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University of Washington

Abstract

Wavelet Techniques for Chaotic and Fractal Dynamics
by William L.B. Constantine

Chairperson of Supervisory Committee
Professor Per G. Reinhall

Mechanical Engineering

A novel wavelet based denoising technique is developed and shown to be more ef-
fective on average than waveshrink in denoising contaminated chaotic signals. A
chaotic beam experiment is used to verify its effectiveness.

Correlation dimension (D;) convergence issues for stochastic colored noise pro-
cesses are revisited with the Gaussian Spectral Synthesis method. The inadequacies
of the Phase Randomization method are discussed and is shown to be an inappro-
priate means to investigate Dy convergence.

A ensemble of nonlinear and linear measures is used to assess determinism and
existing fractal structure in RR intervals from over 50 heart patients. Techniques
are critiqued for their ability to classify disease states of the heart and predict the

onset of fatal cardiac rhythms.



TABLE OF CONTENTS

List of Figures

Notation

Chapter 1:  Introduction

1.1

1.2

Impetus of the Research . . . . . ... ... ... ... ........
1.1.1 Wavelet Techniques . . . . . . ... ... . ... ... ...
1.1.2 Dyand 1/f%* Processes . . . . . .. ... ... ... .....
1.1.3 Dynamics of the Human Heart . . . . . . ... ... ... ...

Contributions tothe Field . . . . . . . . . . . . ... .. ...

Chapter 2:  Introduction to Chaotic Systems and Fractals

2.1

2.2

2.3

Description of Chaos . . . . .. ... ... .o
2.1.1 Dynamic Invariants: The Lyapunov Exponents. . . . .. . ..
2.1.2 Topological Invariants: The Fractal Dimensions . . . .. . ..
The Relation of D, to the Capacity. Information. and Correlation

DIMEnsions . . . .« « v v v e e e e
2.2.1 Dy and the Capacity Dimension . . . . . ... . ... .. ...
2.2.2 D and the Information Dimension . . . ... ... ... ...
223 D, and the Correlation Dimension . . . . ... ... ... ..
Examples of Chaotic Flow and Chaotic Maps . . .. ... ... ...
2.3.1 Poincaré Maps . . . . . . ..o

2.3.2 Interspike Intervals . . . .. .. ... ...

xii



2.4
2.5
2.6

Description of Fractals . . . . . . ... 30
The Link Between Fractals and Chaos . . .. . ... .. ..... . 44
Multifractal Analysis Using Wavelets: the Wavelet Transform Maxi-

mum Modula Method (WTMM) . . . . . .« oo 49
9.6.1 A Critique of the WTMM Method . . ... ... ....... 53
2.6.2 Application of the WTMM Method . . . . .......... 54

Chapter 3:  Denoising Chaotic Sequences using the Maximum Over-

3.1

3.2

3.3

3.4

3.5
3.6

3.7

lap Discrete Wavelet Transform 66
The Maximum Overlap Discrete Wavelet Packet Transform (Stage I) 67
311 The DWT . . . . oo 68
312 The MODWT . . . .. oo o e 75
3.1.3 DWPTand MODWPT . . . . . ... . oo 77
Shannon Entropy as a Best Basis Functional (Stage II) . .. ... .. 83
321 Shannon’s Entropy and the MODWPT . . .. ......... 87
Obtaining an Optimized Node Set through Nodal Energy Threshold-
ing (Stage TII) . . . . . ..o 95
Kaplan’s Determinism Test (Stage IV) . . .. oo 96
3.4.1 Theiler’s Surrogate Data Algorithms . . . .. .. ... 100
342 KDM on MODWPT Nodes . . . ... ..o 104
MODWPT Synthesis (Stage V) . . . . . oo oo oo 105
Considerations for Single Variable Embeddings . . . . .. ... .- 107
3.6.1 Finding the Proper Embedding Dimension . . . . ... .. .. 107
362 TimeLag . . . . .« oo v 110
3.6.3 Trajectory Lag . . . . . oo oo 112

Singular Value Decomposition . . .« .. oo 113

il



3.8 Results. . . . v o o v o e 116
3.8.1 MODRA versus Wavelet Shrinkage . . . .. .. ... ... .. 117
3.8.2 D, Results for MODRA-Denoised Chaotic Sequences . . . . . 128
3.8.3 Chaotic Beam Experiment . . . .. . ... ... ... ... 144

Chapter 4:  Simulation Techniques and D, for 1/f* Processes 154

4.1 Introduction . . . . . . . e 155

42 1/fProcesses . . ... ... 156

4.3 Simulation Techniques for i/f* Noise . . . . .. .. .. .. ... ... 158
4.3.1 Direct Summation Method . . . .. . .. .. ... ... ... 158
4.3.2 Phase Randomization Method . . . . . . ... ... ... ... 161
4.3.3 Gaussian Spectral Synthesis Method . . . . . ... ... ... 164

4.4 Comparison of PRMand GSSM . . . . .. ............. .. 166

4.5 Correlation dimension, Dy . . . . . . . ... .o 167

4.6 Local Ds for GSSM Realizations . . . . . . . .. .. .. ... ... .. 174

4.7 Global D, for GS8SM/DSM Realizations . . . . ... ... ... ... 177

4.8 Summary and conclusions . . . .. ... 185

Chapter 5:  Linear and Nonlinear Classification of Human Cardiac

5.1
5.2
5.3

Rhythms 187
Feature EXtraction . . . . o« v v o v v e e 190
Sources of BITOr . . . o o o o 192
Description of measures . . . . . . ..o 196
5.3.1 MODWT variance . . . . .« v v v oo v 197
5.3.2 Approximate entropy . . . . .. ..o 202
5.3.3 Bridge-detrended scaled windowed variance . . .. .. .. .. 203
5.3.4 Dispersion analysis . . . .. .. ..o 204

il



54 Results . . . . . .« o e 204
54.1 Healthy Patients . . . . .. ... ... .. ... .. ...... 205
5.4.2 Sick: ECG Holter Recordings . . . .. ... ... ... ... .. 206
5483 Sick ICD Patients . . . . . . . .. ... .. 210

55 Summary and Conclusions . . . . . ... . ... .o 235

Appendix A: Signal Processing Techniques 241

A.1 Fourier Series Representations . . . . . . ... .. . ... ... ... . 242

A.2 The Contimious Fourter Transform . . . .. ... ... ... ... .. 250
A2.1 Properties of the Fourier Transform . . . . ... ... .. .. 251
A22 TheEnergyofaSignal . .. ... ... ... ... ... ... 256

A.3 The Discrete-Time Fourier Transform . . . . . ... .. ... ... .. 260

A.4 The Discrete Fourier Transform . . . . . ... ... ... ... .. .. 261
A4.1 Aliasing: Cause and Effect . . . . ... ... ... ... .. .. 265
A4.2 Leakage: Cause and Effect . . . ... .. .......... .. 267

A.5 Windowing Signals in Time . . .. ... ................ 271

A.6 The Short-Time Fourier Transform . . . ... ... .. .. ... ... 275

A.7 The Continuous Wavelet Transform . . . . .. ... .. ... ... .. 278

A.8 The Discrete Wavelet Transform . . . .. . .. ... ... ... .. .. 282

299

Bibliography

v



1.1

2.1
2.2
2.3

N
wn 1SN

o
o

2.8

2.9

2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20

LIST OF FIGURES

Comparison of a deterministic chaotic and a stochastic system . . . . 2
Sample chaotic phase space embeddings . . . . .. .. ... 8
Sample chaotic time histories . . . .. ... ... 8
Lyapunov exponent illustration . . .. ... ... 11
Box counting illustration . . . . .. ... 13
The Lorenz attractor . . . . . v v v v v v v o e e 21
The Rossler attractor . . . . .« o o v v v v e 22
A coupled Van der Pol oscillator . . . . . ... oo 22
Iterative map: the sea shell and tattered iceberg . . .. . ....... 23
The symmetric tent map . . .« . . . o 24
The LOTENZ tr€€ . . « o « v v v v v e oo e 27
Lorenz interspike intervals . . . . . . . ..o 28
Sample ECG data. . . . ..« . oo 29
Sample RR intervals . . . . .. ... 30
The Mandelbrot set . . . .« « o o o oo 33
The Sierpinski triangle . . . . . . .. 34
The Koch curve and the Cantor set . . . . . .. ... ... .. .. 35
Mass distribution on a Cantor set . . . . . . . . .o 36
Devil’s staircase with homogeneous distributionr . . .. ... 37
Multifractal Cantor set: py = 1/3 9 = 2/3,, =377, . .. . ... .. 38
Multifractal Cantor set: p, = 27 ",&11 = 2/5,€12 = 3/5, 39



2.21
2.22
2.23
2.24
2.25

2.26

227
2.28

2.29

2.30
2.31
2.32
2.33
2.34
2.35

2.36

3.1
3.2
3.3
3.4
3.5

Multifractal Cantor set: p; = 1/3,us = 2/3,e1; = 2/5,612 = 3/5, . . .
Scaling exponents and D, for a homogeneous Cantor set . . . . ...
The f(«) spectrum for the nonhomogeneous distribution . . . . . . .
Poincaré section of the Duffing oscillator . . . . . . . ... ... ...
Backwards iteration of the symmetric tent map to produce a homo-
geneous Cantorset . . .. .. ... ... ...
Backwards iteration of the symmetric tent map to produce a nonho-
mogeneous Cantorset . . . . ... ... ...
Continuous Gaussian wavelets . . . . .. ... ... ... ... ...,
Tent map and Cantor set with {g; = p2 =1/2,a=b=3,n=6,N =
1024} . . o
Cantor mass density and distribution function using {s; = p2 =
1/2,a=b=3,n=6,N=1024} . ... ... ... ... ... . ...
CWT of uniform tent map using @ . . . .. ... ... .. ... ..
WTMM results for homogeneous Cantor set using ¥© . .. .. ...
WTMM D, {u = po = 1/2,a=b=3,n=6,N = 1024} using PO
CWT of uniform tent map using 9@ . . ... ... ... .. ... ..
WTMM results for homogeneous Cantor set using @
Tent map and Cantor set with {g; = 0.3, = 0.6,a = b = 3,n =
6,N =1024} . . . . ...

WTMM results for nonhomogeneous Cantor set using ¢(? and @

Summation and difference operations on a discrete sequence . . . . .
Haar squared gain functions . . . . . . . ... ... ...
Hllustration of downsampling . . . . . . . .. . . ... ..
MODWPT of multifrequency sine wave sequence . . . . . . . . . . . .

MODWPT of multifrequency sine wave sequence with delayed spike .

vi

40
45
46
48

50

51
55

57

58
59
60

62
63

64

68
72
79
80
82



3.6

3.7

3.8

3.9

3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27
3.28
3.29
3.30

Shannon entropy roulette wheel . . . . .. ... ...
DWPT of a chaotic Lorenz responise . . . . . . . « .. .. ...
DWPT best basis for chaotic Lorenz sequence . . . . . . . .. .. ..
DWPT of blue noise . . . . . . .« o v v v oo
Best DWPT basis for bluenoise . . . . . . . . . .«
Comparison of Shannon entropy for MODWPT and DWPT . . ...
Best MODWPT trees for a variable length random walk . . . . . ..
Best MODWPT trees for variable length blue noise . . . . . ... ..
MODWRPT best basis nodal energy reduction. . . . . ... .. .. ..
[lustration of Kaplan's determinism algorithm . . . .. .. .. .. ..
KDM results for blue noise . . . . . . . . oo
Kaplan violation summaries for 1/f® realizations . .. ........
Comparison of Theiler’s surrogate methods . . . .. .. ........
MODWPT chirp details . . . .. . ...
Lorenz embedding dimension comparison . . . . . . .. ...
Lorenz embedding time lag comparison . . . . . .. ...
D, for Lorenz Poincaré section . . . . . . .. ..o
Time lag estimation through the autocorrelation function . . . . . ..
SVD transformation of a unit circle . . . .. .. ..o
MODRA vs. waveshrink: Lorenz synthesis . . ... .. .. .. .. ..
MODRA vs. waveshrink: denoised Lorenz comparison. . . . . . . . .
MODRA vs. waveshrink: denoised Rossler comparison . . . . . . ..
MODRA vs. waveshrink: denoised tent map comparison . . . . . . .
Periodograms for chaotic Lorenz, Réssler, and tent map sequences .

MODRA vs. waveshrink: tent map synthesis . . .. .. .. ... ..

vii

99
101
103
106
109
110
111
112
114
118
119
120
121

. 121

122



3.31

3.32
3.33
3.34
3.35
3.36
3.37
3.38
3.39
3.40
3.41
3.42
3.43
3.44
3.45
3.46
3.47
3.48
3.49
3.50
3.51
3.52
3.53
3.54
3.55

MODRA vs. waveshrink: denoised phase plane embeddings of chaotic

SEQUETICES . .« « v v v e e e e 123
Illustration of the Donoho and Johnstone thresholding . . . . .. .. 125
MODRA comparison to waveshrink thresholding: Lorenz . . . . . .. 126
MODRA comparison to waveshrink thresholding: Rossler . . . . . . . 127
MODRA comparison to waveshrink thresholding: tent map . . . . . . 128
D, for uncontaminated chaotic sequences. . . . . . ... ... .. .. 129
Phase plane embeddings of the tent map. . . . . .. ... . ... ... 130
MODRA /D, results for the Bender-Orzag system: SNR 0.5. . . . .. 132
MODRA/D; results for the Bender-Orzag system: SNR 1.0. . . . . . 133
MODRA/D; results for the Bender-Orzag system: SNR 2.0. . . . .. 134
MODRA/D; results for the Lorenz system: SNR 0.5. . . ... .. .. 135
MODRA/ D, results for the Lorenz system: SNR 1.0. . . .. ... .. 136
MODRA/ D, results for the Lorenz system: SNR 2.0. . . .. ... .. 137
MODRA/ D, results for the Rossler system: SNR0.5. . . . ... . .. 138
MODRA/ D results for the Réssler system: SNR 1.0. . . . . ... .. 139
MODRA/ D, results for the Rossler system: SNR 2.0. . . . ... ... 140
MODRA/D; results for the tent map system: SNR0.5. . . . ... .. 141
MODRA/D; results for the tent map system: SNR1.0. . . .. .. .. 142
MODRA/D; results for the tent map system: SNR2.0. . . ... ... 143
Beam experiment setup . . . . . . .. .o 145
Double well potential function . . . . . ... . ... ... .. .. 146
A bifurcation diagram . . . .. . .. .. 147
Beam experiment: response time histories . . .. ... ... ... .. 149
Beam experiment: response spectra . . . . . . .. ... 149
Beam experiment: response phase plane embeddings . . .. ... .. 150

viii



3.56 Thin beam force deflection curve . . . . . . . .. .. ... ... ... 151

3.57 MODRA D, results for chaotic beam response . . . . .. . . .. ... 152
3.58 D, results for chaotic beam response . . . .. ... ... ... ... 153
4.1 Colored noise spectrum chart . .. .. ... ... oo 157
4.2 DIM realizations for a = 0,2,4,6,and 8 . . . .. . . .. ... ... 160
4.3 PRM realizations for o« =0,2,4,6,and 8 . . . . .. . .. ... .. .. 163
4.4 GSSM realizations for o =0,2,4,6,and 8 . . . . . . .. ... 166
4.5 Correlation coefficient for a random walk and random run process . . 173
4.6 Phase plane embedding of GSSM 1/ f* realizations . .. . ... ... 175
4.7 Phase plane embedding of PRM realizations . . . . ... ... ... 176
4.8 Summary of D, for GSSM realizations . . . . ... ... .. ... 176
4.9 Poincaré section illustration of a random walk . . . . ... ... ... 178
4.10 D, for GSSM red noise realizations . . . . .. ... ... ... 182

4.11 The exact probability of a return to zero for a random walk process . 183

5.1 RR extraction with PVC/noise detection . . . . .. . ... ... ... 191
5.2 Spline fit of QRS complex . . . .. ... ... 195
53 The minimum scale as a function of embedding dimension . . . . .. 195
5.4 Time dependent unbiased MODWT wavelet variance, VA (Ti) 200
5.5 Time independent unbiased MODWT wavelet variance, /3(7,) . . . . 201
56 Wavelet variance example for a FDP realization . . . .. . ... ... 201
5.7 RR intervals for healthy patients. . . . . ... ... ... ... . ... 205
5.8 D, for 5 physically healthy patients . . . . .. ... .......... 207
5.9 KDM results for a healthy patient: RR intervals . . . ... ... ... 208
5.10 Kaplan violation summaries for 5 physically healthy patients . . ... 209
5.11 D, results for sick Holter patients 1,...,18. .. .. ... . ... ... 211

ix



5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23
5.24
525
5.26
5.27
5.28

5.29

5.30

5.31

5.32
5.33

Al

D, results for sick Holter patients 1,...,12. . . . . . .. .. .. ... 212
logy(02(7;)) for all sick Holter patients . ... ... ... ... .... 213
Sample ICD time histories for patients 1,...,4 . . . ... ... ... 215
Periodogram for ICD patients 1,...,6 . . . .. .. ... ... .. .. 218
Periodogram for ICD patients 7,...,12 . . . .. .. ... .. ... .. 219
Periodogram for ICD patients 13,...,18 . . . ... ... ... .. .. 220
BDSWYV for ICD patients 1,...,6. . . . ... ............. 221
BDSWYV for ICD patients 7,...,12 . . . . ... ... ... ... ... 222
BDSWYV for ICD patients 13,... ,18 . . ... ... ... .. .. ... 223
Dispersion analysis for ICD patients 1,...,6 . . .. . ... ... ... 224
Dispersion analysis for ICD patients 7,...,12 . .. ... .. .. ... 225
Dispersion analysis for ICD patients 13,...,18. . . ... .. ... .. 226
Box plot of all ICD results for the BDSWV and Disp . . . . ... .. 227
Optimal MODWPT for ICD patients 1,...,6 . .. . ... ... ... 228
Optimal MODWPT for ICD patients 7,...,12. . . . .. .. .. ... 229
Optimal MODWPT for ICD patients 13,...,18 . . . .. .. ... .. 230
Energy distribution of optimized MODWPT nodes for ICD patients

L. ,9 231
Energy distribution of optimized MODWPT nodes for ICD patients

10,...,18 o 232
Best energy ratio test for all ICD data: a comparison between normal

and VF/VT events . . .. .. ... ... 234
Approximate entropy for ICD patients 1,...,6. . . ... .... ... 236
Approximate entropy for ICD patients 7,...,12 . . . ... ... ... 237
Approximate entropy for ICD patients 13,...,18 . . .. .. ... .. 238
Orthogonality example . . .. ... ... ... .. .. ... ... .. 247



A.2 Fourier synthesis of a periodic saw tooth wave . . . .. ... ... .. 248

A.3 Illustration of the effects of scaling a function . . . .. . .. ... .. 255
A.4 Fourier frequencies on the unit circle in the z-plane . . ... ... .. 265
A.5 Aliasing in the frequency domain . . ... ... .. ..o 267
A.6 DFT of a function z(t) = Yoo Asin(2mfat) . . . . . . ... 269
A.7 Commonly used windows . . . . . . . .. ... 273
A.8 Fourier amplitude spectrum of a rectangular window . . .. ... .. 274
A.9 The STFT in the frequency-time plane. . . . . . .. .. ... .. ... 276
A.10 The time-frequency resolution of the STFT . .. . . ........ .. 278
A.11 The time-scale resolution of the CWT . . . . ... ... ... .. ... 230
A.12 Typical STFT and CWT analyzing waveforms . . . ... .. ..... 282
A.13 A continuous scaling function . . . . .. ... 286
A.14 A continuous wavelet function . . . . . .. ... 287
A.15 Multiresolution signal decomposition algorithm . . ... ... .. 291
A.16 MODWT decomposition of a sawtooth . . . .. ............ 292
A.17 Impulse responses for Daubechies’ extremal phase flters . . .. ... 294
A.18 Frequency responses for Daubechies’ extremal phase filters . . . . . . 204
A.19 Multiresolution signal synthesis . . . . ... .. ............ 205
A.20 Multiresolution wavelet subband coding scheme . . .. ... .. ... 296
A.21 MODWT synthesis of a sawtooth . . . ... .............. 297

xi



NOTATION

» Transforms and Algorithms

AAFT
BDSWV
CWT
DFT
Disp
DSM
DWPT
DWT
FNN
FFT
FT
GSSM
IDFT
KDM
MODRA
MODWPT
MODWT
PRM
STFT
SVD

Theiler's Amplitude Adjusted Fourier Transform surrogate data algorithm
Bridge Detrended Scaled Windowed Variance
Continuous Wavelet Transform

Discrete Fourier Transform

Dispersional analysis

Direct, Summation Method

Discrete Wavelet Packet Transform

Discrete Wavelet Transform

False Nearest Neighbor

Fast Fourier Transform

Theiler’s Fourier Transform surrogate data algorithm
Gaussian Spectral Synthesis Method

Inverse Discrete Fourier Transform

Kaplan’s Determinism Method

MODWPT Optimal Deterministic Reduction Algorithm
Maximum Overlap Discrete Wavelet Packet Transform
Maximum Overlap Discrete Wavelet, Transform

Phase Randomization Method

Short-Time Fourier Transform

Singular Value Decomposition

xii



SWV Scaled Windowed Variance
WS Waveshrink or Wavelet Shrinkage

» Nonlinear Dynamics and Fractal Mathematics

Dy box-counting or capacity dimension
Dy information dimension

Dy correlation dimension

D, generalized fractal dimensions

Dy Lyapunov dimension

D, embedding dimension

C(r,E)  correlation integral at scale 7 and eaiedding dimension E

T time lag for single variable embeddings
K KDM image lead

5y neighbor trajectory lead

Okap Kaplan rejection threshold

H Hurst coefficient

» Statistics and Mathematics

rv random variable

acvs autocovariance sequence

fGn Fractional Gaussian noise

MAD Median Amplitude Deviation

MSE Mean Squared Error

SNR Signal-to-Noise Ratio

7% sample variance of {X;}

Ox sample standard deviation of {X;}



o% sample variance of rv{X}
ox sample standard deviation of rv{.X'}

sign{y} sign of number y

[|.X 1| L2 norm of sequence {X;}
z identity matrix
E{} expected value operator

corr{-,-} correlation operator

cov{-,-}  covariance operator

Ryy autocorrelation function of sequence {.X,}

R set of real numbers

Z set of integers

N set of positive integers

* convolution operator

1/f¢ stochastic one-over-f process corresponding to exponent «
Sx(f) power spectral density of a real valued sequence {X,}
L2(-) set of squared integrable functions

RY set of real function spanning N dimensions

{X:} discrete real valued time series in:iexed by “time” ¢
X(f) value of the function X(-) at f

X, single value of a discrete real valued time series {X;}
X matrix X

XT transpose of matrix X

X column vector X

round towards —oo operator

round towards +oo operator

X1v



» Wavelet Specific

QMF Quadrature Mirror Filter

bpy Donoho and Johnstone WS threshold

0k Energy admissibility threshold |

{h} impulse response of wavelet filter

{9:} impulse response of scaling filter

{h} impulse response of maximum overlap wavelet filter

{1} impulse response of maximum overlap scaling filter

H(:) wavelet filter squared gain function

G(-) scaling filter squared gain function

H(f) wavelet filter frequency response function

G(f) scaling filter frequency response function

T; scale at decomposition level j

g j** decomposition level

J represents a level J decomposition

12 decimation (downsampling) by two

T2 upsampling by two

V; scaling coefficient at index j

W; wavelet coefficient at index j

Win DWT (DWPT) coeficients at level 7, local node index n
 Wjn MODWT (MODWPT) coefficients at level j, local node index n

Win DWT or DWPT coefficient at time ¢ in node W,

WJN the MODWT or MODWPT coefficient at time ¢ in node Wj_,.

w wavelet transform matrix

D DWT or DWPT detail

D MODWT or MODWPT detail

Xv



DEDICATION

To my family. ‘Th-anks for believing in me.



ACKNOWLEDGMENTS

I wish to express my deepest gratitude to Dr. Reinhall, who was & friend and
a mentor, who forgave me for destroying his Persian rug and portable stove, who
supported me during times of illness and seeming despair, and who withstood my
blatantly honest assessments on life and academia. There’s a democrat in you yet.
A heartfelt thanks goes to Dr. Percival, who shed light on many signal processing
subtleties, sculpted my knowledge of wavelets, was a willing participant in “Ques-
tions for Uncle Don” sessions, and who supported my research through an Office
of Naval Research grant. I would also like to thank Dr. Bardy for his generosity
with ICD and ECG data as well as his academic support through the Tachycardia
Research Foundation. His kind words and encouragement meant a lot to me. To Dr.
Bassingthwaighte I extend my gratitude for teaching me about fractals and their
fascinating relation to physiology. It has been a pleasure to work with you. Finally,
I would like to thank Dr. Storti and Dr. Sanford for serving on my committee.

A great appreciation goes to my lab mates over the years, including Dr. Paul
Galambos, Dr. Lisle Hagler, Dr. Wei Chih Wang, Dr. Hsin Chih Ping, and the soon
to be Ph.D.’s crew: Jessica Yellin, Chao Shih Liu, and last, but in no way least, Ron
Bardell. The memories and support will never be forgotten.

A personal thanks goes to my friends Jason Smith, Kevin Silver, Andrew Bryans,
and John Nusser who encouraged me over the years and brought many a smile to
my face.

Finally, I would like to thank my caryatid in the Parthenon of life: Leah Herrick,

whose friendship and love have guided me in my long and arduous journey.

xvii



Chapter 1

INTRODUCTION

In recent decades, significant advances have been made in wavelet theory, fractal
mathematics, and chaos theory. The purpose of this dissertation is to introduce a
novel wavelet based denoising technique and to sufficiently demonstrate its applica-
bility to nonlinear dynamics. A secondary focus is to refine the existing knowledge
of the link hetween chaos, fractals, and stochastic modeling. Finally, an ensemble
of conventional methods and novel techniques developed herein are used to further
our understanding of the dynamics of a highly complex physiological system: the

human heart.

1.1 Impetus of the Research

1.1.1 Wauvelet Techniques

It is well known that nonlinear measures of chaotic systems are sensitive to the influ-
ence of noise contamination. Figure 1.1 illustrates the effects of noise on a commoun
nonlinear measure of chaotic systems. In the left column, a collection of points.
associated with a deterministic chaotic system, is projected into a 2-dimensional
space known as the phase plane. The correlation dimension, also referred to as Ds,
is & nonlinear measure used to characterize the resulting topology and is estimated
by a linear approximation of the slopes of the correlation integrals (second row of

Fig. 1.1). A flat, plateau-like region in D; indicates a convergent measure that



is nonexistent for a stochastic white noise process (right column of Fig. 1.1). A
chaotic system contaminated with a small amount of noise can have a significant
effect on the [y estimate, yielding nonconvergent results. Thus, it is of consider-
able interest to develop efficient and effective techniques to denoise contaminated

chaotic response. Currently there exists a powerful, wavelet based denoising tech-
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Figure 1.1: Comparison of a deterministic chaotic and a stochastic system with regard to a nonlinear

measure

nique, known as waveshrink, which has been shown to work remarkably well on a
wide variety of signals. Its ability to denoise is dependent upon the automatic selec-
tion of a wavelet coefficient rejection threshold. The threshold is estimated based on
the assumption of the type of noise which contaminates the signal, which may not be
appropriate for band limited noise or broadband chaotic response. The advantage
of the wavelet denoising technique developed herein is that it directly attempts to
extract the deterministic features of the data without making an underlying assump-

tion on the type and (broadband) extent of the noise. Our research indicates that



the new technique outperforms waveshrink on a fairly consistent basis for denoising

contaminated chaotic sequences.

1.1.2 Dy and 1/f* Processes

Phase randomization methods (PRMs) have been used to simulate stochastic pro-
cesses whose power spectra have a 1/ f falloff. However, PRMs impose an unneces-
sary deterministic structure in 1/ f* noise simulations and generally do a poor job in
emulating true colored noise processes. Consequently, the PRM is an inappropriate
means to investigate Dy convergence issues for colored noise. In this dissertation, we
revisit these issues with a technique which overcomes the inadequacies of the PRM,
and extend the study for red, white, and blue noise processes. These results have im-
plications for experimentalists interested in classifying fractal structure for sequences
of unknown origin and confirms the notion that stochastic fractal processes do not

yield convergent global generalized fractal dimensions if analyzed correctly.

1.1.8 Dynamics of the Human Heart

Recent advances in cardiodynamic modeling suggest that the highly complex rhythms
of the human heart may potentially be described by a low order chaotic system. Un-
derstanding the dynamics of the human heart is of extreme value to the medical
community, as heart disease is the number one killer in America with over 350,000
sudden cardiac deaths occurring every year [21].

The advances made in chaos, wavelet, and fractal mathematics can play a signif-
icant role in our understanding of the heart. The task at hand is to systematically
assess the validity and effectiveness of both nonlinear and linear algorithms, and
to obtain a clearer picture of what physiological measures of the heart contribute

most significantly to fatal rhythms such as ventricular fibrillation (VF) or ventricular

tachycardia (VT).



In this dissertation, an ensemble of relevant nonlinear and linear technicues is
used to study heart rate variability in both healthy (5) and sick (48) patients. The
study will be performed on RR intervals which are defined as the differences in time
between adjacent QRS complexes in an electrocardiogram (ECG) recording. The
QRS complexes correspond to the rapid depolarization of the ventricles during a

normal heart beat. The following questions are assessed:
1. Are RR intervals generated by a deterministic or stochastic process?

2. Is there any topological fractal structure in RR intervals, indicating the exis-

tence of an underlying low order deterministic chaotic system?

3. Do RR intervals exhibit any spectral scaling, indicating statistical self similar-

ity common to colored random noise processes?
4. Can any of the measures be used to predict the onset of VF/VT?

5. Can cardiac arrythmias be classified by a MODWPT best basis for a represen-

tative sample of a patient’s RR intervals?

1.2 Contributions to the Field

The following list the contributions to nonlinear dynamics, signal processing, systems

modeling, and cardiodynamics.
1. Development of MODRA: a novel wavelet based denoising technique

2. Correct assessment of correlation dimension convergence issues for stochastic

colored noise processes

3. Development of a wavelet based ECG feature extraction algorithm



. Investigation of inability of the Wavelet Transform Maximum Modula method

to characterize chaotic flow

5. Analysis of RR intervals in 53 patients, both sick and healthy, using scaled win-

dow variance, MODWT variance, approximate entropy, correlation dimension,

dispersion analysis, MODWPT best basis, and Fourier techniques
. Investigation of limitations on Kaplan's determinism method for colored noise
. Development of a Shannon entropy functional for use with the MODWPT

. Development of a chaotic beam experiment for verification of MODRA effec-

tiveness



Chapter 2

INTRODUCTION TO CHAOTIC SYSTEMS AND
FRACTALS

This chapter details a brief history of chaos and fractals, and provides the link
between them. Examples of chaos and fractals in computer generated sequences
are given, and methods used to characterize chaos and fractals are defined. Finally,
a wavelet based technique used to quantify fractal structure is reviewed, and its

inability to properly analyze chaotic sequences is critiqued.

2.1 Description of Chaos

While chaotic behavior was recognized long ago by scientists such as Poincaré {76},
Birkhoff, Van der Pol and Van der Mark [102], Ueda [100], and Tseng and Dugundji
(98], it has taken the advent of the computer to truly identify it in real systems. Many
of the early observations of chaotic behavior in electro-mechanical and thermal-
fluid systems were incorrectly classified as noise and delayed its acceptance in the
dynamics community as a separate class of system response [58]. From a vibrations
and dynamics perspective, chaos is defined as an aperiodic and nonquasi-periodic
response to a periodic stimulus of a deterministic nonlinear dynamic system. For

clarity, let us examine a few of the key words in the above definition more closely:

o Deterministic implies that the equations of motion, parameters, and initial
conditions of a dynamic system are known and are not stochastic (random).

Theoretically, a set of deterministic equations which accurately model a dy-



namic system can be used to predict any future state if the original state is

known exactly, i.e. we have infinite precision in the initial conditions.

o Nonlinearity is a property of a system or mathematical operation for which

the output is not linearly proportional to the input.

e Quasi-periodic is a vibration motion consisting of two or more incommensurate

frequencies, i.e. the ratio of two response frequencies is irrational.

A hallmark of chaotic motion is that the trajectories emanating from arbitrarily close
initial conditions will diverge exponentially. Thus, chaotic systems are extremely
sensitive to initial conditions. The motion, however, is bounded in a global sense
and long term evolution of the trajectories produces what is known as a chaotic
attractor. An attractor is by definition a subspace of the phase space toward which
a time history approaches after transients die out [58]. Examples of chaotic attractors
are shown in Fig. 2.1(a,b,d) in both two and three dimensions. The coordinates used
in these plots are the state variables of the system. The number of coordinates is
equivalent to the embedding dimension used to display or visualize the trajectories
in the phase space. The trajectories of a chaotic attractor remain bounded, never
to escape the volume by which they are encompassed. While there is a seemingly
underlying structure in the pattern created by chaotic trajectories in the phase space.
it is often difficult to distinguish any sense of order in the corresponding time series
(Fig. 2.2). As a result, chaotic time series are often misconstrued as being stochastic
in origin. The random element of chaos is that long term predictability is lost without
infinite precision in the initial conditions. In physical experiments, one is never able
to measure the initial state of the system with infinite precision. Thus. long term
prediction of chaotic response for real systems is unrealistic.

