memory system exacerbates load
imbalance. Since our goal is to test the efficiency of the communication primitives
with respect to a hardware implementation, we isolate the contributions of each
component and compare the performance of the applications, via simulation, in four

experimental environments.

e Case 1: A machine with a perfect memory system (PRAM model).
e Case 2: A hardware-based, cache-coherent (full directory [15]) system.

e Case 3: A system that uses a communication processor, with the embedded protocol

processor implementing the coherence protocol (software implementation).

e Case 4: A system as in Case 3, with the addition of the communication processor able

to handle user-based communication primitives (optimized software implementation).

The difference between Case 1, where only computation and synchronization time are
taken into account, and Case 2 reveals the loss of parallel efficiency due to memory
latency minimized as much as possible by the best hardware implementation. The
difference between Cases 2 and 3 shows the additional overhead incurred with a
software implementation. Case 4 shows the potential performance gains obtained
by supporting communication optimization schemes on top of a flexible software

infrastructure.



Table 3.2: Summary of benchmark data. Numbers are given in millions.

Total Shared | Shared
Application | Problem size intsruction | read write
FFT 64K points 33.32 6.00 5.73
LU 256x256 matrix, 16x16 block 64.20 23.11 11.19
RADIX 0.5M integers, 1024 radix 29.55 6.70 3.46
RAYTRACE? | teapot 375.93 54.60 0.22

3.3.1 Benchmarks

For our experiments, we selected three kernel applications—FFT, LU factorization,
and RADIX sort—from the SPLASH-2 benchmark suite {71, 72]. These applications
have been coded with a CC-NUMA system in mind. Thus, they already have some
embedded communication optimizations. They also exhibit coarse-grain regular com-
munication patterns that can be exploited by the proposed communication primitives.
Table 3.2 summarizes some pertinent statistics about the applications: problem size,

and number of instructions, number of read and write references to shared data.

2.9.2 Simulation Environment and Parameters

We chose Mint [64] as our simulation tool, since our interest is primarily in the
performance aspects of the memory system. Mint is a software package that emulates
multiprocessing execution environments and generates memory reference events that
drive a memory system simulator. In addition to memory references, Mint provides
an interface to trigger any user-specified event. We use this interface for specifying

communication primitives in the applications. When encountering such primitives

3 This benchmark is used in Chapter 4.




during execution, Mint generates special types of events that invoke the simulation

back-end.

The systems we simulated had 16 processors. We considered five combinations of
cache size and associativity: infinite cache, large (256KB) direct-mapped and 2-way
set-associative caches, and small (32KB) direct-mapped and 2-way set-associative
caches. The cache-line size was set at 32 bytes.

We assume perfect pipelining in the compute processor. This assumption affects
only the CPU busy time, which remains essentially the same for the four environments,
and thus does not bias the results. In addition to the cache effect, the memory
system simulator models the operations of the communication processor in detail.
This includes: the interrupt overhead of message reception; the overhead of moving
the message from the BI and NI input queues either to be executed directly or to be
stored in (software) queues; the time to package and write messages to the BI and NI
output queues; and the manipulation of the directory data structure. Table 3.3 lists

major architectural parameters specified to the simulator.

Table 3.3: Principal architectural parameters of the communication processor.

Parameter Value

Interrupt and context switch 8 cycles
Bus interface (in/out) 2 cycles
Network latency (one way) 24 cycles
Network interface (in and out) 12 cycles

Retrieving data from memory (first word) | 14 cycles

Size of buffers (BI, NI) infinite

Max. number of pending requests 10

To illustrate the overhead of the software implementation, we show in Table 3.4



Table 3.4: Difference in timing between hardware and software implementations of

a shared variable read miss. The directory for the block is in a home node different

from the node requesting the data.

Action Resource Software | Hardware
(in cycles) | (in cycles)

Miss detection Compute processor 6 6

BI processing (inbound) BI (in) 2 2

Receiving/forwarding request | CPP/CMMU 17 4

(De)package message NI (in and out) 12 12

Transfer message Network 24 24

Home node handling CPP/CMMU 55 24

and memory

(De)package message NI (in and out) 12 12

Transfer Network 24 24

Processing data CPP/CMMU 26 8

BI processing (outbound) BI (out) 2 2

Totals 180 118

the timing differences between the hardware and software implementations of a shared

read miss. The data is assumed to be in a non-exclusive state (i.e., one hop is suffi-

cient). As can be seen, in ideal conditions (no contention) the software implementa-

tion is 54% slower. While this is the slow-down effect that we use in our simulations,

it is in fact quite favorable to the hardware implementation, because we have not

tried to optimize the communication processor as much as we could; we want to keep

it a flexible, programmable resource. Furthermore, with current technological trends,

network and memory latencies and bandwidths will not progress as fast as processor
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speed; the software implementation will suffer less from this widening gap. For ex-
ample, doubling only the network latency would reduce the preceding 54% factor to
39%. Finally, the software implementation’s latency will suffer less from expansion of
the system; there will be no need to change the full directory structure into a partial

one, since all directory look-ups are handled in software.

3.4 Performance Results

This section describes each application, emphasizing its communication aspects, i.e.,
the massaging of the major data structures. We then explain how to annotate the
applications with the communication primitives proposed in Section 3.1. Finally, we

present results of the simulation of the four architectures described in Section 3.3.

9.4.1 FFT

The application. The SPLASH-2 FFT algorithm is optimized for distributed or
hierarchical memory systems [7]. The input data of FFT consists of a \/n x /n
matrix of complex numbers. The major data structures are the input matrix A, its
transpose B, and another matrix of the same dimension for the “roots of unity”.
In the beginning, one processor performs initialization for the entire input matrix
and the roots of unity. The post-initialization algorithm consists of six phases. (1)
B — AT; (2) and (3) Compute and update B; (4) 4 — BT; (5) Compute and update
A; (6) B — AT. Each processor is assigned to compute a set of consecutive rows.
During a transpose phase, each processor reads a subblock of the source matrix and
writes into the corresponding rows of the destination matrix. During a computation
phase, each processor operates on the set of rows set up in the prior transpose phase.
There are three synchronizing barriers, after phases 3, 5 and 6.

In a hardware invalidation-based protocol, communication occurs in the transpose

phases. For example, in phase 4, when a processor reads a subblock of B, it generates




read misses, since the data for that source matrix was generated on a subblock-by-

subblock basis by other processors in phases 2 and 3. When a processor writes the
data in A4, it needs to generate invalidation messages, since the first transpose phase
left the corresponding cache lines in a SHARED state.

We use the communication primitives to interleave computation with commu-
nication. More specifically, in phases 2 and 3 (likewise in phase 5). we insert put
operations as soon as a processor (producer) has finished computing a row of B to
disseminate the data to the other (consumer) processors. In addition, immediately
after the puts, we insert geter calls to place in the correct state the cache lines cor-
responding to the rows of 4 that the processor overwrites in phases 4 and 6. Thus,
when the processor finishes the computing phase, it has (or at least has requested)
in its cache the needed data in the desired state to perform the transpose. Either the
data have been put there by another processor, or they have been prefetched via a
getex.

For this aggressive communication latency hiding scheme to be successful. the
cache must be large enough to hold the working sets of both the computation and
transpose phases. If it is not, cache pollution occurs because the put or get operations
will have been performed too early. For small caches, we use get only and schedule the
prefetching primitive right before the matrices are accessed in the transpose phases.

Simulation results. Figure 3.1 displays simulation results for FF'T running on
the four model architectures and the combinations of cache size/associativity de-
scribed in Section 3.3. The leftmost bar is the result for the PRAM model. As
mentioned above, the use of communication primitives was dependent on the size of
the caches.

First, PRAM results show that the load balance is close to ideal. Second, a
comparison between the PRAM and hardware implementation shows that communi-
cation, which occurs only during the transpose phases, is intensive. Execution time

in the hardware implementation is more than double that of the PRAM when we in-
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Figure 3.1: Execution times for FFT. “CPU busy” is the compute processor execution
time. “Mem latency” is the amount of time the compute processor waits because of
memory latency and cache coherence effects. “Sync-Mem” is the synchronization
time, including load imbalance, due to the effect of memory latency. For each cache
configuration, the three bars, from left to right, show the results of the hardware full-
directory implementation, the software implementation, and the optimized software

implementation, respectively.

clude a realistic memory latency and a fast but inflexible coherence protocol. Third,
as already noticed in other studies [21], infinite caches can be worse than large finite
caches: while there is less data traffic, there can be more coherence traffic or con-
tention for data in a single cache. This phenomenon occurs here during phase 4 of
the original program (phases 2 and 3 of the optimized program), since A is initialized

by one processor.

Comparing the software and hardware implementations shows the price paid by

adding (software) flexibility. Section 3.3 presented an example (cache read miss) in



which the latency in the software implementation was 54% higher than that of the

hardware implementation. This ratio is close to the 70-80% and 70-96% ratios of
the Mem latency and Sync-Mem components of the execution time. The slightly
higher ratio in the execution times can be explained by the two facts: (1) messages
processed locally take relatively longer in the software implementation than in the
hardware one, and (2) there is contention in the communication processor.

The insertion of communication primitives pays off handsomely. The optimized
method is now much faster than the original software implementation. Unless conflict
misses occur frequently (direct-mapped caches), it is even faster than the hardware
implementation. Table 3.5 breaks down the phase-by-phase execution times of the
two software schemes for the infinite cache case.

Notice first that memory latency in the optimized case is only 23% of the orig-
inal. This gain outweighs overwhelmingly, in absolute numbers, the 22% loss in
synchronization time. Introducing communication primitives has a negligible effect
on computation time (CPU Busy). Overall, the optimized implementation is 40%
faster than the original.

In the original implementation, almost all memory latency overhead is incurred
in transpose phases 1%, 4, and 6. This overhead is almost twice as high as it is for
the processor’s busy time. During the transpose phases, no computation takes place.
Conversely, during the computation phases, there is almost no memory traffic (recall
that we have an infinite cache).

After the optimization, communication is performed while computation is in
progress, except during phase 1. In phase 1, the reduction of memory latency stems
from the possibility of transferring of several cache lines with a single request. This

eliminates the need for sending and processing multiple small messages, thus reducing

1 The first transpose phase (phase 1) incurs less memory latency. When a processor first writes the
transposed data into its own cache, no other processor has previously touched the data. Therefore,

writes proceed almost twice as fast as in the other two transpose phases.



Table 3.5: Breakdown of execution times of FFT for original and optimized software

implementation (infinite cache).

Phase | Version Instruction | Memory | Synchronization
(in cycles) | (in cycles) (in cycles)

1 Original 53925 792100 0
Optimized 61119 386036 0

2,3 Original 1004490 3691 140073
Optimized 1010790 271857 1128018

4 Original 53910 1570010 0
Optimized 53908 8482 0

5 Original 915967 2382 736366
Optimized 922303 150690 51664

6 Original 53958 1271600 122772
Optimized 53955 2670 16036

Total | Original 2082305 3641568 1026376
Optimized 2102136 821539 1222850

network traffic (cf. Figure 3.2, which shows an appreciable decrease in the number
of requests). This bulk transmission mode also enables the home node to pipeline
data transfers, hiding communication latency even further. In phases 2, 3%, and
5, the large amount of computation should be sufficient to overlap with the entire

memory latency of phases 4 and 6, respectively. The residual memory latencies in

5 The large synchronization time at the end of phase 3 of the optimized software implementation

is caused by initializing the input matrix A on a single processor. A comparable corresponding

synchronization time is found at the end of phase 5 of the original implementation.
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those phases are caused by the fact that the simulation limits the number of pending
communication operations to 10. This is less than the required number: namely,
(number of processors — 1) puts and one getex for complete overlap with the com-
putation.

The infinite cache case illustrates the potential performance gain of an aggressive
communication and computation overlapping scheme. When the cache size is limited,
the aggressive use of communication primitives raises the danger of polluting the
cache. In FFT, the pollution can be caused by conflicts between the current working
set (e.g., a set of consecutive rows of B in phases 2 and 3) and the future working set
(e.g., a set of consecutive columns of B and corresponding rows of A in phase 4). In the
case of the large 256KB cache, we see that the pollution effect is indeed present. since
the memory latency time (in the optimized case) is twice as much as that of the infinite
cache for 2-way set associativity and three times as much for direct-mapped. Even
so, however, the performance is comparable to that of the hardware scheme, where
there are almost no conflict misses: slightly better for the 2-way case, slightly worse
for the direct-mapped. For the two small cache configurations, data are prefetched
into the caches immediately prior to use. The results show that the conservative use
of communication primitives also reduces the memory overhead significantly. Again,
the results are comparable with those of the hardware scheme.