With the discovery of chaos, scientists have had to invent signal processing tech-

niques capable of describing the patterns created in phase space embeddings and/or



Figure 2.1: Phase space plots corresponding to the sequences shown in Figure 2.2.
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Figure 2.2: Chaotic sequences from the (a) Lorenz system, (b) Bender-Orzag system, (c} pseudo-
random number generator, and (d) the tent map.



the dynamics of the trajectories which make up the patterns. Classic techniques,
such as perturbation analysis, fail to characterize the dynamics of chaos because of
an assumed periodicity of the solutions. Specifically, it is assumed that a periodic
stimulus will result in a periodic or quasi-periodic response; quite the opposite of
chaotic response to periodic stimulus. Thus, classic dynamic techniques that operate
under this assumption are an inadequate means of investigating chaos. Novel meth-
ods are intended to quantify the invariant structure and flow of a chaotic attractor.

Chaotic invariants fall into two main categories: dynamic and topological.

2.1.1 Dynamic Invariants: The Lyapunov Ezponents

In assessing the dynamic invariants of an attractor, local flow divergence is measured
and averaged across the attractor; yielding the nonlinear dynamic invariants known
as the Lyapunov ezponents. Lyapunov exponents can be well understood by first
examining the phase space flow in a linear system. The eigenvalues for a linear
system are invariants and represent the exponential rate of convergence or divergence
of points on nearby orbits in the phase space. Consider a deterministic system

described by the set of N first order equations

& = filzy,T2,...,2TN)
iy = folTy, 22,0 ,2TN)
(2.1)
iy = fn(x,T2,...,2N)
The functions fi,...,fy form a vector field f. The relative rate at which an N-

dimensional volume V contracts or expands in the phase space is defined by the
divergence of the vector field f [13]. A physical analogy is the growth or shrinkage of

a three dimensional volume of compressible fluid whose change in volume is governed
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by the divergence of a velocity vector. In a dynamic system defined by Eq. 2.1, the
state derivatives z; for ¢ = 1,..., N take the form of “phase space velocities” of
an “N-dimensional fluid flow.” The relative volume growth rate is related to the

divergence of the vector field f by

; N
") _ gt - > o4 (2.2)

where V' (t) is the phase space volume at time ¢ evolved from an initial N-dimensional

phase space volume V. If the system is linear, the solution of Eq. 2.2 is
V(t) = VpelX At (2.3)

where (; are the system eigenvalues. For example, consider the system

1.:1 = —1.21‘1
ilfz = I3 (24)
The eigenvalues for this simple system are A\; = —1.2 and A2 = 1. A volume in the

phase space defined by initial conditions set on the unit circle will contract in the
x, direction and expand in the z, as time progresses (Fig. 2.3).

The Lyapunov exponents of a nonlinear chaotic system are analogous to the real
parts of the eigenvalues for a linear system. For chaotic flows, one of the exponents
must be positive, while the sum over the set of exponents must be negative. A
positive Lyapunov exponent gives rise to a sensitivity to initial conditions; a hallmark
of chaotic systems. A negative sum implies that the divergence of the vector field is
negative and thus the system is accordingly dissipative. If it were not, unbounded
trajectories would exist. It is also true that one of the exponents must be zero. A
zero Lyapunov exponent can be seen by considering two test points on the attractor
which are initially close to one another in time. While the distance between the orbits

that evolve from these test points generally varies as a function of time, over long
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Figure 2.3: The evolution of a circular neighborhood of the unstable equilibrium at the origin of a
linear system. The initial circle is denoted by marker 1, while snapshots of the forward evolution
of the circle in evenly sampled time intervals are denoted by markers 2,3,4.
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periods of time this separation will on average approach a constant value leading to
a zero rate of exponential divergence (Lyapunov exponent approaches zero). Thus,
a typical set of Lyapunov exponents for a third order chaotic system is {A;,0, A3}

where A; > 0 and A3 < 0 with A} > Ay since Y, \; < 0.

2.1.2 Topological Invariants: The Fractal Dimensions

A fractal dimension is by definition a quantitative property of a set of points in an
n-dimensional space which measures the extent to which the points fill a subspace as
the mimber of points becomes very large [58]. A [ractal object is seen to be caught
between Euclidean dimensions as it usually takes on a noninteger value. This section

reviews the current techniques used to quantify the fractal dimension(s) of fractal

objects.

Capacity Dimension

Perhaps the most intuitive of the methods used to estimate the dimension of a set of
points is the boz counting or capacity dimension. Indicative of its name, this method
employs the use of “boxes” to cover a set of points in space. The boxes may in fact
be balls, such that in one dimension they appear as a lines, in two dimensions as
circles, in three dimensions as spheres, and in higher dimensions as hyperspheres.
The essence of the method is to relate the minimum number of boxes NV of length
¢ needed to cover the set as a function of e. If a uniform distribution of Ny points
along some line or one-dimensional manifold is covered by boxes of size € (Fig. 2.4),
it is intuitive that the number of boxes to cover a line will scale as

N(e) x -

This box coverage is referred to in the literature as coursegraining. Similarly, if

points are distributed uniformly on some two-dimensional manifold (Fig. 2.4), the
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Figure 2.4: Coarsegrained coverage of a one and two dimensional distribution of 1/¢% where d is
the Euclidean dimension.

minimum number of boxes needed to cover the set scales as

1

Naturally, it follows to define the covering of a set of points residing on a d-dimensional

manifold by the scaling law
N(e) x —. (2.5)

Taking the logarithm of both sides of Eq. 2.5 and adding a subscript we obtain the
definition of the capacity dimension

d; = lim log V(e). (2.6)

-0 log (1/€)
Implicit in this definition is the requirement that the number of points be large
(Np — 00). A set of points is said to be fractal if its dimension is noninteger, i.e.

the scaling of the point distribution can be characterized by a fractal dimension.
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Information Dimension

In an attempt to account for the frequency in which a trajectory visits the boxes
of a coarsegrained partition, another fractal dimension was developed called the
information dimension. It is assumed that the trajectories cover the phase space
sufficiently to form an attractor whose dimension we wish to calculate.

To calculate the information dimension, the number of points N; in each of the

N boxes is counted and the probability of finding a point in that box is determined
by

III
2|z

N
Z (2.7)

where Ny is the total number of points in the set. The information entropy is defined

as
N
- PlogP. (2.8)
If the log function is base 2, [(¢) has the units of bits. For small €, I behaves as
I ~dlog(l/e),

so that for small € we may define a dimension

I{e) SN Plog P
= =l PO 2.9
di = 11_{n log (1/¢) h—»O loge (29)

To see how d; relates to d., suppose that the probabilities are equal for all boxes so
that
N; 1
P==
Ny N
Then,
N
—> Plog P, = ~NPlog P, = —log(1/N) = log N.

i=1
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By substituting this expression into Eq. 2.9, we obtain
) I(e) log N
dy =1 = =d,. 2.
1= log(1/e)  log(1/e) d (210)

Thus, the information dimension is equivalent to the capacity dimension when the

probabilities are equal for all boxes covering the attractor, i.e. when the data is

uniformly distributed in space. In general, it can be shown that [35]
d; <d,.

The information entropy I is a measure of the unpredictability in a system. For
a uniform probability distribution, B = 1 /N, I is at a maximum. If all of the
points are located in one box then we are at maximum predictability and the rate

of information generation (entropy) is / = 0. This is seen by the calculations

P = P =Ng/Ny =1

[ = —PlogP

= —log(1)
= 0.

Correlation Dimension

The correlation dimension was developed to estimate the joint probability of finding
two points within a coarsegrained partition [32]. This has become the centerpiece of
numerous published time series analyses. The correlation integral is defined as
2 < -
Cnlr) = =y 2. O ~ 16 - &b (211)
i#]
where N is the number of embedded points, ©(-) is the Heaviside function, 7 is

a Euclidean distance or scale, and 5; is a vector locating point k in D,.-space for
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k=1,...,N where D, is the embedding dimension. If a single variable X is used

to embed the data in D.-space, f-; takes on the form
& = (Xis Xearr - - s Xesr(Dro1)) (2.12)

where 7 is an integer delay called the time lag. Similarly, if multiple states are used

in the embedding of the data. é; takes on the form
& = (X, Yoo Zes -, W) (2.13)

where X, Y, Z, and ¥ are the state variables. The correlation dimension is defined

as the slope of the correlation integrals on a log — log scale

(2.14)

where d(-) is the first derivative operator.

2.2 The Relation of D, to the Capacity, Information, and Correlation

Dimensions

For a nonuniform distribution of points in the phase space, a single fractal dimension
is an incomplete description. To completely characterize a nonuniform topology, an
entire spectrum of dimensions, known as the generalized fractal dimensions Dy is
required. D, is defined as

N{e
1 l'mln Zi:(l) P

2.15
(g — l)sl—~0 Ine (2.15)

D,

where as before P; is the probability of the i*" box in a phase space coarsegraining
and g € R. The natural logarithm (base e) is used here, but any base is acceptable.
In the following analysis, the relations between D, and the capacity, information,

and correlation dimensions are derived.
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2.2.1 Dy and the Capacity Dimension

Using ¢ = 0 in Eq. 2.15, Dy becomes
—InN(e)

im
e~0 Ine
= lin(l)p—liv(—s)- (2.16)

In(1/¢)

Do‘—‘

and we find that D, is equivalent to the capacity dimension d..

2.2.2 D, and the Information Dimension

Ifg — 1and e — 0, Eq. 2.15 is ill defined. We thus take an alternative route to
derive the relation between D; and d; [55]. To begin. let Z be a partition function

defined as

N(¢)
Z(g,e)= ) P (217)
i=]

where Z(g,&) ~ €9 1Ds based on Eq. 2.15. Now,

N(9) N(e)
InZ(g.e) =y Pl= 1n<z Pi—1+ 1) (2.18)

i=1 i=1

The natural logarithm function can be approximated in a Taylor series expansion

by

7

1n(I+1)=.’I‘—2—!+'3—!—... (2.19)

Since Y, P =1, (5, P/ —1) < 1as g — 1, and thus the terms (3, P - l)k for
k > 1 can be neglected in a Taylor series expansion of Eq. 2.18 withz = (3, Pf - 1).
Equation 2.18 is therefore approximated by the relation

N(s)

."V(S)
Y P~y Pi-1 (2.20)
i=1 i=1



18

for ¢ =~ 1. Now assume that ¢ = 1 + g where g < 1. Then
Pf = P}t ~ pefain P, (221)

The natural exponential function can also be expanded in a Taylor series as

2

y .
e =1yt (2.22)

so that

(6gIn P)?

o1 +...~1+6¢lnP, (2.23)

efInPi =1 L 6qln P, +
since ¢ <« 1. Equation 2.21 can now be approximated as
P! ~ P, + Pdégln P, (2.24)

Substituting Eq. 2.24 into Eq. 2.20 we get

N(e) N(e) Ne) N(s)
nY Pl~Y Pi+6g) PInP—1m6g) PP, (2.25)
i=] i=1 i=1 i=1

since Zfi(f 'p = 1. Rearranging Eq. 2.15 and substituting ¢ = 1 + 6¢ we obtain

N(e) N(e)
8gDiIn(e) ~In > Pl ~6qY PilnP. (2.26)
i=1 i=1

Finally, dividing through by éqln(e) reduces Eq. 2.26 to
(2.27)
and we conclude that D, is equivalent to the information dimension d;.

2.2.8 D, and the Correlation Dimension

The correlation integrals as defined in Eq. 2.11 represent the joint probability of

finding any two points f_; and 5-3 (i # 7) separated by a Euclidean distance less than
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scale ¢ in the phase space. For the very special case where the points are statistically
independent, Z,N:f ) P2 is also the probability that any two points fall into a box of
size € s0

N(e)

Cle) =) P (2.28)
i=1
Using ¢ = 2 in Eq. 2.15, D, becomes

oot T )

=0 Ine

(2.29)

If the analysis is performed over statistically independent points in the phase space,

then

(2.30)

and we find that D, is equivalent to the correlation dimension d,.

2.3 Examples of Chaotic Flow and Chaotic Maps

The following systems are examples of nonlinear ordinary differential equations ca-
pable of producing chaotic response. Each system is chaotic because the motion is
bounded, the systems are nonlinear deterministic, and the phase space flow is char-
acterized by at least one positive Lyapunov exponent with the appropriate selection
of system parameters. A chaotic parameter space is defined after the equations of

motion for each system. These chaotic parameter sets are not unique.
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Lorenz system:

where ¢ = 10,7 = 28.0, and b = 8/3 [48].

Rossler system:

= oly—1)

= rr—-y-—zz (2.31)
= zay-bz

= —z—y

= z+4+ay (2.32)
= br+z(r—¢)

where a = 0.36,b = 0.45, and ¢ = 4.5 [82]. Figures 2.5 and 2.6 show the chaotic

attractors for the Lorenz and Rossler system. respectively. for D, = 2 and 3. The

third example is a coupled Van der Pol oscillator system (Fig. 2.7). In each plot.

the three dimensional attractor is projected onto two dimensional planes which are

represented by the “walls” of the box encompassing the attractor. Each projection is

used here for visualization purposes only. In general. embedding the data in different

dimensions is used to help quantify the structure of the attractor (see Section 2.1.2).
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Coupled Van der Pol Oscillator:

i-e(l-2%)% = eA(y—z)+eB(y—1)
(2.33)

i

j—e(l-y")y = cAlz—y)+eB(E-7)

where €A = 2.0305 and B = —2.5 [80].

Figure 2.5: The Lorenz attractor.

Another means of creating chaos comes in the form of iterated maps. There are
an infinite number of chaotic attractors that can be created with two dimensional

iterated quadratic maps in the form:
Tpiy = Q1+ GaTn + G3TE + QuTaYn + sYn + Gl

2 2
Yntl = O7 -F G8Tn + Q9Ty + C10TaYn + G11Yn + C12Yyn-

(2.34)
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igure 2.6: The Rossler attractor.

F

igure 2.7: A coupled Van der Pol oscillator.

F
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Figure 2.8: The Sea Shell and Tattered Iceberg: chaotic attractors produced by quadratic it-
erative maps. The letters denote the values assigned to the coefficients a;,aq, ... ,a12, where
A=—-12B=-11,...,Z = 1.3, and help to easily identify and classify a particular attractor.
The abscissa and the ordinate are defined by the coordinates x, and Yy, respectively.

Given the appropriate combination of coefficients, these maps yield chaotic attrac-
tors. They are attractors because a range of starting values g and yg, within the
basin of attraction, yield the same eventual pattern. They are chaotic because each
has at least one positive Lyapunov exponent. The time histories of the maps appear
random while the structure created in the phase space has an underlying sense of
order or pattern. Figure 2.8 shows two examples of chaotic attractors developed by
iterating Eq. 2.34.

[t is possible to generate chaos using one dimensional maps such as the (sym-
metric) tent map defined by

2z;, 0<z <05

flzi) =2 = (2.35)
2(1-z), 0.5<2 <10

The dynamics of the symmetric tent map (Fig. 2.9) can be easily understood in
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TentMap:a=3,b=3
1.5¢

z[n+1]

Z[n]

Figure 2.9: The symmetric tent map. The absolute value of the left and right face slopes is specified
as a and b, respectively.

base-2 arithmetic where all parameters and numbers are written as binary strings,
[~
Zp = Zei(n)/QJ = 0.gy(n)ea(n)...ex(n)..., (2.36)
=1

where ¢;(n) = 0 or 1. The map is exactly equivalent to a binary shift map defined

by the simple automaton
so that the initial conditions that are written as finite binary strings

N
2= &(0)/2 = 0.6,(0)(0) ... en(0) (2.38)
j=1
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truncate to zero in finite time n = N. As an example, the first ten iterates of the
symmetric tent map with zp = V2 — 1 as written in binary form follow exactly the
automaton as described by Eq. 2.37:

0.0110101000001001
0.1101010000010011
0.0101011111011000
0.1010111110110000
0.1010000010011110
0.1011111011000011
0.1000001001111001
0.1111101100001100
0.0000100111100110
0.0001001111001100

The dynamics of the map can be understood as follows: in zp, the information
stored in any bit £;(0) propagates to the left in the bit stream as the map is iterated
[55]. After j iterations, ;(0) becomes the most significant bit £,(0) in the stream.
Based on this type of analysis, it is easy to see how the tent map is very sensitive to
initial conditions as least significant bits soon become the most significant in the bit
stream. This flow of information is fundamental in chaotic systems. The tent map
is chaotic because there is information flow from right to left in the bit stream as the
map is iterated forward at the rate of one bit per iteration. Defining the Lyapunov

exponent to be the exponential rate of divergence between two nearby orbits, i.e.
[62n] ~ |620]€™" n > 1, (2.39)

where 6z, is the orbit separation after n forward iterations and éz is the initial
separation implicitly assumed to be very small. The result is a positive Lyapunov
exponent A = In(2) for the symmetric tent map. This can proven by computing
exactly the orbit of the symmetric tent map zp — 21 — 2z2... , starting from some

initial condition zg, and linearizing about this exact orbit for some initial condition

20 + 0zp:

Zn + 5Zn = f(zn—l + 6271—1) ~ f(zn—l) + f/(zn—l)ézn—-l + ... (240)
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We then obtain the linear approximation to the separation of nearby orbits

b6zn = f'(2p_1)62n-1, (2.41)

which can be solved exactly to obtain

1%

bzy

n-1
I £/(z1)62, (2.42)
i=0
where 82y is the initial separation of the two orbits. With
n-1
[8zal & Y 1/ (20)]1620] (2.43)
i=0
the Lyapunov exponent for an iterative map z;.; — f(z;) is defined as
1 n-1
A= lim =) Inl|f'(z)l. 2.
nggon; nlf'(z)] (2.44)

Since the slope of the tent map shown in Fig. 2.9 is |f'(z,)] = 3, the Lyapunov
exponent becomes A = 3 by way of Eq. 2.44. If the slope |f'(z;)| > 1, A is positive
and the map is chaotic.

The tent-like structure can also be found in reduced maps of chaotic flow in
continuous systems. For example, by extracting the local extrema from the z state
of the Lorenz system (Eq. 2.32), a tent map can be produced by plotting the
extracted series in return map as shown in Fig. 2.10. One dimensional maps that
represent bounded chaotic behavior cannot provide more than partial information
about higher dimensional attractors [55]. However, a reduction in dimension via
sampling schemes does not seem to affect the interpretation of the resulting motion,
i.e. the sampled flows produce maps which indicate that chaos is present because a
positive Lyapunov exponent exists while the motion remains bounded. These ideas

are the basis for the use of Poincaré maps in analyzing chaotic systems.
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local extrema of the z state in the Lorenz system. The result is
a tent map which seems to be at the heart of many chaotic systems. The separation between the
two maps implies that no local extrema exist in the approximate range (22, 32).
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2.8.1 Poincaré Maps

If the system being measured is of the form Eq. 2.1, the states can be stroboscopically
sampled to produce what is known as a Poincaré map of the original attractor. A
Poincaré map is visualized by taking slices or Poincaré sections of the attractor such
that the intersection of the orbits with the Poincaré section produces a mapping
of the original attractor. Since we are, in effect, taking a slice out of the original
attractor, the resulting attractor dimension is decreased by one. Another means
of generating a Poincaré map is to sample specific locations in a time series. For
example, given a series of measurements, one could sample the series by keeping only

the local extrema. Figure 2.11 demonstrates this procedure on the X state of the

Lorenz system.

20
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Figure 2.11: Sampling of the local extrema of the .X state of the Lorenz system. The spike train
denotes the sampling locations in time.
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2.8.2 Interspike Intervals

Maps are often encountered in the analysis of measured biological signals such as
electrocardiograms (ECGs). For example, the difference in the temporal locations
of successive depolarization peaks (or R-waves) in the ECG (Fig. 2.12) are used to
form a special type of sequence known as RR intervals. Mathematically speaking,
RR intervals are a form of interspike intervals (ISIs) (Fig. 2.13). If the heart is
considered to be a source of (cardiac) dynamics, RR intervals form a type of Poincaré
mapping of the ECG signal. From these maps, one can hope to estimate chaotic
invariants. The process by which interspike intervals are formed is also illustrated in

Fig. 2.11 by calculating successive differences between local extrema in the X state

of the Lorenz system (Eq. 2.32).
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Figure 2.12: Sample electrocardiogram signal. The R-wave peaks are denoted by both filled and
hollow circles.
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Figure 2.13: Sample ECG RR data. RR data are a form of interspike intervals.

2.4 Description of Fractals

The word fractal was coined by Benoit Mandelbrot in 1975 to describe an intricate
set of curves, a majority of which had never been seen until the advent of the
computer. Many of these curves, or fractals, are strikingly similar to shapes found
in nature. Natural objects tend to have irregularities over a range of scale that cannot
be adequately described by Euclidean geometry. Indeed, examination of Euclidean
shapes (such as lines, circles, cones, and paraboloids) at smaller and smaller scales,
reveals structures that resemble a line. i.e. structures that are smooth. Mandelbrot
approached the issue of modeling natural shapes from a recursive process perspective
rather than from Euclidean form and found that complicated shapes could be created
with very simple recursive maps. In effect, the simplicity of the maps used to create

complex shapes adds a sense of elegance to the method. Slight variations in the
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change of the parameters used in the mapping functions can create vastly different
fractal structures. Thus, a simple set of equations can be used to create an infinite
set of fractal curves, simply by changing a few parameters. The excitement in this
field is that many physical and biological processes are speculated to produce fractal
structures including eddy cascades in turbulent flow, blood vessel branching, and
coastline lengths to name a few [7].

Fractals are self-similar. Loosely interpreted, self-similarity implies that the in-
formation perceived at one scale is equivalent to the information perceived at other
scales. The term information as it is used here may mean the shape of an object, or
it may refer to a measure of an object such as surface area or length. Thus, fractals
exhibit constant detail or bumpiness with an increase in magnification. One of the
most popular examples of a self similar object is the Mandelbrot set produced by

the iterative map (52]
Zna1 = i tC (2.45)

where z and ¢ are complex variables of the form z =z + 14y and ¢ = a+ib. In terms

of real variables, the Mandelbrot map becomes

Tn+l = Ii—yi+a
(2.46)
Yn+1 = 2TaYn + b.
Maps of this type can be generalized as
Tpel = j'(zn’y'n)
(2.47)

Yn+1 = g(.’L‘n, yﬂ)'

In the case of the complex map (Eq. 2.45), F = f +ig is an analytic function of
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2. That is, the derivative ﬂ;'zfl exists and the functions f(z,y) and g(z,y) satisfy

of 9y
oz By
(2.48)
af  Og
ay o

Given an appropriate choice for ¢, the Mandelbrot map can produce a fractal struc-
ture by means of an escape plot as shown in Figure 2.14. An escape plot is produced
by color coding the number of iterates it takes for a given initial condition to either
escape towards infinity or remain bounded. For computational efficiency, a finite
number of iterations N is performed on the map and the resulting magnitude |zy]| is
compared to an arbitrarily selected large value zroc. If [2n| > zroc, future iterates
of the map are assumed to blow up or escape to infinity and the location of the initial
condition in the complex plane is color coded accordingly. The light grey areas in
Fig. 2.14 represent the locations of initial conditions that escape in this way. The
white areas represent the initial conditions which are forever bounded or caught in a
so-called basin of attraction and never exceed zpoc. The boundary which separates
the unstable and stable set of initial conditions forms a beautiful and highly frag-
mented curve, represented in Fig. 2.14 with darker shades of grey leading to black.
This interface is fractal in the sense that it is self similar: if one zooms in on one
portion of the escape plot, it resembles exactly the area from which was produced
as seen at a lower resolution. Theoretically, no matter how far one zooms into the
interface, one will always see a high degree of fragmentation and complexity. While
such maps serve as a visual paradigm in regard to the intimate connection between
dynamical systems and fractals, the physical relevance is still to be discovered [58].
Beyond the Mandelbrot set, some of the most popular examples of fractals are
the Koch curve, the Cantor set, the devil’s staircase, and the Sierpinski triangle.
Each is produced by a simple geometric rule. For example, consider the following

rule for a Sierpinski triangle: for every solid triangle, divide it up into 4 equi-sized
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Figure 2.14: Mandelbrot set for the function 2,4, = 22 + ¢ plotted in the complex plane.

triangles and remove the middle triangle. Thus for each iteration n of the Sierpinski
triangle set, there are N = 3" segments of size ¢ = 2™ (the length of a side in the
child triangle is 1/2 that of the corresponding leg in the parent triangle). The result
after many iterations is the Sierpinski triangle shown in Fig. 2.15. To create the
Koch curve a geometric pattern is iterated on a line with the following rule: for each
line of length L, take out the middle third of the line and replace it with two lines
each of length L/3 as shown in Figure 2.16. Thus, for each level n in the iteration
process, there are N = 4" segments of size £ = 3 . To generate a fractal curve, the
iterations are repeated forever. The Cantor set is created in a similar fashion to the
Koch curve. If the Koch curve can be considered a process of adding finer and finer
length structure to an initial line segment, then the Cantor set is the complement
operation of removing smaller and smaller segments from a set of points initially

on a line. The rule for the Cantor set is: For each line take out the middle third



34

0.5F .
0.25¢
opF [ ] -
0 05 1

Figure 2.15: The Sierpinski triangle.

segment as shown in Figure 2.16. Thus for each iteration n of the Cantor set. there
are N = 2" segments of size £ = 37", The discontinuous Cantor set can be used
to generate a continuous distribution function by integrating over an appropriate
density function defined on the set. Suppose. for example, that mass pg is uniformly
distributed on the interval 0 < r < 1 of length =, such that the total mass is unity
(Fig. 2.17). At each iteration level. the mass is again uniformly distributed from the
previous level (u; = p2) and the mass density. p = u/z. increases for each segment
of the set. Specifically. at the n'® iteration level. the mass density of each interval
is p = (3/2)". By integrating the mass density along r. we obtain the mass as a

function of z:

fule) = / palz) da (2.40)

In the limit as n — oc. fo{r) is called the devil's staircase for its infinite number of

steps (Fig. 2.18). Realistically. there is no density function that can be associated
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Figure 2.16: The Koch curve and the Cantor set for n = 4 iterations. The Cantor set can be built
graphically by not displaying parts of the Koch curve which are greater than zero on the ordinate.
Thus the areas where the Koch curve meets the abscissa defines the Cantor set.
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with the Cantor set since the support! of the set approaches zero as n — oo. It is
reasonable, however, to associate a distribution function f,(z) with the Cantor set.

Thus far, we have arbitrarily designed both the support and the distribution in the

€0
n=0
Ho=1
€l €l
n=1
m u2
€2 €2 €2 €2
n=2
nipl nip2 uzpl n22

Figure 2.17: Propagation of mass ¢ and fundamental length scale(s) € in the Cantor set. Here, the
length scale for each iteration level is the same. An alteration in the length scales at n = 1 such
that the left side has length €1, and the right 42 for €13 # 12, will produce a nonuniform support.
If 4y # po, the mass distribution is nonuniform. In both cases, the result is the formation of a

multifractal structure.

Cantor set to be uniform or homogeneous. If, however, we choose to distribute the
mass in a nonuniform fashion (x; # p2) or to develop the support of the Cantor
set via the propagation of two unique length scales (¢ differs for each segment in
level n), then the resulting Cantor set is multifractal. Figures 2.19, 2.20, and 2.21
demonstrate various of combinations of (non)homogeneous distribution and support
for the Cantor set. The homogeneous Cantor set with corresponding devil’s

staircase, Koch curve, and Sierpinski triangle are fractal sets because at any iteration

!The support of a set is where it is nonzero.
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Figure 2.18: Homogeneous devil’s staircase distribution function.

level one may find an exact replica of the whole. As an example, zooming in on the
first 1/3 of the support of the homogeneous devil’s staircase (Fig. 2.18) results in a
curve that is an exact replica of the prezoomed image on the whole of its support.
Typically, the zoom must be performed anisotropically for an exact replica to be
achieved. Anisotropic zooming is achieved by dilating a portion of an object more

in one direction than in the other. Mathematically, this relation is summarized as
fOx) = M f(z). (2.50)

An object or signal is said to be self affine if an anisotropic dilation of a portion
is geometrically or statistically similar to the whole. In the homogeneous devil’s
staircase, the first third must be stretched by a factor of three to span the same
support, and then it must be stretched along the direction of the ordinate by a factor
of two to achieve the equivalent amplitude of the original curve and H = log2/log3

in Eq. 2.50.
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Tent Map:a=3,b=3,p1=0.3333,n=6
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Figure 2.19: Multifractal Cantor set mass density and distribution with nonhomogeneous distribu-

tion/homogeneous support: yy =1/3,us =2/3,6, = 37", and n = 6.
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Figure 2.20: Multifractal Cantor set mass density and distribution with homogeneous distribu-

tion/nonhomogeneous support: i, = 27",€11 = 2/5,€12 = 3/3, and n = 6.
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Figure 2.21: Multifractal Cantor set mass density and distribution with nonhomogeneous distribu-
tion/nonhomogeneous support: i = 1/3, ig = 2/3,1; = 2/5,12 = 3/5, and n = 6.
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In cases where the support and/or distribution of the Cantor set is nonuniform
there is no one value of H that satisfies Eq. 2.50. This is primarily due to the fact
that multifractal structures generally do not contain exact replicas of the whole at
smaller scales. Rather, they resemble the whole in a statistical fashion. As a result,
an entire spectrum of exponents H are needed to describe multifractals. We shall

thoroughly discuss this issue in subsequent sections.

Multifractal Analysis

Multifractals arise when a measure defined on the support has different fractal di-
mensions on different parts of the support. Such phenomena cannot adequately be
described by a single fractal dimension. Rather, a complete spectrum of dimen-
sions characterizes multifractal structure. The calculation of multifractal spectra is
approached from two basic perspectives: a-based and g-based methods. [n what
follows, each of these methods is developed and a relation between the two is formed
[62]. For clarity, the techniques will be demonstrated on Cantor sets, although they
are not limited to simple pedagogical examples of multifractal geometry.

Consider the geometrically self-similar triadic Cantor set with uniform distribu-
tion (1 = p2, 1 + pe = 1) as shown in Fig. 2.17. At each level of the level of the
set we see that there are N, = 2" segments of (fundamental) length e, = 37". Using

the definition of the capacity dimension (Eq. 2.6) it is easily shown that
N, = gbe

Un = N, =g, (2.51)

Thus far, we have made two assumptions:

1. The support is uniform

2. The distribution in terms of some measure is uniform
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If the above assumptions hold, then only one fractal dimension is needed to charac-
terize the set. If, however, one or both of these is not upheld, then an entire spectrum
of fractal dimensions is needed to characterize the set. Based on the possibility of

inhomogeneity in the Cantor set, the results found in Eq. 2.51 are generalized as

Nu(@) = enfa) /@

Win = €in™" (2.52)

th iteration level, €;,, is

where p; , is the measure found at the it" segment of the n
the corresponding length scale, and «; ,, is the corresponding scaling index. N, (o)
is then the number of intervals that contain like a's and £,(a) is the fundamental
length of these intervals with the underlying assumption being made that intervals
of like sizes have like measures on their support segments; an assumption that is true
for any case we will encounter. Finally, f(c) is the fractal dimension of intervals that
are visited with like probability (measure) p = €%, i.e. f(a) is the fractal dimension
as seen by the intervals who share a common scaling index . Another interpretation
is that the f(a) describes how the “histogram” N,{a) varies as £ — 0.

The g-based method starts off with the definition of the partition function Z

N

Z@)=) i (2.53)

The exponent q is used to “weight” the measures on the support of the set. The
denser the population on segments of the support, the more “weight” they are given
with negative values of g and vice versa. Note that if ¢ = 0, Eq. 2.53 is effectively the
summation of line segments across the support, i.e. Z(0) = N, and the population of
those segments is ignored. Therefore, the partition function Z is specifically designed
to coordinate with the generalized fractal dimensions D,, where, as discussed in

previous sections, various values of g are used to draw out the influence of various



43

population densities across the support of the set being analyzed. We can form a

mathematical link between Z and D, via

Z o~ (2.54)
where 7(gq) = D,(g — 1). Rearranging terms yields

3 . log Z(q) .
Dy =1/lg-1)lim == (2.55)

In Eq. 2.54 and 2.55, € is a the fundamental “box” size used to cover the support
of the set in the same sense as the box counting technique. Typically, one does
not know a priori the various length scales that make up the support of a set as is
obvious in the Cantor set. For this reason, a generic box size is used. The point
is that the invariant set of a map can be covered arbitrarily by the N, intervals of
length &,, but there is an optimal partitioning that is defined by the set itself. The
support of the uniform Cantor set is in fact the optimal coarsegraining to describe
its fractal microstructure. Obviously, this partitioning is not usually known for more
complicated sets.

The relation between the f(a) and D, spectra is formed by substituting Eq. 2.52

into the definition of the partition function (Eq. 2.53):

Nﬂ
Z@=d 4 = Y Nala)(er)’
i=1 «
= Ze,;ﬂa)s,,aq (2.56)
- Z g, 9% (@)
[0

Since €, < 1 as n — 00, Z(g) is maximized by minimizing the function

gla) = qa - f(a) (2.57)
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Eq. 2.57 is minimized when

q=f'(a)
f"(al(g)) <0 (2.58)

where a(q) is the value of a which satisfies ¢ = f'(«). Note that the f(a) spectrum
must be concave downward for a minimum of g to be achieved. The partition

function can then be approximated by

2(q) =~ g,1%)-f(a(@) (2.59)

Since Z(q) ~ &,7@, it is apparent that
7(q) = ga(q) — f(a(q))- (2.60)

Thus, 7(q) is found by taking the Legendre transform of the f(a) spectrum. Fig-
ure 2.22 shows the effects of homogeneity in the distribution (with homogeneous
support) on the partition scaling exponents 7(q) and generalized fractal dimensions
D,. For the homogeneous set, the generalized fractal dimensions converge to one
value, namely D, = log(2)/log(3), while the nonhomogeneous set creates a set of
generalized dimensions D, = (log(u] +13))/((1 —g)log(3)). The corresponding f(a)

spectrum is shown in Fig. 2.23.

2.5 The Link Between Fractals and Chaos

The fractal dimensions used to quantify the structure of chaotic attractors are also
applicable to the geometric fractals shown in Sec. 2.4. To illustrate, the capacity
dimension D, for the Cantor set (Fig. 2.16, right column), the Koch curve (Fig.

2.16, left column), and the Sierpinski triangle 2.15 are calculated.

e The Cantor Set

For each level n in the iteration process, there are N = 2" segments of size
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Figure 2.22: The scaling exponents (a) and generalized dimensions (b) for a homogeneous distri-
bution #; = gy = 0.5 {dotted line} and a nonhomogeneous distribution gy = 0.6. g2 = 0.4 {solid
line} in the Cantor set (See Fig. 2.17 for reference).



46

0.7, T Y T T Y T T

0.6

0.5

0.4}

f(or)

0.31

0.2F

0 i
0.45 05 055 06 0.65 0.7 0.75 08 0.85

Figure 2.23: The f(a) spectrum for the nonhomogeneous distribution iy = 0.6. y2 = 0.4 in the
Cantor set. The apex of the curve is the (single point) f(a) = log(2)/ log(3) for the homogeneous
distribution.

g = 37", Using Eq. 2.6, we find

log2" log?2

Dg*™" = lim = =0.63092...
0 e=0log3d" log3
e The Koch Curve
For each level n in the iteration process. there are .V = 4" segments of size

e = 37", Using Eq. 2.6, we find

A log4™ log4
Koch - (=] [=] K - o
Dges = ‘Emé oz 3" = _log3 = 1.26185

e The Sierpinski Triangle
For each level n in the iteration process. there are A" = 3" new triangles of size

g = 27" Using Eq. 2.6, we find

1.58496 ...

o log3" log3
DSx:rpxnskl — 1 o = e =
0 51—11(11 ]og 2n log2



Thus,

Cantor Koch Sierpinski
D5 < Dy < Dy .

To visualize these sets. one must look at them in a minimum Euclidean dimension
of D. = [Do] where [-] is an operator which rounds the value to the next highest

integer. Thus. the embedding dimensions for the above examples are

Dganlor - l
DE = 2
D:ierpinski — 2

The closer the capacity dimension comes to the embedding dimension. the closer
it comes to filling up the space in which the data are viewed. For clarity. consider
an alteration to the geometric rules used to develop the Sierpinski triangle in the
following way: for every solid triangle. divide it up into 4 equi-sized triangles. only
this time. keep the middle triangle as well. We would expect that this rather boring
rule to do nothing more than simply section off various portions of the space filled
by the original solid triangle. Furthermore. one does not expect its dimension to
increase since areas (or masses) are neither added nor subtracted from the original
structure. In fact. the capacity dimension becomes

2

AN
Auered Sierpinski _ log 4 _ log 4
0 - -~ - T 5
s—~0log2" log?2
Altered Sierpinski
D;

which demonstrates the fact that the sectioning does nothing to the original dimen-
sion of the solid triangle.
Another link between chaos and fractals stems from the fact that chaotic attrac-

tors have a (multi)fractal microstructure. While box counting techniques can be
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used to estimate the fractal dimension of the attractor geometry, it is an insufficient
means of characterizing an attractor which has a nonuniform probability distribu-
tion. Uniform distribution is the exception rather than the rule for chaotic attractors.
Thus, chaotic attractors are generally not geometrically self similar; rather, they are
statistically self similar. For example, consider the Poincaré section of the Dufling
oscillator with chaotic parameters shown in Fig. 2.24. The resulting attractor is

referred to as the “Dancing Newt” [13]. It is clear that in the Dancing Newt, there
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Figure 2.24: A phase plane embedding of a chaotic Duffing system whose motion is described by
the nonlinear ODE: # + 26 + 2% = pcos (t. The parameters used to produce the chaotic “Dancing
Newt” are p = 1.0,2 = 0.229, and £ = 0.015.

is a nonuniformity in population density across the attractor. In addition, zooming
in on a portion of the attractor will result in an image which only resembles the
whole, but does not replicate it exactly. The similarity is in the fine structure that
exists upon zooming. Theoretically, there will exist an infinite number of gaps and

fractal microstructure, regardless of the zoom factor.
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As another example, consider the backwards iteration of both the symmetric and
asymmetric tent map (Fig. 2.25 and Fig. 2.26, respectively). The resulting Cantor
sets are the optimal means of coarsegraining the phase space, i.e. we can arbitrarily
choose boxes of various sizes to estimate the generalized fractal dimensions of the
attractor, but, the resultant support of the Cantor set is the best choice. If the tent
map is asymmetric, it implies that the support will be nonuniform. The dynamics of
the map are responsible for distribution of iterates on the attracting set. It is possible
to achieve a multifractal distribution whether or not the support is fractal; all that

is required is that there exists an infinitely fragmented measure of the distribution.

2.6 Multifractal Analysis Using Wavelets: the Wavelet Transform Max-
imum Modula Method (WTMM)

The material found in this section is a replication of the work found in {62} with the
exception of the comments in Section 2.6.1 where a critique of the WTMM is given.

Multifractal analysis has been used on a wide range of mathematical and nat-
ural phenomena including atmospheric turbulence, pore spaces in sandstones, and
diffusion limited aggregation. In the discussion of multifractal properties for a distri-
bution of points, a distinction must be made between a measure of a distribution and
the geometric set or so-called support of a distribution. As an example, the support
of the Cantor set consists of the nonzero (line) sections at a given iteration level.
A measure is a real quantity, such as mass or probability, that is associated with a
distribution. Furthermore, while both the support and the measure may be fractal,
they do not generally have the same fractal dimension, i.e. the set is multifrac-
tal. The wavelet transform can be used to reveal D, by uncovering the singularity
strength of various portions of a fractal signal in “time” and in scale. Specifically,
the portions of interest are the locations of the maximum moduli of wavelet, trans-

form coefficients in the time-scale plane [62]. With each maximum moduli line one
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Figure 2.25: The symmetric tent map and the homogeneous Cantor set produced by the backwards
iteration of the unit interval. The support of the Cantor set is directly related to the shape of the
tent map while the dynamics of the map control the population of iterates on the support. For
homogeneous conditions, the resulting Cantor set can be described by a single fractal dimension.
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Figure 2.26: The asymmetric tent map and the nonhomogeneous Cantor set produced by the
backwards iteration of the unit interval. The support of the Cantor set is directly related to the
shape of the tent map while the dynamics of the map control the population of iterates on the
support. For nonhomogeneous conditions, the resulting Cantor set is characterized by a spectrum
of fractal dimensions.
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can associate a singularity strength a that is ultimately used to form a singularity
spectrum f(a)?. The singularity spectrum characterizes a multifractal signal be-
cause the wavelet maxima lines follow the same renormalization rules as the wavelet
transform itself and thus reproduces the hierarchical structure of the signal.

The analyzing wavelets are themselves self-similar at all scales and thus can be
used to expose the geometric or statistical self-similarity of a (multi)fractal sequence.
The wavelets act as “boxes” that cover the distribution. The wavelet coefficients are
produced by convolving a scaled wavelet (filter) with the original signal, resulting
in a time-scale representation of the original signal. Mallat and Hwang [51] have
shown that singular behavior around a point zp implies that there exist maxima lines
converging towards zo as the box size or scale a — 0. For each line a singularity

strength is associated such that
Tyfl(zo, a) ~ a0 — 0* (2.61)

The number of maxima lines at scale a associated with the exponent a(zo) is denoted

as N.(a). Bacry et al [5] have rigorously proven that N.(a) scales like
No(a) ~a™ /@ (2.62)

where f(a) is the singularity spectrum or Hélder spectrum. The singularity spectrum
f(a) can be used to obtain estimates of the generalized dimensions D,. To form the
relation, consider the partition function

Z(g,a) = Y Tulf)(bela),a)l” (2.63)

¢e L{a)

where L(a) is the set of all maxima lines ¢ existing at scale a, and b¢(a) is the

position, at scale a, of the maximum belonging to line . Then by using Eq. 2.61.

2The singularity strength « is associated with the Holder exponent while the singularity spec-
trum f(c) is associated with the Hausdorff dimension.
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Z(q, a) becomes
Z(q,a) ~ Na(a)(a®)? (2.64)
and by substituting the expression of N,(a) given by Eq. 2.62, we arrive at

Z(g,a) ~ Za(qa—f(a))

qMinalga—f(a) (2.65)

~

Thus, if 7(g) is the scaling exponent characterizing the power-law behavior of Z(q, a):
Z(g,a) ~ a™?, (2.66)

then we obtain
7(q) = mina(ga — f(a)) (2.67)

Finally, the generalized dimensions of the distribution can be calculated via

L~
—

q

D, =1 (2.68)

=
—

Thus, the wavelet transform provides a natural generalization of classical box-counting
techniques and can be used to calculate the generalized dimensions D;. The process
of using the wavelet transform to reveal multifractal structure is commonly referred

to as the method of wavelet transform mazimum modula or WTMM.

2.6.1 A Critique of the WTMM Method

There are many benefits in using the WTMM method over conventional box-counting
techniques. For example, the fractal structure of the signal (if it exists) naturally
falls out in the wavelet transform. A second benefit is that the type of wavelet can
be chosen such that it ignores (is blind to) certain degrees of polynomial influence.

That is, the number of vanishing moments for a given wavelet directly affects how
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sensitive it is to polynomial behavior. It is possible to construct a mother wavelet
such that the number of vanishing moments are fairly large and, in doing so, will
greatly attenuate polynomial contamination. In using this technique, all of the
possible generalized dimensions can be estimated at once. Even if the object is not
multifractal, an estimate of the capacity dimension is returned. The WTMM is a
relatively fast computational technique that yields results in a quick and efficient
manner.

The reader may ponder as to why wavelet techniques were not used in the past to
analyze chaotic response, especially in light of all the advantages they have to offer.
Certainly, the idea of using wavelets with fractal structures seems a very natural one.
The reason lies in the fact that a single variable of a chaotic system (one coordinate
of a chaotic flow) is not self affine, a fundamental drawback that cannot be easily
overcome. The level of preconditioning required to map a chaotic flow down to
some self affine one dimensional form would probably outweigh the computational
advantages of the WTMM. In addition, such a mapping (if it exists) would highly
limit the interpretation of the data as it is impossible for maps to maintain all of the
fractal characteristics of a chaotic flow [55]. Nevertheless, the WTMM method will
work on any one dimensional sequence which has either a geometric or statistical

self-affinity. We therefore explore some applications of the WTMM in Sec. 2.6.2.

2.6.2 Application of the WTMM Method

Here we use the WTMM method to analyze the tent map with uniform support and
(non)uniform distribution to illustrate the capabilities of the WTMM. Where it is
relevant, an image of the wavelet used in the analysis appears in the upper left hand
corner of the plot. The wavelets used are derivatives of a Gaussian wavelet such that
the M order Gaussian wavelet is defined as

dM 2 X
M (z) = W(e /2) (2.69)
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Figure 2.27 shows Gaussian wavelets for various orders.
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Figure 2.27: Gaussian wavelets ¥, ... , ¥, in the time and frequency domain for derivative orders

M =1,2,3,and, 4. The original Gaussian curves used to build the wavelets are shown the top row.

Homogeneous Tent Map

The use of the tent map ties in ideas from chaos and fractals and thus serves as a
nice pedagogical example. We can form a hypothetical fractal measure, u(r), by
assigning a distribution to the intervals generated by backwards iteration of the unit
interval. In this case, we examine uniform conditions, i.e. both the support and
the distribution are homogeneous. The parameter set is {y; = p2 = 1/2,a = b =
3,n = 6,N = 1024} , where y, and p, are the mass distributions for the left and
right intervals at iteration level n = 1, respectively. a and b are the absolute values
of the slopes on the left and right sides of the tent map, respectively, and N is the
number of points used to form a discrete approximation of the set. The resulting

measure on the discretized Cantor set is u(z) and is used as an input into the WTMM
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program. Figure 2.28 shows the symmetric tent map and the corresponding Cantor
set resulting from a finite number of backwards iteration of the unit interval. Figure

2.29 shows the corresponding discrete mass density and distribution function.

The continuous wavelet transform (CWT) of the measure u(z) is shown in Fig.
2.30. The WTMM map (Fig. 2.31 upper left) is provided for comparison. The self
similarity of the measure u is reflected in the symmetric forkings of the WTMM.
For each parent at scale @, two children (forks) develop at scale a/3. On a log-
arithmic scale, this split is equispaced and in this particular case, occurs at ev-
ery log,3 = 1.585 interval (on a log, scale). Thus, we find the expected result
Na(a) = Npa~'982/1983 where Ny depends on the order of the analyzing wavelet. In

addition, it can be seen that the WTMM converges to the support of x as a — 0.

In an algorithmic sense, it is useful to identify the chains of the WTMM. After the
chains have been identified, they are pruned of spurious maxima lines, and the result
is a WTMM skeleton map as shown in upper right corner of Fig. 2.31. The numbers
on the skeleton map are the used to identify distinct WTMM ridges. The skeleton
map is used to develop the partition function as shown in Fig. 2.31 (lower left). The
partition function (plotted on a log-log scale) is fit with a least squares algorithm to
extract the partition scaling exponents 7(q) (Fig. 2.31 lower right). The 7(q) results
seem to fit almost perfectly with the theoretical curve 7(q) = (g — 1) log(2)/log(3).
Since D, = 7,/(q — 1), the generalized fractal dimensions collapse (theoretically)
into one fractal dimension D = log(2)/log(3). Figure 2.32 compares the theoretical

value to that achieved using the WTMM method.

The results for the WTMM method on the uniform Cantor set using wavelet ¢(?
are shown in the Fig. 2.34. There are more skeleton lines when using ¥ than there
are when using ¥@. This is due to the fact that 1® has more oscillations than y/®

and should not affect the estimates of D,.
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TentMap:a=3,b=3,p1=05n=6

Figure 2.28: Tent map and corresponding Cantor set built by backwards iterating the unit interval
of the tent map {u; = po = 1/2,a =b=3,n =6, N = 1024} .
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TentMap:a=3,b=3,p1=05n=6
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Figure 2.29: Discrete mass density and distribution function {1y = pe

6, N = 1024} .

1/2,a = b= 3,n =
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W(o) CWT: 8 octaves, 20 voices/octave

Figure 2.30: CWT of tent map using ¥,
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Figure 2.32: Generalized fractal dimensions {; = p2 = 1/2,a = b = 3,n = 6, N = 1024} using
AL

Nonhomogeneous Tent Map

For the nonhomogeneous case, we focus on the effects of a nonuniform distribution
with homogeneous support in the Cantor set Fig. 2.35. The parameter set for this
case is {g1 = 0.3,p2 = 0.6,a = b = 3,n = 6, N = 1024} . Figure 2.36 shows the
results for the WTMM analysis using ¥© and 4. [n both cases. the ¥'¥ results

are significantly closer to theoretical spectra than are the P results.
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CWT: 8 octaves, 20 voices/octave
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Figure 2.33: CWT of tent map using ¢
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Tent Map:a=3,b=3,p1 =03, n=6
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Figure 2.35: Discrete mass density and distribution function {1 =03,y =06,a =b=3n=

6, N = 1024} .
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Chapter 3

DENOISING CHAOTIC SEQUENCES USING THE
MAXIMUM OVERLAP DISCRETE WAVELET
TRANSFORM

One facet of time series analysis is to separate deterministic from random events.
A signal is said to be denoised when the desired time and frequency content has
been sufficiently extracted from a contaminated sequence. The objective here is to
denoise chaotic sequences contaminated with random noise in order to estimate the
correlation dimension D, of the original uncomtaminated chaotic attractor. Without
denoising, D estimates diverge even with a small level of noise contamination.
Developed in this chapter are the key ideas behind each component of a novel
denoising technique for use with, but not restricted to, contaminated chaotic se-
quences. Once denoised, the chaotic sequences are analyzed with conventional non-
linear dynamic techniques and compared to the results for the original sequence. The
denoising algorithm is hereafter referred to as MODRA, which serves as a suitable
acronym
Maximum overlap discrete wavelet packet transform
Optimal
Deterministic
R/eduction
Algorithm.

Each element of the denoising algorithm and details concerning the nonlinear

measures are described in order of their use. Section 3.1 defines a highly flexible and
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useful extension of the conventional discrete wavelet transform known as the MOD-
WPT [73]. The MODWPT plays a pivotal role in the denoising algorithm. In Sec.
3.2, a description of a best basis optimization is given and a novel technique for devel-
oping a MODWPT cost functional using Shannon’s entropy is introduced. Section
3.3 discusses a simple technique for reducing the number of coordinates needed to
sufficiently characterize the time-frequency content of the original sequence. In Sec.
3.4, Kaplan’s determinism method (KDM) [37, 36] is described and opportunities
for advancement identified. KDM is used on each member of the reduced coordinate
set, and the coordinates found to be deterministic are synthesized to form a denoised
version of the contaminated data. The synthesis process is described in Sec. 3.5.
The remainder of the chapter is devoted to the description of nonlinear measures,
such as the correlation dimension, and their usefulness on chaotic sequences is pre-
sented. The subtleties of obtaining quality nonlinear measures are discussed in Sec.
3.6 while the advantages of using singular value decomposition with nonlinear mea-
sures is explained in Sec. 3.7. Finally, the results are presented in Sec. 3.8 for a
comparison of MODRA to a conventional wavelet denoising technique (Sec. 3.8.1),
for a collection of nonlinear results for denoised contaminated chaotic sequences (Sec.
3.8.2), and for a chaotic beam experiment (Sec. 3.8.3). Each section is prefaced with

a statement of purpose and concluded with a description of relevance to the method.

3.1 The Maximum Overlap Discrete Wavelet Packet Transform (Stage
I

The purpose of this section is to introduce the discrete wavelet transform (DWT), the
discrete wavelet packet transform (DWPT), the maximum overlap discrete wavelet
transform (MODWT), and the maximum overlap discrete wavelet packet transform
(MODWPT). We will start with the DWT and gradually develop ideas key to the
MODWPT, which is at the heart of the denoising algorithm for chaotic sequences.
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An in-depth discussion of the DWT and the continuous wavelet transform (CWT)
is presented in Appendix A and the reader is referred there for reference. The

nomenclature used in this chapter is consistent with that found in Percival and

Walden (73].

3.1.1 The DWT

The DWT can be explained quite easily in terms of linear filtering theory and some
basic linear algebra such as differencing and summation operations. To start, con-
sider a N = 4 point series {X;} = {Xo, X1, X2, X3} as shown in the top level in

Fig. 3.1. At each level j, the topmost left block of the previous level or parent block

j=0 X, X, X, X,
. Vo ) W, ) W, )
I=
XX, X X, X=X XX,
j=2| %0 oy
(X, +X (XX, (X, + X)X+ %)

Figure 3.1: The decomposition of a discrete sequence {X,} using summation and differencing
operations. The decomposition level is denoted as j such that the sequence at j == 0 is the original

signal.

is broken down into two children blocks V' and W, each of which contains half the

number of elements as the parent. These transform coefficients are identified with
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a index pair (7,t) which denote the decomposition level and “time” index, respec-
tively. By construction, the V’s are proportional to the sums of adjacent averages
on a scale of 7; = 277! for 0 < j < J where J < log, N. Qualitatively, the Vs
represent smoothed versions of portions from the original signal. The “time” span
of these portions is equivalent to the decomposition scale 7;. Conversely, the W’s
are proportional to the differences of adjacent averages on a scale of 7;. The W’s
are large if there exists a sharp discontinuity in {X,} since they are the result of
differencing operations on the original signal. Qualitatively then, the W’s pick out
the rougher aspects of the original sequence.

The transformation of the sequence {X;} into V’s and W'’s is invertible, i.e. we
can synthesize the original signal by recombining the Vs and W’s in a specified
way. The coefficients used to rebuild the original signal are highlighted in Fig. 3.1
by a thick border around the corresponding blocks. The idea is to combine the
smooth and rough transform coefficients at level j to approximate (or in this case
obtain exactly) the smooth transform coefficients at level j — 1. Then the smooth
and rough coefficients are used to rebuild the smooth coefficients at level j — 2 and
so on until the original signal is returned. For the example shown in Fig. 3.1, the

synthesis of {X;} is obtained via

Vip = Vao —2 Wi
Vi = Va0 7; Wap
X, = Vio ; Wig
X, = Vip ‘Z Wio
X, = Vl,l - W1,1
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Vipg + Wi,

The transformation of {X,} can be put into matrix form W = WX:

wol [-1 1 0 o [x)
Jwal _Jo o -1 fx
Wao [ -1 -1 1 1| ]X,
Vo) |11 1 1] X

The transform matrix W as depicted above is row orthogonal but is not orthonor-
mal since WWT # Z. However, an orthonormal transformation can be achieved
by scaling the transform coefficients such that at every decomposition level j each

coeflicient is divided by N2 resulting in the transform

(W) [-1v2 v 0 0 ] [
wl,1>2 0 0 -1/V2 12| | Xy 31)
Wyo ~12 -2 12 12| X%
(Vo] [ 12 12 12 12 X

Orthonormality is desired because by construction an orthonormal matrix W has
the property W1 = WT, hence WTW = T where Z is the identity matrix. This is
useful for inverting the transform W = WX since WTW = WIWX = X. In other

words, the original signal can be rebuilt from the transform coefficients via

(x,) [-1/v3 o 172 1/2] (W)
éxl _ 1/V2 0 =172 1/2} | Wi, ' (32)
X, 0 —1/vV2 1/2 1/2| | W
Xs) | 0 V2 1/2 172 | Vao

Equation 3.1 is a special case of the discrete wavelet transform known as the Haar

DWT, and Eq. 3.2 the corresponding inverse discrete wavelet transform.
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The DWT is an invertible orthonormal linear transform, mapping a sequence
from the time domain to the time-scale domain. An alternative view of the DWT is
that it decomposes a sequence into a set of sequences nominally associated with a
pass-band filter set distributed on a logarithmic frequency grid. To see this, we can
define a filter by for Il = 0,... ,L—1 where L is the length of the filter. For simplicity,
let us choose the nonzero filter coeflicients in the first row of the W matrix in Eq.
3.1 as our filter, i.e. let {i} = {1/v/2,—1/v/2}. This filter has a special name in
the literature known as the Haar filter and is the most basic of the wavelet filters.

The frequency response of the Haar filter is most easily obtained via the z-

transform. In general, the z-transform of {h,} is
H(z) =ho+hyz7 4.+ hyoyz” 7D (3.3)
where {h;} is the impulse response of the filter. For the Haar, the z-transform is
H(z) = ho + hyz71. (3.4)

Since z = € maps H(z) from the z domain to the Fourier domain, the frequency

response function of the Haar filter is
H(w) = ho + hie™™. (3.5)
The associated squared gain function, defined as H = |H(w)|?, is

(ho + hy cos (w))? + A sin (w)?
RhE + h? + 2hoh, cos (w) (3.6)

H

I

= 1- cos(w)

and H is revealed as a high pass filter whose cutoff frequency is centered about
normalized frequency f = 1/4 (Fig. 3.2). The Haar wavelet filter used to form the
W's in Eq. 3.1 is associated with a high pass filter since differencing operations

expose the rougher or more discontinuous aspects of a discrete sequence. Likewise,
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Haar QMF Squared Gain Functions
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Figure 3.2: The squared gain functions for the Haar wavelet and scaling filters.

a filter defined by summation operations on adjacent averages in {X,} is associated
with a low pass filter known as a scaling filter. The impulse response of the Haar

scaling filter G(f) is {a:} = {1/v/2,1/+/2} with squared gain function
G =1+ cos(w) (3.7)

where G = |G(f)>. G(f) is a low pass filter with normalized cutoff frequency
centered at f = 1/4 (Fig. 3.2). The wavelet filter {,} and the scaling filter {g:} are
at the heart of the DWT and are related by

g = (=1 o1y (3.8)

for { = 0,...,L — 1. Equation 3.8 defines a quadrature mirror filter (QMF) pair.
Given a suitable wavelet filter {h;} a corresponding scaling filter {g;} is formed
through the QMF relation by reversing {A;} in time and negating every other coef-
ficient starting with the first. A filter is considered to be a suitable wavelet flter if

it adheres to the guidelines presented in the table below.
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Wavelet Filter Conditions

Description Time Domain Frequency Domain
Zero Summation Sl =0 H(0) = 0, H(1/2) = 2
Unit energy ez =1 H) + H(f +1/2) =2
Even shift orthogonality | -7 hihior = 0 (k # 0) | H(f) + H(f +1/2) = 2

The unit energy and even shift orthogonality properties are necessary to establish an
orthonormal transform while the zero summation property is a characteristic of all
Daubechies wavelet filters in which the Haar wavelet is a member. The corresponding

requirements of the scaling filter are provided in the following table.

Scaling Filter Conditions

Descriptiorn Time Domain Frequency Domain
QMF Pair g = (=1)"*thpany Gg(f)=HQ1/2-f)=2
Positive summation SEta=V2 G(0) =2,6(1/2) =0
Unit energy S L gi=1 G(fY+G(f+1/2) =
Even shift orthogonality | 3/ qigi-2x = 0 (k #0) | G(f) +G(f +1/2) =
Cross Even shift orthog. ZIL;OI Ghiso =0 (k€Z) | G(f) +H(f) =2

From a filter bank perspective, the QMF pair can be used to produce a DWT of
sequence {X,} with dyadic (power of two) length. The DWT filter bank algorithm

is illustrated below for decomposition level J = 2.
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DWT Tree out to level j = 2.

Each node in the DWT tree is identified by an index pair (j,n) which denote the
decomposition level and local node index, respectively. The algorithm begins by
defining Woo = {X;}. Woy is filtered with the G and H QMF pair and the result
decimated by 2 (represented by the | 2 sign in the above diagram). The first level
high pass-decimation operation is expressed in the time domain by

L-1
Wi = Z hiXot+1-1 mod N (3.9)

=0

while the low pass-decimation operation is given by

L-1
Wioe = Z GiXot41-1 mod N (3.10)

=0
fort =0,...,N — 1 where Wj,, is the t** element of node Wj,. The algorithm is

then repeated on the low pass node W g to produce W and Wy, 1, and so on.
Since the G and H filters are approximate low pass and high pass filters, the
spectrum of the original sequence X(f) is essentially divided into normalized fre-

quency ranges [0,1/4) and [1/4,1/2), respectively. in the first decomposition level.
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The low pass output is then critically decimated in time to spread the spectrum
out to twice its current range, and a second run through the QMF filter pair yields
two nodes Wy and Wa; associated with normalized frequency ranges [0,1/8) and

[1/8,1/4), respectively.

Once decomposed, the original signal can be synthesized by performing another
series of filter bank operations. For J = 2, synthesis involves manipulation of the
coeflicients found in nodes Wag, Wy 1, and W) ;. If all the nodes are used, the original
signal can be recovered exactly (disregarding round off error and limitations on the
implementing hardware/software). If, however, a single node W, is used and the
rest ignored (zeroed out) in the synthesis algorithm, the result is an approximation
of {X.} called a detail signal denoted as D;,. The set of all detail signals forms an
additive decomposition known as a multiresolution analysis (MRA) of {X,}. The
synthesis algorithm and the development of the MRA using the DWT is described

in detail in Appendix A.

3.1.2 The MODWT

Let &y = hi/V2 and G, = gi/V2forl=0,...,L~1. The maximum overlap discrete

wavelet transform for a level J = 2 decomposition goes as



76

where

T 7
I/Vl,l,l - h'l-xt—l mod N
Wioe = E 1 Xt~ mod N
Wz,l,: = E hl"VLo.t-t mod N

I’/V"Z.O.L = _al I/V] O~ mod N (311)

fort =0,...,N — 1. Notice the similarity between Eq. 3.9-3.10 and Eq. 3.11. The
MODWT and DWT are in fact related by

Wing = 2°W;poiqen fort=0,... ,N—1. (3.12)

The MODWT differs in that there is no decimation operation after circular con-

volution with the MODWT filters. The filters g; and Ry are still QMFs, but the

orthonormality of the transform matrix is lost since 21[;0 h? # 1 and the orthog-

onality condition is lost because not all of the dot products between distinct rows
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equal zero. Consider, for example, the transform matrix for node Wl‘o using the

MODWT Haar wavelet filter on a N = 4 point sequence {X;} = {Xo, X, X2, X3}:

Wioo 1/2 0 0 -1/2| | Xo
Wioa | [-1/2 172 0 0 X,
Wieel | 0 —1/2 172 0 | |x,
Wno,a | 0 0 -1/2 1/2 | X

The sum of the squares of each column or row is £1/4 (eliminating the possibility of

an orthonormal transform) and the transform matrix is by inspection nonorthogonal.

There are however many benefits in using the MODWT over the DWT. A com-

parison is made in the following chart.

MODWT/DWT Comparison
Property MODWT | DWT

<

Shift Invariant Transform

Usable for MRA

Shift Invariant MRA

Details are Zero Phase

DY ANAENAN

Transform Coeff. Usable for Variance Analysis

Details Usable for Variance Analysis 4
Operable on Arbitrary Length Sequences v
Number of Muitiplication Operations O(Nlog, N) | O(N)

Note that, although the number of multiplication operations in the MODWT is
much greater than that of the DWT, it is still on the order of that needed for the

FFT and is suitably fast for most applications.
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3.1.8 DWPT and MODWPT

As in the Short-Time Fourier Transform (STFT). the DWT and MODWT offer only
one frequency grid pattern in which to view the data. For the STFT, windows of
uniform size are used to break down a sequence which also limits its frequency content,
to be distributed over a uniform grid. The DWT and MODWT use varying window
sizes of dyadic length and decompose a signal over a logarithmic frequency grid.
Qualitatively, the DWT and MODWT offer a coarse to fine strategy in decomposing
a signal where small scale filters are used to localize content in time while large
scale filters are used to localize frequency content and examine slower trends of a
signal. Still, the MODWT and DWT are inflexible to decomposing a sequence onto
arbitrary frequency grids. For compression and detection of signal characteristics,
decomposition onto an arbitrary frequency grid is of value if the frequency grid

combinations can somehow be optimized in an efficient manner.

The discrete wavelet packet transform (DWPT) and the maximum overlap dis-
crete wavelet packet transform (MODWPT) are examples of transforms which de-
compose a sequence using a large number of bases which can then be optimized to
find an optimal distribution in the time-frequency or time-scale plane. The algo-
rithm for the MODWPT and DWPT is exactly the same as it counterparts except
that each and every parent node in a given decomposition level is broken down into
two children nodes. The algorithm tree for the DWPT and MODWPT is shown in

the following diagram for a level .J = 2 decomposition.
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Notice the additional splitting of node (1,1) in comparison to the regular DWT or
MODWT. This essentially divides the normalized frequency range [1/4,1/2) into
[1/4,3/8) and [3/8,1/2) which are associated with nodes (2,2) and (2,3), respec-
tively. However, the roles of the low pass G(-) and high pass H () filters are reversed
in this operation! The reason for this is that the frequencies components in the range
[1/4,1/2) (associated with node (1,1)) are reversed due to the downsampling oper-
ation. In general, a sequence Y; = (| 2).X; has a corresponding frequency response
Y(f) = 1/2[X(f/2) + X(f/2 + 1/2)]. The X(f/2 + 1/2) term is due entirely to
aliasing and its effects are shown diagrammatically in Fig. 3.3. Since the frequencies
are reversed at node (1,1) so must be the order of filters used to split them. This
reversal reverses again on the next iteration of the algorithm as does the filtering
order. Thus, for every other iteration the filter order must be reversed to obtain the
proper division in frequency content.

An example of a MODWPT is shown in Fig. 3.4 where three sine waves of
various frequencies were summed to form the original sequence. The decomposition
level is printed to the left of each row in the plot and the wavelet packet nodes

appear from left to right at each level starting with index zero. The topmost node
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Figure 3.3: The effect of downsampling a sequence in time with a band limited spectrum. The
values X(f) for f € [1/4, 1/2] are attenuated in amplitude, reversed in frequency, and expanded to
fill f € [0,1/2] after decimation by two.

LT"Q‘O is the original signal. Each node contains N coefficients for {X;} an N point
sequence. The width of each block is commensurate with its frequency span with
the frequency range of the abscissa being f = (0,1/2). Notice how the contributing
frequencies of the waveform are localized as the decomposition level increases. This
is expected as the filter bandwidth diminishes with an increase in j. There is some
leakage amongst the nodes because the MODWPT filters are not perfect band pass
filters, i.e. there is some overlap in the filters’ squared gain functions with regard to
nonzero frequency response.