Figure 3.2 shows network traffic before and after optimization. As mentioned

earlier, the optimized version results in fewer requests. Cache pollution, on the other
hand, increases not only requests, but also data to be transferred, since data displaced
by prematurely prefetched data must be refetched. This is particularly visible in
the 256KB, direct-mapped cache. Finally, the number of control messages slightly
decreases because of geter requests that place data in the right state.

Summary. For FFT, the use of communication primitives to prefetch data and to
put cache lines in the correct state in advance yields execution times for the software

optimization that are comparable, even slightly lower, than those of the hardware




20000000 Request -
Data
fg,? Control
=, 15000000 [ i -
=] R
£
(+]
'35 10000000 + -
=
[=]
g 5000000 -
=
(0]

Infinit 256K 256K 32K 32K
cache 2-way Dmap 2-way Dmap

Figure 3.2: Network traffic for FFT. “Request” “Data”, and “Control” are the net-
work traffic for sending cache miss requests or communication primitives, data, and
control messages (e.g., invalidation and acknowledgment), respectively. The left and
right bars show the network traffic for unoptimized and optimized software imple-
mentations, respectively. Network traffic for the hardware implementation is omitted

since it is equivalent to that of the software implementation.

implementation.

3.4.2 LU Factorization

The application. The SPLASH-2 parallel implementation of the LU factorization
of a dense matrix has been optimized to exploit data locality [72]. Nonetheless,
the serial sections of the application produce a fair amount of load imbalance. The
input matrix is divided into submatrices, or blocks, which are assigned to processors
in a two dimensional scatter decomposition fashion. In essence, every processor is

responsible for factorizing the same number of blocks; this number diminishes almost




uniformly for all processors during the computation. The algorithm iterates over the

number of blocks along the diagonal. In the k-th iteration, the processor responsible
for the block Axx factorizes it. This is by necessity a serial part of the algorithm. The
perimeter blocks 4;; and Ag; are then computed using Ak, a phase that requires
communication. This can be performed in parallel, but the processors owning the
perimeter blocks all need to access data in the processor owning 4. Finally, the
remaining interior blocks A;; are updated by the processors responsible for them.
This phase also requires communication between the updating processors and the

processors to which the perimeter blocks have been assigned.
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Figure 3.3: Execution times for LU. For a detailed explanation of the legend, refer to
the caption of Figure 3.1. In addition, “Sync-algo” is the synchronization time due

to load imbalance intrinsic to the algorithm.

Communication required in the first and second phases of each iteration provides
opportunities for using communication primitives. Thus, we modified the algorithm

in three ways. First, when a (producer) processor is factorizing a diagonal block Agg,
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it sends (multicast) a row of data as soon as that row is computed to the (consumer)
processors in charge of the perimeter blocks A; and Ag;. Second, after a (producer)
processor finishes updating one row of a perimeter block, it sends (multicast) the
data to the (consumer) processors that use the block for processing interior blocks.
Finally, since an interior block is exclusively accessed by the processor in charge of
its computation, we let the processor prefetch the data with ownership ( geter) before
updating the block. For infinite and large caches, prefetching is scheduled once at
the first instance of phase 3. For small caches, prefetching is issued in each iteration.

Simulation results. Figure 3.3 displays execution times for the four environ-
ments. The PRAM simulation shows the effects of the serial sections. Processors
are idle one third of the time, on average. This synchronization is exacerbated on
a realistic system by the additional memory overhead, because busy processors take
longer to complete assigned tasks, thus keeping idle processors waiting longer. On
the other hand, memory overhead accounts for only 10% to 15% of the total execu-
tion time in the hardware implementation and 15% to 30% in the original software
implementation. This leaves less room for optimization, however, reducing memory
overhead is still desirable, because it helps reduce synchronization overhead as well.

The 256 KB caches are large enough to accommodate the whole working set of LU
for the problem size we simulated. When the caches are 2-way set-associative, the
optimized solution is as efficient as the hardware implementation for both large and
small caches. When the cache is direct-mapped, the large number of conflicts takes
its toll; the effect is magnified in the software implementations, because of the in-
creased latencies. The conflicts that occurred within the working set of phase 3, when
each processor factorized interior blocks using perimeter blocks, cannot be avoided in
the optimized software implementation. Thus, we see less significant improvement,
especially in the case of the 32K direct-mapped cache.

Network traffic does not vary much among the three implementations (cf. Figure

3.4). The optimizations do not introduce severe cache pollution.




20000000 r Request - -

Data

’gJ? Control

=, 15000000 -
L

£

L

£ 10000000 | -
=

o

% 5000000 | -
=

1L 1l “
infinit 256K 256K 32K 32K
cache 2-way Dmap 2-way Dmap

Figure 3.4: Network traffic for LU. For a detailed explanation of the legend, refer to

the caption of Figure 3.2.

Summary. LU offers less opportunity to perform optimizations. However, the
use of multicast and prefetching is worthwhile, mostly if the caches are not direct-
mapped. In that case, the performance of the optimized software is as good as that

of the hardware implementation, which is within 20% to 45% of the PRAM lower

bound.

3.4.3 RADIX Sort

The application. RADIX sort is part of the NAS parallel benchmark [8]. It sorts
k-bit integers by examining r bits (r < k) of the keys per iteration. In the parallel
implementation, each processor is assigned an equal fraction of the keys. An iteration
consists of three phases. In phase 1, each processor scans through its assigned keys
and computes the local histogram and density of each radix value. In phase 2, prefix

sums of the local histograms and the global densities (sums of local densities of all




processors) are computed. These results are used to compute the new position of

each key in the output order. In phase 3, the keys are permuted based on the new

position computed in the prior step.

Broadcast the global densities!

-.:

Figure 3.5: Communication patterns for computing the global densities and prefix
sums of the local histograms. Each processor initially has local histograms and local
densities in its cache. The solid arrows indicate the data transfer needed for both
global densities and prefix sums. The dashed curves are for prefix sums only. The

label in each node is the processor that computes the intermediate or final results.

The major data structures are two arrays that are used alternately for the input
and sorted keys, and a binary tree of arrays to store the prefix sums of the local
histograms and the (partial) results of the global densities. Communication occurs in
every phase at each iteration, but with different patterns. In phase 1, each processor
reads a portion of the keys, sorted and written in phase 3 of the previous iteration.
Although the reading is sequential, the key order cannot be determined until phase
3 completes. Phase 2’s communication patterns for computing the global densities
and the prefix sums are illustrated in Figure 3.5 using eight processors. In phase 3,
each processor determines the new order of the keys assigned to it, and the pattern is

random. False sharing occurs frequently in this phase, since neighboring keys might



be assigned to different processors.

Communication primitives can be used in each phase in different ways. In phase
1, the only possibility is to prefetch data as soon as phase 3 terminates. We insert
get operations for prefetching keys before computing the local histograms and density
functions. In phase 2, we insert put or multicast operations in the (producer) pro-
cessors to send data to the (consumer) processors according to the regular pattern
of communication flow shown in Figure 3.5. Neither get nor put primitives can be
used in phase 3, because data locations are not known until run-time. Some false-
sharing can be avoided if processors write memory directly (write-through) rather
than cache data. Thus, a writemem(wt) call is inserted at the beginning of phase 3,

and a corresponding writemem(wb) at the end.
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Figure 3.6: Execution times for RADIX. For a detailed explanation of the legend,

refer to the caption of Figure 3.1.

Simulation results. Figure 3.6 shows performance results of the RADIX sort.

As can be seen when comparing the PRAM and hardware implementation execution



times, memory latency effects are the most important of the three applications. A

very small load imbalance in the PRAM case occurs during phase 2. However, since
phase 2 is short compared to phases 1 and 3 (cf. the instruction count in Table 3.6),

the effect is not significant and cannot be seen given the scale of the figure.

Table 3.6 breaks down execution times for a 256K B, 2-way set-associative cache for
the original and optimized software implementations. In the original implementation,
and in the hardware implementation, more than half of the memory latency effects
arise in phase 3. Unfortunately, this is where communication primitives are least
applicable, since communication patterns are random. Nonetheless. the change of
write policy in this phase yields a 20% improvement over the original implementation.
The prefetching effects in phase 1 are quite significant, decreasing memory latency and
associated load imbalance by a factor of two for the phase. Communication primitives
also reduce memory latency in phase 2; however, this effect is less important, since

phase 2 does not take much time to execute..

The gains of the optimized implementation are even more significant for small
caches. The optimized software implementation performs almost as well as the hard-

ware one.

Figure 3.7 displays the network traffic before and after the optimizations. Net-
work traffic for RADIX was largely reduced due to the change in write policy. It
is particularly striking for small caches, where false sharing and conflict misses are

avoided by writing data through memory in phase 3.

Summary. Radix is the most memory-intensive of the three applications. It
is also the least amenable to optimization. Nonetheless, a combination prefetching
and of write policy change makes the optimized software implementation competitive

with the hardware implementation.



Table 3.6: Breakdown of RADIX’s execution times for the original and optimized

software implementations given a 256KB 2-way set associative cache.

Phase | Version Instruction | Memory | Synchronization
(in cycles) | (in cycles) (in cycles)

1 Original 704778 1783595 113057
Optimized 704834 515701 310923

2 Original 139419 707990 1248630
Optimized 139682 435627 1156961

3 Original 999610 3733430 248395
Optimized 1048766 2905070 240463

Total | Original 1843872 6226998 1638077
Optimized 1893347 3858511 1737689

3.5 Related Work

The communication primitives that instruct the system to perform efficient data
transfers resemble: the asynchronous send/receive operations in message-passing in-
terfaces [9, 51], prefetching [41, 16, 25] and poststore [34] commands, non-blocking
(bulk) read (get) and write (put) operations in the split-phase assignment statement
of Split-C [19], and explicit communication mechanisms [53]. The common idea is
overlapping communication with computation. The differences are in policy with
respect to message-passing systems, since the global addressing space paradigm and
cache coherence is maintained; second, in the (extendible) set of primitives, since the
communication primitives include both producer-consumer oriented operations and
availability of bulk transfers; and third, in implementation, since the execution of the

optional communication primitives are interruptible by mandatory shared memory
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Figure 3.7: Network traffic for RADIX. For a detailed explanation of the legend, refer

to the caption of Figure 3.2.

requests which are assigned a higher priority.

Tailoring the coherence protocol to the application can be done in several ways.
Protocol modifications can be specified by the user at a coarse grain level [22] or in
incremental fashion [29], can be dictated by the compiler [52, 20], or can be the result
of hardware monitoring [18, 60]. In the applications we studied, we saw the need to
apply different coherence strategies at the granularity of a computational phase on a
data-structure-per-data-structure basis.

Combining message passing with shared memory to overcome the inefficiencies of
cache coherence mechanisms was first proposed in the context of the Alewife project
[35, 36] and further elaborated in Flash [27]. A number of important issues have
been raised and discussed, e.g., user-level messaging and protection, and coherence
strategy for bulk data transferring. Since our interest was mainly on performance-

related issues, we concentrated on the latter, imposing a global coherence strategy



for prefetching and bulk data transfers.

The design of our communication processor resembles that of Flash (38, 28]. Flash
is a tightly coupled CC-NUMA system that uses a programmable processor (MAGIC)
and software (running on MAGIC) to maintain cache coherence. The MAGIC chip is
highly optimized. It includes special hardware to assist in message receiving, schedul-
ing, dispatching, and directing outgoing messages to proper destination interface
units. The processing of incoming messages, protocol handling, and preparation of
outgoing messages are pipelined. In addition to its macro-pipelining architecture,
MAGIC employs speculative memory access to overlap memory latency with proto-
col handling. As a result, the slowdown due to software overhead is minimized to
only 2%-12% over that of an ideal hardware implementation. In contrast, our co-
processor is more flexible, allowing more easily the introduction of new primitives or
changes in protocols; however, our software overhead is on the order of 50%. The use
of dedicated communication hardware can also be found in tightly coupled message-
passing systems such as Intel Paragon [31] and has been proposed for networks of

workstations [54].

3.6 Summary

This chapter proposed a set of communication primitives that can enhance the per-
formance of cache coherent shared-memory multiprocessors. These primitives give
the user some of the capabilities of message-passing systems, while maintaining the
correctness and simplicity of the global address space paradigm. The primitives allow
the prefetching and post-storing of blocks of data whose sizes are not limited to sin-
gle cache lines; they also permit the tailoring of the cache coherence protocol to the
needs of the application. We also described implementation strategies that let the
communication processors handle in software not only these primitives, but all cache

coherence transactions. This pure software approach incurs some overhead, but it




adds flexibility by facilitating the introduction of new primitive and the implementa-

tion of variations in cache coherence protocols.