Notice that the energy of the sine wave at f = 1/4 is shared between nodes W'I,O
and Wu- Node Wl.o also contains the energy of the f = 1/64 wave while Y/NVlyl also
contains the energy of the f = 3/8 wave. At node 14\'12‘0 and I/Tg ; the f=1/64 and
f = 3/8 waves are distinctly separated. It is not until level j = 4 that we see a

clear division of the fy/2 Hz and 3/4fy Hz waves. We see by this example that the
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Figure 3.4: MODWPT of a sequence X, = Z?=1sin (27 f;t) where fi = 1/64,fs = 1/4. and
f3=3/8
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MODWPT is a flexible and powerful means of isolating time-frequency or time-scale
content.

Neglected thus far is the fact that the all wavelet transforms are capable of
decomposing nonstationary data. As an example, a spike of magnitude A = 5.0 Gy,
where Gy is the sample standard deviation of {X,}, was added to the multifrequency
sine wave sequence (Fig. 3.5). Because a spike is mathematically represented as a
discrete Dirac delta function 8(t —tp), its spectrum contains nonzero components at
all frequencies and thus its influence should be seen in all frequency bands. This is
seen to be the case as the spike appears in each node (Fig. 3.5). It is highly localized
in time at small scales, and less so as the scale increase. This is due to the fact that

the singularity is averaged or smeared out as the effective window size increases with

scale.

MODWPT

Figure 3.5: MODWPT of a sequence { X} = sin (2t)-+sin (7 fxt)-Fsin (3/87 fnt)+5.0 Gx6(t—512)
where [ is the Nyquist frequency, N = 1024, and Gx is the sample standard deviation of {X,}.
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Finally we note some interesting aspects of the DWPT and MODWPT. Because
the DWPT is an orthonormal transform, any disjoint dyadic decomposition in the
DWPT is also orthonormal. For a level j = 2 decomposition there are four possible

dyadic decompositions
o () =W gand Wy,
o Cop = Wi, Way, and Wa3
o C3 = Wy, Wy, and Wy,
o Cy= Wo, Wa,, Was, and Wos.

The total energy of any disjoint dyadic MODWPT or DWPT decomposition is
equal to the energy of the original sequence, ie. [|Ci||* = ||X]]* for i = 1,..., P
where C; is one possible disjoint DWPT decomposition and P; is the total number
of disjoint dyadic decompositions for a level j decomposition. For instance. in the
example above, the third set’s energy relation to the original sequence is ||C;|* =
[[Waol]® + |[Waull? + [[Wia|[* = || X]|]?. For energy conservation to hold. it must
mean that the sum of children’s energy be equal to that of their parent’s for each
and very node in the decomposition.

Relevance: The MODWPT is used to decompose a sequence into its fundamen-

tal time-frequency components.

3.2 Shannon Entropy as a Best Basis Functional (Stage II)

The purpose of this section is to introduce the DWPT best basis technique and to
develop an appropriate extension to the technique for use with the MODWPT.
For a j** level DWPT decomposition, there exists more than 2271 possible or-

thonormal bases for j > 1 [84]. Coifman and Wickerhauser [16] were of the first to
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pursue a best basis which is in some sense optimal for a given time series by forming
an additive cost functional I'(:) to be applied to each node Wj,. It is necessary that
I'(-) be additive so that the sum of the children’s costs can be legitimately compared
to that of the parent. A minimization of the nodal costs C;, over a set of disjoint
nodes spanning the normalized frequency range f € [0,1/2] is seen to produce an
“optimal” basis. This can be expressed in a mathematical formulation as
mc“‘ 3 Cin (3.13)
(jm)ec
where C is the space spanned by all disjoint dyadic decompositions corresponding
to orthonormal DWPTs of some time series {X,} for t = 0,... . N =1 (N =27 for
jEN).
There are many cost functionals that have been proposed but the Shannon en-

tropy is arguably the most widely used and is defined as
Sp) == Ipilog Ipi (3.14)

where |p;|log |pi| = 0 for pi = 0 [16. 77]. The Shannon entropy has been qualitatively
associated with the amount of uncertainty in the data or as a means of measuring the
flatness of the distribution. These qualities can be seen in a statistical sense through
a gambling analogy. Imagine. for example. a roulette wheel with ten spokes. each of
which is assigned an arbitrary probability p; such that S pi=10fori=1.....10.
The most certain case is one where one spoke is assigned a probability p; = 1.0 while
the rest are assigned probability p; = 0.0 for j # i (see left column of Fig. 3.6).
The entropy for this case is § = 0. meaning that the outcome of each and every spin
of the wheel is completely predictable. The corresponding distribution is compact
with its support spanning only a single spoke. Conversely. the most uncertain case
is one in which each spoke is assigned an equal probability p; = 1 Jr for v = 10. ie.

a uniform probability distribution over the spokes. The entropy in this case is at



its maximum value, namely S = In{r). Thus, entropy can be used as a means of
characterizing the uncertainty in data, spanning the range of S = 0 (most certain)
to S = In(r) (least certain). With regard to compactness of the distribution. S =0
implies a very compact support while S = In(r) (or large values of S) implies a less

compact or “flat” distribution.

Most Certain: S=0 Least Certain: S=In(r)

25
)%

Distribution Distribution
1 - 1
0.8 - 0.8
~06 K 0.6
=X ; £
0.4 ©0.4
0.2 0.2
o Nl
12345678¢10 12345678910
Spoke, n Spoke, n

Figure 3.6: A rtoulette wheel to which is assigned probabilities to each spoke and its associated
distribution function.

While probability is an appropriate measure for investigating the entropy of a
roulette wheel trial, any relevant additive measure of the data is acceptable for
discrete sequences in general. Our goal is to find the most compact means of char-
acterizing a discrete sequence in terms of its time and frequency content. Since
the DWPT coefficients are localized in frequency and in time, they are suitable
measures for entropy minimization. We will in fact use the energy of the wavelet
pa(;ket coefficients as our measure such that p; = W? where i is the global node

index representing the it* wavelet packet node. The most compact time-frequency
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representation is found by Eq. 3.13 where
N;j-1
ij'" == Z sz,n,t log [/V]?n,t (315)
t=0

is the set of entropies assigned to each node in the decomposition. As an example,
the X state of the Lorenz system in the chaotic parameter regime is decomposed
via a level J = 4 DWPT using Daubechies’ LA8 filter set (Fig. 3.7). It can be
seen that the lower frequencies tend to dominate the Lorenz response in this case,
and thus its energy lies mainly on the left side of the transform plot. One would
expect then that an optimal description would involve nodes more closely associated
with a standard DWT which is highlighted by the thick boxes in Fig. 3.7. The
corresponding best basis was calculated using a Shannon energy functional. The
sample mean was subtracted from the original sequence {X,} and was normalized
| X

the basis of energy decomposition between arbitrary signals. In Fig. 3.8, a graphical

such that |2 = 1.0. An L? normalization establishes a means of comparison on

tree is shown illustrating the best basis decomposition. Each node is labeled with
its corresponding nodal position in (j,n) coordinates where 7 is the decomposition
level and 7 is the local node index. At the top of the tree (location (0,0)) sits the
original signal with its corresponding entropy shown just below the coordinate label.
Below the top node are the descendant nodes and their corresponding entropies. By
virtue of the optimization process, no parent can have an entropy larger than the
sum of its children’s entropies. The nodes comprising the best basis lie onn the lower
perimeter of the tree. In this case, the best basis for the Lorenz X state is the
DWT, just as surmised. If, however, the DWPT was carried out to greater scales.
it is not so clear that the DWT would emerge as the transform of choice. As a
second example, the DWPT decomposition of a blue noise realization generated by
the Gaussian Spectral Synthesis Method (GSSM) [71] is shown in Fig. 3.9 and its
corresponding best basis in Fig 3.10. Blue noise is an example of a 1/ f* process, i.e.

a stochastic process whose power spectral density goes as Sy ~ f~. For blue noise,
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Figure 3.7: A level J = 4 partial DWPT decomposition of the X state of the Lorenz system in a
chaotic regime using Daubechies’ LAS8 filters. The lower frequency content of the data dominates.

Best DWPT Tree: LA8, Shannon minimization
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Figure 3.8: The best basis DWPT tree for the Lorenz X state with no noise.
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we have o < 0.0, yielding dominant high frequency components as can be seen in
its DWPT decomposition and best basis tree which branches more to the right and

away from the DWT branching.

GSSM Realization: o = -4

|

2 AR A
3 o Mactoirepdd
4 My

Figure 3.9: DWPT decomposition for a 1/f ~1 (blue noise) GSSM realization.

3.9.1 Shannon’s Entropy and the MODWPT

The MODWPT is a highly redundant nonorthogonal decomposition and cannot be
used without modification to calculate a best basis via a Shannon entropy functional.
The redundant use of the elements of X in the decomposition increases the overall

entropy relative to that computed by the DWPT as can be seen in Fig. 3.11.

Using the fact that the MODWPT coeflicients are related to those of the DWPT
by Eq. 3.12, the MODWPT coefficients can be used to calculate an equivalent



Best DWPT Tree: LA8, Shannon minimization

GSSM Reslization: o = -4
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Figure 3.10: The best basis DWPT tree for a 1/f~* (blue noise) GSSM realization using a Shannon

entropy functional.
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Figure 3.11: Comparison of the Shannon entropy for each node in a level J = 6 MODWPT and
DWPT decomposition using Daubechies’ LAS filters.
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DWPT Shannon entropy functional

Nj-1
Cjin = — ZQJWJ?n,zi(tH)-l1°g2JWJ‘2,n,?)(z+1)—1 (3.16)
t=0

Nj-1
2 S W2, ey (31082 + 2108 Wi )

t=0

il

where Nj = | N/23]. If N is a power of 2, we obtain exactly the DWPT Shannon
entropy. For arbitrary length sequences, however, this restriction may be released
with the understanding that the resulting entropy will be greater than or equal to
that computed via the DWPT coefficients simply because we are including more
energy from the original sequence in the entropy calculation. The limitation on N
in the DWPT is mainly due to the fact that at every decomposition level a critical
decimation (downsampling by 2) is performed. Since there is no such restriction
placed on the MODWPT sequence lengths, an “extended” entropy estimation can
be carried out using the remaining coefficients beyond the dyadic length. However,
there will (most likely) be a difference in the best DWPT and MODWPT bases in
situations where N — 2U°82¥] is large. We can quantify this difference by a dyadic
divergence coefficient 6p(N) = 2(N — 2U°82V}) /N where 6p is confined to the range
0 < 6p < 1. If N is dyadic, 6p = 0 while for N far from Qlega Ni 5. — 1.0,
Figure 3.12 shows the difference between best trees for 6p = 0.0,0.25,0.50,0.99
using a random walk sequence. The plot in the upper left corner of the figure is the
same tree obtained using the DWPT while the remaining plots incorporate points
neglected by the DWPT in calculating entropy values.

The best MODWPT tree can vary as a function of signal length depending upon
the stationarity of {X;} and whether or not we are using a large enough sample size
to adequately characterize its statistics. A random walk was specifically selected
as a test sequence because it comes from a 1/f% process (o« = 2.0) which is a

nonstationary process. Blue noise, however, is a stationary 1/f® process and its
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corresponding best tree should not (on average) be as sensitive to sequence length
as are random walks. Figure 3.13 demonstrates the dependence of the MODWPT
best basis on sequence length for a blue noise realization generated by the GSSM
for « = —4. By inspection, the degree of tree variability is less for the blue noise
than that it is for the red noise and may be a reflection of the stationarity of the

overning processes.
(=]

A more stringent mathematical argument can be made regarding the best tree
variability in nonstationary colored noise realizations. It is shown in Sec. 4.5 that
the variance of a random walk process {X,} is a function of time and therefore is by

definition a nonstationary process. The entropy for {X,} is defined as

S=-Y XZlogX} (3.17)
t
and therefore
E{S}=-)Y E{XZlogX7}. (3.18)
¢

Since E{S} is a function of the variance, and since the variance is a function of time,

the best basis must also fluctuate as a function of time.

Relevance: A best basis will be selected by optimizing a MODWPT Shannon
entropy functional. The nodes corresponding to the best basis form an optimal

disjoint coverage of the normalized frequency range 10,1/2).
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Figure 3.13: Best MODWPT trees for a blue noise GSSM realization (@ = —4.0) with (a) fp =
0.0.N =512 (b) 6p = 0.25, N = 585 (c) 6p = 0.50, N = 683 and (d) 6p = 0.99, N = 1014.
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3.3 Obtaining an Optimized Node Set through Nodal Energy Thresh-
olding (Stage III)

The purpose of this section is to introduce a technique which reduces the set of
nodes corresponding to the bess MODWPT basis. A reduction in nodes lessens
the computational burden of the KDM described in Sec. 3.4. The optimization is
achieved by imposing an admissible energy threshold 6z on the nodes corresponding
to the MODWPT best basis. Any node that does not exceed ég is ignored and.
unless specified otherwise, a minimum of 3 nodes are selected for each basis creating
an optimally reduced nodal set. As an example, Fig. 3.14 shows the nodal energies
of the best basis nodes for a chaotic response from the Lorenz system contaminated
with Gaussian uniform noise. The nodal energies are normalized and sorted from
strongest to weakest. A threshold of 0.2 is applied and the nodes that exceed the
threshold are listed in the upper right hand corner of the figure. Out of the 32
nodes which comprise the best basis, only 4 are selected for further investigation.
The threshold value is somewhat arbitrary as the nodal energy depends entirely on
the energy distribution of the original sequence. Allowing weaker nodes into the
optimized set by lowering the energy threshold results in a heavy computational
burden in the KDM (Stage IV of the MODRA) while contributing very little to the
overall energy of the original signal. Conversely, setting the energy threshold at too
high a level will result in an overreduction of signal energy, destroying the dynamics
of the original signal and possibly invoking spurious D results. Numerical tests

indicate that a threshold of 0.2 is appropriate for the sequences examined herein.

Relevance: Admissible energy thresholding produces an optimal set of nodes

characterizing the MODWPT best basis and reduces the mimber of relevant coordi-

nates.
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Figure 3.14: Normalized and ranked nodal energies corresponding to the MODWPT best basis for
a noisy chaotic sequence. A thresholding of 0.2 eliminates all but 4 strong nodes which are listed
in the upper right corner of the plot. The nodes for the best basis are listed on the abscissa in

(j.n) form.
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3.4 Kaplan’s Determinism Test (Stage IV)

The purpose of this section is to introduce Kaplan's Determinism algorithm (KDM);
a technique used to infer determinism (37, 36].

Separating deterministic dynamics from stochastic noise is an arduous task. This
is especially true of chaotic sequences as it is often difficult to distinguish any sense
of order or fixed pattern in chaotic time histories. As a result, chaos can be miscon-
strued as stochastic noise. Fig. 2.2 shows an example of four time histories, three
of which are deterministic chaotic and one of which is pseudo-random Gaussian
noise. When embedded in the phase space, however, the deterministic sequences
are easily differentiated from random sequences as distinct patterns emerge that
are not present in the embeddings of the random data (Fig. 2.1). Kaplan devel-
oped a method which exploits the phase space continuity of deterministic sequence
embeddings and is referred to as Kaplan's Determinism Method (KDM) hereafter.

The basis of KDM works by checking whether or not the images of unique neigh-
bors remain close on average across the attractor!. Kaplan poses the question, “If
two points z; and 2 are very close to one another, are their images z;4) and zp4;
also close together?” By assuming a continuity in the flow created by a deterministic
system, it is logical to assume that the average Euclidean distance between images
will differ from that created by surrogate data [96]; that is, data that has been
randomized in such a way as to provide a basis of comparison for a discriminating
statistic or method (see Sec. 3.4.1 for a detailed description of Theiler’s surrogate
data algorithms). The difference between surrogate and raw data is more easily
distinguished with neighbors that are initially “close” to one another. The neigh-
bors considered should not include points from the same trajectory as they may be

highly correlated, thereby violating a coordinate independence rule implicit in the

1An image of a reference point in space is a point located in the future along the same orbit.
While images are assumed to be located closely in time to the reference point they are not
necessarily close in space as fast flow can separate them significantly.
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definition of D,. Kaplan defines a Euclidean distance image test by averaging over

the whole of the data embedded in space:

ik = lzj — 2zl (3.19)
€k = |Zjen = 2kl (3.20)
e(rY=gx  forjkst. r < <r+Ar (3.21)

where Ar is the Euclidean bin size. A cumulative average of e(r) is formed by
E@)=Y_e0). (3.22)

If there exists a distinct separation of E(r) from surrogate data, it implies that the
signal is deterministic. Figure 3.15 shows a graphical representation of KDM.

An example of KDM is shown in Fig. 3.16. Each subplot displays the results
for different embedding dimensions. starting from D, = 1,...,7. The filled circles
represent the average cumulative image distance E(r) as a function of scale while
the boxes represent the range of E for 50 surrogate sets using Theiler’s amplitude
adjusted Fourier technique (AAFT). The centerline of each box represents the mean.
while the half box height is one sample standard deviation from the mean. The
outliers denote the extremities of E for the surrogate data. If a box appears as a line
it means that no images were found to be within a distance of r from its preimage.
These blank areas tend to occur more and more with an increase in embedding
dimension for random data since random embeddings tend to fill the space allotted.
A coverage or overlapping of the dots with the boxes suggests that the original
data cannot be differentiated from the surrogate data, and implies that the original
data must be stochastic in origin. A separation implies that the original signal is
deterministic. The upper right plot of Figure 3.17 summarizes the results of Fig.
3.16 through a violation measure. A violation Vp, is the fraction of dots occluded

by the surrogate boxes over the span of the dots for embedding dimension D.. A



98

0

Figure 3.15: A graphical illustration of Kaplan's determinism algorithm. The distance between
neighbors §; ; decides which bin should be used for recording the Euclidean distance €; ; between
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their corresponding images found & points later in time along respective trajectories.
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Figure 3.16: The results of KDM on blue noise generated by the Gaussian Spectral Synthesis
Method for a = —0.5 with length N = 213, time lag 7 = 1, trajectory lead v = 0, image lead & = 2,
Euclidean bin size of Ar = 0.0, and embedding dimensions D = 1,...,7. See text for details.
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violation is measured with regard to the outliers V3* or one standard deviation
from the mean (half height of each box) Vj§ . According to Kaplan. any violation
in the lower dimensions is evidence to conclude randomness in the original data
[39]. However, tests conducted for this research show that KDM does not work for
red noise realizations, i.e. for 1/f® realizations for @ > 1.0 (see Fig. 3.17). By
definition, red noise has powerful low frequency components which tend to smooth
out red noise trajectories in the phase space. Kaplan's test fails because on average
red noise images do tend to stay close to their preimages in the phase space, tricking
the technique into categorizing red noise as deterministic. The effects of colored

noise on measures involving the phase space is thoroughly examined in Chapter 4.

3.4.1 Theiler's Surrogate Data Algorithms

The erratic fluctuations observed in experimental time series stem from a mix of dy-
namic influences: chaos, nonchaotic but still nonlinear determinism, and noise[96].
To determine the underlying dynamic process of a time series, surrogate data is used
in an attempt to isolate one of these influences. Surrogate data is produced by gener-
ating a time series which is consistent with a null hypothesis or potential explanation
we seek to show is inadequate in characterizing the data. A discriminating statistic
is then used to quantify some aspect of the data. The null hypothesis is rejected if
the discriminating statistic for the observed data sufficiently differs from that of an
ensemble of surrogates.

Theiler has developed two main algorithms for producing surrogate data: the
Fourier Transform (FT), and the Amplitude Adjusted Fourier Transform (AAFT)
which are summarized below [96].

Method of Fourier Transform (FT)
The null hypothesis is that the data stems from a linear Gaussian process. This

method preserves the spectrum of the observed sequence. This is accomplished by
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multiplying the DFT coefficients of the observed data by e'®, where ¢ is indepen-
dently chosen for each frequency on the interval [0,27] as a uniformly distributed
deviate. In other words, the phase of the observed data is randomized to form
the surrogate data. Typically, a window is applied to the data prior to the DFT

operation to attenuate spectral leakage.

Amplitude Adjusted Fourier Transform (AAFT)

The null hypothesis is the same for that of the FT method. The AAFT preserves
the probability distribution of the observed time series. The algorithm begins by
sorting a Gaussian random sequence such that the order of the deviates (ranked by
amplitude) is commensurate with that of the original sequence. The phases are then
randomized via the FT method and the resulting sequence is rescaled to return the

distribution of the original time series.

An example of the Theiler’s surrogate methods is shown in Fig. 3.18 for a
chaotic Lorenz sequence. The values to the right of the plots are the cross-correlation
coefficients which quantify the statistical similarity of the surrogate data with the
original time series. A correlation value of 1.0 means that the surrogate data is
equivalent to the original in regard to the corresponding measure. The discrete
wavelet transform shuffle (DWTS) was developed for this dissertation and is used
strictly as a means of comparison to Theiler’s techniques. The DWTS works by

randomly shuffling the order of wavelet coefficients followed by and inverse DWT

operation.

Relevance: Theiler's AAFT algorithm is used to differentiate deterministic re-

sponse from stochastic noise in both the Kaplan’s determinism algorithm and the

correlation dimension.
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Figure 3.18: An example of Theiler's F'T and AAFT surrogate data methods. Shown clockwise
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original and surrogate data. See text for details.
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3.4.2 KDM on MODWPT Nodes

The MODWPT nodes have two special properties which can be exploited for use
with the KDM: (1) For an N point input sequence {X,}, each node is also an N
point sequence and (2) Daubechies least asymmetric wavelet and scaling filters have
approximately linear phase. The approximate linear phase property means that
the wavelet packet coeflicients at any node Wj,n can be advanced to achieve an
approximate zero phase filtering operation. This is important in that wavelet packet
nodal events in time can be meaningfully lined up with those in the original signal.
Furthermore, it is imperative that these phase relations remain in tact if there is to be
a meaningful analysis made in the phase space (as with the KDM), i.e. if the phases
were scrambled it would destroy the continuity of the phase space embedding and
any further attempt at detecting determinism would be lost. Phase randomization
is in fact one of the most popular methods by which surrogate data is developed.
Secondly, for measures such as KDM or Ds, it is important that there be a large
number of orbits in the phase space to ensure good statistics on the measure. The
number of orbits we can obtain with any given wavelet packet node is maximized
if no points are lost in the transformation. This is not the case, for example. with
the DWT or DWPT which loses half its length at every decomposition level. The
combination of obtaining an approximate zero phase transformation without losing
any sequence length allows us to use the KDM on each node of the optimal node set
to classify its dynamics origin. If node Wj‘n is found to be deterministic it is kept;
otherwise it is discarded. To automate the selection process, a rejection tolerance
Skap is established and a weighted averaged violation measure py formed by

oV o
“VZ% for i =1,...,D. (3.23)

where p; is an exponential weighting function

pi =€l fori=1,...,D, (3.24)
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and V; is the mean of the violation indices

= Viout + Via

Vi 3 fori=1,...,D.. (3.25)

The exponential weighting factor p; ensures that more emphasis is placed on vio-
lations in lower dimension where KDM is most sensitive. The definition of 17 is
somewhat arbitrary; here we use the average of the two violation indices. The rejec-

tion criterion is established as

Rejection  py > Okep

Acceptance pv < fpgp.

The Kaplan rejection threshold was determined through computer experiments where
brap = 0.02 was found to be an appropriate selection. For Gaussian random noise a
typical violation measure was muy = 0.75 for higher frequency nodes while it was
substantially lower for lower frequency nodes. The rejection threshold was set just
below the minimum value recorded for pure noise experiments.

Relevance: Kaplan’s determinism algorithm eliminates stochastic nodes in the

optimized node set.

3.5 MODWRPT Synthesis (Stage V)

The final stage of the MODRA is to synthesize the MODWPT nodes which passed
the KDM test. Since the MODWPT is an invertible transform, a node Wj,n can be
synthesized with all other nodes ignored (zeroed) to form an approximation to {X:}
denoted as i)n or detail signal at node (j,n). The collection of detail signals for any
dyadic disjoint decomposition are summable and can be used to reconstruct {X:}.
A useful property of the MODWPT details is that they are ezactly zero phase, i.e.

events in time can be lined up exactly with the original signal and the phase space
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Figure 3.19: Sample MODWPT detail signals and the embedding of the chirp {X,} overlayed by
an embedding of the synthesis sequence {X;} = D40 + D1 + D42

embedding remains in tact. As an example. Fig. 3.19 shows the details Do, Dy1s
and '134,2 for a quadratic chirp sequence as well as an embedding of the chirp (lines)
overlayed with an embedding of the synthesis {i;t} = '54,0 + '154,1 + ’15.4,2 (dots).
The chirp has a quadratic increase in frequency as a function of time so the lower
frequency content appears in detail '54‘0, the midrange frequency content in D,.1.
and the high frequency content in 154,2. The oscillations in the original signal line
up exactly in time with the corresponding data in the details. The embedding plot

shows that the original signal is almost perfectly reconstructed with the synthesis of

the three nodes.

Relevance: The deterministic MODWPT nodes are synthesized to form a de-
noised approximation of the original uncontaminated sequence; thereby completing

the MODRA.



107

3.6 Considerations for Single Variable Embeddings

The MODRA output is considered to be a single variable time series since it rep-
resents only one variable of a dynamic system. Our interest is to use the MODRA
output as a means to estimate the fractal dimension(s) of the original uncontami-
nated sequence. To do so requires the estimation of embedding parameters which
have influence on the fractal measures. In this section, we discuss the subtleties
involved in setting these parameters in the pursuit of robustness and statistical con-
sistency.

There are three main difficulties one encounters in embedding a single variable
time series, namely finding the proper embedding dimension, time lag, and trajectory

lag. Each one can have a significant influence on the correlation dimension results.

8.6.1 Finding the Proper Embedding Dimension

Typically in experimental situations, only a few variables of a dynamic system are
observable and accurately measurable. In the chaotic beam experiment (Sec. 3.8.3).
for example, only the beam tip velocity was observed while the displacement and
acceleration were ignored. The natural question arises. “Can the dynamics of an
original attractor be recreated in the phase space using only a single observed variable
of the system?”

A major difficulty with this notion is that the dimension of the original attrac-
tor, assuming one exists, is almost never known a priori in experimental situations.
One of the more important applications of fractal mathematics is to allow one to
determine the minimum number of first order equations needed to adequately de-
scribe the dynamics found in the original attractor. If a fractal dimension of D is
accurately determined for a given system. then the minimum number of first order
equations P needed to describe that system is the next highest integer relative to D.

Not knowing P. we cannot know how many physical variables {z(t),y(t). z(1),... }
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to measure. Instead, a pseudo-phase space is constructed by using time-delayed
measurements of one physical variable, say x(t) for example. A three dimensional

pseudo-phase space may be obtained using the digitized version of x(t) as
Xp = {x(to + n7),x(to + (n + 1)7), x(lo + (n + 2)7),... } (3.26)

where n is a integer representing a normalized time index, to is a reference time,
and 7 is the time lag. To create a pseudo-phase space from a physical experiment,
a discrete form of an experimental variable z(t) is obtained by uniformly sampling
z(t) to produce z(kT') where T is the sampling period and k is an integer. Then.
uniformly shifted versions of z(kT') are used to create the coordinates in Eq. 3.26.

In reconstructing the attractor using measurements of a single variable, the ques-
tion naturally arises as to what the minimum embedding dimension must be in order
to capture the dynamics of the original attractor. Takens theorem states that if the
original attractor lives in E-space, then in general one must use a pseudo-embedding
space of 2F + 1 or higher [92, 63].

The dimension in which the (lagged) coordinates are viewed is the embedding
dimension, D,. Figure 3.20 demonstrates the embedding of a chaotic sequence in
different dimensions. The appropriate D, is found by determining the minimum
dimension for which a nonlinear measure exhibits convergence. As an example. the
slopes of correlation integrals are used to estimate Dy and the dimension at which
they converge is the appropriate minimum embedding dimension. Unfortunately,
Takens' embedding theorem requires that single variable time series be embedded
in a dimension at least twice that of the original attractor. In many cases. D, is ac-
cordingly large (D, > 5) and dramatically increases the computational onus. There
are other methods which can be used to disclose the proper embedding dimension
for discrete sequences including the method of False Nearest Neighbors [40] and an
embedding method proposed by Maie and Takens [63]. Both of these, however,

suffer from problems similar to using correlation integral convergence. We will use
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Figure 3.20: Lorenz embedding for dimensions (a) one and (b) two. While there is no discernable
structure in the one dimensional embedding, a chaotic attractor is suggested in dimension two.
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the correlation integrals to estimate D, for embedding dimensions D, = 1,... . M
where M > 5 is a suitable choice for the low dimensional chaotic systems used in

this dissertation.

3.6.2 Time Lag

The time lag is used to unfold the dynamics of a system using only one observed
variable. An embedding of the lagged coordinates maintains the structure of the
original attractor if the embedding dimension and time lag are chosen properly. If
the time lag is chosen too small, the coordinates Xy =~ Xp.r = ... & Xeir(p,-1)
causing the attractor to stretch along the diagonal in D,-space and creates a highly
correlated coordinate set. If 7 is chosen too large, the coordinates lose their dynamic
relevance as events in time become nonlocalized. Figure 3.21 demonstrates the effects

of using different time lags to embed the data. The autocorrelation function and the
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Figure 3.21: The embedding of the X state of the Lorenz system for D, = 3 and 7 = 10, 20. 30.
and 40.
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average mutual information are common techniques used identify an appropriate
time lag [1, 2, 24. 88, 94, 19]. Figure 3.23 shows an example of three candidates
for a chaotic sequence using the autocorrelation function method. Unfortunately,
an ideal and efficient algorithm for computing an appropriate time lag has not been
established. Improper lagging can have a significant influence on nonlinear measures.
For example, in Fig. 3.22 the slopes of correlation integrals have a strong dependence
on the time lag. For 7 = 1 the correlation integrals appear to converge, while for

7 = 16 they do not.
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Figure 3.22: The correlation results for a Poincaré section of the embedding of the X state for
the Lorenz system in pseudo-phase space for embedding dimensions D, = 1.2,....5. These plots
demonstrate the effect of sampling period AT and temporal lag 7 on the correlation integrals.
Notice how improper lagging adversely affects the slope of the correlation integrals. The upper left
plot is seen to be correct.

In this dissertation, 7 = 2.5T, where T, is the autocorrelation time or first 1/e
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falloff in the autocorrelation function. This is based on the suggestion of Albano et
al [2] on the basis that this lag produced the most consistent correlation dimension

results (in numerical experiments) and is easy to evaluate.
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Figure 3.23: The autocorrelation function of the .X state of the Lorenz system in a chaotic regime.
Shown are three common time lags used to produce the pseudoembedding of single variable time

series.

3.6.8 Trajectory Lag

When petforming a time series analysis of a dynamic flow in the phase space. it is
important to exclude neighboring points along the same trajectory. The inclusion
of these images can produce a strong correlation amongst neighbors and can result
in spuriously convergent correlation integrals. Visually one can estimate the proper
trajectory lag by examining the pseudo-phase space or by identifying the dominant
frequency in the spectrum of the series. With higher order systems the attractors
can appear “cloudy” in the phase space, making the selection a more difficult pro-

cess. Consequently, the trajectory lags used in this dissertation were chosen on a
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signal-to-signal basis by visually examining the phase space embedding and choosing
appropriately.

Relevance: The proper selection of the embedding dimension, time lag, and
trajectory lag is essential for robust and consistent estimation of the generalized
fractal dimensions. Particular care has been taken to avoid inappropriate selection

of these parameters.

3.7 Singular Value Decomposition

The purpose of this section is to discuss the relevance and benefits of using singular
value decomposition in embedding techniques.

It is well known that any MxN matrix X for M > N can be expressed as

X =UzvT (3.27)

where VT is the transpose of V. The right hand side of Eq. 3.27 is referred to as
the singular value decomposition of the matrix X [2]. X is an MxN diagonal matrix

1=1,..., M
Zi,j = 5i,jai for L 1, ! d

j=1,...,N’ (3.28)

The elements o; of ¥ are known as the singular values of X. U is an MxM or-

thonormal matrix,

i=1,..., M

1 (3.29)

(—QT—Q)i,j =6;; for

The columns of U are called the left singular vectors of X. V is an NxN orthonormal

matrix,

i=1,...,N

PR (3.30)

(XT—Y)i,j = (ﬂT)i,j =6;; for

whose columns are called the right singular vectors of X. The number of nonzero

diagonal elements of ¥ is equivalent to the rank of X, hereby denoted as 7.
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A graphical interpretation of singular value decomposition is shown in Fig. 3.24
where a unit circle S is mapped by a matrix X: S — X8S. Any real matrix X maps

a unit sphere into a hypersphere of dimension  [97]. The lengths of the semimajor

Singular Value Transformation

-1k

L 2 L s . A
-2 -1 0 1 2 3 4

Figure 3.24: Transformation of the unit circle S by the map 8 — XS. The result is an ellipse
whose semimajor and semiminor axes are defined by the singular values and left singular vectors

of X.

and minor axes are o, and oy, respectively. The axes directions are given by the

columns of U with the first column corresponding to ¢; and so forth.

A singular value decomposition is useful in the embedding process for two reasons:
(1) it produces an independent coordinate set which spans the embedding space and
(2) it can be used to reject low level noise contamination and reduce the necessary

embedding dimension [2]. Let X be a trajectory matrix whose columns are the
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embedding coordinates,

_ 1 |& .
zc__m . (3.31)
&

where é; = (X, Xparr- ooy Xpwr(p,—p)) for k = 1,... M, 7 the time lag, and D,
the embedding dimension. The columns of V. form an orthonormal basis of the map
X — X' = XV where X' is seen as a rotation of X [2]. The transformation XV

diagonalizes the covariance matrix p
Hij = I/MZ&,kfj,k = (XTX);, (3.32)
k

under the assumption that each column in X sums to zero [2]. To see that XV

diagonalizes the covariance matrix, note that

XTX = vyTuTugv® (3.33)
= VETI, oVt (3.34)
= VEIVT (3.35)
SO
VIXTX)V = &2 (3.36)

where T2 is a diagonal matrix whose diagonal elements o? are the eigenvalues of
XTX while the columns of V" are its eigenvectors.

By diagonalizing the covariance matrix, the off-diagonal elements of y are set to
zero and decorrelates the columns of the trajectory matrix, i.e. the columns of X' are
statistically independent [2]. Implicit in the definition of the correlation dimension
(Eq. 2.30) is that the coordinates be statistically independent and thus the map

X — X' = XV is beneficial for use with correlation dimension estimates.
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Assuming X is produced by a mix of deterministic dynamics and stochastic
noise, singular value decomposition can be helpful in noise reduction and minimizing
the number of coordinates needed to obtain convergent D, estimates. Because X'
contains a set of orthogonal coordinates, the map XV rotates the data in the phase
space onto its principal aves. The eigenvalue o? is the variance of the i*" principal
coordinate. An eigenvalue o2 = 0 signifies that the i*" principal axis is not visited
by the rotated trajectory. In the presence of noise, the eigenvalues do not vanish.
However, if the variance of the noise is sufficiently small, some eigenvalues will also
be small and the corresponding eigenvectors can be ignored in the transformation.
The elements along the diagonal of the eigenvalue matrix 52 are ranked such that
o2>0>...> ofc g > 02 where 7.5 and r are the effective and true rank,
respectively. Ignoring unenergetic eigenvalues is tantamount to using only the first
resf columns of X' for the embedding. A similar reduction can be made for all
weak coordinates in the transformation, thereby reducing the number of coordinates
necessary to span the embedding space.

In this dissertation, an eigenvalue rejection tolerance was established (based on
recommendations found in [2]) and any normalized eigenvalue

0.2

0 = et (3.37)
i D. - .
22105

that did not exceed this threshold was ignored in the embedding. The reduced coor-
dinate set was then analyzed by the correlation dimension to quantily any existing

fractal structure.

3.8 Results

The results for the MODRA are presented in this section including a comparison to
an existing wavelet denoising technique (waveshrink). examples of denoised chaotic

sequences and their corresponding correlation dimension estimates, and application
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to a physical experiment design to provoke a chaotic response. Waveshrink was
chosen because of its popularity and effectiveness as a denoising algorithm. All the
results in this section are carried out using the following parameters unless specified

otherwise:

» MODRA and Do Defaults

Sequence length N = 2048
MODWPT decomposition level J=6
Daubechies’ Filter Set Least Asymmetric 8 Tap (LAS)

Nodal energy admissibility threshold 4g = 0.2
Kaplan violation threshold Okap = 0.02

Singular value decomposition rotation On

Time lag T=25T,
Trajectory lag v = [ N/200]
Embedding dimension D,=1,...,7

where T, is the autocorrelation time.

3.8.1 MODRA versus Wavelet Shrinkage

A popular wavelet based denoising technique is the wavelet shrinkage or waveshrink
(WS) method invented by Donoho and Johnstone [18). The algorithm starts with
a partial or full DWT decomposition. Next, a threshold ép, is assigned and all
wavelet coefficients whose absolute value does not exceed this threshold are zeroed.
The remaining wavelet coeficients are used to synthesize the original signal. The
synthesis is “denoised” by eliminating nonenergetic time-scale content. The WS

method has been shown to work very well for a variety of different sequences (see

(18, 73] for example).
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Considering the popularity and effectiveness of the WS technique, it is of interest
to compare the denoising capability of MODRA. Shown in Fig. 3.25 is a comparison
of the denoising techniques for a chaotic Lorenz sequence contaminated with Gaus-
sian pseudo-random noise such that the signal-to-noise ratio is SNR = 0% /52 = 1.0
where 6% and 37 are the sample variance of the chaotic sequence and noise, respec-

tively. In this test case, it is visually apparent that MODRA does a better job in

Lorenz X + Gaussian Noi

se, SNR =1.0

: s s X 2 L
o 200 400 600 800 1000 1200 1400 1800 1800 2000

Figure 3.25: Comparison of MODRA to WS. The subplots are (a) a chaotic Lorenz sequence
contaminated with Gaussian pseudorandom noise such that the SNR = 1.0 (b) the wavelet shrinkage
using only the top 20% of the DWT coefficients for synthesis (thin line) overlayed with the original
uncontaminated sequence (thick line), and (c) MODRA synthesis (thin line) overlayed with the
original uncontaminated sequence (thick line).

recovering the original sequence as the denoised sequence more closely conforms to
the pattern of the original uncontaminated sequence (Fig. 3.25¢c). To better quantify
the comparison, a series of tests were performed on the same chaotic sequence using

a wide variety of signal-to-noise (SNR) and 6p, combinations. The quality of the
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synthesis was quantified with a sample mean squared error (MSE) value defined as

N— —~
(X, — X,)? (3.38)
0

—

1
N

=

MSE =

where {X,} is the synthesized or denoised sequence and {X:} is the original uncon-
taminated chaotic sequence. {X,} was preconditioned to have zero mean and unit

energy. In almost all cases, the results were favorable for MODRA (Fig. 3.26). The

Lorenz: MODRA vs Waveshrink
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Figure 3.26: A comparison of MODRA to WS for contaminated chaotic Lorenz sequences for

bkap = 0.2, N = 2P = 1024, J = 6, using Daubechies’ LAS filters. See text for details.

horizontal bars in Fig. 3.26 represent the MSE results for the wavelet shrinkage
technique. The values in the legend represent the percentage of wavelet coeflicients
that were rejected (zeroed) in the synthesis process. There are 10 rejection percent-
ages used per every SNR value ranging from SNR = 0.5 (very noisy) to SNR = 16
(very clean). The diamonds represent the MSE for MODRA. In almost every case,

MODRA maintained a smaller MSE than the wavelet shrinkage algorithm. However,
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the higher quality noise rejection comes at a computational cost mainly attributed
to using KDM on every node in the best basis.

A similar test was performed on a chaotic response from the Réssler system (Fig.
3.27). Again MODRA outperformed the WS technique in terms of minimum MSE.
However, MODRA did not fair as well for a chaotic tent map sequence test shown in

Fig. 3.28 The tent map is the most difficult of the test sequences to denoise because

Rossler: MODRA vs Waveshrink
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Figure 3.27: A comparison of MODRA to WS for contaminated chaotic Réssler sequences for
bkap = 0.2, N =27 = 1024, J = 6, using Daubechies’ LAS filters. See text for details.

it has a comparatively broader and flatter spectrum. much like the spectrum of the
noise (Fig. 3.29). Figure 3.30 shows the synthesis and original time histories for
SNR = 1.0 with §p, set such that 80% of the DWT coefficients were rejected.

A comparison of the phase plane embeddings corresponding to Fig. 3.25 and
Fig. 3.30 is shown in Fig. 3.31. With the exception of the MODRA for the Lorenz
system, the denoised embeddings are fuzzy. The conditions, however, are extremely

noisy in this case with the SNR = 1.0, i.e. the noise is equally as energetic as the
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Figure 3.28: A comparison of MODRA to WS for contaminated chaotic tent map sequences for
bkap = 0.2, N = 2F = 1024, J = 6, using Daubechies’ LA8 filters. The MODRA has a better or
equivalent MSE value for SNR = 0.5, 1,2 (noisy conditions), but does relatively poorly for SNR
> 20.
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Figure 3.29: Periodograms for a chaotic Lorenz, Réssler, and tent map systems.
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Tent Map + Gaussian Noise, SNR = 1.0
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Figure 3.30: Comparison of MODRA to WS. The subplots are (a) a chaotic tent map sequence
contaminated with Gaussian pseudorandom noise such that the SNR = 1.0 (b) the wavelet shrinkage
using only the top 20% of the DWT wavelet coefficients for synthesis (thin line) overlayed with
the original uncontaminated sequence (thick line), and (¢c) MODRA synthesis (thin line) overlayed
with the original uncontaminated sequence (thick line). The Kaplan rejection tolerance was set at
Bkap = 0.02, N = 27 = 1024, J = 6, using Daubechies’ LAS filters.
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chaotic sequence. The very semblance of a recognizable attractor is promising and

lends credit to the MODRA.
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Figure 3.31: Phase plane embeddings of original and denoised chaotic sequences. The original
uncontaminated sequence is plotted in the first row. The left(right) column contains a chaotic
Lorenz(tent map) sequence followed by the MODRA and waveshrink results for a contaminated

sequence with SNR = 1.0.

In an attempt to optimize the waveshrink process. Donoho and Johnstone devel-
oped a number of thresholding algorithms for use with the DWT coeflicients. The

Donoho-Johnstone threshold ép, is defined as
8%, = 207 log(N), (3.30)

where o2 is the variance of a zero mean Gaussian white noise process and .V is the
sequence length. Three suggested denoising techniques for use with the DW'T wavelet

nodes are shown below. 17, is the wavelet coefficient at time t and decomposition

level j.
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Hard Thresholding

(ht) _ Wj‘t, 'I’V]’A > 6DJ
Wie = { 0,  otherwise (3.40)
Soft Thresholding
W = sign {W;.} (Wl = 6p).. (341)
where
+1, W >0
sign{W;,}=¢ 0, W;; =0
-1, Wi <0
and

(z). = r, >0
T+=9%0, <0

Hard/Soft Thresholding

W}(,’tlst) = sign {Wj,} (Wil — dps). ., (3.42)
where AW = b0s).r Wl 5
. ," — - “/." < 2
1 = At DJ )+ gt DJ
(IWsel = 8p)+ { Wil otherwise

There is no manipulation of the scaling coeflicients. i.e. the DWT node associated
with the normalized frequency range [0,2°¢/*1) is left alone. For the case where
02 is unknown, Donoho and Johnstone recommend the so called MAD standard

deviation estimation by

) ~ median {|Wiol,|W11l,..., |I’V1_{,’-_1|}
IMAD = 0.6745 '

(3.43)

The waveshrink results used thus far were a result of hard thresholding without

the use of Eq. 3.39 as an estimate for the optimal threshold. It is beyond the scope of



125

this dissertation to assess the attributes and drawbacks of the thresholding methods.
However, an excellent review is given in [73, 18] and an illustrative example shown

in Fig. 3.32 where a sine wave of unit amplitude is reduced with §py = 0.5. The soft

Hard Thresholding

T

.

Soft Thresholding

Hard/Soft Thresholding

Figure 3.32: Illustration of the Donoho and Johnstone thresholding techniques on a unit amplitude
sine wave using 8ps = 0.5 for the (a) hard (b) soft and (c) hard soft methods.

thresholding smooths out the discontinuitous portions seen in the hard thresholding
but poorly represents highly energetic coefficients. The hard/soft thresholding is
smooth and more accurately portrays energetic coefficients. The Lorenz. Rossler,
and tent map systems were contaminated and denoised with the WS method using
hard, soft, and hard/soft thresholding in Fig. 3.33, 3.34, and 3.35. The average
number of wavelet coefficients rejected during the thresholding is listed to the right

of each plot at the corresponding SNR level. In every case, the rejection level is
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very high with more than 95% of the coefficients thrown out during thresholding.
The results indicate that in most cases, MODRA is equivalent or better than the
denoising capability of waveshrink. The exception is again at low SNR values for the
tent map where WS clearly dominates. However, the MODRA performs excellently
on the tent map for SNR > 1.0. WS does not perform well in this regime because of
the fatness of the tent map spectrum, i.e. if the tolerance is set too high, most, or all
of the coefficients perish in the thresholding. This is not the case for the Lorenz or
Rossler spectra where an overvalued tolerance does not wipe out all of the coefficients

for synthesis. For the tent map, automatic threshold selection is consequently not
recommended for high SNR values.

Lorenz: MODWPT vs Waveshrink
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Figure 3.33: A comparison of MODRA to WS using hard, soft, and hard/soft thresholding for
contaminated chaotic Lorenz sequences.
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Rosster: MODWPT vs Waveshrink
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Figure 3.34: A comparison of MODRA to WS using hard, soft, and hard/soft thresholding for

contaminated chaotic Rossler sequences.
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Tent Map: MODWRPT vs Waveshrink
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Figure 3.35: A comparison of MODRA to WS using hard, soft, and hard/soft thresholding for
contaminated chaotic tent map sequences.

3.8.2 D, Results for MODRA-Denoised Chaotic Sequences

While the MODRA is not limited to use on chaotic sequences, they serve as an
interesting test cases because chaotic signals exhibit complex, seemingly random re-
sponse. In this section, numerical experiments are performed on the Bender-Orzag,
Lorenz, Rossler, and tent map systems whose parameter space is set such that a
chaotic response occurs. Dj is used to quantify the MODRA noise reduction capa-
bility in terms of a nonlinear measure.

The mean of each sequence is removed and the result normalized to have unit en-

ergy prior to the D, computation, making it easier to compare results. Furthermore,



singular value decomposition is used to rotate the embedding (trajectory matrix)
which maps the data onto its principal axes in the phase space [2]. Fig. 3.36 shows

the correlation dimension results for the uncontaminated test sequences. The Lorenz
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Figure 3.36: Dj results for uncontaminated chaotic sequences.

and Rossler system have a characteristic “flat” scaling region in which the correlation
dimension is estimated. The Bender-Orzag response widely fluctuates and has no
apparent flat scaling region. However, the D, curves for the Bender-Orzag system
do not rise with embedding dimension, indicating nonstochastic behavior. The in-
teresting case is the D; results for the tent map as the curves do not converge and do
rise with embedding dimension, even though the map is deterministic! The reason

for this is because blind selection of the time lag proportional the autocorrelation
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time is an incorrect approach for chaotic maps. The best lag for chaotic maps is
7 = 1. If 7 >> 1, replications of the map muddle the phase space, giving it a random

appearance (Fig. 3.37).

X[n+2)

X(n} X[n]

X[n + 10}

" Xtn)

Figure 3.37: A two dimensional embedding of the tent map for time lags 7 = 1,2,4, 10. There are
271 replications of the tent map structure for a given time lag. Selecting too high of a lag muddles
the phase space, much like an embedding of a pseudo-random sequence.

The MODRA-D, results for the Bender-Orzag system are shown in Fig. 3.38-
3.40, the Lorenz system in Fig. 3.41-3.43, the Rossler system results in Fig. 3.44-
3.46, and the tent map in Fig. 3.47-3.49. For ecach case, an ensemble of plots is
displayed, showcasing various stages of the MODRA and D algorithms. The values
to the right of each plot in the MODWPT details indicate the acceptance (D) or
rejection (R) of the nodes subscripted by the Kaplan violation measure py-. The

titles above each plot in the MODRA synthesis relate the energy and entropy values
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of the corresponding sequences. The lower synthesis plot also shows the reduction
in these values expressed as a percentage of the measure calculated for the original
sequenice. Finally, the M and N, values appearing in the top row of the Dy plot
are the number of points used to average the correlation integral values in a unit
lag moving average and the total number of correlation points used to estimate Dy,
respectively. A linear least squares fit is used to calculate the correlation integral
slopes over each M point window, yielding an estimate of D at the corresponding
scale and embedding dimension. Of course, the SNR = 0.5 case proves to be the most
difficult one and no complete Dy convergence is achieved. However, the MODRA
successfully rids the test sequences of a majority of the noise for SNR = 1.0. and
2.0 cases. This is most evident in the lower left plot in the bottom row of each
figure panel, i.e. in the synthesis plots. The synthesis (thick line) is overlayed with
the original uncontaminated chaotic sequence (thin line). The MODRA synthesis is
impressive considering the high noise level. Finally, all of the MODRA- D, results do
not converge for the tent map, regardless of the level of noise reduction. We wish to
emphasize that this is more a function of improper lagging than it is of the MODRA

as can be seen by comparing these estimates to the original uncontaminated D

shown in Fig. 3.36.
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Bander-Orzag X, SNR = 0.48621

Best MODWPT Troe: LAB, Shannon minimization
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Best MODWPT Tree: LAB, Shannon minimization
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Figure 3.39: MODRA and D, results for the Bender-Orzag system with SNR = 1.0.
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Bonder-Orzag X, SNR = 1.0427
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Figure 3.40: MODRA and D, results for the Bender-Orzag system with SNR = 2.0.
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Best MODWPT Tree: LAB, Shanrion minimization
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Lorenz X, SNR = 1.0337 Bast MODWPT Tree: LAB, Shannon minimization
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Figure 3.42: MODRA and D, results for the Lorenz system with SNR = 1.0. See text for details.
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Rossler X, SNR = 0.99661 Best MODWPT Tree: LAB, Shannon minimization
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Figure 3.45: MODRA and D; results for the Rossler system with SNR = 1.0.
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Rossler X, SNR = 20312 Best MODWPT Tree: LAB, Shannon minimization
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Figure 3.46: MODRA and D, results for the Rossler system with SNR = 2.0. See text for details.
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Tent Map, SNR = 0.50853 Bast MODWPT Trea: LAB, Shannon minimization
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Figure 3.47: MODRA and D results for the tent map system with SNR = 0.5.
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Tert Map, SNR = 1.008 Best MODWPT Tree: LAB, Shannon minimization
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Figure 3.48: MODRA and D; results for the tent map system with SNR = 1.0. See text for details.



TentMap, SNR = 1.9919

Tent Map, SNR = 1.9919

{44) {5.18)(8.49)
{47 (5,11)(8.27)
b (413)(5.26)(841)
(48) (521)(6,14}
(41) 5, (6.15)
{5,22)(5,10){6.61}
(525)(5.19)(6.8)
{5.20)16.53)(6,13)
15,5 (6,12}(6.26)
15,12)(6.46)

8

Node Energy, €
o

Original+Noise

E «062(8213%),5 «590(84.12 %)

Denoised

A 40 M0 KO 10X 1AD 1€ 50 100 X0

143

Bast MODWPT Tree: LA8, Shannon minimizafion

1]
T8

an -] ea L]
\m

/0 (1 2 DAoL an 08 a0
07  OME OLI LM 0SR 03N OM OA

(WAAIHZ (CINLES (LSBT LIHLINGIR B LI
QTR LADANMDI TLIN ITLAT0.1 AR NEN 048

DR
DI

1RSI (KCRTHICH AN ORD
C.ONNLEEN SECTR 00005 0.020. SURNCS S4CKN0

Tent Mep, SNA = 1.9919

MODWPT Deails: Tont Map, SNR = 1.9919

e e
———— ‘bomo

=
ey

R T

B

£

Ry

¢
T
e

[ R it
SmRar S NS SN S

§m_mmmmmmummu\uh—unnmuun‘mu\um__. S

o—r .
(5} M=38, N, = 779 =
10 s
g1 - T
3 ‘
™ ,
R
T G0 9 8 7 4 5 4
®
8 ra)
qe AN
= . NN
ON‘ /\\\\\
? — ) \\
NN

Figure 3.49: MODRA and D, results for the tent map system with SNR = 2.0.
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8.8.8 Chaotic Beam Ezperiment

In order to test the MODWPT denoising technique on a real system, a chaotic
beam experiment was performed. The experimental setup is shown in Fig. 3.50.
A Bexible thin steel beam was mounted vertically to a electromechanical shaker
which provided a transverse sinusoidal excitation. The beam tip was placed near
two rare earth magnets so as to provide nonlinear buckling forces. The beam was
treated with a viscoelastic strip adhered to one side to provide a little damping.
The addition of the damping treatment helps to form a more distinguishable fractal
structure in phase space embeddings [58]. A laser vibrometer was used to record
the beam tip velocity and the analog signal streamed to a National Instruments
data acquisition board. The data was sampled at F; = 1000 Hz and displayed in a
custom built LabVIEW Virtual Instrument panel which displayed a buffered time
history, periodogram, and phase plane plot. The excitation frequency was chosen as
the first mode frequency, which turned out to be approximately 10 Hz. Driving the
beam at its first mode guarantees the most beam tip response for a given excitation
amplitude. This gives the beam tip enough kinetic energy to potentially overcome
the forces of the rare earth magnets and display a wide range of dynamic behavior

without incurring any damage to the shaker by driving it too hard.

A model of the beam experiment which describes the dynamic motion of the
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Figure 3.50: Setup for the chaotic beam experiment.

system is given by [58]

&+ vt — ax + B2 = A cos(wt + @) (3.44)
where z is the horizontal displacement of the beam tip relative to vertical. A is the
excitation amplitude, w is the excitation frequency in rad/sec. ¢ is the phase of the

excitation, 7y is the damping coeficient. and o and J are spring constants. The

corresponding potential energy function
V(z) = —a/22* + B/4z". (3.45)

A plot of the potential energy function is shown in Fig. 3.51. The shape of the

potential function dictates the stability of the system. The critical points are located
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V(x) = ~(2) x° + (B/4) x*
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Figure 3.51: Double well potential function.

at r = O,ﬂ:\/m. The position £ = 0 is stable iff & > 3 while the equilibria
T = ++/a/ are both stable for & > 0. The stability is analogous to a ball rolling
on the surface of the potential function which forms a double well on either side
of r = 0. The ball sitting at position * = 0 is obviously unstable since a small
perturbation will drive it away from that location. The two wells on either side are
locally stable. The beam tips reacts as does the ball in the potential curve as it is
excited sinusoidally in the z-direction. If the excitation amplitude is small, the ball
will oscillate about either well. In the experiment. this is analogous to the beam tip
oscillating about one of the magnets. This motion is called period 1 motion because

it has only one fundamental period of oscillation. If the amplitude is increased
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slightly, the ball may jump from one well to the other in a left-right pattern denoted
as LRLRLR.... This pattern is period 2 and is analogous to the beam tip hovering
about one magnet with a quick diversion towards the other magnet during each
period 1 oscillation. A further increase in amplitude may produce a period 4 motion
with a symbolic pattern LRRLRRL. .., for example, and so on.

Each period doubling is referred to in the literature as a bifurcation. A bifur-
cation can occur when a parameter in the equations of motion changes. A sample

bifurcation diagram is shown in Fig. 3.52. In the beam experiment, the parameter

0.6}
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Figure 3.52: A bifurcation diagram for the Logistic map: Tn+1 = rz,(1 — 1,,) where n is the
iteration index. The ordinate values are the iterate amplitudes plotted as a function of parameter
7. For example, at © = 3.44 the system is at period one response. At r == 3.445, the system
bifurcates into a period two response and so on. For a relatively large range of 7 values, the system
is chaotic, represented by the wide span of extrema values.

change is through the excitation amplitude controlled by a Mcintosh analog ampli-
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fier (not shown in Fig. 3.50), through an analog control. By varying the amplifier
gain, a broad variety of dynamic behavior is exhibited. The system may go through
a number of bifurcations before it destabilizes and goes into chaotic motion.

Figure 3.53 shows sample time histories for period 1, 2, and 4 motion as well
as a chaotic response. For every period doubling. there must be a commensurate
halving of the fundamental frequencies in the response spectrum. This can be seen
in the periodograms shown in Fig. 3.54. As the system bifurcates towards chaos the
spectrum broadens. Notice that the period 1 spectrum contains a few harmonics.
This gives the phase plane embedding of the data a nonsymmetric pattern (Fig.
3.55). The phase plane is one of the easiest means of detecting bifurcations. Once
the time lag is established, period 2 will exhibit twice as many embedding loops
as does period 1, period 4 will have twice as many loops as period 2, and so on.
A chaotic pattern emerges when the trajectories never return to their origin (never
repeat). Of course. experimentally one can never verify chaotic motion absolutely,
as one would need to record an infinite amount of data. What is shown as chaos in
Fig. 3.55 is only speculated as such. but may in fact be a period n response where
n is “a very large” integer.

To partially verify the validity of the Duffing-type model for the beam experi-
ment, a digital force gauge with range of 0 — 100 lbs was used to estimate the force
deflection curve shown in Fig. 3.56. The beam was isolated from the influence of

the magnets during the deflection test. A least squares fit of a function of the form
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54: Spectra of period 1, 2, 4 and chaotic motion in the beam experiment.
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Figure 3.55: Phase plane embeddings of period 1, 2, 4 and chaotic motion in the beam experiment.

f(z) = ar + Bz® was found to be in good agreement with the raw data. After
normalizing by the mass of the beam (m ~= 1/32? slugs), the coefficients were ap-
proximated as a & 200, and § = 51. Notice however that the linear spring constant
is opposite in sign of a in Eq. 3.44. The reason for this is that at deflections close
to z = 0 the magnets pull on the beam tip to either side, creating a repulsive force
which pushes it away from equilibrium at & = 0. The magnetic force must offset the
natural linear restoring force of the spring so that the combined linear force on the
beam tip yields a > 3.0. This assumption was validated by experimental observation

of the system stability at = = 0.

The chaotic beam response was denoised via the MODRA and its D; estimate
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Figure 3.56: Force deflection curve due to transverse loading of the beam tip.

calculated (Fig. 3.57). Unfortunately, a high level of noise is not seen in the beam
responses, so the MODRA is not tested to its full potential as a denoising scheme
for observed variables in real experiments. However, the technique is still useful
and valid as the correlation dimension is shown to converge to D, ~ 2.5 for the

beam experiment and is in agreement with the D, results found without MODRA

preconditioning (Fig. 3.58).
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Figure 3.57: MODRA and D results for the chaotic beam experiment.



153

m)
=
Q

o
o
°

-0 -1 0 1 2 3 4
10 T T T T T T T

D,(r.E)
[=] 7@ (=]

i 1 1 s 1

1
Iogzr

Figure 3.58: Dj results for the chaotic beam response without MODRA denoising.



Chapter 4

SIMULATION TECHNIQUES AND D, FOR

1/f* PROCESSES

Phase randomization techniques have often been used to simulate stochastic pro-
cesses whose power spectra have a 1/f¢ falloff. We criticize phase randomization
methods for their use in obtaining convergent correlation dimension results for these
processes. Specifically, we show that phase randomization methods can impose an
unnecessary deterministic structure in 1/f* noise simulations and generally do a
poor job in emulating true colored noise processes. We introduce the Gaussian
Spectral Synthesis method which overcomes these obstacles. We then discuss the
difficulties in obtaining estimates of the global fractal dimensions of red noise pro-
cesses. Specifically, we assess the probability of recurrent orbits for red noise and
provide results which suggest that phase space analysis of red noise is computation-
ally impractical. These results have implications for experimentalists interested in
classifying fractal structure for sequences of unknown origin and confirms the notion
that stochastic fractal processes do not yield convergent global generalized fractal

dimensions if analyzed correctly.



4.1 Introduction

Dissipative nonlinear deterministic dynamic systems are capable of producing fractal
topologies in the phase space commonly known as strange attractors. While there
exists an infinite number of generalized fractal dimensions D, for ¢ € R which char-
acterize the structure of strange attractors [35], the most commonly used measure

is the correlation dimension or Dy due to its computational efficiency.

Do gained wide popularity among researchers who tried to determine if their
measured, seemingly random, data were produced by a nonlinear deterministic pro-
cess or a stochastic process. This was driven by the belief that D; would converge for
data produced by a deterministic (chaotic) system and diverge for stochastic data.
However, Osborne and Provenzale seemingly disproved this notion by demonstrating
local Dy convergence for stochastic processes with a power law spectral density using

the phase randomization method as a colored noise simulation technique [67].

In the present work, we criticize the phase randomization method and discuss its
pitfalls. Our goal is to reexamine local D, convergence for 1/f® processes using a
simulation technique whose statistical properties agree in a quantifiable sense with
those of the process it seeks to emulate. As in [95]. we define local Dy to mean the
correlation dimension of a small segment of a trajectory in the phase space. We
define global D; to mean the correlation dimension of an embedding which contains

a large number of orbits (say > 10,000). Using these definitions, we then address
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global D, convergence issues for colored noise and show that D; does not converge
for red noise for @ > 1. We then expand upon work done by Theiler [95] by ex-
amining the probabilities of nonrecurrent 1/f* noise for o > 2. Finally. we focus
on the limitations of using any 1/f* simulation technique when dealing with global
measures in the phase space and argue that for a large class of colored noise, global
phase space analysis is computationally impractical.

The outline of this chapter is as follows: In Section 4.2 we define 1/f* processes
and in Section 4.3 we analyze three techniques used to simulate colored noise pro-
cesses: the Direct Summation Methods (DSM), the Phase Randomization Method
(PRM), and the Gaussian Spectral Synthesis Method (GSSM). In Section 4.4 we
compare the PRM to the GSSM. In Section 4.5 we review the correlation dimension
and discuss the subtleties involved in obtaining an accurate measure. In Section
4.6 we revisit the issue of local D, convergence using the GSSM. In Section 4.7 we
provide numerical evidence of nonconvergent global correlation dimension using a
combination of the GSSM and the DSM to simulate colored noise. We then address

probabilities regarding the frequency of recurrent phase space orbits for a 2> 2.

4.2 1/f* Processes

If the power spectral density Sx(f) of a discrete real-valued sequence .X; exhibits a
power law behavior Sy ~ 1/ f%, then X, is referred to as 1/f* noise or colored noise

(assuming a # 0). For o > 0, low frequency power dominates and is appropriately
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coined red noise. Similarly, o < 0 is blue noise, o« = 0 white noise, and o = 1 pink
noise, flicker noise, or simply “one-over-f’ noise. Figure 4.1 summarizes the noise

classifications for 1/f% processes.
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Figure 4.1: Spectrum exponent chart describing the classification and the stationarity for
1/f* processes as a function of the spectral coefficient a. The hollow arrowheads imply infinite
extension in the direction in which they point while the solid arrowheads imply termination.

One-over-f behavior has been found in many fields of study including electronics
[41, 49, 57, 87], biology [6, 14, 30, 34, 68, 83, 101], astronomy (11, 12. 31. 45. 54,
56, 59], music and speech (20, 44, 89, 99], magnetics [43, 65, 64, 78, 79), economics
[17, 47, 53|, transportation [15, 105], ecology 33, 74. 91], granular flow (10, 69, 86|,
chemistry [61], nuclear physics (3], optics [60]. and fuids [70]. Red noise has been

observed in fully developed turbulent flow [26, 27], blue noise in the image motion
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of stars [46], and white noise as a common form of background noise.

4.3 Simulation Techniques for 1/f* Noise

Considering the abundance of 1/f® behavior reported in the literature, it is of con-
siderable interest to develop simulation techniques that satisfactorily emulate these
noise processes. In this section we discuss three simulation techniques and assess

their drawbacks.

4.8.1 Direct Summation Method

Let {X, :t = 0,£1,%2,...} be a stochastic process whose d'" ordered backwards

difference is given by

d
V= -3 =3 () (-1 (@.1)

k=0

where d € N and B is the backward shift operator defined by B*X, = X,_. For

example,
X if d == 0,

Yi=4X, - X, ifd = 1, (4.2)

‘\,( - Q-Xrt—l '*‘ -X(__g lf d = 2
If {X,} is a stationary process with power spectral density Sx(f) ~ |f|™ for |f] <
1/2 (implying that a < 1), then {Y;} is a stationary process whose power spectral

density is given by Sy (f) = DU(f)Sx(f) where D(f) = 4sin®(nf) is the squared
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gain function for a first order backwards difference filter. If however {X;} is a
nonstationary process but {Y;} is stationary, Sy can be defined as Sy (f)/D%(f)
[73, 104]. In this case. {X;} is a nonstationary process with stationary backwards
differences.

A random walk sequence is one example of a nonstationary process with station-
ary backward differences which can be built by performing a cumulative summation
over a stationary process (in this case a white noise process). Let {¢,} be a discrete
real-valued stationary white noise process with zero mean and variance 2. The

autocovariance sequence for {¢;}is given by

Sr = | ’ (43)

0 otherwise.

Using {¢}, a random walk process is defined as

X, = Z( (1.4)

)

Successive cumulative summations over the random walk sequence X, can be
performed. producing discrete 1/f* realizations associated with larger values of a.

Let X, represent a discrete 1/f® realization and define

t
-Xl.a——‘z = Z -X’u.a- (4:))

u=0

This cumulative sum over X;, produces a sequence X;,.» which has a spectral
density proportional to f~(®*? Figure 4.2 shows four 1/f® realizations generated

with the direct summation technique.
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Figure 4.2: Discrete realizations of 1/f* processes for & = 0.2,4.6. and 8 with NV = 1024 using
the direct summation method. Each realization is normalized by its sample standard deviation (so
that the sample variance is unity) for ease of comparison with realizations created by the PRM
(Fig. 4.3) and the GSSM (Fig. 4.4).