We selected three benchmarks from the SPLASH-2 suite for performance evalu-
ation purposes. We then simulated a 16-processor system with five different cache
configurations. We simulated four environments: an ideal PRAM model to gauge the
effects of memory latency and cache coberence, a system where cache coherence was
maintained with a full directory hardware scheme, and two implementations with a
communication processor, one using the original benchmarks and one with communi-
cation primitives appropriately inserted. With the parameters that we chose for the
communication processor, the memory latency and cache coherence overhead in the
original software solution were at least 50% higher than they were in the hardware
implementation. With communication primitives, the optimized software solution
gave results comparable to those of the hardware solution.

These evaluation results are encouraging and point to the value of a software
approach enhanced by user directives. Each of the communication primitives was
exercised in at least one of the applications, with prefetching being used for all three
applications. Their use resulted in significant performance improvements over the
base software cache coherence scheme. The quantitative results, which show a per-
formance comparable to the hardware solution, are conservative, since an increase in
network latency or memory bandwidth would have a greater impact on the hardware
implementation. The software solution is also more attractive because it is more
scalable. For example, there is no difficulty in keeping a full directory, since it is a

software data structure that is more amenable to change.



Chapter 4

MODELING CONTENTION ON SHARED RESOURCES

In cluster architectures, memory requests are satisfied either locally, i.e., within
a cluster (intra-cluster), or externally, i.e., by another cluster (inter-cluster). The
intra-cluster misses require use of the cluster’s internal resources: the common bus,
the local memory attached to the bus, the snooping caches of other processors in
the cluster, and, on occasion, the communication processor. The inter-cluster misses
require, in addition to the internal resources, use of the network and at least one
remote communication processor.

An important difference between the two types of misses is that the latencies
of intra-cluster misses are several times smaller than those of inter-cluster misses if
contention on the bus or memory is not severe. Under this condition, obviously. the
higher the proportion of intra-cluster misses, the better the performance, assuming
that the total miss ratio is fixed. One way to achieve a high intra-cluster miss ratio is
to incorporate as many processors as possible in a node. However, when there are too
many compute processors sharing the bus or memory, intensive resource contention
lengthens the time needed to resolve intra-cluster misses relative to contention-free
inter-cluster misses. Therefore, a balanced system should be such that the number of
intra-cluster misses must not saturate the cluster’s bus or memory, while the number
of inter-cluster misses must not be too large.

To estimate the performance of cluster architectures, we develop a Mean Value
Analysis (MVA) [40, 67] based model. The model lets us efficiently assess the con-
tention on major shared resources and its impact on the performance of the software

cache coherence scheme. The model’s input parameters include architectural parame-




ters, such as the cycle times of the sub-operations of memory reference requests, and

application-dependent parameters, such as cache miss profiles. Application-dependent
parameters are obtained via trace-driven simulation.

The rest of Chapter 4 is organized as follows. Section 4.1 discusses several design
options that directly affect application behavior and resource usage, i.e., varying
cluster size and adding simple hardware. Section 4.2 introduces the analytical model,
notations, and formulae for estimating contention, cache miss latencies, and overall
execution time. Section 4.3 describes our choice of architectural parameters, and how
we obtained the application parameters for our evaluation. Section 4.4 presents the
quantitative results by exercising the model. We highlight also where performance
bottlenecks may arise and how performance responds to design alternatives. Section
4.5 compares analytical results with simulation results to validate the model. We

present related work in Section 4.6 and summarize our results in Section 4.7.

4.1 Design Options

Many variables can be adjusted to change the performance of cluster architectures.
In this chapter we keep constant most of the architectural parameters, such as the
size of the processor’s private cache and network latency. We discuss three design
choices that either directly alter the intra-to-inter-cluster miss ratio or change the

usage of highly demanded resources such as the protocol processor.

4.1.1 Cluster Size

Given a processor’s private cache size, the number of cache misses it encounters is
often independent of cluster size. However, the ratio of intra-to-inter-cluster misses
does change when the cluster size varies. At one extreme is a cluster containing
a single compute processor (the model used in Chapter 3). In this configuration,

each processor may often need data on remote nodes. Thus, there may be many



inter-cluster misses. When cluster size increases, the number of intra-cluster misses

increases, and the number of inter-cluster misses decreases. At the other extreme is
a single-bus system; all cache misses become intra-cluster.

On the other hand, when cluster size increases, more compute processors share
the bus, the memory, and the protocol processor. Contention for these resources can
be so high as to offset the benefit of data sharing within the cluster. Our goal is
to determine the cluster size for which applications can enjoy the greatest benefit of
sharing without incurring severe resource contention. Note that when we vary the

cluster size, we keep constant the total number of processors,

4.1.2 Remote Cache

The second design option to the base architecture is adding a remote cache shared
by the processors in each node. The remote cache, often an order of magnitude
larger than the processor’s private cache, stores data homed at remote nodes. For
applications that have a per-processor working set larger than the private cache, or for
applications whose data cannot be statically partitioned across physical memories to
exploit local memory access effectively, the remote cache can eliminate a good portion
of inter-cluster misses. In this respect, the remote cache resembles the COMA model.

The remote cache affects cluster architecture performance in two ways. First, it
increases the ratio of intra-to-inter-cluster cache misses. Second, it retains modified
data in a node longer, increasing the number of 3-hops inter-cluster misses. Our goal

is to evaluate the performance benefit of this additional hardware resource.

4.1.8 Forwarding Logic

When several compute processors share a software-controlled communication pro-
cessor, its protocol engine may quickly be overloaded. To decrease the load on the

protocol engine, we propose adding special hardware, a forwarding logic module (Fig-




ure 4.1a). The module would allow the request that needs not access the coherence

directory of a node to bypass the protocol engine of that node. For example, a read
request for remote data would route through the forwarding module of the requesting
node instead of using its protocol engine (Figure 4.1b). Similarly, a “writeback™ from
a home cluster would bypass the protocol engine of the node executing “writeback”
and use the forwarding module (Figure 4.1c). With the forwarding logic, every cache

miss or communication primitive uses only the protocol engine of the home node.
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Figure 4.1: The communication processor augmented with forwarding logic.

In contrast to the logic of directory-based protocols, the forwarding logic is much
simpler and can be easily implemented in hardware. In fact, such forwarding logic
can be found in the previous generation of shared-memory machines such as RP3 [50]
and BBN Butterfly [10]. In these systems, shared variables are not cacheable. The

main function of the forwarding logic is to support a globally shared address space



for distributed memories.

Table 4.1: Classification of read misses.

Miss | Resource | Protocol Actions Followed on a Miss

R1 Bus Requested data is in a local cache. Data transfer cache-

Cache to-cache.
R2 Bus,PP Home node is local, data is clean in memory. “ReadMiss”

Mem enters home, which issues a memory read and updates directory.
R3 Bus,PP Home node is local, data owned remotely. “ReadMiss”

Net,Mem enters home, which asks owner to write back. As data returns,

Cache home sends it to requester, writes to memory, and updates dir.

R4 Bus,PP Home node is remote, data is clean in memory. “ReadMiss”
Net,Mem forwarded to home, which issues a memory read, then sends

data to requester, and updates directory.

R5 Bus,PP Home node is remote, data owned by home. “ReadMiss”
Net.Mem forwarded to home, which issues a writeback locally.
Cache When data returns, home forwards it to the requesting node,

writes to memory, and updates directory.

R6 Bus,PP Home is remote, data owned by a third cluster. “ReadMiss”
Net,Mem forwarded to home, which requests owner to write back.

Cache When data arrives, home forwards it to the requester, writes

back to memory, and updates directory.

4.2 Analytical Model

We present our analytical model in a top-down fashion. We first express execution
time in terms of memory access latencies. These latencies can increase when there is

contention forcing the requests to wait before they are serviced. We thus develop a




Table 4.2: Classification of write misses.

Miss | Resource | Protocol Actions Followed on a Miss

W1 Bus Requested data is owned by a local cache. Data transferred
Cache cache-to-cache with ownership. Local copies are invalidated.

w2 Bus,PP Home is local, data is clean locally only. “ObtainOwnership”
Mem enters home node. Data transferred from cache/mem/ .
Cache Local copies invalidated. Home grants ownership, updates dir.

w3 Bus.PP Home node is local, data is owned remotely. “WriteMiss”
Net enters home, which asks owner to write back and invalidate.
Cache As data arrives, home sends it to the requester, updates dir.

W4 Bus,PP Home is local, data is clean remotely too. “ObtainOwnership”
Net,Mem | enters home node. Data transferred from cache/mem/ .
Cache Local copies invalidated. Home invalidates sharing clusters.

After receiving acks, home grants ownership, updates dir.

W5 Bus, PP Home is remote, data is owned by home. “Writemiss”
Net forwarded to home, which issues a writeback and invalidation.
Cache As data arrives, home sends it to the requester, updates dir.

w6 Bus,PP Home is remote, data is clean locally only. “ObtainOwnership”
Net,Mem | forwarded to home. Data transferred from cache/mem/ .
Cache Local copies invalidated. Home grants ownership, updates dir.

WT Bus,PP Homeé is remote, data owned by a third node. “Writemiss”
Net forwarded to home, which issues a writeback and invalidation.
Cache As data returns, home sends it to the requester, updates dir.

W8 Bus,PP Home is remote, data clean at other nodes. “ObtainQOwnership”
Net,Mem | forwarded to home. Data transferred from cache/mem/ .
Cache Local copies invalidated. Home invalidates sharing clusters.

After receiving acks, home grants ownership, updates dir.




61

MVA-based model to account for contention’s effect on the memory latencies. The
model’s input includes application-dependent parameters and architectural parame-
ters. The model’s output provides the queue length and waiting time at each device,

approximate miss latencies, and the execution time.

4.2.1 FEstimating Erecution Time

A program’s execution time can be estimated as:
Tezecute = Tinstrs + z M, x L, (4.1)
r

where Tj,s:rs is the time to execute the instructions on each processor (assuming good
load balance), M, is the number of type r cache misses, and L, is the latency for
type r misses. In Tables 4.1 and 4.2, we classify cache misses according to their
service demand on shared resources and summarize the actions needed for each type
of read and write miss. If there is no contention, L, is the sum of service times of the
resources used by a type r miss. If there is contention, L, is the sum of service times

plus queuing times on those resources:

L. = Z(L'Vk,r + Sk.r) (42)
k

In Equation (4.2), Wj . is the total waiting time of a request of type r on a resource
of type k. Sk, is the total service demand of a request of type r on a resource of
type k. As shown in Tables 4.1 and 4.2, each miss request of a given type generates
a specific sequence of sub-requests. These sub-requests, the resources they use, and
their semantics are shown in Table 4.3. Tables 4.4 and 4.5 synthesize Tables 4.1,
4.2 and 4.3, showing in detail the sub-requests and associated resources for each
miss type. For example, a read miss of type R3 first generates the following four

sub-requests in its home cluster:

1. A miss request posted on a cluster’s address bus (Areq on resource Abus)




2. A ReadMiss message inserted in the input queue of the bus interface (Bregl on BI(I))

3. Protocol processing operations (PPops on PP)

4. Request for a remote cluster to write back modified data (NreqO on NI(O))

When the remote cluster returns the data, the home node executes another sequence

of sub-requests:

1. Data received at the network interface (Ndatl on NI(I))
2. Protocol processing operations (PPops on PP)

3. Data inserted in the output queue of the bus interface (BdatO on BI(O))

4.2.2 Architectural Assumptions

As evidenced by previous discussion and by Tables 4.3 and 4.4, our architectural
model is quite detailed. Nonetheless, we make a few assumptions and simplifications
to keep the analysis computationally tractable and effective.

First, we consider only symmetric systems in which each cluster contains the same
number of processors, the same amount of memory, and remote cache, if any. Second,

we assume the following when looking at each component of a cluster.

e The instructions executed on the compute processor are perfectly pipelined.
Therefore, the CPI is one under an ideal memory system.

e L2 cache misses block compute processors, which must wait for memory requests
to complete before executing their next instructions.

e The L2 caches have dual-ported tags. Hence, snooping on the bus does not
interfere with a processor’s accessing its L2 cache if the processor and the snoop
controller access different cache lines. We ignore contention at the L2 level, since
it is extremely rare to have concurrent accesses to the same L2 cache line by

the processor and by the snoop controller.



latencies of data transactions are for the first 8 bytes.

Table 4.3: Definitions of sub-requests and resources required. Only a subset of the

protocol operations are displayed. Bus transactions are counted in bus clock cycles

(marked with asterisks). The other operations are counted in CPU cycles. The

Sub-requests | Meaning Resource | Cycles
Areq Request for data/writeback/ Abus 2%
invalidation on address bus
Xdat Transfer data on data bus Dbus 2%
R12 Read data from L2 cache L2 4
Rmem/Wmem | Read/Write memory Mem 14
Rrc/Wrc Read/Write remote cache RC 14
Bmsgl BI sends/receives msg: dat(data) BI(I) 2
BmsgO req(request), ack(acknowledgement) | BI(O) 2
Nmsgl NI receives msg NI(I) 4
NmsgO NI sends msg NI(O) 8
Fmsg Forwards msg Fwd 3
PPops Protocol processing (below) PP
PPsend/PPrecv | PP sends/receives messages PP 3/12
PPsched Schedule a protocol handler PP 4
DIRstatus Directory status lookup PP )
DIRadd Add a sharing node PP 6
DIRdel Delete a sharing node PP 6
DIRrtrv Retrieve a sharing node PP 3




Table 4.4: Service demands of read misses on shared resources. Rows of this table

show the sub-requests and the resources needed (each resource has its own column)
in a given cluster for a particular type of read miss (cf. Table 4.3 for the meanings
of abbreviations). For misses involving multiple clusters, the first row shows service

demands for the local cluster; the second and third rows (if present) are the service

demands for the second and third clusters involved.

Miss Sub-requests
Type | Abus | Dbus | L2/Mem | BI(I) | BI(O) | NI(I) | NI(O) Fwd/PP
R1 Areq | Xdat Rl2
R2 Areq | Xdat Rmem Breqgl PPops
R3 Areq | Xdat | Wmem | Breql | BdatO | Ndatl | NreqO PPops
Areq | Xdat RI2 Bdatl | BreqO | Nreql | NdatO | Freq, Fdat
R4 Areq | Xdat Breql | BdatO | Ndatl | NreqO | Freq, Fdat
Rmem Nreql | NdatO PPops
R5 Areq | Xdat Breql | BdatO | Ndatl | NreqO | Freq, Fdat
Areq | Xdat RI2 Bdatl | BreqO | Nreql | NdatO PPops
Wmem
R6 | Areq | Xdat Breql | BdatO | Ndatl | NreqO | Freq, Fdat
Wmem Nreql | NreqO PPops
Ndatl | NDatO
Areq | Xdat RI2 Bdatl | BreqO | Nreql | NdatO | Freq, Fdat




Table 4.5: Service demands of write misses on shared resources.

explanation of the table, refer to the caption of Table 4.4.

For a detailed

Miss Sub-requests
Type | Abus | Dbus | L2/Mem | BI(I) BI(O) NI(I) NI(O) Fwd/PP
w1 Areq Xdat RI2
W2 | Areq | [Xdat] [RI2] Breql | BownO PPops
[Rmem]
W3 Areq | Xdat Breql BdatO Ndatl NreqO PPops
Areq | Xdat RI2 Bdatl BreqO Nreql | NdatO | Freq, Fdat
W4 | Areq | [Xdat] [RI2] Breql | BownO | Nackls | NreqOs PPops
[Rmem]|
Areq Backl BreqO Nreql NackO | Freq, Fack
W3 Areq | Xdat Breql BdatO Ndatl NreqO | Freq, Fdat
Areq | Xdat RI2 Bdatl BreqO Nreqgl NdatO PPops
W6 | Areq | [Xdat] [RI2] Breql | [BdatO] | [NdatI] | NreqO | Freq,[Fdat]
[Rmem] Nreql | [NdatO] PPops
W7 Areq | Xdat Breql BdatO Ndatl NreqO | Freq, Fdat
Nreql NreqO PPops
NdatI | NdatO
Areq | Xdat RI2 Bdatl | BreqO Nreql | NdatO | Freq, Fdat
W8 | Areq | [Xdat] [RI2] Breql | [BdatO] | [Ndatl] | NreqO | Freq,[Fdat]
[Areq] [Rmem] | [BackI] | [BreqO] | Nreql | NreqOs PPops
NackIs | [NdatO]
Areq Backl BreqO Nreql | NackO Freq,Fack




e The cluster buses are split transaction [24]. The address and data buses are two

separated resources that can be used simultaneously for different transactions.

Finally, we do not consider network contention for three reasons. First, the band-
width provided by current network technology appears to be sufficient for the size
of the systems investigated in this thesis, thus network contention is not an impor-
tant factor. Second, many models have been developed to analyze the performance
of various networks [1, 12]. Third, the MVA (Mean Value Analysis) technique we
use cannot cope easily or directly with network contention. If necessary, results of

existing contention models could be incorporated in the analysis (cf. Section 4.6).

4.2.8 Miodeling Contention

Returning to Equation (4.2), Sk, and Wi, are sum totals of the service and waiting
times of the sub-requests issued to k by a type r miss. While Sk, values are architec-
tural parameters, contention is present in the determination of Wy, values. We use a
closed queuing network to model the cluster architectures, with compute processors
as customers, and buses, memories, and protocol processors as service centers. We

use the MVA technique and the following notations to solve for W ,:

e N is the total number of processors in the system.

e N, is the number of processors per cluster, i.e., the cluster size.

e [ is the average number of instruction cycles between cache misses.

e R is the mean total time between cache misses.

e P. is the probability that a miss is of type r.

e U, is the utilization at a type k center.

® Qrioc (Qkrme) is the arrival queue length at k observed by a local (remote)
request.

® Sk.ritoc (Skrirme) is the service demand of the ith sub-request to & from a local

(remote) T miss. Recall that a cache miss can issue multiple sub-requests to a



service center.

e s; is the average sub-service demand per miss on center k.

® Mg r1oc (Mirrme) is the number of sub-requests to k issued by a local (remote) r
miss. If r does not require a local (remote) k resource, Mg ri0c = 0 (M rrme = 0).

e m; . is the number of local and remote sub-requests issued to a type k resource
by a type r miss. mg, = Mk rioc + Mirrme- If T dOes not use type k resource at
all, mg, = 0.

® Wy toc (Wkrme) Is the waiting time at k for a sub-request issued by a local (remote)

miss.

Based on the assumption that a cache miss blocks the compute processor, each
processor alternates between executing instructions and waiting for miss requests
served by the memory system. Thus, the mean total time between cache misses can
be expressed by the number of instruction cycles between two misses under an ideal

memory system plus the time spent in the memory system:
R=TI+> (P x> (Wkr+ Skr)) (4.3)
r k

where

( 0 if k is L2 cache or network

VV;C,,- = j (44)
Mg rloc X wk,loc+
| Mk,r.rme X Wi,rme otherwise
mg rloc M r.rmt
Sk.r = Z Sk.riloc T Z Sk,r,j,rmt (45)
i=1 ij=l1

Equations (4.4) and (4.5) express the total waiting time and total service time in
terms of the waiting and service times of sub-requests, respectively. We now consider
the queuing effect at each type of service center on the waiting time of each sub-

request. Suppose a type 7 miss issued from cluster C requires resource k of the local




cluster and the same type of resource k of a remote cluster. Since the system is

symmetric and an application’s memory accesses are often evenly distributed across
memory modules, for each service performed at a remote cluster, resource k of C
needs to perform the equivalent service on behalf of a type r request issued from
a remote cluster. Therefore, for any request issued from the local cluster (C), the
arrival queue length at k& (Qkoc) is contributed by: (1) all the sub-requests issued
by the other N, — 1 local processors and (2) by the remote requests of the N — |

remote processors, with each request having a probability N—‘FATC of requesting cluster
C. Similarly, for any request issued from a remote cluster, the arrival queue length at
k (Qx, ,.mt) is contributed: (1) by the sub-requests issued by the local N. processors,
and (2) =+ \, - of the sub-requests issued by the other N — N, — 1 remote processors.
Hence, the arrlval queue lengths at center k£ observed by a local or remote request

are:

S Pex(Ne—1)x vk O (1ot Skur i doc)
Qk loc — R

z PrxNex Z krrm‘(wk_rmt‘("sk.rq.rmt)
R

(4.6)

Mi.rd
Zr PrxNex i=1 T oc(wk,loc+sk.r.:.loc) +
R

Qk,rmt =

N, k., ¢
Z PTX(NC _‘t)XZ) T (wk.rml+3k.r,}.rmt)

Finally, we can estimate the waiting time for each sub-request by the arrival queue

lengths and utilization.

Wetoe = (Qktoc— Uk) X sk+ U X 5¢/2 )
Werme = (Qrrme — Uk) X sk + Uk X 5¢/2
where
se = (X Prx S'”)/( > P) (4.8)

rusek rusek



Zr Pr X Sk,r
TR

U. = N. (4.9)

Since Equations (4.3) through (4.9) contain cyclic interdependencies, Wy , is solved

iteratively with wg joc and wg rm: initialized to 0.

4.3 Application parameters

The preceding model takes architectural input parameters (the numbers of cycles
needed for contention-free sub-requests) and application dependent parameters (the
number of instruction cycles between misses and the cache miss profile). Most of the
architectural parameters were presented in Table 4.3. The rest are shown in Table

4.6. This section describes how to obtain application parameters.

Table 4.6: Architectural parameters not included in Table 4.3.

Parameters Value

Number of processors 16

size = 64KB, assoc =1

L2 cache line size = 64 bytes

size = 1MB x cluster size

Remote cache assoc =4, line size = 64 bytes
CPU clock/bus clock 2
Network latency 24

4.8.1 Methodology

In order to exercise our model properly, we need reasonably balanced workloads.
We therefore selected RADIX, FFT, and RAYTRACE from the SPLASH-2 bench-
mark suite [71]. We have described the algorithms for RADIX in Section 3.4.3 and



FFT in Section 3.4.1. RAYTRACE is an image-processing program that renders a

three-dimensional scene using ray tracing [59]. Recall that Table 3.2 (Section 3.3.1)
summarizes pertinent statistics about the applications: problem size, and number of
instructions, number of read and write references to shared data.

We collected application-dependent statistics by performing a trace-driven simu-
lation using Mint. In the simulation, we assumed that cache misses were insensitive to
the accuracy of timing information; hence, we use constant latencies for them. This
assumption is reasonable for many applications for which false sharing is a rare case,
such as FFT!, or for those where memory accesses are randomized and evenly dis-
tributed across nodes such as RADIX and RAYTRACE. The application-dependent
parameters of principal interest are the numbers of cache misses of each type and the
probability that a replaced cache block is dirty and, if so, whether its home node is
local or remote.

Among the three design options described in Section 4.1, only cluster size and
the remote cache affect the cache miss profile. Therefore, we vary the number of
processors in each cluster, from a single processor per cluster, to 2, 4, 8, and finally
16, i.e., a single cluster corresponding to a conventional shared-bus multiprocessor.
In the alternative designs that employ remote caches, we keep constant the remote
cache size per processor while altering the cluster size. This makes comparisons
between various configurations as fair as possible. Parameters used in the simulation

are shown in Table 4.6.

4.8.2 Cache Miss Profiles

Figures 4.2, 4.3, and 4.4 show the cache miss profiles of the three applications. The

four and one half pairs of cache miss profiles correspond to architectures of cluster

1 As mentioned earlier, the version we use has been optimized to eliminate false sharing and to

facilitate bulk data transfer.
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Figure 4.2: The cache miss profile of RADIX. The left (right) bar of each pair cor-
responds to an architecture not containing (containing) remote caches. RIL, R2 and
W1, W2 are intra-cluster misses. R3, R4, R5 and W3,W4, W5, W6 are inter-cluster
misses that involve two clusters. R6 and W T, W8 are misses involving three clusters.

Tables 4.1 and 4.2 provide a detailed explanation of each type of miss.

size 1, 2, 4, 8, and 16, respectively; the left (right) bar of each pair corresponds
to an architecture not containing (containing) remote caches. Notice that the total
cache miss ratio is independent of cluster size or the presence of remote caches. This

number is governed by the configuration of the processor’s private cache.

As expected, when cluster size increases, the number of intra-cluster shared ref-
erence misses rises. When the cluster size for RADIX and FFT doubles, the number
of intra-cluster misses is doubles. A plausible explanation for this is that the data
are uniformly distributed across cluster memories, and that the average number of
processors sharing a piece of data is two in both applications. Hence, when cluster

size halves, nearly half the intra-cluster misses have to cross the cluster boundary.



For RAYTRACE, the average number of processors sharing a piece of data is higher.
As a result, when a cluster splits into two, a smaller portion of intra-cluster misses

turn into inter-cluster misses. Intuitively, RAYTRACE has better cluster locality.
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Figure 4.3: The cache miss profile of FFT. For a detailed explanation of this graph,

refer to the caption of Figure 4.2.