The direct summation method produces “exact” realizations of random walk pro-
cesses. Discrete realizations however are never truly exact since (Gaussian) white
noise is simulated via pseudo-random number generators which are in fact determin-

istic and periodic [103].

4.8.2 Phase Randomization Method

A disadvantage in using the direct summation method (Eq. 4.4) is that. if we limit
ourselves to repetitive sums of white noise, o is limited to positive even integers.
Fourier techniques can be used to approximate 1/f* realizations which carry no such

restrictions. One such technique used in [67] utilizes the Fourier series summation

N/2
Xo=) Geoos(wil + ), t=1,...,N (4.6)

=1
where ( = \/_IW, Plwe) = Cwi® wy = kAw, Aw = 21/N, and ¢ is a
uniform random deviate on [0,2x] for & = 1,...,N/2. The constant ' is chosen
such that the resulting time series has unit. variance. An eflicient means of generating
realizations using Eq. 4.6 is through the explicit development of the discrete Fourier
coefficients Fj, followed by an inverse discrete Fourier transform operation. The
following algorithm describes the Phase Randomization Method (PRM) for N an
evern integer.

Phase Randomization Method (PRM):

1. Fp=0
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2. Fy = (pcos(on) — i¢ksin(ey) for k=1,... ,(N/2-1)
3. Fns2 =(Cny2
4 Fyp=Frfork=1,...,(N/2-1)
5. Xna = F 7 (Fi) = iy Fee™Y

where F~1() is the discrete inverse Fourier transform operator. The subscript o
in X, is used to emphasize that the colored noise realization is associated with
a specific spectrum exponent a. Figure 4.3 shows five such realizations for various

values of a (each X, , has been renormalized to have unit variance). A criticism of
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Figure 4.3: Zero mean, unit variance, stochastic PRM simulations of 1/f* processes for a =
0,2, 4,6, and 8 with N = 1024.
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the PRM is that while it succeeds in generating discrete stochastic realizations with
a seemingly correct power spectrum, it does a poor job in modeling the behavior of
true 1/f* processes. An immediate observation is that the realizations are in fact,
periodic as each series ends where it began (see Fig. 4.3). A second criticism is that
the frequency of zero crossings is higher than what is expected for larger values of «
(as can be seen by comparing Fig. 4.3 with Fig. 4.2). A third criticism of the PRM
is that only the phase of the spectral coeflicients are randomized while the power is
set exactly to a 1/ f* falloff. This imposes an unnecessary deterministic structure in

the data which can otherwise be avoided by using a more suitable method.

4.8.8 Gaussian Spectral Synthesis Method

A technique which overcomes the flaws of the PRM is the Gaussian Spectral Synthesis
Method (GSSM) which explicitly randomizes both the power and phase components
of the Fourier coeflicients. The algorithm goes as follows:

Gaussian Spectral Synthesis Method (GSSM):

1. For a N point realization (N even), let N/ = MN, M €N

2. Generate a Gaussian white noise sequence {Z1,... , Zn'}

3. Co =21, Cnijz = 2y

4. Cp = (Zon +1Zan1)/V2. for n=1,... ,(N'/2) =1
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5. For f, = n/N' define F,, = C,/Sx(fn), n=0,... ,N'/2
6. Fp=Fpi_,n>N'/2

7. Xeo = FHFn) = SN0 Frel?mot

where Sx(f.) = f7® Figure 4.4 shows GSSM realizations for various values of
a. A good agreement with the direct summation method (Fig. 4.2) can be seen.

For fractional Gaussian noise, recent developments in the literature show that the

optimal selection of Sx(0) is

M N-1 1 Ml sin([2N — 1|7 f;)
5x(0) = 57 (%) o7 2 )

(4.7)

where sy, = cov{Xy, Xi4r} = 5'—;‘-(|T + 12 = 2)7)PH + |7 — 1), 7=0,£1,%2is
the acvs for a fGn with Hurst coefficient 0 < H < 1 and 0% = var{X,} = sxo is
the process variance assumed to be bounded [72]. Since Sx(0) affects only the mean
of the GSSM realizations and since D is a second order statistic we arbitrarily set

SX (0) = O

4.4 Comparison of PRM and GSSM

Both the PRM and GSSM are actually stationary harmonic processes with periodic
autocovariance sequences (ACVS) [71]. In the case of PRM, the period of the ACVS

is N, so that the beginning and end of a time series of length N are highly correlated
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Figure 4.4: Discrete GSSM stochastic realizations of 1/f* processes for & = 2.0,4.0.6.0. and 8.0
with NV = 1024, renormalized to have zero mean and unit variance.

with each other. In addition, the ACVSs for PRM and the process that it is intended
to approximate typically differ quite significantly for lags greater than N/2. In the
case of GSSM, the period of the ACVS is MN, but the agreement in the ACVSs
between GSSM and the process to be approximated can be made arbitrarily good
over lags ranging from 0 to N — 1 by increasing M. As a result. a proper choice of A/
means that the beginning and end of a length N series will have the correct covariance
properties to a good approximation, which is the most serious deficiency of PRM as
a simulation technique. Tests indicate that A = 4 yields a very good approximation
for the kinds of processes considered in this paper. Finally, we note that GSSM

generates Gaussian distributed deviates, whereas PRM does so only approximately
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(the deviation from Gaussianity however is only noticeable for NV < 32).

4.5 Correlation dimension, D,

Fractal topologies with a nonuniform distribution of points in the phase space can
be characterized by an infinite number of fractal dimensions Dy, where the subscript
q denotes the probability of obtaining ¢ points within a hypersphere with a given
radius. The correlation dimension Dj is a fractal dimension whose popularity is due

to the computational efficiency and simplicity of developed algorithms [32. 93].

An important consideration for phase space analysis using a single variable time
series is the selection of the time lag 7. The goal is to select 7 such that the
resulting coordinates are uncorrelated. Typically the lag corresponding to the first
zero crossing of the average mutual information or autocorrelation function Rz, or

the first 1/e falloff of R, is used to estimate T [1, 2, 24, 88, 94].

It has been claimed that if 7 is chosen to be sufficiently large, then the D, es-
timates are independent of 7 and should coincide with the results obtained using
independent realizations as coordinates (67, 95]. We contend that using lagged co-
ordinates for red noise processes is undesirable because red noise is highly correlated
at large times, regardless of the lag. As an example, given that {X;} is a random

walk process associated with a spectrum exponent o = 2, the correlation coefficient
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is given by

1/2
7 7 t _'_ 1
px = corr{ X, Xir} = {ﬁl—ﬂ—ﬁ} . (4.8)

Proof Random Walk Correlation and Stationarity

Let {e;} be a stationary white noise process with zero mean and variance 02 and

whose autocovariance sequence is given by

o2 ifr =0,
Sr = (4.9)

0 otherwise.

Using {e€;}, a random walk process is defined as
i
X =) (4.10)
0
Since E{e,} = 0 for all u, it follows that
t
E{X} =) E{a}=0 (4.11)
Q

for all £. Thus. the first moment of a random walk process is independent of time
t as is required for a stationary process. For 7 > 0, the autocovariance of {X;} is

given by

Sxr = COU{Xt,XH-r} = {(-\’a - E{Xt})(Xt+T - E{Xr,})}

= E{Xr,Xz+r}

t4+7

i z E{eueu!}

u=0 u'=0

(Jt| + 1)o? (4.12)

il

i
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since E{eueu:} is nonzero only if = ' which occurs exactly ¢ + 1 times in the
double summation. With the variance defined as var{X,} = sxp, it is clear that
random walk processes are nonstationary because the second moment is a function
of time ¢.

Using equation Eq. 4.12, the correlation coeflicient py is

px = corr{X;, Xp4r} =

1/2
cov{ X, Xiir} _ [t +1
Vvar{X:}var{ X~} lt+7]+1 '

(4.13)

It is clear that p — 1 as t — oo implying that lagged random walk realizations
become highly correlated as ¢ increases, regardless of the lag 7. Higher order random
walks, i.e. 1/f% processes associated with @ > 2. are evern more correlated for a given
combination of 7 and t. Consider, for example, a random run process { Y, } associated

with a spectrum exponent & = 4. The correlation coefficient is given by

Sy.r
py = T (4.14)

VA Y 05Y14r 0

where

t u+l
Syr = Z Zk + (|t + 7| — u)(u + 1) o2, (4.15)

u=0 Lk=1

Proof Random Run Correlation and Stationarity

Let {X;} be a random walk process as defined in Eq. 4.10. Let {Y;} be a random
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run process defined as
o= X (4.16)
Since E{X,} = 0 for all u (Eq. 4.11), it follows that
t
E{Y;} =) E{X,}=0 (4.17)
u=0

for all . Thus, the first moment of a random run process is independent of time ¢.

The autocovariance of Y; is given by

Sys = COU{YHYHT} = E{(Yt - E{Yt})(YHT - E{Yt})}

E{Y.Yier}

t t+T

YN E{XuXu} (4.18)

u=0 u'=0

f

i

where E{X;X;+-} = (|t| + 1)o? (Eq. 4.12). Incrementing the onter summation loop

u, the following pattern evolves:

u=0: E{X)Xy}=0?

E{-XO-\,I} = 0'(2

u=1: E{X|X}=0?
E{XlXI} = 20’?

E{X\X,} = 252
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U = 2 . E{Xg‘\’o} = 0';2
E{X,X1} = 20°
E{X,Xy} = 30

E{Xz_\’g} = 30'62

The sum T, over each outer loop index u is

Ty = o+ (|t +7))0?

T o+ 202+ (Jt + 7] = 1)20?

fi

Ty = 024202 +3c2+ (|t +7]— 2)302

Ts 0% + 202 + 302 + 4% + (|t + 7| — B)40?

k=1

T. = [(|t+r] —u)(u+ 1)+ Zk} ol

With sy, = ., T, we arrive at

t u+1
Sy, = Z {Zk +(jt+ 7] —u)(u+ 1) o (4.19)
u=0 L k=1
Since var{Y;} = sy, 0, py becomes
Sy, (4.20)

py = ————
\/ SY:,O‘S)"H-nO



Although not obvious, it can be shown that the random run correlation coefficient
py also tends to unity as t — oo. Figure 4.5 shows the convergence of the correlation
coefficients for a random walk and random run process as a [unction of time for

various lags. For small lags, the correlation coefficient rapidly converges toward unity
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Figure 4.5: The correlation coefficient for a random walk process (thin lines) and a random run
process (thick lines) as a function of time  and lag 7. The arrow indicates the direction of increasing
lag, using 7 = 10.100. 1000. and 10000.

while for larger lags, the convergence is slower. It is also evident that random run
sequences are more correlated than are random walks for a given .7 combination.
We expect these trends to continue for higher order random walks (a > 4).

Since each and every coordinate produced by the lagged embedding scheme is
subject to high correlation, the neighboring points along a trajectory defined by

those coordinates become highly correlated as the trajectory length grows. Cave
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should be taken to exclude these highly correlated neighbors when calculating the
correlation integrals because C(r,D.) as defined by Eq. 2.11 are a valid means
of estimating D, if and only if the neighbors used in the analysis are independent
[55]. However. the analysis of long term dynamics for red noise processes requires
“lengthy” coordinate realizations. making the avoidance of correlated neighbors a
difficult task. One practical way of minimizing correlated neighbors in red noise
embeddings is via a Poincaré section technique. The collection of Poincaré points
is separated by large time intervals and provides a somewhat decorrelated data set
for D, analysis. Secondly. a Poincaré section delivers a complete picture of the
long term dynamics since it “captures’ many periods of a given system'’s response.
i.e. by collecting a set of N Poincaré points. it is assured that the set contains .V
fundamental periods of the system. whereas collecting N successive iterates does not

ensure that a single fundamental period of the system has been captured.

4.6 Local D, for GSSM Realizations

Using lagged coordinates and independent realizations. we investigated local D, con-
vergence for GSSM simulations of 1/f® noise. Figure 4.6 shows GSSM embeddings
in the phase plane for various spectrum exponents using lagged coordinates. The
points converge toward a single curvilinear path in the phase plane as a is increased.
Since a uniform distribution of points along a line in the phase space results in a

correlation dimension of Dy = 1. we expect that, for large values of a. D, will
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tend towards unity. Specifically, for 1/f* noise the local box counting dimension is
Do =2/(a—1)forl1 <a<3and Dy =1fora >3 [95]. Since Dy > D, with
Dy ~ Dy, it is expected that Dy ~ 2/(a —1) for 1 <a < 3.

As a means of comparison, phase plane embeddings of PRM realizations are
shown in Fig. 4.7. For larger values of o true 1/f® embeddings will venture off into
space only to return to their origin after a large number of iterations or evolutions
in time (see Section 4.7 for more details). For PRM simulations. however, the orbits

always return to their origin regardless of a or iteration length.

a=0.00 a=1.00 o =2.00
Ly
& 9y
.}
¥
1=62 7= 1731
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Figure 4.6: Phase plane embedding using lagged coordinates from a single GSSM 1/ f* realization

for o = 0.0,1.0,2.0,3.0,4.0, and 5.0, with N = 4096. The temporal lag 7 was selected based on
the location of the first 1/e falloff in the autocorrelation function.

Figure 4.8 shows the convergent behavior of Dy for lagged GSSM realizations
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Figure 4.7: Phase plane embedding of two PRM realizations for a = 0.0.1.0.2.0.3.0.4.0. and 5.0,

with N = 4096. c(,k) represents the k** realization for a given a.

using 0.5 < @ < 7.5. The outliers denote the range of D estimates for a given value
of . Similar results were found using independent coordinates. The local D results
of the GSSM are in excellent agreement with those of the PRM [67] as well as the
theoretical values. We emphasize that the GSSM does a better job in simulating
1/f* processes than does the PRM, and thus more diligently proves the local D,
convergence for 1/f processes. However, these results are accurate descriptions of
only the short term dynamics and do not yield any relevant information regarding

the long term dynamics of 1/f¢ processes.
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Figure 4.8: Summary of D, estimates for an ensemble of GSSM a's with N = 213 and D, =
1,....15. Shown is the estimated Do data, a least squares fit to the resulting curve, and the
convergence asymptotes.

4.7 Global D, for GSSM/DSM Realizations

To obtain global D; estimates, the number of phase space orbits must be “large”.
The exact number of suitable orbits is a subjective topic of which there has been
much research {7], but certainly an accurate portrayal of the global dynamics requires
more than a few orbits in the phase space. The immediate difficulty one encounters
in attempting to obtain many orbits for red noise realizations is that true red noise
tends to wander off into space, returning (close) to its origin only after an extremely
large number of iterations. To obtain a better understanding of the recurrence

frequency of red noise orbits, we now examine the statistics of 1/f* processes for
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a>2.

Given that a random walk is a red noise process associated with a spectrum
exponent a = 2, we will use probability theory to demonstrate the difficulty in
obtaining a large number of phase space orbits for embedded random walk sequences.
An excellent review of random walk statistics is given by Feller {22], and we direct
the reader there for a more in-depth discussion.

We begin by examining a Poincaré section of random walk data X, embedded

in 3-space using a time lag embedding technique (Fig. 4.9). We arbitrarily choose

Figure 4.9: A Poincaré section illustration of a random walk realization embedded using a time lag
7 = 331 based on the average first 1/e falloff of the autocorrelation function over 100 realizations.

the Xpir, Xnsor plane passing through X, = 0 as a Poincaré section so that if a

zero crossing is found at X oo, for example, the Poincaré intersection is taken as the
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location { X100, X100+7> X100+27} = {0, X 1004+ Xigosor}- Collecting a large number of
Poincaré points refines the correlation integral structure at small scales and provides
a more aceurate portrayal of the long term dynamics of the system. Consequently.
it is appropriate to investigate the probability theory associated with random walk
zero crossings. To do so we examine two theorems, one relating the probability of
the final return to zero, and the other the total immber of expected zero crossings

for long walks [22].

Theorem 1 The probability A(z) that the last return to zero occurred on or before
epoch 2k and did not return thereafter up to and including epoch 2n is

2
Az) = Z Soron & ;m‘csin VT (1.21)

k<Tn

for0<z<1,z==k/n, and

: A\ (20— 2K\ o N
fovon = (k >< ok )2 . (4.22)

Theorem 1 can be best illustrated throngh an example. Consider a thought
experiment where a great many random walks are conducted simultaneously at an
iteration rate of one step per second for 10 straight years (equivalent to 315.36 €6
iterations). On average, in one out of twenty walks the last return to zero will ocenr
before 22.5 days have passed and will not return for the remaining 3,627.5 days. In

one out of ten walks, the last return will occur before 90 days. and in one out of
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5 walks it will occur before 349 days. These results ave strikingly nonintuitive and
suggest that obtaining a suflicient mimber of *hits” on a given Poincaré section may
be difficult. The question then becomes, have we collected a sufficient number of
Poincaré points before the trajectory ventures off into space? The following theorem

provides insight into this issue.

Theorem 2 The probability £ that fewer than zy/n sign changes occur before epoch

n. approaches
2 2 —12/2 )
&r) = — e ¥ %y — 1 (4.23)
asn — oo forz > 0.

One might intuitively expect that if a given number of returns to zero, say M.
were to occur during the first million iterations, then after the next million iterations
there would be a total of approximately 2Ny returns to zero. 'This is not the case
however as we see that the total number of zero crossings is proportional to /n
so that as the iteration number increases the rate of zero crossings diminishes. As
an example, let us return to our 10 year experiment with the goal of obtaining No
returns to zero. Table 4.1 shows the probability & that less than Ny zero crossings
will occur for n = 315.36 €6 iterations.  According to Table 4.1, approximately
90% of the random walks on average will return to zero less than 15,000 times. We
put this prediction to the test by simulating a random walk process via the direct

summation technique (Eq. 4.4) using a pseudo-random number generator with a
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‘able 4.1: The probability & that less than Ny zero crossings will oceur for the 10 year Gedanken
experiment.

Np | 100 | 1,000 | 5,000 | 10,000 | 15,000 | 20,000 | 25,000 | 30,000

& |.0094|.0901 | .427 | .7401 | 9089 | 9757 | 9951 | .9993

theoretical period of 2!%9% |23, 42]. The total number of iterates needed to achieve
Ng = 15,000 zero crossings was over one billion (n = 1.1098¢9). indicating a zero
crossing per every 74, 000 iterations on average; a result which is commensurate with

the trends shown in Table 4.1.

The implication of Theorem 1 and 2 is that obtaining a suflicient nmumber of zero
crossings is a difficult yet achievable task. Using the zero crossings as a means of
identifying Poincaré points, we are now ready to explore the global D convergence
for a = 2. Phase space coordinates were developed with the 15,000 point Poincaré
sequence using a time delay embedding scheme. The lag was chosen as the average of
the first 1/e crossing of the autocorrelation function for 100 realizations. Figure 4.10
shows the correlation dimension estimates, as a function of embedding dimensior; [,
and scale 7, found by fitting the correlation integrals (log ¢’ versus log 1) using a linear
least squares regression. Cleatly, the D estimates do not converge with embedding
dimension and in fact D, is seen to grow in proportion to D, as is expected for

a stochastic process. The same results were found using separate realizations as
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independent coordinates.

To explore global red noise D, convergence trends for 1 < a < 2, a GSSM
realization corresponding to a spectrum exponent of @ — 2 was generated, followed
by a discrete cumulative summation; effectively raising the spectrum exponent to a.
Poincaré coordinates were produced using the 1/e lag scheme and D, was estimated
(Fig. 4.10). Again we find that the D; estimates grow in proportion to D,, signifying
a lack of convergence.

These findings imply that the convergent D, shown in Fig. 4.8 are in fact anoma-
lous global characterizations and cannot be used to ¢uantify the long term dynamics

of random walk processes.

Figure 4.10: A linear least squares estimate of the slope of the correlation integrals a function of
embedding dimension D,. It is clear that the correlation integrals do not converge to a finite low
dimension contrary to the results obtained for the GSSM realizations.
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We assert that D, will not converge for larger spectrum exponents (o > 2). It is
very difficult (if not impossible) however to verify this assertion through numerical
experiments because 1/ f* processes associated with an @ > 2 have extremely small
recurrency rates. We show this in the following analysis by obtaining the exact
probability of a return to zero for 1/f* processes with a > 2.

The direct summation method was used to obtain random walks of “higher order”
and the exact recurrence probabilities for each series was calculated. The initial
random walk sequence was restricted to step exactly £1 unit in amplitude at each
iteration. Since there are exactly 2" possible paths for n iterations, the probability
€nx of returning to zero is {np = Nnp /2™ where Ny is the number of paths that
return exactly to zero at iteration n for a random walk order & (k =1 is a random
walk, k = 2 is a random run, and so on). Figure 4.11 shows the return to zero
probability results for orders k = 1,... ,4 and iteration levels n = 1,...,16. It is
not possible for some walkers to return to zero at specific iteration values and as
a result there are gaps in the return sequences. The equations at the end of each
return sequence are the least squares approximations while the dashed lines are the
corresponding curve fits. All orders exhibit have a power law falloft whose exponent

decreases approximately by one as the return order is incremented.

The exact return to zero probability for a random walk sequence is given by

n\non 27" ‘
5"'1:<n/2>2 YOI (4.24)



10 T T
¢ S~1/f2
10' b s 4 gepft g
o« o goqf8
o * o g8 ]
k $70 0 000, ~0.452
wrio'E y £=0.694n ]
‘A‘
. 'y
2 o'-..,'o_ o & =0.933 n—1378
107} '*"'0.0 =\. 4
e 2526
107l W §=3197n7 )
© £=15170 n73518
10'4 L L
10° 10’ 10° 10

n

Figure 4.11: The exact probability £ of a return to zero for a random walk process (S ~ f72),
a random run process (S ~ f7*), and higher order runs for the first 16 iterations. The hollow
markers represent even valued returns while the solid markers represent odd valued returns. There
is an apparent power law drop off in £ for each process which can be used to estimate the return
to zero probability for larger iteration values.
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for n a positive even integer [22]. Using Stirling’s formula: n! ~ 2wn"*le ", Eq.

4.24 reduces to

/2 .
€1~ (| = = 0.7979 07" (4.25)

which is in good agreement, with the least squares fit shown in Fig. 4.11. From the
results, one may speculate that an estimate of the return to zero probability for a k™
order walk at iteration n is &,x ~ nt!=%)/2_ Since the probability of the last return to
zero at epoch n is proportional to the total returns to zero up to and including epoch
n [22], one can conclude that obtaining a satisfactory number of zero crossings for
orders k > 1 is an arduous task. Since stochastic realizations on a computer invoke
the use of pseudo-random number generators which inevitably repeat themselves.
obtaining a sufficient number of zero crossings. and equivalently a sufficient number
of Poincaré points, is numerically impractical. We would like emphasize that the
trends shown in Fig. 4.11 are exact and consequently all legitimate 1/f% simulation

techniques are subject to the same probability trends.

4.8 Summary and conclusions

It is shown here that 1/f® stochastic fractals. which can be characterized by sta-
tistical self similarity measures, have a convergent local correlation dimension for
a > 1.0 but do not have a corresponding convergent global correlation dimension.

Red noise processes maintain local self-similarity patterns in a statistical sense that
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may lead one to incorrectly conclude that they have a relevant and convergent global
fractal dimension.

It is shown that lagged coordinates do not become independent becanuse the
correlation coefficient for a random walk and random run process approaches unity
as time ¢ — oo, regardless of the lag 7. However. lagged coordinates developed by
finding the zero crossings of red noise realizations help to sufficiently decorrelate the
data and were shown to produce a nonconvergent global correlation dimension.

A similar analysis for random walks of higher order was shown to be computa-
tionally difficult due to the low recurrency trends of the phase space orbits fora > 2.
Specifically, we numerically demonstrated that the probability of recurrence ¢ for a
kth order random walk goes as £ ~ n('~2%)/2 \where n is the number of iterations and
k > 1. Because the spectrum exponent a is related to the walk order & as a < 2k. it
becomes difficult to analyze D, convergence for a > 2.0 using computer simulations.

Finally, we showed that the phase randomization method (PRM). used by [67] to
explore local fractal structure, produces realizations which are highly correlated and
have an underlying deterministic structure. The GSSM produces realizations which
are more representative of stochastic 1/f* processes. Using GSSAI realizations to
create phase space coordinates, local D, estimates were shown to converge to the

theoretical local box counting dimension of Dy = 2/(a—1) for 1 < a <3 and Dy = 1

for a > 3.



Chapter 5

LINEAR AND NONLINEAR CLASSIFICATION OF

HUMAN CARDIAC RHYTHMS

Time series analysis is a common technique used to gain insight into biological
systems. This is especially true when the system cannot be analvzed through a
synthesis of behavior at the molecular. cellular. or organ level. The response of the
system under normal operating conditions, or under conditions somewhat changed
by the use of external stimuli. becomes the principal window into the underlying
mechanisms.

In recent years, the application of concepts from nonlinear dynamics have gained
popularity in time series analysis. This development has been driven by the discovery
that simple nonlinear dynamic systems can produce chaotic responses. Numerous
investigators have shown that mathematical models of simple biological systems can
in fact produce chaotic solutions. The need to create mathematical models and to
characterize the system based solely on experimental data requires the establishment
of time series techniques which can discriminate between chaotic and stochastic

behavior.
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Time series analysis using methods from nonlinear dynamics may find an impor-
tant role in modeling the human heart and in predicting complex responses. The
behavior of the dynamics of the human heart and underlying mechanisms have been
studied for decades with the help of the electrocardiogram (ECG). Cardiologists
have studied ECGs and learned to infer a range of different disease states from sub-
tle variations in the cardiac signal. Detection of disease states with the ECG coupled
with information obtained from modern time series analyses presents a unique op-
portunity to further disclose the underlying mechanisms of the healthy and diseased
heart.

The potential existence of nonlinear cardiac mechanisms has been demonstrated
in numerous studies. Noteworthy examples of such findings are in studies by Savino
et al [85] and Glass, Goldberger, and Belair [28]. Savino et al showed that the
trace of successive firing intervals can exhibit period-doubling bifurcations in small
samples of in vitro paced heart tissue. Glass. Goldberger, and Belair investigated an
abnormal heart rhythm called parasystole, and developed a nonlinear mathematical
model capable of predicting the observed behavior.

Variations in sinus rhythm have long been investigated and used in cardiac di-
agnostics. However, standard heart rate analysis based on linear theory may not be
sufficient in characterizing the cardiac system. For example. it has recently been sug-
gested that variations of the RR intervals are chaotic during normal sinus rhythm.

This would imply that small variations in the heart beat are governed by determin-
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istic rules.

In response to these issues and to the abundance of RR interval analysis reported
in the literature [4, 29, 39, 90], we thoroughly examine RR interval data extracted
from ECG Holter tape recordings of 30 patients with a known history of cardiac
disease, from implantable cardioverter defibrillator (ICD) data of 18 patients who
have experienced ventricular fibrillation (VF) and/or ventricular tachycardia (VT),
and from 5 Holter tape recordings of healthy patients. We pose five main questions

in our analysis:
1. Are RR intervals generated by a deterministic or stochastic process?

2. Is there any topological fractal structure in RR intervals. indicating the exis-

tence of an underlying low order deterministic chaotic system?

3. Do RR intervals exhibit any spectral scaling. indicating statistical self similar-

ity common to colored random noise processes?

4. Can any of the measures be used to predict the onset of VF/VT?

5. Can cardiac arrythmias be classified by a MODWPT best basis for a represen-

tative sample of a patient’s RR intervals?

The techniques used to explore these issues are aplan’s determinism method (KDM).

the correlation dimension (D;). the MODWT variance (#%(r, j)). the approximate
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entropy (ApEn), the MODWPT best basis, the bridge-detrended scaled windowed
variance (BDSWYV), and the dispersion analysis (Disp). Care is taken to address the
subtleties involved in obtaining a good measure for each method. For Holter tape

data, the sources of noise are scrutinized to avoid spurious assessment of the results.

5.1 Feature Extraction

A wavelet based feature extraction program was developed to effectively isolate the
RR intervals from Holter tape ECG recordings. To improve temporal resolution,
a cubic spline fit was applied to approximate the peaks of QRS complexes. The
differences (in time) between successive peaks were recorded as the RR intervals.
Fig. 5.1 shows a sample Holter ECG series with marked QRS peaks. Intervals
suspected to be associated with either preventricle contractions (PVCs) or noise
contamination were not included in the RR estimates. The hollow circles in Fig. 5.1
indicate QRS peaks of normal beats while the filled circles represent suspected areas
associated with PVCs and/or noise. A PVC is characterized by a short beat followed
by a long one such that the sum of the two intervals is approximately equal to the
time it takes for two normal beats to occur. These are easily identified by inspection
in the plot and verify that the wavelet based extraction program does a good job in
isolating these components. Wavelet transforms are an excellent means of denoising
ECG sequences because they effectively isolate low baseline drift due to respiration as

well as most of the high frequency noise in the signal (see [73] for example). The main
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steps in the algorithm are to (1) Decompose an ECG sequence in a 6 level DW'T nsing
Daubechies’ least asymmetric 8 tap filters (2) Synthesize with the wavelet coeflicients
at decomposition levels 2-4. This effectively rids the base line drift component
residing in the scaling coeflicients and excludes the high frequency noise found in
small scale wavelet coefficients (3) Apply couventional amplitude and amplitude-
derivative based algorithms to identify the locations of the QRS complexes (4) Verify
the peak locations by comparing them to the original signal. This comparison was
necessary since some peaks found by the wavelet algorithm were off by one point to

either side of the true peak locations.

x10°
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Figure 5.1: Example of RR extraction with PV C/noise detection. From a signal processing perspec-
tive, the ECG sequence is seen to be contaminated with high frequency noise and a low frequency

baseline drift due to respiration.
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5.2 Sources of Error

With the exception to the RR data received from the SCDHeFT program headed
by Dr. Bardy of the University of Washington Medical Center, the ECG data was
recorded using equipment developed by Northeast Monitoring. The comments in

this section refer to Northeast Monitoring data.

There are numerous difficulties in performing accurate time series analysis on RR
intervals extracted from real ECG data. Feature extraction of externally monitored
ECG signals, especially ambulatory data, is a complex issue due to the abundance of
noise that may be introduced during recording. The ECG can be contaminated from
electrode contact noise, motion artifact, muscle contractions, baseline drift and/or
ECG modulation with respiration. poorly shielded electrical devices in the signal
processor, and electrosurgical noise [25]. The quality of ambulatory data is also
restricted by hardware limitations affecting sampling frequency and SNR. Digital
sampling of ECG data recorded on mechanical hardware such as tape drives can
induce noise through quantization error. tape playback noise. low sampling rates,

and nonlinear filtering operations.

Quantization effects and nonlinear filtering operations introduce errors in ampli-
tude. The data was extracted from 24-hour Holter tapes via a 12-Bit A/D converter,
yielding a 12.5 p}” quantization error for the least significant bit (LSB) of a given

sample. A nonlinear filter was applied to reduce the amount of data. The error



191

induced in averaging with a nonlinear filter is proportional to the difference in am-
plitude between adjacent samples, resulting in significant errors for large amplitude
impulsive behavior such as that found in the QRS complex. The maximum filtering
error for a given sample is ey, = £50 x 12,541 = .625ml’. A correction algorithm
was used by the Northeast Monitoring Company to ensure that the error did not
accumulate, affecting only 2 — 3 successive samples in the ECG record.

Discretization of ECG signals via mechanical hardware can also produce errors
in the timing of the data, known as tape playback noise. Mechanical tape devices
used to read Holter tapes induce noise via inconsistent, playback speeds during A/D
conversion. Corrective measures can always be performed to adjust for tape speed
variations but, depending on the quality of the correction, may not result in perfectly
timed data extraction. For the system used to extract the ECG data, the temporal
noise is estimated to be pu = £1.5 milliseconds.

Sampling rates play a large role in the accuracy of the discretization process.
The ECG data was sampled at Fy, = 180H z, well above the Nyquist rate estimated
at Fyyq =~ 25Hz. Although aliasing is avoided, the sampling rate is seen to be
deficient in that the number of points which define the QRS complex is quite small
(@ 8 —10 points). For accurate estimation of R-R intervals, a curve fitting al gorithm
can be applied to the R-wave peaks. However, with the knowledge that the datla was
previously nonlinearly filtered, we are faced with an additional dilemma in estimating

peak locations because samples residing near the R-wave peak are inaccurate. Points
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near the base of the QRS complex are more accurate since they are less affected by
the nonlinear filtering operation. To take advantage of accurate QRS base data, a
cubic spline technique was chosen to estimate QRS peaks. Forcing the fit. through
each point of the QRS complex reduces the error that may be incurred otherwise.
such as in polynomial fits. An illustrative example of the spline error using real ECG
data is shown in Fig. 5.2. The curves in Fig. 5.2 represent two possible scenarios
for a typical discretization of a QRS complex. The boxes denote a set of points
where the nonlinear filtering has undesirably imposed a large change in amplitude
between the second and third samples located at times 0.0153-0.0205 seconds. The
filled circles denote a similar discretization which did not adversely impose such
a gap. Communications with Northeast Monitoring has revealed that this gap is
not a quantization effect but is in fact an effect of the nonlinear filtering. The
specifics on the nonlinear filters used was not made available for public knowledge.
The diamonds in Fig. 5.2 represent the estimated peak locations as found by the
cubic spline technique. The difference in time between the peaks is denoted as 6
and is seen as a source of error in resolving the location of the QRS peaks in time.
If embedding techniques are used to analyze a discrete data set, any error that is
inherent in the data is unfortunately accentuated by the embedding process: the
error in calculating Euclidean distances between points in space grows nonlinearly
with the embedding dimension (Fig. 5.3). It is essential then to understand all

aspects of inherent noise in the ECG data before attempting to ascertain dynamic
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Figure 5.3: The minimum scale as a function of embedding dimension. Since the signal to be
embedded is R-R interval data, the units of r are in seconds.



characteristics through embedding techniques. If the magnitude of the total error
is well defined a priori, a minimum scale 7min can be established, which relates the
smallest window in space over which the data can be viewed before the inherent
error of the time series occludes measures made within the window. Combining all

the possible sources of error in the data, the function rmin is approximated by

Nsp{l1/Fs+p
7'min(De) = _EMAZI_—I"[QV D.+6 (51)

where

Ngp Number of samples in QRS complex fit with a cubic spline

D. Embedding Dimension

F, Sampling frequency of ECG data in Hertz

M Number of points used to fit the QRS complex using a cubic spline
p Tape noise error in seconds

§ Offset of splined peak due to nonlinear filtering operation

The values for the parameters in Eq. 5.1 were set as: Nsp = 8, M = 100,

p == 0.003 seconds. and 6 = 0.001 seconds.