Adding the remote cache significantly changes the cache miss profiles. The pres-
ence of the remote cache increases the retention of remote data. When a line whose
home is in a remote cluster is replaced in an L2 cache, it can still exist in the remote
cache because of the inclusion property. Thus, the remote cache can transform into
intra-cluster misses some of the inter-cluster misses caused by conflict mapping or ca-
pacity limitation in the L2 caches. The extent of the reduction in inter-cluster misses
is determined by the proportion of conflict and capacity misses in them. From [7T1], we
know that when processor caches are of limited size, both RADIX and RAYTRACE

encounter significant numbers of capacity misses. For these two applications, the re-
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mote cache is very effective in transforming the inter-cluster into intra-cluster misses.
On the other hand, FFT has a smaller proportion of capacity misses. Therefore the

remote cache is not as helpful.
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Figure 4.4: The cache miss profile of RAYTRACE. For a detailed explanation of this

graph, refer to the caption of Figure 4.2.

When cluster size increases, the number of intra-cluster misses increases less sig-
nificantly (compared to the architectures without remote caches). This is because the

remote cache has already eliminated most of the inter-cluster capacity and conflict
misses.
Finally, we note that the remote cache also brings a negative impact. Because a

remote cache tends to retain data in remote clusters longer, it increases the number

of 3-hop inter-cluster misses (misses involving three clusters). This can be observed

most notably with FFT.




4.4 Exercising the Model: Performance Evaluation

Cache miss profiles alone are insufficient to assess performance. They are used as
one of the inputs of the contention model introduced in Section 4.2.3. This section
presents and discusses the analytical results. We start with a table displaying the
service demands computed based on the cache miss profile of RADIX. The service
demand table reveals where contention might exist. We then show how resource
contention affect the cache miss latencies of this specific application. Finally, we

present execution times for the three applications.

4.4.1 Average Service Demand

Tables 4.4 and 4.5 showed how each type of miss uses memory system resources.
Based on these tables, the parameters given in Table 4.3, and the cache miss profile,
we can compute for each resource an application’s service demand (per Processor).
This is the average number of cycles a cache miss requires from a resource. Table 4.7
displays service demands for the RADIX application. As can be seen. of the 10 shared
resources, the data bus (Dbus) and the protocol processor (PP) are the two resources
with the heaviest demand. Hence, they are subject to the highest contention. This
is true not only of RADIX, but also of FFT and RAYTRACE. Following discussion
examines the effects of the three design options (cf. Section 4.1) on service demands,
with a focus on the data bus and the protocol processor.

Cluster size. Recall from Section 4.3, when cluster size increases, the number of
intra-cluster misses increases, and the number of inter-cluster misses decreases. The
increase in the number of intra-cluster misses, however, does not imply an increase in
service demand on the data bus. Independently of whether a miss is intra- or inter-
cluster, the data have to transmit on the local cluster’s bus. Intra-cluster misses use
the bus only once. Some inter-cluster misses may use the bus twice if the data are

owned by a cache of the remote cluster. Therefore, when the number of inter-cluster



Table 4.7: RADIX’s average service demands. V. is the cluster size.

Average service demands (in CPU cycles)

N. | Abus | Dbus | RC | Mem | BI(I) | BI(O) | NI(I) | NI(O) | Fwd PP
No forwarding logic, No remote cache
1 | 6.71 |[28.66 | 0.00 [ 21.91 | 7.95 7.64 | 19.85 | 33.92 | 0.00 | 143.88
2 | 6.71 | 28.66 | 0.00 | 21.90 | 7.94 7.25 | 18.58 | 31.75 | 0.00 | 138.98
4 | 6.70 | 28.65 | 0.00 | 21.86 | 7.92 6.43 | 16.03 | 27.38 | 0.00 | 129.33
8 | 6.68 |28.62 | 0.00 | 21.82 | 7.87 | 4.55 9.95 | 17.05 | 0.00 | 105.90
16 | 6.63 | 28.55 | 0.00 | 21.73 | 0.00 | 0.00 0.00 0.00 0.00 0.00
With remote cache, No forwarding logic
1 | 6.72 |29.95 | 10.75 | 3.64 | 2.13 2.19 4.99 8.24 0.00 | 37.31
2 | 6.72 | 29.86 | 9.99 | 4.98 | 2.45 2.13 4.51 7.55 0.00 | 38.59
4 | 6.71 | 29.77 | 8.67 | 6.96 | 3.03 1.99 3.52 5.98 0.00 | 40.45
8 | 6.68 |29.11 | 5.49 | 12.21 | 4.66 1.74 1.71 3.08 0.00 | 48.30
With forwarding logic, No remote cache
1 | 6.71 | 28.66 | 0.00 | 21.91 | 7.95 7.64 | 19.85 | 33.92 | 17.43 | 54.38
2 | 6.71 | 28.66 | 0.00 | 21.90 | 7.94 7.25 | 18.58 | 31.75 | 16.31 | 53.34
4 | 6.70 | 28.65 | 0.00 | 21.86 | 7.92 6.43 | 16.03 | 27.38 | 14.07 | 51.26
8 | 668 |28.62 | 0.00 {21.82| 7.87 | 4.55 9.95 | 17.05 | 8.75 | 46.34
With forwarding logic, With remote cache

1 | 6.73 | 29.95 | 10.75 | 3.64 | 2.13 2.19 4.99 8.24 4.34 | 15.88
2 | 6.74 | 29.86 | 9.99 | 498 | 2.45 2.13 4.51 7.55 3.93 | 17.14
4 | 6.74 | 29.77 | 867 | 6.96 | 3.03 1.99 3.52 5.98 3.06 | 19.44
8 | 6.73 |29.11 | 549 | 12.21 | 4.66 1.74 1.71 3.08 1.49 | 25.84




misses decreases, the overall demand on the data bus service center actually decrease.

In our experiments, most remote requests were serviced by memory. Demand on the
data bus remained practically unchanged, due to the dedicated link and memory

controller between the protocol processor and memory.

For the protocol processor, a smaller inter-cluster miss ratio leads to a lower service
demand. However, the change is limited. Note that service demands are computed

on a per processor basis. If cluster size grows, demand per node rises monotonically.

Remote cache. When remote cache is employed, demand on the data bus barely
changes, as discussed above. The slight increase is possibly due to the disturbance
on the second level caches caused by the replacement in the remote cache. When a
remote cache replaces a line, it has to issue an invalidation on the bus to purge data

existing in the second-level caches in order to maintain the cache inclusion property.

With the remote cache, demand on the protocol processor drops most significantly.
from 50-70%. Demands on other resources drops by various degrees. However, when
cluster size increases, demand on the protocol processor surprisingly increases despite
rising intra-cluster misses. It turns out that, with a bigger cluster size, a larger
proportion of intra-cluster miss requests are homed at, hence served by, the local

memory rather than the remote cache; they use the protocol processor as well.

Forwarding logic. Forwarding logic lessens the amount of time spent on pro-
tocol processor by performing some of its simple functions in hardware. As a result,
forwarding logic is most useful to inter-cluster misses, which heavily rely on these
processors. Unlike remote cache, forwarding logic does not change the cache miss
distribution. Therefore, it also does not change the demands on any other resources.
When both remote cache and forwarding logic are employed, the average service

demand on the protocol processor drops even lower than that on the data bus.



4.4.2 Miss Latencies

We can use the contention model presented in Section 4.2.3 to estimate cache miss
latencies. We compute the time a cache miss waits on each resource (cf. Equation
(4.4) that has to be solved iteratively) and combine them with the service demands
computed in the previous section. Figures 4.5 and 4.6 display the respective intra-

cluster and inter-cluster cache miss latencies for RADIX.
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Figure 4.5: The average intra-cluster cache miss latencies for RADIX. RC and FL

stand for remote cache and forwarding logic respectively.

Cluster size. Figures 4.5 and 4.6 show that both the intra- and inter-cluster miss
latencies increase monotonically with cluster size. Because cluster size similarly af-
fects both types of miss latencies, we only analyze the results for intra-cluster misses.
When the cluster size is large, say 8, intra-cluster miss latencies are 4 to 10 times as
long as those of respective architectures with one processor per node. The escalation
of miss latencies is caused by contention on the data bus and on the protocol proces-

sor, because some of intra-cluster misses (R2 or W2) of the multi-cluster architectures
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Figure 4.6: The average inter-cluster cache miss latencies for RADIX. RC and FL

stand for remote cache and forwarding logic respectively.

also use the protocol processor. As we saw in the previous section, when cluster size
increases, the service demand per processor on the data bus remains unchanged, and
the service demand (per processor) on the protocol processor decreases slightly. How-
ever, the demands per node always increase with cluster size. So does the contention.
For the single-bus system where a protocol processor is not needed, the major source
of contention is the data bus; hence, the miss latency of the single-bus system is lower
than the intra-cluster miss latency of the architecture that has 8 processors per node
but no remote cache or forwarding logic. The miss latency of the single-bus system,

however, is worse than the intra-cluster miss latencies of any other configuration.

Remote cache. Not only does the remote cache increase the proportion of intra-
cluster misses, it also reduces the intra-cluster miss latency substantially (44-70%).
This is because the intra-cluster misses serviced by the remote cache bypass the

protocol processor; hence, they have a lower miss latency than those serviced by the




local memory. However, the use of remote cache increases the inter-cluster cache

miss latencies slightly in many cases. The reason is that the remote cache tends to
retain modified data in a node longer, thus increase the number of 3-hop, inter-cluster
misses (see Figure 4.2). As a result, the average inter-cluster miss latencies are higher
than those of architectures without remote cache. At the cluster size of 8, however,
this effect is offset by reduced contention on the protocol processor.

Forwarding logic. In contrast to remote cache, forwarding logic has little in-
fuence on intra-cluster miss latencies. In fact, no intra-cluster misses use the for-
warding logic. Nevertheless, forwarding logic still reduces intra-cluster miss latencies
by mitigating contention on the protocol processor. For inter-cluster misses, many
transactions that formerly used the protocol processors can take advantage of the
forwarding logic. Therefore, even at small cluster sizes (1 and 2) when contention
is low, forwarding logic decreases inter-cluster miss latencies by 26-38%. At larger

cluster sizes (4 and 8) when contention is high, the reduction is 50-70%.

4.4.3 Ezecution time

We apply Equation (4.1) to assess overall performance as measured by execution
times. Results for the three applications are shown in Figures 4.7, 4.8, and 4.9.
Execution times are normalized to the execution of a single-cluster system.

A parameter critical to the normalized execution time is the number of instructions
executed between cache misses (I in Equation (4.3)). It is the reciprocal of the cache
miss issuing rate. The smaller I is, the higher the contention. For our selected
benchmarks, I is 43 (RADIX), 184 (FFT), and 145 (RAYTRACE). Consequently,
RADIX suffers the highest contention in the single-cluster configuration and benefits
the most from the cluster architectures. For the cluster architectures that do not have
remote caches or forwarding logic, the performance of RADIX is about 36% and 22%
faster than the single-bus system, reached at cluster sizes of 1 and 2 respectively. Since

the proportion of inter-cluster misses in large clusters is still quite high, contention on
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Figure 4.9: Normalized execution times for RAYTRACE.

the protocol processor takes its toll. This results in performance much worse than the
single-bus system. The low cache miss issuing rate for FF'T means the bus contention
in the single cluster is not high enough to make the cluster architectures useful. For
RAYTRACE, the improvement of cluster architectures over the single-bus system is
moderate. A remarkable characteristic of this application is its good cluster locality:
when cluster size increases, intra-cluster misses increase rapidly (see Figure 4.4) to

cause the performance improvement.

When the remote cache is added, intra-cluster misses increase from the original 5-
50% to 70-85% for RADIX. Its intra-cluster miss latency is lessened by 50% or more.
As a result, the remote cache enhances the overall performance of cluster architectures
by 50-60%. For FFT, the benefit of the remote cache is 8% at cluster size 1 and 36%
at cluster size 8. The diminished value of the remote cache can be explained by the
fact that FFT has a lower miss ratio (hence a smaller memory overhead) and a large

portion of inter-cluster coherence misses that cannot be transformed by the remote



cache. For RAYTRACE, the corresponding improvement is between 22-27%. Al-

though at cluster size 1, the remote cache increase the number of intra-cluster misses
significantly, its benefit is smaller than it is for RADIX because RAYTRACE has a
lower miss ratio. At large cluster sizes, the remote cache does not help RAYTRACE
as much as it does the other two applications because RAYTRACE has good cluster
locality and the cluster architectures without remote cache are quite well balanced
for this application.

Forwarding logic’s main function is to reduce inter-cluster contention-free miss
latency as well as contention on the protocol processor. It is most useful for archi-
tectures of large cluster sizes where contention is potentially high. For example, with
forwarding logic, the normalized execution time of RADIX drops more than 50% at
cluster size 8, but only 20% at cluster size 1. The same is true for FFT and RAY-
TRACE, to different degrees. Finally, since forwarding logic does not change the
cache miss profile, it is often less effective than remote cache unless the application
(e.g., FFT) has a large portion of coherence misses, for which the remote cache is

useless.

4.5 Validation

Figures 4.10, 4.11, and 4.12 compare analytical results with simulation results. The
analytical model predicts execution time trends quite well for RADIX and FF'T. The
errors range from 5% to 30%. The model yields optimistic results for two reasons. The
first is that the algorithms of the two applications alternate between computational
phases that have distinctive needs for communication. In one phase, the program
performs communication intensive operations. In another phase, it performs CPU-
intensive operations. When we compute mean values over the entire application,
the model underestimates the contention effect for communication intensive phases.

The second reason for optimistic results is that the MVA technique is incapable of
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Figure 4.10: Comparison of analytical and simulation results for RADIX. Solid lines

are simulation results. Dashed lines are the model’s outputs.

handling synchronization overhead. This component is completely overlooked in the
analytical model.

The MVA technique is also a poor predictor of the behavior of lock-intensive
applications, such as RAYTRACE. We have selected RAYTRACE because it has
no barrier synchronization overhead. Its overall synchronization overhead is also
extremely low under an ideal (PRAM model) memory system [71]. However, as it
turns out, this application is lock-rich. Under a realistic memory system, the memory
overhead due to lock synchronization is quite large. As a result, the analytical model

is not as accurate for RAYTRACE.

4.6 Related Work

The behaviors of service centers contained in our model generally satisfy the two

assumptions required by the MVA technique, i.e., routing homogeneity and service
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time homogeneity [40]. Vernon et al. have shown that the MVA technique applied
to shared-bus multiprocessor systems is of remarkable accuracy [67]. They applied
the same technique to studying the performance of purely bus-based hierarchical
multiprocessors [66]. Our model and theirs share common elements because of the
similarity in architectures. Torrellas, Hennessy and Weil also developed analytical
models to investigate the impact of several architectural and application parameters
in shared-memory processors based on DASH [63]. The main differences between their
model and ours are that they used an open queuing network and their inter-cluster
interface was hardwired [41]. They found that contention for the bus dominated
contention on the cluster interface?. We show that this conclusion is no longer true in

all cases when the design shifts from a hardwired controller to a protocol processor.

Holt et al. used simulation to study the effects of occupancy of the protocol
processor and latency of the network on a Flash-like architecture with one processor
per cluster [30]. They showed that the time consumed by the protocol processor
had an impact on performance, especially with a fast network. However, it is unclear
whether contention causes considerable delay in the protocol processor. Cluster-based
architectures in which inter-cluster communication is provided by a (hierarchy of) bus
and a shared cache(s) have been studied also via simulation by Nayfeh et al. [45, 46]
and by Anderson [5]. Conclusions on the viability of clusters are mixed depending

on the frequency of memory requests and their locality.

As several processors share a protocol processor, the latter is likely to become
the performance bottleneck. Some researchers have looked at the possibility of using
compute processors as protocol processors. The idea is that the compute processor
may as well be used to resolve a cache miss that stalls a thread’s execution. Karlsson
and Stenstrom simulated such a scheme for a multiprocessor that used an ATM

network to link clusters of bus-based multiprocessors [33]. Intra-cluster coherence was

2 The number of processors per cluster was fixed at four.




maintained by cache snoopy hardware, while inter-cluster coherence was maintained

at the page level by distributed virtual shared-memory software. With a network
latency of 100us, the chance of finding a compute processor idle was quite high
(52%-92% for 4 processors/cluster), even when a simple round-robin policy was used
for scheduling the task of protocol processing. The bottleneck was in the ATM
interface, and the software had to be tailored to the application for significant speed-
ups to occur. The authors concluded that in the context of such an architecture
and accompanying software, the presence of a separate protocol processor was not
necessary.

Our study assumes that the interconnection network is of sufficient bandwidth
and uses a contention-free network latency in the model. However, a network model
can easily be incorporated in the evaluation if contention is not negligible. There
exists a rich set of analytical models for various network topologies [1, 12]. These
models usually take the request rate as an input parameter and compute the network
latency taking contention into effect. This latency could be used in our model instead
of the contention-free network latency to achieve a more accurate response time for
inter-cluster misses. The response time would then in turn affect the request rate

issued to the network. The two models would have to iterate until they converge.

4.7 Summary

In this chapter, we applied the Mean Value Analysis technique to assess the perfor-
maunce of cluster-based architectures. We characterized the service demand for shared
resources by examining in detail the sub-requests involved in the resolution of cache
misses. In addition to the overall system parameters and the service demands on
shared resources, the analytical model needs parameters pertinent to applications,
i.e., cache miss profiles. These parameters were obtained via trace-driven simulation

for three applications.



We compared the performance of cluster-based architectures of various cluster
sizes with and without remote cache or forwarding logic. Our analytical and simula-
tion results shed light on three different aspects of cluster-architectures: the applica-
tions’ cache miss profile, the service demand, and the overall performance (normalized

to the single-bus system). We summarize these results as follows:

e Many existing parallel programs, and our example programs, are written for
machines with a flat architectural model. When these applications run on the
baseline cluster architectures, the portion of intra-cluster misses increases 50-
100% as cluster size doubles. When large remote caches are present, they retain,
as expected, much of the remote data in the cluster. In that case, increasing
cluster size appears less effective in increasing the portion of intra-cluster misses

(compared to the baseline architectures).

e In the cluster-based architectures that employ protocol processors and main-
tain cache coherence in software, the protocol processor and the data bus are
in the greatest service demand. The service demand (per processor) on the
data bus remains approximately the same independent of cluster size. Service
demand on the protocol processor decreases as cluster size increases. However,
the demands per node always increase with cluster size. The remote cache sig-
nificantly reduces service demand on the protocol processor significantly, but
has little impact on service demand on the data bus. This is also the case for

forwarding logic.

e Given the size of the processor’s private cache, the network latency, and other
architectural parameters, the performance of cluster architectures is governed
by (1) the proportion of intra-cluster and inter-cluster misses, and (2) the con-
tention on shared resources. The former is affected by cluster size and the

presence of remote cache, while the latter is determined by the miss issuing




rate and service demands. Service demands are further determined by cluster

size and the presence of remote cache or forwarding logic.

The performance of the baseline architectures is mixed. For two of the three
applications, cluster architectures perform 5-36% better than the single-cluster
system. However, increasing cluster size often harm performance due to high
protocol processing overhead unless the application has good cluster locality.
The remote cache improves performance by 8%-60%; it is most effective for ap-
plications suffering primarily from capacity and conflict misses. The forwarding
logic improves performance by 12-54%; it is more important than the remote
cache for applications that have many coherence misses. When both remote
cache and forwarding logic are used, the cluster architectures consistently out-

perform the single-bus system.

When validated with simulation results, the analytical model captures the per-
formance trend of cluster architectures reasonably well, with errors ranging from
5% to 30%. However, the MVA-based model is not suitable for applications that

have high synchronization overhead.




Chapter 5

COMMUNICATION PRIMITIVES IN CLUSTER
ARCHITECTURES

The previous two chapters studied the use and performance of communication
primitives in a simplified “cluster” architecture with a single processor per node.
They also used an MVA-based analytical model to explore the issue of contention over
highly demanded resources in general cluster environments with multiple processors
per node. The contention discussion excluded the use of communication primitives:
the analytical model was founded on a set of assumptions used in the theory of
stochastic processes (such as that jobs are stochastically independent), while the
effectiveness of communication primitives depends upon the exact time requests are

issued or processed.

In this chapter, we study communication primitives in the context of general clus-
ter architectures. Our evaluation is via trace-driven simulation. We established in
Chapter 4 that in the absence of communication primitives, contention on shared
resources, especially the protocol processor, is quite high in the baseline architectures
with a cluster size of 4 or 8. The use of communication primitives may have positive
as well as negative effects on shared resource contention. On one hand, communi-
cation primitives consume fewer protocol processor cycles per cache line by reducing
the need for processing many small cacheline-based requests. Additionally, commu-
nication primitives can be issued ahead of time, for example, in computation phases
when the communication processor would otherwise be idle. In this situation, com-

munication primitives better utilize the protocol processor and other resources. On



the other hand, communication primitives may be superfluous. By the time requests

are processed, they may no longer be useful. In this case, although the protocol
processor is kept busier, its actual utility decreases.

In general, how would communication primitives perform in cluster environments?
Would they ease or exacerbate the contention on the protocol processor? Would com-
munication primitives hide memory latency as effectively as they did in the uniproces-
sor node implementation? How much would the additional hardware (remote cache
or forwarding logic) improve the performance of the software scheme enhanced by
communication primitives? We answer these questions in this chapter.

The rest of the chapter is organized as follows. Section 5.1 examines implications
of adding remote cache and forwarding logic to the cache coherence protocols and
issues in implementing the communication primitives in the cluster architectures.
Section 5.2 briefly describes the experimental methodology, similar to that used in
Chapter 3. Section 5.3 presents simulation results. Finally, we summarize the findings

in Section 5.4.

5.1 Implementation Issues

This section describes the necessary changes on the cache cache protocols when adding
remote caches and forwarding logic to the baseline architecture. It also examines the
complications of incorporating multiprocessor nodes on the communication primitive

protocols.

5.1.1 Remote Cache and Forwarding Logic

The remote cache stores data homed in remote memories, thus reducing inter-cluster
miss requests. The forwarding logic reduces the load on the protocol processor and
speeds up the processing of requests or replies that do not need coherence directory

information. Despite significant functional differences, these two hardware units share



a common characteristic, namely the address of a request or reply determines whether

the remote cache or the forwarding logic participates in service. If the address of the
request is homed in local memory and no local caches respond to the request, it is
inserted into the bus interface’s input queue and processed by the protocol processor
on that node. If the address of the request is homed in a remote memory, the remote
cache performs a cache lookup in parallel with the local caches. In case the request
cannot be satisfied within the node, it also enters the BI’s input queue and routes
through the forwarding logic.

Using the remote cache introduces a new layer of memory hierarchy for remote
data. It requires a new state for the remote cache. If a cache line is MODIFIED
in a local cache, the corresponding line in the remote cache is set to the new state
GONE, meaning the data are not valid. If the remote cache chooses to replace that
line, however, it needs to issue a writeback/invalidation request on the local bus to
enforce the inclusion property.

The default write policy between the second-level cache and the remote cache is
writeback. With the remote cache, the replacement of remote data in the local caches
is simplified. If the replaced line has been modified, it is written back to the remote
cache. If the replaced line is clean, no action is necessary. Note that the replacement
of a cache line homed in the local memory does not change. That is, if the replaced
line is dirty, the processor issues a writeback request, which is inserted into the BI’s
input queue. If the replaced line is clean and the directory keeps an accurate sharing
node list, the requesting processor issues a “dropping a line” notification. Whether
the notification enters the communication processor depends on whether the line is

present only in the replacing cache or not.

5.1.2 Data Placement for Communication Primitives

Under the NUMA model, data can be duplicated only in caches. In order to minimize

cache pollution, we let the communication primitives place data in the cache at the



level farthest away from the processor. Hence, for systems without remote caches, the

communication primitives place the data in the requesting processor’s private cache.
For systems with shared remote caches, the primitives place data in the remote cache
of the requesting node. Recall that the remote cache is used to store remote data
only. Thus, if the data requested by a processor residing in local memory, they cannot
be pushed into the remote cache of that node, they remain in local memory. When
the requesting processor later accesses the data, local memory supplies it at the cost

of an intra-cluster miss latency.

5.1.3 Review of Commaunication Primitive Protocols

We mentioned in Chapter 3 that communication primitives are issued before the
status of local caches is validated. As a result, primitives could be issued for data
already in the requesting processor’s cache. In the simplified cluster architecture,
the communication processor can deduce the cache status of individual processors
based on directory information, and thereby filter out superfluous data transfer. In a
general cluster architecture, this is not possible because the directory keeps only the
summary states of several caches in a cluster. The directory’s ignorance of the exact
individual cache states makes it difficult for the home node to perform intra-cluster
operations intelligently.

Suppose a processor initiates a primitive to acquire a block that is already in the
node of the requesting processor. The home node cannot tell whether the data are
in the cache of the requesting processor. In such a situation, the home node has
two options: (1) always transfer the data, or (2) do nothing. If the request is to
read share a block via a get, for example, choosing the first option implys a higher
protocol overhead and a waste of network bandwidth; choosing the second option
possibly results in a future cache miss that will likely be satisfied by a local cache.
On the other hand, if a processor requests a block of data with ownership via a getez,

for example, option 2 causes the requesting processor to suffer an inter-cluster miss



later. To avoid this, we let the home node invalidate all sharing nodes (including

the node of the requesting processor) and transfer the data into the cache of the
requesting processor.

In general, we require that the communication primitive protocols execute requests
that can eliminate future inter-cluster misses. The protocols can avoid servicing
requests that will result in future intra-cluster misses, because resolving those misses

on demand incurs a short intra-cluster miss latency.