5.3 Description of measures

A description of Kaplan's determinism method is found in Sec. 3.4,the correlation

dimension Dy is given in Sec. 2.1.2, and the MODWPT in Sec. 3.1. The remaining

measures are briefly described below.



5.8.1 MODWT variance

The wavelet variance is a useful alternative to conventional statistical technigues used
to estimate the power spectral density and process variance. [t can also be used to
provide insight on the stationarity of a process. For power law processes such as
colored random noise, the wavelet variance is a useful descriptor in that it can be
used to estimate the spectrum exponent and to verify the process stationarity. The
wavelet nomenclature used in this chapter is consistent with that found in Percival

and Walden [73].

Let X, with ¢ = 0,...,N — 1 be a discrete real-valued time series of length
N = 27 J € N. The discrete wavelet transform maps X, from the time domain
to the time-scale domain. Time denotes a monotonic progression of events with
the understanding that the units of ¢ need not be temporal. For example, [ may
represent a spatial progression in units of length, area, or volume. Scale denotes the
size of the window with which the wavelet coeflicients are associated.

The wavelet coefficients Wy for k = 0,... , N—1 are proportional to the difference
between adjacent averages on a scale 7; = 27! for j = 1,...,J. Here, 7; is a
normalized scale. In practical observations, 7; corresponds to the physical scale

7;At where At is the sampling period.

There are exactly N/27 wavelet coefficients associated with scale 75, the collection

of which is placed into a vector Wy for j = 1,...,J. As an example, for N = 16
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(J = 4), the wavelet coefficients Wy = [Wy,... ,W7] are associated with scale
T =1 Wy = [Ws,...,Wy| with scale 2, W3 = [W)y, W3] with scale 4, and
W, = W), with scale 8. The last wavelet coeflicient Wy_, is placed into a vector
V3 = V4 = Wi5 and is by definition proportional to the mean of X;. The collection
of vectors is concatenated into one vector W = [W; Wy ... Wj V.

The discrete wavelet transform is energy preserving in that

J
[IX[[2 = (W2 =Y W[+ (Va2 (5.2)
j=1
where [|X|2 = 3> o' X2 Since the sample variance of X; is defined as
e, L Nolge , \
K= (X -XP=) T -X =|XIP/N-X (5.3)
t=0 t=0

and since for discrete Daubechies’ wavelets X = V3/VN, it follows from Eq. 5.2

and 5.3 that

Z‘{— “ “1”2

.2 j=1

= = 5.
Ox N ( 4)

The term |[Wj}|2/N represents the contribution to the sample variance of X at scale

7;. We define the wavelet power spectrum as
Pw(1) = [[Wy|[P/N. (5.5)

Just as the power spectral density decomposes the sample variance of X; across fre-
quencies, the wavelet variance decomposes the sample variance of X, across scale.
The wavelet variance is therefore an appealing approach to analyzing physical pro-

cesses which exhibit variations in different scales. The problem in using the wavelet
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spectrum is that it is not (circularly) shift-invariant. A technique, known as the Maz-
imum Querlap Discrele Wavelet Variance (MODWT) (73] can be used to overcome
this obstacle at the price of incurring redundant. operations in the algorithm. Still.
its computational onus is the same as the widely used fast Fourier transform algo-
rithm and is acceptable for most time-critical processing. The MODWT coeflicients
are defined as

Lj-

Wi = RjuXiot moa s t=0,...,N—1 (5.6)
I=

—

(=)

with hjy = h;/29/? where hj; denotes the wavelet filter associated with scale 7; =
251 for j € N. The length of the wavelet filter at scale 7; is given by L; = (2 —
1)(L = 1) + 1 where L is number of filter taps at scale 7, = 1. The MODWT can be
used to obtain an unbiased estimate of the wavelet variance if care is taken to not

include coefficients subject to circularity. The unbiased MODWT variance is defined

as

where M; = N - L; +1.

The MODWT can be used to form an analysis of variance as a function of time
and scale or as a function of scale only. The scale only version is formed by averaging
the wavelet variance over time at a given scale. Fig. 5.4 and Fig. 5.5 show an example

of the time dependent and time independent unbiased MODWT wavelet variance.



respectively, for interspike intervals (ISI) extracted from a chaotic Lorenz sequence.

The ISI coefficients are the differences in time between adjacent local extrema.
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Figure 5.4: The unbiased wavelet variance as a function of time and scale for Lorenz ISL

The wavelet variance can be used to estimate the exponent for a power law pro-
cess, such as a in a stochastic 1/f* process {colored noise), by finding the best
linear slope to fit the data in a %(7;) versus 7; plot on a log-log scale [73]. For
example, Fig. 5.6 shows the time history and time independent MODWT wavelet
variance as a function of scale for a fractionally differenced process {Y;} with back-
wards difference order d = 0.25. The spectral density of {¥;} is a power law process
with Sy (f) ~ f~%. The slope of the wavelet variance plot is a = —1/2, and since

a = —2d, d ~ 1/4 which we know is true!
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Figure 5.6: Reulization of a FDP for d = 1/4 and the corresponding time independent unbiased
MODWT variance.
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5.8.2 Approzimate entropy

Approximate entropy or ApEn is a measure of the change in entropy between points
embedded in D, = 2 and D, = 3. Pincus 75| developed a simple algorithm for
discrete sequences. Briefly, the algorithm works by calculating the fraction ', of
all pairs of points which fall within some radius r for each point pair ¢ in D, = 2 for
i=1,...,Np where Np is the number of unique pairs in the phase plane. Define

®, to be

1 Np
(I)z‘r = log (—]\7[—)' Z (4.',"7-) . (58)
i=1

Now repeat these steps in D, = 3 to form ®3,. Then, ApEn is defined by the

difference

ApEn = (Dz,,. - (I)g P (59)

ll

Approximate entropy is claimed to be a sensitive measure of complexity in cardio-
vascular dynamics as it was shown in |38] that the ApEn of heart rate decreased

with age for healthy subjects.
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5.8.8 Bridge-detrended scaled windowed variance

The BDSWV method is used to estimate a statistical self-similarity exponent known
as the Hurst coefficient H for fractional Brownian motion or [Bm. Fractional Brow-
mian motion has a definitive relationship with fractional Gaussian noise or fGn. Let
{X,} be a sequence of random variables. {X;} is a zero mean fGn if it meets the

following conditions:
1. any finite subset of {X;} obeys a multivariate Gaussian distribution
2. E{X;} =0forallt
3. syr = cov{Xp Xopr} = GE(7 + 1PH = 272 4| — 1), 7 =0,£1,42

where E{X,} is the expected value of any member in {X\}, sx,r is the autocovari-
ance sequence. H is the Hurst coefficient for 0 < H < 1. and 6% = var{X,} = syols
the process variance assumed to be bounded [72]. Let Bp(t) be a zero mean Gaus-
sian process with variance 0%t such that Bj;(0) = 0. Then a discrete fractional
Brownian motion sequence B, can be obtained by discretely summing over an fGn

realization

t—1
B.=By(t)=)» X, t=1,2,.. (5.10)

u=0
The scaled windowed variance algorithm works by aggregating the data points

into non-overlapping windows of dyadic length. Each window size is associated
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with a scale 7; = 27 for j = 1,... ,log, N where N is the length of the series (for
convenience assume N is a power of 2). Define S(7;) be the scaled windowed variance

at scale 7;
S(r) = 37 > Gm(m) (5.11)

where M = N/7; is the number of windows and Gm(7;) is the standard deviation
of the m‘" window at scale 7;. The Hurst coeficient is then estimated by fitting
the log S(r;) versus log 7; curve with a linear least squares regression. The BDSWV
works in the same way, only for each window a line connecting the endpoints of the
sequence is subtracted to “detrend” the data. The BDSWV works well in estimating

H for fBm but fails for estimating H for fGn.

5.8.4 Dispersion analysis

Dispersion analysis, also known as standard deviation analysis, explores the effect of
averaging over non-overlapping windows of dyadic length with regard to the standard
deviation of the data [8, 9]. Dispersion analysis is designed for the analysis of {Gn

and is not suitable for analyzing fractal Brownian motion.

5.4 Results

Due to the quantity of collected data and for ease of comparison, the results will be

shown in groups preceded by a summary of observations regarding the data.



5.4.1 Healthy Patients

The RR intervals were calculated using methods explained in Sec. 5.1 for § patients.
A sample of the RR histories is shown in Iig. 5.7. The ordinate is in units of
milliseconds while the abscissa is in units of beats. On average, the patients maintain
a resting lieart rate of approximately one beat every 7 /10 of a second or about 36

beats/min.

Reinhall
2000 T T U T T T T T
1000 MWWMM
0 ' . ——Fwh
2000 T T T T T T T T
1000 - ‘ 1
W_m_j ke Vot
i . ' L nl L d L ]
0 Forster
4000 T T T T T T T T
20001 1
MHML“*"‘””‘N. Lttt "'L""‘H’"H -
e * S
1500 T T T u T T T T
1000 MMMWMWMWMMNW
500 Chambers
1500 T T T T T T T T
1000
500 . , . , , . s
500 1000 1500 2000 2500 3000 3500 4000

Figure 5.7: Samples of RR intervals for healthy patients.

Correlation Dimension (D): Figure 5.8 shows the correlation dimension re-
sults for the healthy patients. For each case, N =8192, D, = 7,7 = 1,7 = 0. Fifty

surrogate sets were also run using Theiler’s AAFT algorithm with a Hanning win-
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dow. A representative surrogate result is shown in the lower right corner of Fig. 5.8.
The Dj curves do not have a divergent behavior indicative of random noise. How-
ever, there is no significant scaling region (plateau) for any of the patients, making
interpretation difficult. So while the data does not appear to be random, there also

is no apparent fractal structure.

KDM: The KDM parameter set was N = 2!* 7 = 1,7 = 0,k = 2,Ar = 0.1, and
D, = 1,...,7 for all tests. A sample of the KDM results is shown in Fig. 5.9.
There is a distinct separation between the original RR and surrogate data in the
lower dimensions, indicating that the RR intervals (appear to be) are deterministic.
Figure 5.10 shows the violation results for all the patients. Without exception, the
KDM violation results indicate that the RR intervals are deterministic in the healthy

patients.

5.4.2 Sick: ECG Holter Recordings

In this section, the results for 30 patients with a history of heart disease are presented.

Correlation Dimension (D,): For each test. N = 16,384, D, = 7,7 = 1,7 = 0.
Figure 5.11 and Fig. 5.12 show the D; results. The results for patients 6, 7,8, 9, 13, 16, 20,
and 27 exhibits a (semi)convergent plateau region indicates some fractal structure

is present in the RR intervals for these patients. The remaining patients have the
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Patient Reinhall: N =2'%,t=1,y=0,x=2, Ar=0.1
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same type of structure as exhibited for the healthy cases (Fig. 5.8).

MODWT variance: Figure 5.13 summarizes the time independent unbiased MODW'T
wavelet, variance for all patients. Six patients (1,2,6, 10, 14,29) of the thirty exhibit
a U-shaped patten in the variance suggesting a transitional state from a stationary
process (negative slope) at small scales to a nonstationary behavior (positive slope)
at large scales, or vice versa. Ten patients (3,4,5,8,13,16,19,21,26,27) exhibit a
fairly linear positive upward trend in the data, indicating a nonstationary process
with power law scaling. Only four patients (7,9, 11, 18) exhibit a linear continuous
downward trend. indicative of stationary behavior with power law scaling. The re-
maining eleven patients do not seem to exhibit any scaling structure at all. As a
caveat to this technique, a pathologically straight line in the wavelet variance plots
can be a result of the sidelobe behavior of the wavelet filter transfer functions and
not the process itself. However, no such behavior exists in the results shown in Fig.

5.13.

5.4.8 Sick ICD Patients

Ventricular fibrillation (VF) is defined as a spasmodic fatal cardiac rhythm [21).
During VF, the heart pumps no blood and the blood pressure falls to zero within
seconds, resulting in clinical death. The VF victim passes out within seconds due

to lack of oxygen to the brain and is essentially rendered helpless. If not revived
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Figure 5.13: Time independent unbiased wavelet variance estimates for splined RR intervals from
30 patients. The patients are monotonically ordered in rows from left to right and from top to
bottom. The patient numbers (or the outer columns are noted for clarity. The abscissa of each plot
is logy(7;) where 7; = 2/ is the scule while the ordinates are log,(v*(7;)) where v? is the wavelet

variance.
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within minutes, biological death will occur. The patients studied in this section are
unique in that they all have a recorded VI and/or VT incident. Some statistics
will suffice in supporting the importance of this data: over 350,000 sudden cardiac
deaths occur every year in America with 75% occuring at home. VF occurs 65% of
the time while in ~ 3% of the cases, VT ensues. Finally, 20% of VF patients have
no history of cardiac disease [21].

Consider for example the time history of ICD patient 3 shown in Fig. 5.14.
A normal rhythm disrupted by two apparent PVC events at times around 7 and
15 seconds into the record, puts the patient into a VF mode. VF continues for
approximately 10 seconds when the ICD kicks in and shocks the heart in an attempt
to return it to a normal sinus rhythm.

VF is not the only means to a heart attack. Another fatal thythm is ventricular
tachycardia which is a sustained rapid heart rate. Consider for example the time
history of ICD patient 2 shown in Fig. 5.14. During the first 12 seconds the heart
appears to be in normal rhythm with the exception of a PVC event around 4 seconds.
Then another PVC event occurs around 15 seconds into the record and the patient
is cast into VT. The patient’s heart rate has gone from approximately 90 beats/min
to 240 beats/min and at that rate is fatal. As with the VF incident described earlier,
the ICD unit applies (fires) a relatively high voltage across the heart in an attempt
to restore its natural rhythm.

Presented below is an ensemble of results for the RR intervals leading up to a
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Figure 5.14: Sample ICD time histories for patients 1.....4. The histories exhibit (1) AF or VT
(2) VT (3) VF (4) AF where AF is atrial fibrillation, VF is ventricular fibrillation, and VT is
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ICD shock due to VT/VF incidents. As a note, a missing subplot in the plot frames

denotes a lack of data for that measure to be used.

Periodogram, BDSWYV, Dispersion Analysis: A periodogram is essentially a
decomposition of the variance with respect to frequency. The envelope of a spectrum
can be used {0 reveal any spectral scaling of the data. BDSWV and Disp are also used
to explore power law scaling in the in terms with regard to the standard deviation
(square root of the variance). Because of the similarity between the measures and for
ease of comparison, the results are presented in a picture book format. Figure 5.15

through Fig. 5.17 show the periodogram, Fig. 5.18 through Fig. 5.20 the BDSWV,
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and Fig. 5.21 through Fig. 5.23 the Disp results for the RR intervals for each of the
18 ICD patients. For each patient there are three RR records, the first of which is
classified as a “normal” rhythm for which no shock occurred, while the remaining
two are RR records leading up to VF and/or VT. For reference, the RR records are

plotted above the measures.

The bulk of the results indicate that there is some scaling of variance within the
data. With few exceptions, the BDSWV results show a negative slope (equivalent to
a negative estimate of the Hurst coefficient) for the [CD RR intervals. This, however,
is problematic in that the Hurst coefficient is defined on 0 < H <'1. A Hurst coef-
ficient close to zero may indicate that the RR intervals are an anticorrelated noise
and not a fBm. According to G. Raymond at the National Simulation Resource [9)].
in these cases the slopes tend to be small, and indicates that the SWV is an inap-
propriate means of estimating H for a fGn. Dispersion analysis is the recommended
measure in these cases. A box plot of the results summarizes the BDSWV and Disp
data for all of the ICD RR data in Fig. 5.24. The outliers show the maximum range
spanned by the measures while the box represents oue standard deviation above and
below the mean. Each marker summarizes the results for all patients for a particular
RR record index, for example RR 1 denotes the group of normal RR intervals. A
comparison between the markers indicates that these measures do not appear to be
appropriate for discerning healthy from sick with regard to the RR intervals. This

may in fact have more to do with the inability of RR data to sufficiently character-



ize the health of an individual since heart rate variability in general is subject to so
many external factors. For example, without complimentary data, one cannot. tell
whether an increase in heart rate is due to some internal change in the (cardiac)
system or whether the increase is due to an external stimulus from the brain. The
difference is that changes in the system itself may be an indication of the health of
the heart whereas stimulus from the brain to avoid being hit by an oncoming car,
for example. has nothing to do with how healthy the heart is. More data is needed
to address these issues.

With respect to these observations, it may be more beneficial to characterize the
data with respect to time and scale as opposed to scale alone, 1.e. we must employ

a technique capable of handling data where characteristics evolve with time.

Optimal MODWPT Basis: The MODWPT was shown i Chapter 3 to be
an effective means of characterizing nonstationary data with regard to its time-
frequency or time-scale content. We seek an optimal wavelet packet node set to
describe the data. To this end. the MODWPT was performed on every [CD RR
record using Daubechies’ LAS8 filters in a level J = 6 decomposition. A MODWPT
Shannon entropy minimization was then performed to create a best basis for data.
The wavelet packet nodes corresponding to the MODWPT best basis were stored
in a matrix, and a subsequent singular value decomposition was used to eliminate

the weaker nodes of the set by means of a singular value thresholding. The results
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Figure 5.21: Dispersion analysis for ICD patients 1.... .6.
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Figure 5.22: Dispersion analysis for ICD patients 7.....12.
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Figure 5.23: Dispersion analysis for ICD patients 13,....18.
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Figure 5.24: Box plot of all ICD results for the BDSWYV (left) and Disp (right).

are shown in Fig. 5.25 through Fig. 5.27. Beside each node is its corresponding
frequency range in normalized frequency units f € [0,1/2]. A summary of the
MODWPT results is shown in Fig. 5.28 and Fig. 5.29 in the form of horizontal bar
plots. The span of each bar is commensurate with the normalized frequency range of
the corresponding MODWPT node and the shading of the box indicates the nodal
energy level with the darkest boxes being the most energetic. Such a plot provides
an excellent means to compare the best MODWPT bases between the patients. The
symbol (W) appearing next to some of the plots indicates that the best basis is
a DWT. If the boxes were uniformly distributed in frequency, it would mean that
the best basis is akin to the decomposition of a STFT. For arbitrary sequences, the

MODWPT provides the flexibility to find the best basis amongst a wide variety of
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transforms including the DWT and the DWPT (which is quite close to the STFT
with regard to its partitioning of the normalized frequency interval f € [0,1/2)).

A characterization such as this could be used to help categorize disease states
or an individuals health. This type of analysis is referred to in the literature as
transient signal classification. To date, however, this type of analysis has never been
performed on ICD RR interval data. The energy of the wavelet packet coefficients
are a measure of the localized variance in time and could also be used to quantify

changes in the character of a sequence as time progresses.

Best MODWPT Basis: ICD Patients
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Figure 5.28: Energy distribution of optimized MODWPT nodes for 1ICD patients 1.... .9.
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Best MODWPT Basis: ICD Patients

.
()EE?{ =

T T X I T 1) T I
?-lx X ITITITLIT I T1IT ) S8 15 I P O W ppu AN SN OO N S 8 5 00 S S 10 2 M §

Eﬁ T TLLILLLIT — Y 00 0 O N O S S 2 Y S |

0 0.0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Normalized Frequency
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Figure 5.30 shows an example of how the MODWPT nodal energies could be
used to classify differences between RR records. An optimal nodal energy is formed
such that E$ is the energy of the strongest node in the SVD-optimized MODWP'T
set for patient j = 1,..., N, where N, is the number of ICD patients and n = 1, 2,3
is the RR record index. Define g = Efzj)/Efj) for n = 1,2,3. By definition,

fj) = 1.0 and ﬁéj), éj) are the optimized nodal energies of the VT/VF records
normalized by that of the “normal” RR record. If § strays from unity it means
that the optimized energy for the VT /VF record is different from the corresponding
normal record. Figure 5.30 shows the results of this energy ratio test. The ratio
test is produced by plotting ﬁéj ) versus ﬁy ) (hollow circles) and comparing it to the
normal energy point located at (1.0,1.0) (filled circle) in the plane. Each marker in
the plot represents the energy ratio {or one patient in the analysis. If a pattern of
markers is clustered away from (1.0, 1.0), it signifies a distinct difference between sick
and healthy RR data with respect to an optimized measure of energy. Of course, a
relevant criticism of this technique would be that other normal records may also shift
from a comparative normal in the energy ratio plot and one must take into account
sampling variability. Unfortunately, due to lack of data at the present time, such an
assessment cannot be verified. The hope. of course, is that the data associated with
sick records will venture far from the healthy ones. Alternatively, this method could
be used to (feasibly) differentiate between different types of arrythimia, yielding an

optimized energy based fingerprint of the data. The energy ratios are essentially
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coordinates which form trajectory in a (cardiac) phase space. One could imagine
a scenario where a collection of points in the phase space could represent a given
aspect of the data, such as a certain arrythmia for example. The impact of such a
technique lies solely in the value of the coordinates used to develop the phase space.
For the heart, RR intervals may not be enough and other more relevant measures
may need to be added. The work shown here is thus for illustrative purposes only,
and is meant to show the potential of the technique rather than drawing critical
conclusions concerning the validity of using RR intervals as a measure of cardiac

health.
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Figure 5.30: Best energy ratio test for all ICD data: a comparison between normal and VF/VT
events.



Approzimate entropy: Finally. Apln was calculated on all the ICD RR records
(see Fig. 5.31 to Fig. 5.33) using a 1000 point sliding window with a window shift of
10 points. In short, there is nothing in ApEn findings which suggest that it can be
used as a predictive tool for the onset of VT/VF based solely on the variation of RR
intervals. No definitive patterns emerge which would indicate otherwise. However,

more data is needed to reach a definitive conclusion on this matter.

5.5 Summary and Conclusions

To summarize, we return to the questions posed at the beginning of this chapter:

Are RR intervals generated by a deterministic or stochastic process?
The KDM and D results point to the same conclusion: for both sick and healthy

patients. a majority of the RR intervals are deterministic and suggests deterministic

modeling may be appropriate in modeling human heart rate variability. More data

is required before a definitive conclusion can be drawn.

Is there any topological fractal structure in RR intervals, indicating the
ezistence of an underlying low order deterministic chaotic system?

The answer to this question is maybe. The slopes of the correlation integrals for
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Figure 5.31: Approximate entropy for ICD patients 1,...,6.
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the healthy patients do not have a substantial scaling plateau from which one may
draw a decisive conclusion concerning the convergence of D,. Tor the sick Holter
patients, a minority of the patients produced more conclusive Dy results, displaying
obvious patterns of convergence in the correlation integrals. On the whole, the
D> measures on RR intervals for both sick and healthy patients did not produce
sufficient. evidence to support the hypothesis that the dynamics of RR intervals are
governed by low order deterministic chaotic equations of motion, i.e. while the D,

results suggest that RR intervals are deterministic, they do not appear to be chaotic.

Do RR intervals exhibit any spectral scaling, indicating statistical self
similarity common to colored random noise processes?

The results suggest that there exists some power law scaling in the RR intervals
with regard to variance. For the bulk of the data, the estimated Hurst exponent
is small and negative. However, in cases where H < 0 the data is uninterpretable

without further analysis and cannot be classified as an {Gn or fBm.

Can any of the measures be used to predict the onset of VF/VT ¢
With regard to ApEn on RR intervals, the answer appears to be no. The only

other time-dependent measure used for analysis of the RR data was the MODWPT.

It is the author’s opinion that use of the MODWPT offers much potential for signal

classification and separation. To go beyond this and say that it should also work as



238

a good predictive tool would be misleading. The ability to predict the outcome of an
event is significantly influenced by the data collected and not necessarily the tool used
to analyze the data. If data (such as RR intervals) are not sensitive to subtle changes
in the governing dynamic system from which they are measured, then it is not likely
that linear transformations, such as the wavelet transform and all its varieties, will
be sensitive enough to predict the future ontcome of the system. Nonlinear measures
are (typically) more sensitive to changes in a system, and consequently offer more

predictive potential.

Can cardiac arrythmias be classified by a MODWPT best basis for a
representative sample of a patient’s RR intervals?

It is the opinion of the author that the MODWPT best basis has much potential
in classifying disease states of the heart. RR intervals are but one aspect of a cardiac

system and other relevant aspects should also be included in the analysis.



Appendix A

SIGNAL PROCESSING TECHNIQUES

The role of a transform in a mathematical sense is to alter a sequence or an
equation in such a way as to pull out certain characteristics that may not otherwise
be obvious. Thus, a transform may be viewed as a sort of mathematical catalyst for
obtaining desired information.

Often times, it is desirable to know the spectral characteristics of a signal. For
example, an engineer responsible for the dynamic stability of a bridge, car suspen-
sion system, or building must possess detailed knowledge ol a structure’s natural
frequencies so as to avoid resonance and/or possible catastrophic failure. Frequency
analysis has consequently become a very important tool in a wide variety of scientific
and engineering disciplines. Since the spectral characteristics of a signal may not
be obvious in the time domain. frequency analysis relies on the use of transforms
which map a signal from the time domain to the frequency domain. While tradi-
tional frequency transforms work well in many situations, they often are inadequate
in characterizing sharp discontimmities or abrupt transitional behavior. As a result,

new techniques have been developed which are better able to deal with such signals.
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The focus of this chapter is to present and discuss traditional frequency domain
transformations and to introduce a novel transformation, the wavelet transform,
which was developed in response to the limitations of classic techniques. In doing
so, the concepts of orthogonality, linearity, basis functions, scale, resolution, and
windowing (to name a few) will be illustrated and discussed. These sub-issues lead to
the development and understanding of the wavelet transform in both its contirmous
and discrete version. The approach to these issues is mainly chronological, with

slight diversions to discover the intricacies and subtleties of various methods.

A.1 Fourier Series Representations

In 1822, Jean Baptiste Joseph Fourier published Théorie analytique de la chaleur
which was devoted to the mathematical theory of heat conduction. He established
the partial differential equation governing heat diffusion and solved it by using an
infinite series of trigonometric functions. In this he introduced the representation of
a function as a series of sine and cosine waves now known as the Fourier series'. He

asserted that any 2m-periodic function f(z) can be expressed as the sum

ap + i[ak cos (kz) + by sin (Ax)] (A1)

k=1

In order to calculate the Fourier coeflicients ay, ax, and by we shall use the following

lemmas.

Tt may interest the reader to know that Théorie analytique de la chaleur was not initially
accepted due to lack of mathematical rigor. The ideas contained in it, however, have played a
very important role in mathematics.
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Lemma 1 If n and m are dislinct nonnegative integers,

/ cos (ma) cos (na)de = / sin (ma) sin (na)de = 0

~ T

Lemma 2 For any positive integers n. and m,

/ cos (mux) sin (na)de = 0

-

Lemma 3 For any positive inleger n,

s ™
/ cos *(nz)dz = / sin 2(nx)dzr =

- -
Lemmas 1 and 2 are called orthogonality velationships and the muctions cos (na)
and sin (nz) for n = 1,2,... are said to be orthogonal on |—m,7|. Note that or-
thogonality implies that the inner product between two functions across a defined
region is zero. Orthogonality turns out to be an important quality for frequency
based transforms as we shall see later. Lemmas 1, 2, and 3 can be developed with
routine integration methods and is stated here without proof.
[n order to solve for the coeflicients of Eq. A.1, we shall make the assumption that.
discrete summations and integrals are interchangeable. The first Fourier coeflicient.

ao, can be solved for by integrating Eq. A.l with respect to z from —7 to .

T

/ flx)dx = ag / dr + Z an / cos (nx)dr + b, / sin (ne)de | = 2may

n=1 ad

Notice that all of the integrals in the summation are zero. Solving for ag we get

ay = o= [T fla)dx (A2)
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Now let k& be a positive integer. We shall determine a; by multiplying Eq. A.1 by

cos (kz) and integrating from —7 to m. We get
T

/_:f(rc)cos(kz)dm = ao/ cos (kz)dz

-7

+ Z {an /7r cos (nx) cos (kx)dx + by /W sin (nz) cos (km)dm} .

n=1 7r -
By Lemmas 1 and 2, all of the integrals on the right hand side are zero except the

one involving cos (nz) cos (kx) when n = k. The last equation therefore collapses to

/_-vr f(z) cos (kz)dx = ax /_7r cos (kzx) cos (kz)dz = axm

T

Solving for a; we get

a = 3 [T f(z)cos (kz)dzx (A.3)

To solve for b in Eq. A.l, we employ the same technique used to derive a; by

multiplying Eq. A.1 by sin (kz) and integrating from —7 to 7 to get

/7r f(z)sin(kz)dr = ao /—7r sin (kx)dz

™

+ z°°: [aﬂ /7r cos (nz) sin (kz)dz + by /7r sin (nx) sin (kr)dr]

n=1 -w

which can be reduced to

/7r f(z)sin (kz)dx = by /7r sin (k) sin (kr)dz = bem
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Solving for b, we get

b= L1 [T f(a)sin (kx)dzx (A1)

ki

Now that we have solved for the Fourier coefficients, lets take a closer look to reveal
their underlving purpose in the Fourier series. In Eq. A.2, it can be seen that ay
is simply the mean of the function f(z) over the range [—m,7]. Electrical engineers
often refer to ag as the direct current(DC) bias because it analogous to the voltage
or current, abont which an electrical signal tends to oscillate. In Fq. A3 and A4
we see that the remaining Fourier coefficients are derived from the inner product of
the function f(z) with cos (kz) and sin (kz), respectively. The inner product of two
functions is really a comparison of how similar each is to one another. The more
that they are alike, the larger the absolute value of the iuner product and thus the
larger the Fourier coefficient amplitude for a given frequency k.

The sine and cosine waves of the Fourier series are referred to as orthogonal
basis functions. A basis is a set of elementary building blocks that can be used to
synthesize or reconstruct a function through linear combinations in a given range.
An orthogonal basis assures us that the building blocks (basis functions) share no
common or redundant information in regard to the original signal. The concept ol
a basis function can be more rigorously defined as follows.

Define an n-vector to be an n-tuple < x,,x4,... ,, > in which each z; is a real

number. The number x; is the gt component of < Ty, ... ,T, >. Let R” be
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the set of all n-vectors, R® = {< ,,%2,...,7n > |2; €R, j=1,2,...,n}. As
an example, in planetary orbital mechanics one generally needs three coordinates to
locate an object’s center of mass in space; that is to say 3-space or R3.

A vector space can contain not only a collection of real values in R”, but also a
collection of functions or other objects. Thus. R" is a special case of a vector space.
Consider a vector space V' and suppose that < v1,v2,... ,¥, > are vectors in
V. A linear combination of < v1,Vg,... s Un > is any sum of scalars times these

vectors. Such a linear combination has the form
vy + aave + ... QpVp

If one of < Uy, V2, ... 5 Up > is a linear combination of the others, the < vy, ¥z, ... ,Un >
are linearly dependent. Otherwise, they are linearly independent. For example.

sin?(z), cos (), and cos (2z) are linearly dependent because

cos (2z) = cos?(z) —sin?(z)

o cos 2(z) + oy sin ()

where a; = 1, and ap = —1. Given these developments, the vectors < U1, V2y+vs yUn >
form a basis for the vector space V if they are linearly independent and every vector
in V is a linear combination of these vectors. A basis does not imply that the basis
functions are orthogonal as is illustrated in the following example.

The functions 1, z, and z? form a basis for polynomials of degree 2 because they

are linearly independent; that is, we cannot write one of these functions as a linear
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combination of the others valid for all . However, 1. z, and z? do not form an
orthogonal basis because there exists no range of values for « in which the all of the

inner product combinations of the basis functions is equal to zero (Fig. A.1).

"

-1 e
0
(a)

0 [
(b) (©

Figure A.1: The inner products of 1, z. and 22 resulting in (a) 7 (b) 7% and (¢) ©3. For z on [-L. L]
for L > 0. the basis is not orthogonal because 7° is even-symmetric. Thus. the inner product of 1
and x on [=L.L] is not zero. For any other range of values for . none of the inner product will
sum to zero.