5.1.4 Buffers in the Communication Processor

Buffers in the bus and network interfaces are crucial to accommodate a steady flow
of pipelining operations between compute processors and the protocol processor. If a
protocol processor wants to issue a request on the shared bus and that bus is busy,
it can store the request in the output queue of the bus interface, if not full, and
process another request. In the absence of communication primitives, the maximum
number of messages that can accumulate in the queues is bounded by the number
of outstanding requests per processor, the cluster size, and the number of processors
in the system. We can estimate upper bounds for the buffer sizes by blocking the
channel through which buffered messages are drained.

We illustrate this method by determining the maximum size for the output queue
of the network interface (NI). Assume that each processor has p outstanding memory
operations and that the total number of processors in the system is N. Suppose that
the output channel of a node is blocked due to network congestion; however, assume
the input channel is still open, and all other nodes forward their requests to this node.
The node receives at most p x IV requests. If the request is a read, the node needs to
supply the data. If the request is a write, in the worst case the node needs to send
out N/N_ — 1 invalidations, where N, is the cluster size. In addition, the node may
need to store one additional data message for each pending miss request issued from a

local processor in case a dirty line has been replaced. Therefore, the maximum buffer




size needed for NI's output queue is pN x maz((N/Nc — 1)Sinyv: Sdata) + PNVeSdatas

where S;n, and Sgue are the sizes for invalidation and data messages respectively.
For the input queue of the network interface, in the worst case the node may receive
p x N replaced dirty lines. Hence, the maximum buffer size for NI's input queue is
pN x maz((N/N. — 1)Sack, Sdata) + PN Sdata- In the same way, we can estimate the
maximum sizes for BI’s output queue [pNeStata + P(N — N¢)Sreg] and input queue
[pN.Sreq + PNeSata + PN — N.)Suata = PNeSreq + PN Suata] respectively.

When communication primitives are added to the system, we could use the same
analysis by increasing p since each primitive is a non-blocking operation, and each
may involve hundreds of cache lines.

It may not be cost effective to implement a buffer size that can accommodate the
volume of messages accumulated in the worst case. However if, due to the limited
buffer space, one or more message queues are filled up, the whole system may not
function efficiently: it is deadlock-prone, and messages may have to be dropped to
make room for higher priority messages so that the system can move forward. To
avoid this, we implemented a simple flow control mechanism. When the number of
messages in a queue reaches a threshold, the network interface raises a warning flag.
Any communication primitives that heavily use the resource are temporarily blocked

to let other requests that require different resources be processed.

5.2 Experimental Methodology

The methodology we adopt in this chapter is the same as that used in Chapter 3,
namely using Mint to simulate the memory sub-system. We study the performance
of communication primitives by comparing three sets of simulation results (as in Case

2, 3, and 4 in Section 3.3):

1. A hardware-based cache coherent system in which the coherence protocol is

hardwired into circuitry.




2. A software implementation that uses the communication processor, with its

embedded protocol engine performing cache coherency operations in software.

3. Another software implementation, with the additional communication primi-

tives protocols available. Applications are annotated with these primitives.

For each simulation environment, we evaluate the effect of cluster size as well as the
importance of the remote cache. In addition, for the two software implementations,
we examine the impact of adding forwarding logic in the communication processor.

In simulations, we use the same latency parameters as those found in Tables 3.3
and 4.3. We fix the size of second-level caches (64KB per processor), the size of the
remote cache (1 MB x cluster size), and other cache parameters as presented in Table
4.6. At cluster size 1, the machines without remote caches or forwarding logic are
comparable to the machines (studied in Chapter 3) that have smaller processor caches
(32KB). The machines with remote caches but no forwarding logic are comparable
to those that have larger processor caches (256KB).

The applications we use in this chapter are also the same as those in Chapter 3,
i.e., FFT, LU, and RADIX, as they have already been annotated with communication
primitives. We mentioned earlier that optimizations depend upon the cache config-
uration. Optimizations applied to systems with small caches are more conservative
than those applied to systems with large caches. Correspondingly, in this chapter we
apply aggressive optimizations (the version used for 256KB caches in Chapter 3) to
the architectures with remote caches; we apply conservative optimizations (the ver-

sion used for 32KB caches in Chapter 3) to the architectures without remote caches.

5.3 Performance Results

This section presents performance results for the three applications. For each ap-
plication, we present ten sets of results: two hardware implementations (with the

choices of adding the remote cache), four software implementations (with the choices




of adding the remote cache, the forwarding logic, or both), and four corresponding

enhanced software implementations. In each implementation, we vary cluster size.
To make a complete comparison, we place in one graph the ten set results showing
execution time vs. cluster size. In the course of our analysis, we supply additional
graphs, which contain subsets of results, to improve readability and highlight major
points.

In the graphs, hardware implementations are drawn in black lines with circles;
software implementations appear in light gray lines with squares; and optimized soft-
ware implementations are in dark gray and marked with plusses. The types of lines
indicate what hardware has been employed. Solid lines indicate that neither the re-
mote cache nor the forwarding logic has been used in the implementations. Dotted
lines mean that the remote cache has been employed. Dashed lines imply that the
forwarding logic is utilized. Finally, dotted-dashed lines indicate that both remote

cache and forwarding logic are present.

5.3.1 FFT

The results of FFT are shown in Figures 5.1, 5.2, and 5.3. Figures 5.2 and 5.3 are
subsets of Figure 5.1.

Hardware implementations. When the directory coherence protocol is imple-
mented in hardware, we observe that all cluster architectures outperform the single-
bus system, which corresponds to the system with a cluster of size 16. (This is the
right-most point in Figure 5.2.) However, performance decreases slightly as cluster
size increases. This is because the application has not been optimized for the cluster
architecture: each processor works on independent data sets with an all-to-all com-
munication pattern. When cluster size increases, the number of intra-cluster misses
increases (cf. Figure 4.3 in Chapter 4). Contention over shared resources is also in-
tensified. The latter slightly dominates the performance, resulting in longer execution

times. Nevertheless, the performance of the 8-processor node is still comparable to
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Figure 5.1: Execution times for FFT.




that of smaller cluster sizes. However, the amount of hardware needed to connect the

cluster nodes is reduced by half when cluster size doubles.

When the remote cache is added, the execution time is reduced by 10-17% because
most inter-cluster capacity or conflict misses are converted into intra-cluster misses.
However, there remains a significant amount of memory overhead (the difference
between the straight dashed line and the dotted black line), mainly due to inter-cluster

coherence misses, which is the real communication cost that cannot be eliminated by

the remote cache.
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Figure 5.2: Execution times for FFT (hardware and software without communication

primitive implementations).




Software implementations. Compared to the hardware implementation, the

software implementation in the base architecture increases execution time by 33% at
cluster size of 1 and by 150% at cluster size 8 (cf. Figure 5.2, also shown in Figure 3.1
in Chapter 3). The performance degradation due to the increasing cluster size is much
more severe in the software implementation than in the hardware implementation.
This is caused by contention on the protocol processor considering that the other
parts of the two implementations are equivalent. With quad- or octa-nodes, the
protocol processor’s utilization is always above 80%.

The use of remote cache reduces memory overhead by 19-42% since it retains most
of the capacity and conflict misses within the cluster. The use of forwarding logic
reduces memory overhead by 30-45% for it reduces the contention-free inter-cluster
miss latency and the load on the protocol processor. For FFT, forwarding logic is
more effective than remote cache (also predicted by the model in Figure 4.8) because
the majority of the misses are coherence misses. This type of miss can take advantage
of the simple and fast message-passing mechanism provided by the forwarding logic,
but it cannot use the remote cache.

When both remote cache and forwarding logic are applied, the performance of
the software implementations is very close to that of the hardware implementations.
This suggests that the software implementations with appropriate hardware support
are practical alternatives to pure hardware implementations.

Enhancement of communication primitives. We now examine the perfor-
mance gains of communication primitives. To be fair, we compare the two software
implementations, i.e., with and without communication primitives, under equivalent
hardware. In the figures, the type of line indicates what specific hardware, remote
cache or forwarding logic, has been employed. This translates into comparing lines
of the same kind, i.e., measuring the difference between a solid line and another solid
line or that between a dotted line and another dotted line, etc.

In the baseline architecture, communication primitives improve the performance
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tions).

significantly at the cluster size 1 (by 30%). When cluster size increases, the benefit of
the communication primitives diminishes. They eventually become harmful at cluster
size of 8. This is because, as cluster size grows, more cache misses can be satisfied
in clusters. Primitives attempting to acquire the intra-cluster data will be canceled
on-the-fly by the protocol processor. However they still consume a certain amount of
the protocol processor cycles. Therefore, the overall memory overhead improvements

by the primitives decrease with the increasing cluster size.

When remote cache is used, communication primitives improve performance by



approximately 35% (cf. Figure 5.3, the difference between the dotted lines). In com-

parison, when forwarding logic is employed, the corresponding improvement is about
22% (the difference between the dashed lines). The main reason that the commu-
nication primitives perform better with the remote cache is that the optimizations
applied to machines with the remote cache are more aggressive than those applied to
machines without it. Without the remote cache, only the consumer-initiated primi-
tives (get and geter) are issued immediately before the data are needed because of
the modest cache sizes. With the remote cache, as soon as a (producer) processor
finishes computing partial results, it disseminates the data to its (consumer) proces-
sors. Also, during the computation phase, each processor prefetches the data it uses
in the next phase. As a result, communication largely overlaps with computation.
Finally, we point out that the performance of the enhanced software scheme is
not bounded by the best fixed hardware implementations. For FFT, the enhanced
software implementations with the assistance of remote cache or forwarding logic or
both approximate or out-perform the corresponding hardware implementations at

cluster sizes 1, 2, and 4.

532 LU

The results for LU decomposition are presented in Figure 5.4. For a detailed explana-
tion of the graphs, please refer to Section 5.3. In addition, the two lines at the bottom
show the application’s instruction overhead and synchronization overhead under the
PRAM model respectively. The significant synchronization overhead in the PRAM
model reveals a very unbalanced workload.

Hardware implementations. LU decomposition suffers severely from conflict
misses when cache size is small, which is the case for machines without remote caches.
The data that are frequently replaced are shared by the processors in charge of data
in the same row or column. When cluster size increases, intra-cluster data sharing

transforms a part of the inter-cluster conflict misses into intra-cluster misses. Besides,
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the number of local memory accesses increases with cluster size. As a result, clustering

benefits the application despite the increasing resource sharing.

The remote cache improves performance by 17-33%. However, performance de-
grades as cluster size increases. This is because the remote cache retains a large part
of the working data set within a cluster regardless of cluster size. Therefore, when
cluster size increases, the number of intra-cluster misses may not grow by much. How-
ever resource sharing and contention take effect, causing performance degradation.
Even though a multiprocessor node implementation does not win performance-wise,
it reduces the cost.

Software implementations. In the software implementations, LU exhibits in-
consistent clustering behavior. Two factors counteract each other. On one hand,
as is the case for the hardware implementations, clustering eliminates some inter-
cluster conflict misses and increases the local memory accesses. On the other hand,
contention on shared resources, especially the protocol processor, takes its toll. The
latter dominates the performance, resulting in an increase in execution time until
cluster size reaches 4. With 8 processors per node, intra-cluster data sharing and lo-
cal memory accesses become more prevalent; consequently, the execution time starts
to decrease.

Adding the remote cache improves performance substantially, by 45-50%. This
is because the majority of cache misses in LU are conflict and capacity misses. The
remaining memory overhead is mostly due to cold misses. In comparison, forwarding
logic reduces execution time by 25%. With the forwarding logic, the amount of
inter-cluster misses remains the same. Only the latency of the inter-cluster misses is
lessened, yet it remains higher than that of intra-cluster misses.

Enhancement of communication primitives. Improvements resulting from
communication primitives are negligible or small in all cases. A number of reasons
account for this fact. The most important is that a significant portion of memory

overhead consists of barrier synchronization time (cf. Figure 5.5). When there are
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Figure 3.3

no remote caches, the major components of the cache misses are conflict misses and
capacity misses. Communication primitives are useless in reducing conflict misses
due to their unpredictable nature. The modest improvement that is achieved can be
attributed to the conservative prefetching primitive targeting for the data encounter-
ing capacity misses. When there are remote caches, the overall memory overhead is
insignificant compared to the synchronization overhead. Thus, the slight gain of the

communication primitives is overshadowed by the fluctuating of the synchronization



overhead.

In summary, although the communication primitives do not appear to be of much
use for LU decomposition, the software implementation assisted with remote cache
and forwarding logic does present a performance competitive with that of the hard-

ware schemae.

5.3.3 RADIX

Figures 5.6, 5.7, and 5.8 show performance results for RADIX. For a detailed expla-
nation of the graphs, refer to Section 5.3.

Hardware implementations. The results of RADIX resemble those of FF'T in
that execution time is best at smaller cluster sizes. But the performance degradation
due to the increasing cluster size is more pronounced for RADIX (cf. Figures 5.7 and
5.2) because of its higher miss ratio.

The remote cache improves performance by 30-42%. The corresponding number
for FFT is 10-17%. The remote cache is more effective for RADIX because it has a
large working data set and a higher miss ratio, the majority of which are capacity
misses. By contrast, FFT has a lower cache miss ratio; a significant proportion of
cache misses are coherence misses, which cannot be dealt with by the remote cache.

Software implementations. In the baseline cluster architecture, execution time
of the software implementation doubles that of the hardware implementation at clus-
ter size 1 and almost triples at cluster size 8. (We reported similar results, 33% and
150%, for FFT). The sharp increase in execution time at the large cluster size is
caused by contention on the protocol processor.

Adding remote cache enhances performance of the software implementation by
over 50%. Adding forwarding logic enhances performance by 26-38% (cf. Figure 5.7).
Obviously, for RADIX, the remote cache is more useful than the forwarding logic.
Recall that the reverse was true for FFT (cf. Section 5.3.1). The explanation also

lies in the components of cache misses: The majority of the RADIX cache misses
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Figure 5.7: Execution times for RADIX (hardware and software without communi-

cation primitives implementations).

are capacity misses; the majority of the FFT cache misses are coherence misses. The
remote cache is beneficial to inter-cluster capacity misses only.

As can be seen, as long as the remote cache is present, the software protocol
processing overhead is not substantial since most cache misses are resolved by the
cluster’s internal hardware and protocol.

Enhancement of communication primitives. We applied two communication

primitives to RADIX: get and writemem. The former prefetches the partial array to

be sorted (in the first phase of the computation). The latter sets the write policy to
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tations).

write-through when each processor writes the keys into new locations based on their

“global ranks” (in the third phase of the computation).

In the baseline architecture, communication primitives improve performance by
4-25% (cf. Figure 5.8). The enhancement comes mostly from using the write-through
policy; the prefetching primitive, although used in a very conservative manner, still
caused cache pollution in the small caches and hence was not as useful as expected.
Under the write-back policy, a processor encountering a write miss is blocked until

the request is serviced completely, and it needs to place the acquired data in its cache.




Because RADIX has a very large working set and random data access patterns, cache

lines are often replaced before they can be re-used when the cache is small (the
case for machines without remote caches). In contrast, if the write-through policy is
used, the processor writes into memory directly (instead of bringing data into cache).
In addition, the processor can continue computation as soon as the write request is
inserted into the write buffer!. However, the gain of the write-through policy narrows
when cluster size increases (cf. Figure 5.8). This is because some inter-cluster capacity
misses are converted to intra-cluster misses by intra-cluster data sharing under the
write-back policy.

When forwarding logic is employed, the write-through policy reduces software
memory overhead by 28-44%. This significant improvement suggests that forwarding
logic is important to the write-through policy. The reason is that the write-through
policy generates many small requests, a large portion of which is merely passing data
or requests from one node to another. The forwarding logic can effectively speed up
the processing of these requests. The write-through policy. however, is not worthwhile
when the remote cache is present because the write-back policy enable processors to
reuse data that are kept within a cluster by the remote cache, while the write-through
policy foregoes such intra-cluster locality and forces data in the remote caches to be
written back to memory. Therefore, when the remote cache is used. we exercise only
the prefetching primitive, which gives an improvement of 10% at cluster sizes 1 and

2.

Once again, RADIX’s results show that the software cache coherence scheme
supplemented with forwarding logic and remote cache performs nearly as well as
the hardware implementation. With the careful use of communication primitives,
the enhanced software scheme assisted by simple hardware can out-perform the pure

hardware scheme.

! When the write-through policy is used, the memory system is no longer sequentially consistent.



5.4 Summary

This chapter continued the study of communication primitives introduced in Chapter
3. We had previously restricted ourselves to the implementation and performance
impact of these primitives in single-processor nodes. This chapter expanded the
study to multiprocessor nodes.

The implementation of communication primitives in multiprocessor nodes presents
additional challenges. In particular, the protocols must now deal with imprecise cache
states since coherence directories are kept on a cluster-per-cluster rather than on a
local-cache-per-local-cache basis. The solution we proposed lets the communication
primitive protocols deal with inter-cluster operations and leaves intra-cluster opera-
tions for the default cache coherence protocol to resolve on demand. This approach
avoids transferring data already in the requesting processor’s node. However, data
transfer cannot be avoided if a processor requests data with exclusive ownership unless
there is appropriate hardware support.

We evaluated the performance of communication primitives in the cluster envi-
ronment via trace-driven simulation. Given the results obtained from Chapter 4, we
examine the impact of three architectural choices—cluster size, remote cache, and
forwarding logic—on the performance of the communication primitives. A summary

of results follows.

e Cluster size. When cluster size increases, the improvements by the communica-
tion primitives decrease. The diminishing value of the communication primitives
is caused by the increasing intra-cluster data sharing that decreases the utility

of the primitives.

e Remote cache. Chapter 4 demonstrated that the remote cache can significantly
improve the performance of applications that suffer severely from capacity or

conflict misses. This chapter shows that remote cache is also very important for



applications (such as FFT) that suffer mainly from coherence misses because

communication primitives can be exercised more aggressively.

e Forwarding logic. Forwarding logic is crucial to communication primitives that
require the processing of many small requests, e.g., the write-through protocol,
because pure software implementations carry a high overhead of receiving and
processing small messages. The use of forwarding logic reduces the load on
the protocol processor, hence its contention, as well as the overall cache miss

latency.

The judicious use of communication primitives improves the performance of soft-
ware implementations. However, this does not imply that the use of communication
primitive always makes software implementations competitive with hardware imple-
mentations. When the cluster size for a particular application is too large, software
overhead and contention on communication processors still outweigh the gains from
implementing the primitives. On the other hand, for appropriate cluster sizes, soft-
ware implementations supported by remote caches and forwarding logic yield execu-
tion times comparable to those of hardware implementations with remote caches. The
overall conclusion is the same as that reached in Chapter 3, namely: the enhanced

software solution is flexible, scalable, and yields competitive performance.



Chapter 6

CONCLUSION

This thesis is motivated by the need to build high-performance and cost-effective
shared-memory systems, which call for efficient communication and graceful scala-
bility. There exists a wide spectrum of techniques to implement the shared-memory
paradigm. They vary in the amount of hardware or software support, the communi-
cation granularity, the flexibility with which systems can adapt to future needs, and
the price/performance range. This thesis investigates the performance of fine-grain
cache-coherent cluster architectures that employ communication processors and soft-
ware to maintain cache coherence and are expected to scale better than bus-based
shared-memory.

The use of communication processors and a software controlled cache coherence
scheme provides a flexible way to enhance communication in shared-memory systems.
To exploit this flexibility, we proposed a set of communication primitives that execute
on a protocol processor embedded in a communication processor. These primitives
give the user opportunities to optimize the communication cost conveniently and
progressively. They allow the prefetching and post-storing of blocks of data whose
sizes are not limited to single cache lines and permit the cache coherence protocol be

tailored to specific application needs

6.1 Summary

Our study on the use and performance of communication primitives has been per-

formed in three phases. We first assessed via trace-driven simulation the overhead of



implementing the base protocol in software and the performance gains of the com-

munication primitives in a simplified “cluster” architecture with one processor per
node in which there is not much contention over the shared resources. Given the pa-
rameters we chose, the software implementation increased memory overhead by more
than 50% relative to the hardware implementation. Nonetheless, when the software
implementation is enhanced with a judicious use of communication primitives in the
application, its performance is competitive with, and occasionally, exceeds, that of
the hardware implementation.

The second phase of our study examines the issue of shared resource contention
in the cluster environment, focusing on the resources of highest demand such as the
protocol processor and data bus. The methodology we used is an MVA-based analyt-
ical model. The model lets us evaluate promptly a number of architectural choices,
namely, cluster size and the use of remote cache and/or the use of forward logic.
The model’s input parameters include application-dependent parameters, such as the
number of cache misses and the proportion of intra- and inter-cluster misses, as well
as architectural parameters. The former were obtained via trace-driven simulation.

Three main conclusions were obtained by exercising the model. First, cluster
size affects performance in two ways. On one hand, increasing cluster size decreases
the demand (per compute processor) on the communication processor and does not
change the demand (per computer processor) on the data bus. On the other hand,
increasing cluster size increases resource sharing, and hence contention. Overall,
increasing cluster size often degrades performance unless the application has good
cluster locality. Second, employing the remote cache increases intra-cluster misses and
significantly reduces protocol processor contention. Overall, it improves performance
by 8-60% on the three applications we modeled. Third, the forwarding logic improves
performance by 12-54%. Comparing remote cache with forwarding logic, we find that
adding remote cache is more effective in applications suffering mostly from capacity or

conflicts misses. Adding forwarding logic is more important to applications suffering



mainly from coherence misses.

The final phase of our study evaluated communication primitives in multiprocessor
cluster architectures. Following the methodology used in the first phase, we compared
simulation results obtained under three environments: a hardware cache coherence
scheme, a software scheme implementing only the basic cache coherence protocol, and
an enhanced software scheme supporting additional communication primitives. We
found that the memory overhead improvements decreases as cluster size increases.
This is because a larger cluster size promotes native intra-cluster data sharing and
decreases the utility of the primitives. Furthermore, our experiments demonstrated
that remote cache is important not only to the applications suffering primarily from
capacity and conflict misses but also to applications suffering mostly from coherence
misses because the remote cache lets the primitives be inserted aggressively, hiding
the latency of inter-cluster misses more effectively. We also found that, forwarding
logic is crucial to communication primitives that require the processing of many small
requests.

Our experiments assumed that the network has sufficient bandwidth and a fixed
short latency. A slower network will increase the execution times of all three im-
plementations. However, a longer network latency will harm the performance of the
software implementation less than it does that of the hardware implementation. Its
effect on the enhanced software scheme is even smaller because the communication
primitives can pipeline the data transferring and overlap communication with com-
putation. Also, we note that our estimation for the software protocol processing
overhead is aggressive. If the software overhead is greater, due to less efficient inter-
rupt handling or messaging mechanism, the performance of the software scheme will
certainly deteriorate. However, its impact on the software implementation enhanced
with the communication primitives will be less pronounced.

In summary, given the architectural parameters we chose and the estimated soft-

ware directory protocol processing overhead, the software implementation supple-



mented with remote cache and forwarding logic can deliver a performance competitive
with the rigid and pure hardware scheme. Also, with the judicious use of commu-
nication primitives, the enhanced software scheme can improve performance beyond
the limit of the hardware implementation. In addition, the software cache coherence

is more flexible, scalable and easier to optimize.

6.2 Future Work

In the future, we expect that parallel computers will be able to support applications
written in both the shared-memory and message-passing programming models. If
the message-passing model is chosen, an application’s communication will be coded
explicitly in calls to a message-passing library. Execution of message-passing code
should be allowed to use a simple protocol that keeps cached data consistent with
respect to the local memory, instead of a full-fledged shared-memory global cache-
coherence protocol.

In case the shared-memory model is chosen, it will be helpful if the programmer
is aware of communication costs and provides hints to the system for placing the
data where they will be needed ahead of time. However, it may not be convenient or
possible for the user to perform this task, due perhaps to the nature of the applica-
tion or the lack of knowledge about source code. If source code is available, compiler
analysis will be useful. For programs written in HPF (High Performance Fortran),
there exists compiler techniques that detect inter-processor communication and gen-
erate functions calls to message-passing libraries. These techniques could be applied
to shared-memory systems that support communication primitives. Since compiler
analyses are based on static data and computation partitioning information, they are
limited to scheduling communication statically.

If source code of the application is not available, or if the application has dy-

namic and complicated communication patterns, it would be desirable to have either




hardware or software mechanisms that can monitor the application’s memory access

behavior and place the data speculatively. This would be an interesting avenue to
explore further.

Future parallel computers will be used not only to execute SPLASH-like applica-
tions, but also to provide the horsepower for running web servers, database servers,
graphics and media servers. Much work needs to be done to characterize the behav-
jor of these commercial, possibly I/O intensive, applications. Studying commercial
applications is usually difficult for a number of reasons. First, they are often released
without source code. Second, some of the applications frequently use locks to protect
shared meta- or database data. Consequently, a trace-based simulator may produce
skewed results with respect to synchromization behavior, and an execution-driven
simulator may be necessary. If the applications require many disk operations, the
simulator also needs to capture the operating system’s kernel activities. Despite the
difficulties, this type of work is becoming increasingly important and providing fertile

ground for future research.
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