For periodic signals. the Fourier series usnally does an excellent job in rebuilding
the function in the time domain. In fact, it is sometimes sufficient to sum over a
finite set of basis functions instead of the infinite sum as is defined in Eq. A.l
For example. consider Figure A.2 which shows various stages of development in the
Fourier synthesis of a periodic saw tooth waveform. Only a relatively small number

of Fourier coeflicients are needed to adequately portray the original saw tooth signal.
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(b 5]

© [10]

) /’W [50)

Figure A.2: The gradual Fourier synthesis of a periodic saw tooth wave. The numbers in brackets
to the right of each plot indicates the number of distinct sine-cosine pairs used at the corresponding
stage of development. The first Fourier coefficient. ag, is shown in plot(a). It is easy to see that qg is
indeed the mean of the signal (often referred to as the DC bias). The remaining plots are the partial
sums f{z) of the saw-tooth function f(x) such that f(r) = ag + Z,}L_l [ay, cos (k) + by sin (k)] for
(b) N=5(c) N =10 and (d) N =50.




The Fourier series of Eq. A.1 can be extended quite easily to an interval {—L, L]
simply by changing scale. The change of variables & — mx/L converts the interval
[—L, L] to |-m,7|. If we apply this scaling to the definition of the Fourier series and
Fourier coeflicients the following is obtained and is shown without proof. Let [ be

integrable on [—L, L].

The Fourier coefficients of [ on |- L, L| are

aoz—" J()

b, = 1— j( )blll(-]-)]—::l-.>([.77

forn =1,2,3.....
2. The Fourier series of [ on |[—1L,L] is

= nwT T
ap - Z {a,, cos <£%l> + by sin <il—[jl—>]

n=1

in which the numbers ag,ai,...,b1,... are the Fowrier coefficients of [ on

~L,L].
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A.2 The Continuous Fourier Transform

Fourier’s representation of functions as a superposition of sines and cosines has be-
come ubiquitous for both the analytic and numerical solution of differential equations
and frequency analysis in general. The Fourier series representation is the building
block to the design of the Fourier transform which uses complex sinusoids as a basis
as opposed to real sine and cosine waves used in the Fourier representation. The
introduction of complex sinusoids serves as a mathematical convenience in probing
a signal for oscillatory behavior which may be arbitrarily shifted in time. A sinu-
soidal shift in time is referred to as phase delay and can be readily calculated via
the Fourier transform. The Fourier transform coeflicients are the same coefficients
defined in the Fourier series representation (Eq. A.1) and are explictly derived in

the Fourier transform operation.

Definition 1 Continuous Fourier Transform

Let f be piecewise continuous on every finite interval [~L, L] and [ 1 f(@)dt be

convergent, then define the Fourier transform F of f to be

FUOY = [ St

Observe that F{f(t)} is a function of the frequency w whose units are in rad/s.

The Fourier transform of a lowercase function will be denoted as the uppercase form
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of the same letter:
F{rH} = Flw)

The inverse Fourier transform is given by

Definition 2 Continuous Inverse Fourier Transform

FUFW) = f(1) = o / " e

2T J_

A.2.1 Properties of the Fourier Transform

A number of properties that prove useful in interpreting and using the Fourier trans-

form are developed below.

Theorem 3 Linearity

If @ and B are real numbers
Flaf(t) + Bg(t)} = aF(w) + G (w)
assuming that the Fourier transform of [ and g exist. Similarly.

FHaf(t)+Bg(0)} = aF H{F(w)} + FH{BG(w))
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Theorem 4 Time Shifting
If 7{f(t)} = F(w), then
F{f(t —to)} = e F(w).

Thus, the Fourier transform of f shifted by {o is obtained by multiplying the Fourier

—iwlg

transform of f by e

Theorem 5 Frequency Shifting
If F{f(t)} = F(w), then

Fle™f(t)} = Flw - wo)

Theorem 6 Scaling

If F{f(t)} = F(w) and a is a real nonzero constant. then

Fisan) = F (%)

la]” \a

Theorem 7 Modulation
If F{f(t)} = F(w), then

FL(t) cos (wol)} = %[F(w —wo) + Flw +wo)l



and

F{ () sin (wol)} = %[F(w ) = Flw — wo))

An important property of the Fourier transform is linearity (Theorem 3). Linear-
ity implies that the principle of superposition is applicable. Thus, the spectrum of a
signal composed of many sub-signals can be found by summing over the individual
spectra for each sub-signal. In general, linearity is a desirable property since the
influence of one component (sub-sigual) in an analysis can be more easily identified.

The property of time shifting states that a shift of a signal in time produces
a corresponding phase delay of e™*°' in the Fourier transform. To see this more

clearly. it is helpful to introduce the following relation.

Theorem 8 Euler’s Formula

ret = plcos (0) + isin(9)]

Euler’s Formula is a means ol relating the rectangular and polar coordinate form

of complex numbers. Using Euler's formula, e™** = cos(wto) — ¢sin (wtp). Now
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consider a pulse modulated cosine wave of the form:
kcos(uwpt), —a<t<a
0, otherwise

The Fourier transform of the pulse is

_ ksin[a(w — wo)] + ksin [a(w + wo)]
- W — Wy w + wo '

F{f(t)} = Flw)
Notice that F'(w) in this case is purely real (no imaginary components exist). This
result is intuitive in that one would expect a cosine wave to influence only the
real portions (cosines) of the complex sinusoids used to probe f(t) in the Fourier

transform. This is a result of the orthogonality condition. If f(t) is then temporally

shifted by 57— such that f(t) = f(t — 5=-) then

k cos (wot — §) = ksin(wet), —a<t<a
ft) =

0, otherwise
To find the Fourier transform of the shifted modulated pulse, Theorem 4 is used:

_iwx | ksin [a(w - wo)] N ksin [a{w + wo)]

F{f(t—to)} =¢€ o

W —wy w +wo

. . V_ilkdﬂ’
In the limit as w — wy, € 0

— (—‘,‘i

[N E

= —i. Thus, F{f({ —to)} is purely imaginary
as w — wp. This result is intuitive in that by shifting the cosine modulator to a sine
wave, one expects the complex Fourier transform coeflicients at the corresponding
frequency wp to be purely imaginary. Again, this is a result of the orthogonality

condition.



Another interesting attribute of the Fourier translorm is the scaling property. To

understand it, first recall that when a function f(t) is scaled:

Sy = flat), where a > 0,

then it is contracted if @ > 1 and expanded if @ < 1 (Fig. A.3). The examination of

(a)
o
-1 L
-2 0 2
1 y
(b)
Eo
-1 L
2 0 2
1 Y
(c)
S o
R ‘
-2 0 2

Figure A.3: Nlustration of the effects of scaling a Munction f(t) like [(1) — f(at) for (a) a =1 (b)
a=2and (¢) a = -'2- For a > 1 the function f(at) is contracted while for a < 1 f(al) is expanded.

the scaling theorem (Theorem ) reveals an interesting fact abont signals or func-
tions in general: Expansion(contraction) of a Mnction in the time domain results
in contraction(expansion) in the frequency domain. Consequently, those fuuctions
which change rapidly, such as the Dirac delta function or the Heaviside step function,

exhibit wide spectra containing especially high frequencies while smooth functions
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contain a narrow band of frequencies. This fact will be used later to show that a
transform closely related to the Fourier transform is inadequate in analyzing signals

that contain both rapidly changing and smooth components.

A.2.2 The Energy of a Signal

The concept of signal energy was introduced in the 1930s through a research effort
by Littlewood, Paley, and Stein who computed the energy E; of a signal f(z) defined
over the domain [0, 27| to be

i

27
Br=j | I (A5)

The term energy is analogous to the that of a linear spring with spring constant k.
If the restoring force of the spring is Fy, = kx where  is the displacement relative

to the spring’s unstretched length, then the energy of the spring is
1, 2
Esp = zl\’l‘ (AG)

While the units of E,, are often expressed in Joules or some other form of work.
the units of a signal’s energy Ej are generally unspecified. Based on the efforts to
quantify energy in the time domain, the question naturally arises, "What happens
to the energy of a signal after it has been mapped to the frequency domain via the
Fourier transform?” To answer this question, cousider the following analysis.

One means of filtering a signal f(t) with a filter g(¢) is achieved through the

method of convolution.



Definition 3 Convolution

If f and g satisfy the conditions [™_|/(t)ldt and [ ™ lg(t)|dt are convergent. then
the convolution of [ and g is denoted as [ * ¢ and is defined by

o0

[fxgl®)= | J(r)glt =TT

—0

The convolution operation works by time reversing g and sliding it along [ in 7
time increments. The inner product of the f and g serves to draw out the similarity
between the two signals. The sequence g is often referred to as a filter since it. used
to filter out information from f. In effect, the complex sinusoidal basis of the Fourier
transform is used to draw out or filter information and its ties with convolution can

be derived as follows.

Theorem 9 Time/Frequency Convolution

Suppose that f and g satisfy the convergence conditions as stated in the definition

of convolution, and let F{f ()} = F(w) and F{gy(t)} = G(w). Then
F{f*gl(t)} = F(w)G(w) time convolution

and

F{ft)gt)} = ;;[F * G|(w) [requency convolution
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Proof The time convolution formula is proven below. A similar proof exists for the

frequency convolution, however, it is omitted for the sake of redundancy.

N

F{|f +g)(t)} /:no f(r)glt - ‘T)dT} ety

o

3 3
2

f(r)g{t — T)e “'drdt

f(T)g(t — 7)e ™ dtdr

1

1

g(t = T)e"'“‘”dt} dr

% 3
.
=

——

T~

¥ ¥

The bracketed term in the last line is the Fourier transform of g(t — 7). Apply the

time shifting theorem (Theorem 4) to get

/ " gt - et = e F ()} = e TCw)

o0

Therefore,

FUS * g0} = / ° )G w)e )t

= G’(u))/jC e Vdt = F(w)G(w). -

X<

Moving closer to forming a relation between the energy of a signal in the Fourier

and time domains, the frequency convolution theorem can be directly evaluated to
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yield
Let w = 0 to get

Using the fact that F(—w) = F*{w) where * denotes the complex conjugate operator.

/_:f({)g(’)df = 2—17_‘-/“3: F(l')G‘(l‘)(ll (_\7)

Now substituting g{t) for f(t) in Eq. A.7 such that F{f(t)} = F(v) (since v is a
dummy variable, we also make the substitution v — w)
‘x' 2 1 [ 2 .
[f(O]dt = — [F{w)l"dw. (A%)

27 ).«

X g -

Eq. A.8 is known as Parseval’s identity and it relates the energy of a signal in
the time domain to its energy in the frequency domain. Examination of Eq. A%
reveals that the only way for energy to be increased is through amplification of the
sequence f(t). Merely shifting a signal in time has no affect on the overall energy
of the signal since the energy calculation is always summed over the domain of its
support. Put another way, temporal shifting of a signal in time results in an energy
transfer between the sine and cosine components of the Fourier coefficients. but does

not affect the total energy level.
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A.3 The Discrete-Time Fourier Transform

The Fourier transform is a valuable tool in signal analysis for continuous systems.
However, problems can be encountered in evaluating the continuous spectrum de-
fined as an integral over an infinite domain. Often times, it is more appropriate
and efficient to approximate a continuous signal through discrete sampling meth-
ods. Discrete-time processing of continuous signals is very common in applications
including communication systems, radar and sonar, speech, and video coding and
enhancement [66]. Indeed, much of the work done in spectral analysis today is
done in the digital domain, where computers are inherently equipped to analyze and
manipulate discrete signals which may be represented as binary streams of 1's and
0’s.

In analyzing discrete-time sequences, the z-transform is often used. The z-
transform for discrete-time signals is the counterpart of the Laplace transform for

continuous-time signals.

Definition 4 z-Transform

If we let z = €, we obtain the discrete-time Fourier transform (DTFT).

Definition 5 Discrete-Time Fourier Transform
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X(ev) = Z zinle™™", neZ

n=-—0oo

The DTFT is thus seen as a special case of the z-transform. Since the z-transform
is a function of a complex variable. it is couvenient to interpret. it using the complex
z-plane. The contour |z] = 1 is the unit circle in the z-plane. Furthermore, since

|z] = ]e™| = 1. the unit circle in the z-plane corresponds to the DTFT (Fig. A.4).

A.4 The Discrete Fourier Transform

One of the most important sequences in analyzing linear processes is the discrete-
time complex exponential

rn) = Ae™on

By analogy with contimons-time complex exponential functions. wo denotes fre-

t value of the sequence resulting from

quency while n is an integer specifying the n
sampling a continuous sequence x(t) like x[n] = z(nT) where T is some period of
time not necessarily a constant. For our purposes. it will suffice to consider a uniform
sampling period. There are two important differences between discrete-time and con-

tinuous time representations of complex exponentials. The first difference is revealed

by considering discrete-time complex exponentials with {requencies (wo + 277) for r
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an integer. In this case,

T[n] — Aei(wo«)-%rr)n

— Aﬁiwon ei27rrn

— Aeiwon

It is apparent that the frequencies (wg + 277) are indistinguishable in the discrete-
time domain. Thus, in dealing with discrete-time exponentials. we need only consider
frequencies in a frequency interval of 2 such as —7 <wp < 7 or 0 < wp < 2. The
second main difference concerns the periodicity of complex exponentials. In the
continuous-time case, a complex-exponential may be periodic with period equal to
or divided by frequency. In the discrete-time case. a periodic sequence is represented

as

zln| = x[n + N|. for all n,

where the period N is necessarily an integer. Testing the periodicity condition for a

discrete-time complex exponential yields

Aeiuon — 4€iu.'0(" +N)

— AeiuonfiwoN
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The only way for this equation to hold is if
wnN = 2wk (Ag)

where k is an integer. As a result, complex exponential are not necessarily periodic
with period f{o- and, depending on the value of wy, may not be periodic at all. For
example, for wy = 1. there exists no combination of integers & and N such that Eq.
A.9 is satisfied. The periodicity condition is satisfied however for any frequency wy
such that w; = 2%,5, k is an integer.

In combining the observation that for discrete-time complex exponentials. (wo +
27r) are indistinguishable frequencies and the periodicity condition (Eq. A.9), we see
that there are NNV distinguishable frequencies for which the corresponding sequences
are periodic with period N. One such frequency set is wy = 2—"\’—,’1, k=0,1,2,... , N=-1.

Since the basis for Fourier analysis is composed of complex exponentials, we
can use the preceding results to extend the discrete-time Fourier transform to the
discrete Fourier transform (DFT). The main difference between the DTEFT and the
DFT is that the DFT is designed to analyze finite-length sequences. In addition,
with the imposed condition of assumed periodicity, the DFT utilizes the frequency
set wy = zfer,At =0,1,2,...,N =1 to obtain N distinguishable {requency estimates.
Given these results, the discrete Fourier transform X of a continous function f(¢)

is defined as

Definition 6 Discrete Fourier Transform
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N—
Xk}=T f(kT)e_ﬂ"*r'—k" forn=0,1,2,... ,N—1.
k=

[

where k denotes the k" Fourier coefficient, T is the sampling period such that T > 0,

and N is a positive integer.

The discrete Fourier transform (DFT) is seen as an equi-radial sampling of the
discrete-time Fourier transform around the unit circle in the z-plane (See Fig. A.4).
The range of frequencies span from 0 < wy < 27. The w; are actually normalized
frequencies in units of % such that w = 27 corresponds to the sampling [requency
fe = % The normalization of the frequencies represented in the DFT is a result of
sampling the DTFT in the frequency domain, much like the renormalization that
occurs in time when sampling the continuous-time signal z(t) to develop z[n]. In
contrast, the spacing of sequence values x[n| is always unity; i.e. the time axis is
normalized by a factor T. There are many properties of the DFT. One of the most
relevant properties is the fact that half of the DFT coefficients are redundant when
z[n] = f(KT) is a real valued sequence. The redundant coefficients reside below the
Real axis in the z-plane (Fig. A.4). In addition, there are two main types of distortion
that one generally needs to be aware of when analyzing discrete, finite length signals.

These distortional effects, known as aliasing and leakage are discussed below.
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magjinary
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Figure A.4: Nlustration of the Fourier frequencies as distributed on the unit circle in the z-plane.
The flled circles denote redundant frequencies when the input f(f) is purely real.

A 4.1 Aliasing: Cause and Effect

Spurious low frequency content can be introduced into the FT by undersampling
a continuous signal in time. Specifically. if the highest frequency component in a
continuous band limited signal. x.(t), is Qy. the sampling frequency, {lg, used to
discretize x.(f) must be Qg > 2Qy. Qy is commonly referred to as the Nyquist
frequency while the frequency 2Qy is called the Nyquist rate. In order to understand
the aliasing artifact it is helpful to consider the process of discretizing z.(¢) through

an impulse train modulation. The modulating signal s(t) is a periodic impnlse train

B

s() = Y b(t—ul),

HER
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where 6(t) is the unit impulse function or Dirac delta function. Consequently.
z5(t) = zc(t)s(t), or

zs(t) = zelt) Z 6(t — nT).

Through the sifting property of the impulse function. z¢(t) can be written as
o
zs(t) = D ac(t)s(t —nT).
n=-c0

Note that this is a multiplication process performed in the time domain. By the
Convolution Theorem, the process can also be performed in the frequency domain
by convolving the Fourier transform of zs(t) with that of s(t).

It has been shown that the FT of a periodic impulse train is a periodic impulse
train [66] (Fig. A.5). Given these basic principles. consider the process by which
aliasing can occur by examining Figure 1. The Fourier transform of the band limited
signal z¢(t) is shown in Figure la. Using convolution in the frequernicy domain.
spectra of the sampled signal are produced (Fig lc. 1d). Notice that for signals that,
are sampled at a frequency less than the Nyquist rate. an overlap in spectral content,
oceurs during the convolution process, giving rise to the artificial spectral power
around the difference frequency (Qs — Qy). This type of distortion is referred to as
aliasing. An immediate implication of aliasing is that X.(j9) is no longer recoverable
by low pass filtering. Based on the observation that aliasing occurs at the difference
frequency (s — Q), it can be said that the part of the signal which has frequency

components above {s/2 will appear reflected (or 'aliased’) in the range of [0, Q2s/2].
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Figure A.5: The effect of aliasing in the frequency domain. (a) spectrum of the original signal (b)
spectrum of the sampling function (c) spectrum of the sampled signal with g > 20y and (d)
spectrum of the sampled signal with Qg < 2Qxy

A.4.2  Leakage: Cause and Effect

In the discrete Fourier transform. a finite number of spectral components are nsed
to approximate the Fourier series representation of the input. These [requencies.
denoted as Fourier frequencies. are specified by the equi-spaced sampling of the
continuous Fourier transform around the unit circle in the z-plane (i.e. sampling z =
¢?). If the input contains energy at a frequency in between the Fourier {requencies,
then this energy is spread out, or leaked, across the local Fourier frequencies. This

type of distortion is referred to as leakage.
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As an example of leakage, consider an input formed by summing equi-amplitude
sinusoids at distinct frequencies (Fig. A.6). By inspection, one can easily identify
the areas of the DFT where leakage has occurred: around f = 20.4,51.0,142.8,
and 183.3 Hz. Notice, however, that the energy of one of the sine components is
captured by only one spike, hence no leakage, in the DFT at f = 102 Hz. The
question then arises, "What separates the 102 Hz sinusoid from the others which
form the input such that it does not experience any leakage?” The answer is found
in the discretization of the continuous Fourier transform (FT). The FT is broken up
into N equi-spaced divisions, where N = 256 is the number of points in the input.
With a sampling rate of f, = 512 Hz, one such division is specified by Af = fo/N = 2

Hz. The Fourier frequencies are thus formed by

F. =nAf n=01,..., N-1

Leakage in the DFT

We can estimate the location of spectral energy in the input with respect to the

F, by forming the nondimensional ratio

fi le .
P = o = i=1,2,...,5
YEAF TR

where f; are the individual frequencies (in Hertz) that form the input:
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Figure A.6: The DFT of a function x(t) = Zi:lAsin (27 fat) for A = 085 and f, =
{20.4,51.0,102.0,142.8, and 183.3} Hertz. The plots are (a) the time history of the x(t) and
(b) the DFT of z(t).
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From Eq. A.11 we see that the only frequency that is evenly divisible by Af is
f3 = 102.0 Hz, with v3 = 51.0. This equivocates to a Fourier frequency at exactly
the same frequency of f;. Hence, no leakage occurs at 100 Hz in the DFT (Fig.
A.6b). Notice, however, that all of the other frequencies are nof evenly divisible by
Af and therefore their energy is leaked onto local Fourier frequencies (Fig. A.6a). In
addition, the powers of the other dominant frequency components are not the same
as that at f3 = 102 Hz, even though the input was formed by sinusoids with the
same amplitude. It is clear that the worst case scenario is represented by the energy
at fy = 51.0 Hz. By Eq. A.l11 we see that 7, = 25.5, suggesting that the energy
lies exactly in the middle of two Fourier frequencies. In such a case, the largest side
lobe off the main spike around f; contains more power than those around fi, fi, and
fs. In general it can be said that the closer the 7y, ratio is to a whole number. the
closer the main spike comes to represent the true energy of the input around that
frequency.

There is one other form of leakage which is a direct consequence of using a
finite length input coupled with an assumed periodicity. The cause is that the
input sequence has starting and ending amplitudes which significantly differ. The
effect is that spurious high frequency content is introduced into the spectrum. In
effect, the jump discontinuity that exists between end points of the input must be
fit by the appropriate Fourier frequencies. It is natural then that the larger the

discontinuity, the larger the level of spurious energy that will inhabit the Fourier
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frequencies approximating the jump. This energy spread can be seen in the upper
frequency range around f; = 183.3 Hz (Fig A.6b). The upper band distortion
cannot be attributed to leakage alone in that. by way of comparison, other areas in
the spectrum which exhibit leakage have a rolloff of around 40 Hz (Compare rolloffs
of fo towards f3 and f4 towards f3). To this end. we can estimate the rolloff of the
leakage around f5 to be at 220 Hz. Yet. there exists energy up to and beyvond this

point; suggesting that a type of distortion other than leakage is the cause.

A.5 Windowing Signals in Time

In Fourier analysis, there always exists an assumed periodicity in the signal. When
dealing with finite length discrete-time signals. the periodicity is of the form x{n| =
z[n 4+ rN|, where N is the period necessarily an integer. and r is also an integer.
Often times. however, finite length signals do not abide by this rule as was discussed
in the previous section and illustrated in Fig. A.6. The need for the multiplication of
z[n] by wln), where win] is introduced as a window function. is required to force the
end points {x[0], z|[N — 1]} to match as well as satisfy the finite-length requirement
of the DFT. Some commonly used windows are shown in Fig. (A.7) and are defined

as follows:
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Rectangular
I, 0<n<<M
wn] =
0, otherwise
Bartlett (triangular)
LY 0<n< ¥
w(n] = 4 ‘—i—?, ’;—’<n§M

0, otherwise

Hanning
0.5—-0.5¢cos (&2}, 0<n< M
win] = ( M )
0, otherwise
Hamming
0.54 - 0.46cos (32), 0<n< M
win} =

0, otherwise

The choice of window is governed by the desire to have w[n| be as short as possible
so as to limit the computational cost of implementing the filter while having the
frequency response W (w) be close to that of an impulse in the frequency domain.
The closer the W (w) is to an impulse in the frequency domain, the less distortion it
will impose of the filtered signal. This is simply due to fact that the multiplication of
the z[n] by w(n] in the discrete-time domain is analogous to periodic convolution in

the frequency domain?. Thus, if 1’ (w) were truly an impulse such that H'(w) = é(w).

2For these reasons, windowing a signal in time is a filtering operation in the frequency domain.
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Figure A.7: Commonly used windows.

the resulting convolution would vield the original spectrum X (w). Unfortunately.
the length of a window in time is inversely proportional to its spectral resolution.
Thus, as window length decreases. the main lobe of the window frequency response
widens and consequently lessens {requency resolving characteristics of the window?
(See Fig. A.8).

An ideal frequency response of a filter is a rectangular window in the frequency
domain. The convergence of a window spectrum consisting of a finite mumber of
sequence values M is identically cognate to the issue of convergence in Fourier series.

Thus, the larger the number of window filter taps A, the better the approximation

3The fact that ideal temporal and frequency resolution cannot be simultaneously achieved has
played an integral part in the development of new signal processing techniques such as the wavelet
transform. We shall examine this topic more closely later on in the dissertation.
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Figure A.8: Magnitude of the Fourier spectrum for a rectangular window of length Af = 4.16. The
window length is inversely proportional to the main lobe width.

to the ideal rectangular pulse in the frequency domain. However. just as one achieves
nonuniform convergence or Gibb's phenomena in the time domain for a rectangular
pulse, ideal filter convergence using windows is imperfect near sharp transitions in
ideal spectra; i.e. the edges of the rectangular box in the frequency domain are hard
areas to “fit”. These hard to fit regions usually result in oscillating side lobe peaks in
the frequency response of a window. In the theory of Fourier series. it is known that
the Gibb's phenomena can be lessened with a less abrupt truncation of the Fourier
series. By tapering a window smoothly to zero at each end. the side lobes of 1}'(w)

will be attenuated. However, this comes at the cost of increasing the width of the

main lobe.
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A.6 The Short-Time Fourier Transform

Time-Frequency representations have become a very important tool in the analysis
of signals whose spectral components vary with time. In these cases, the Fourier
Transform (FT) is directly insufficient to classily temporally localized [requency
content. While the FT maps a sequence from the time domain to the frequency
domain, it does not maintain a combination of the two domains. Strictly speaking.
time information is available in the phase information of the FT but is not easily
interpreted. An obvious solution is to divide the signal into blocks via windowing
operations, and take the FT of each successive block. In this sense, we can obtain
an estimate of time localized spectral content. This process is known as the Short,

Time Fourier Transform (STIFT) and is defined in continuous-time as

Definition 7 Short-Time Fourier Transform

OO

STFT(T,w) = / x(t)g"(t — 7)e ! dt (A.11)

-0

where the signal z(t) is assumed stationary® when seen through the window function

g(t) of limited extent, centered around a time location 7. The parameter w is similar

4The term stationary implies that the central monents p,, = [~ (z —T)" p(r) dr of a function

f(x) with probability density p(z) and mean T are invariant to arbitrary shifts in time. In
other words , the statistical properties of a stationary process are independent of the absolute
time origin. Generally, only the first two moments need to fit these criteria before the signal
is considered stationary; although technically, processes whose first two moments are the only
moments to be invariant to shifts in time are referred to as weakly stationary processes.
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Figure A.9: The STFT in the frequency-time plane. The STFT is interpreted as either a succession
of Fourier transforms of windowed segments in time (vertical bands) or as a modulated filter bank
analysis (horizontal bands).

to the Fourier frequency and many properties carry over to the STFT. However, the
STFT analysis depends critically on the choice of g(t). The effect of the window is

to localize the signal z(t) in time.

There are two different interpretations of Eq. A.11. One view of the STFT is that
it is a succession of Fourier transforms of windowed segments centered around various
time lags 7. The vertical stripes in Fig. A.9 represent this view. An alternate view
is to regard the STFT as a modulated filter bank operation. At a given frequency
w, the entire signal in time is filtered with a bandpass filter which has an impulse
response modulated to that frequency. The horizontal lines in Fig. A.9 reflect

this viewpoint. The "thickness” of the horizontal and vertical extensions in Fig. A.9
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reflect the ability of the STFT to discriminate between two impulses in the frequency
domain and time domain, respectively. Given a window function g(t) and its Fourier

transform G'(w), the bandwidth Aw of the filter is defined as

[ @G () Pdw

S G w) P

Aw? = (A.12)

where the denominator is the energy of the window g(f). Eq. A.12 can be used to
calculate the minimum frequency difference Aw two sinusoids must be in order to
be discriminated. i.e. if two pure sinusoids are less than Aw apart, they cannot be
individually isolated by the STFT. Thus. the resolution in frequency of the STFT

is given by Aw. Similarly, the spread in time is given by At as

o oo Pla(t)Pde ,
At? = L (A.13)

where again the denominator is the energy of the window g{t). Here, two pulses
cannot be discriminated unless they are separated by At in time.

Ideally, it is desirable to have good resolution in both the frequency and time
domains. Unfortunately, the window size in time is inversely proportional to the
bandwidth as was demonstrated in Fig. A.8. Thus, there is always a tradeoff
between the resolution in the frequency and time domains. In fact, the product of

Aw and At is lower bounded such that

AtAS > f- (A.14)

Eq. A.14 is referred to as the Heisenberg inequality or the uncertainty principle. As

a note, Gaussian windows are often used because they meet the Heisenberg bound
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with equality.

A major drawback of the STFT resides in the fact that once a window size is
chosen, the time-frequency resolution is fixed (Fig. A.10). Therefore, sharp tran-
sitional (bursty) quasi-stationary components can be analyzed with good temporal
resolution or good frequency resolution, but not both.

Frequency

Time

Figure A.10: The time-frequency resolution of the STFT. The tiles represent the essential concen-
tration of a given basis function in the time-frequency plane. Once a window size is selected for
the STFT, the resolution for both domains remains fixed.

A.7 The Continuous Wavelet Transform

Working as a seismology engineer, Morlet recognized that the use of variable size
windows could be used to attenuate the frequency-time resolution difficulties of the

STFT. Since Morlet’s work, researchers such as Guido Weiss, Ronald Coifman, Y.
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Meyer, Stephan Mallat, and Ingrid Daubechies have helped develop a novel technique
that overcomes many of the obstacles found in the STFT and other time-frequency
representations (TFR). The technique is referred to as the wavelel analysis.
Wavelet, analysis is defined such that, when viewed as a filter bank, time resolu-
tion increases with the central frequency of the analysis filters. This is achieved by

imposing the condition
— =c (A.15)

where ¢ is a constant. The analysis flter bank is thus composed of bandpass filters of
constant relative bandwidth (often referred to as “constant-Q” analysis in the signal
processing community) (Fig. A.11). Of course, this type of analysis is also subject to
the limitations of the Heisenberg inequality. Therefore. with an increase (decrease) in
Af, a corresponding decrease (increase) in Al must oceur. The resulting logarithmic
resolutional structure works best on signals which contain a mix of short lived bursty
components and low frequency components of long duration. Many signals such as
electrocardiograms (ECG). speech. and miclear magnetic resonance curves (to name
a few) contain just such a mix of relatively short lived high and long lived low
frequency components.

The continuous wavelel transform (CWT) encompasses the preceding ideas with
one simplification: all impulse responses of the filter bank are derived from scaled

and translated versions of a prototype filter known as a mother wavelel. Thus, a
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Frequency

Time

Figure A.11: The time-scale resolution of the CWT. The tiles represent the essential concentration
of a given basis function in the time-scale plane. Varving the window size logarithmically in
time results in a logarithmic distribution in frequency concentration. With this structure, good
resolution in frequency is achieved at low frequencies while good time resolution is achieved at high
frequencies.
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typical mother wavelet ¥{x) can be nsed to form the children filters or wavelets as

YalT) = ﬁu(%)

is used for energy normalization and a is called a scale faclor. From this,

where —
1 N

the continuous wavelet transform is defined as

Definition 8 Continuous Wavelet Transform

T = [ rn (22 )as (A16)

By using a scaled version of a mother wavelet, the CWT can be used to explore bursty
behavior with a small window and long term gross behavior with a large window
(Fig. A.12). In effect, the wavelet analysis gives a view of the entire forest as well
as the details of a single tree and thus is often referred to as a sort of mathematical
microscope.

The CWT and the STFT are alike in that they are both linear transforms. How-
ever, the basis functions used in the CWT are more complicated than the sines and
cosines used in the STFT. The differences in the analysis filters (basis) wsed in the
STFT and the CWT is highlighted in Fig. A.12. Notice that the window length of
the STFT for both low and high frequency content remains the same. As a conse-

quence, analysis of relatively high frequency content for a constant window size in
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the STFT requires an increase in the number of oscillations within the window. The
wavelet transform, however, maintains the same number of oscillations in a dynam-
ically sized window (Fig. A.12). To analyze relatively high frequency content with
wavelets, the window length is decreased while the number of oscillations remains

constant. Both of these effects are achieved via a scaling operation.

Low Frequency High Frequency
1 1
E 0 0
(7]
1 1
-20 -10 0 10 20 -20 -10 0 10 20
(a) (&)
1 1
Eo 0
1 1
-20 -10 0 10 20 -20 -10 0 10 20
(©) (d)

Figure A.12: Typical STFT and CWT analyzing waveforms. The STFT basis functions are win-
dowed here with a Caussian for (a) a low [requency and (b) high frequency waveforms. The
corresponding wavelets are shown in plots (b) and (d), respectively.

A.8 The Discrete Wavelet Transform

The discrete version of the continuous wavelet transform will be approached from
a a multiscale interpretation known as multiresolution analysis (MRA). The goal

of multiresolutional analysis is to provide a simple hierarchical framework by which



281

signal information can be interpreted at various resolutions. We will restrict our-
selves to working with one dimensional signals in the development of discrete wavelet

representations.

Let Ay, be the operator which approximates a signal at resolution 27, We suppose
that an original signal f(z) is measurable and has finite energy. Thus, flz) €
L?*(R) where L2(R) denotes the vector space of measurable, square-integrable.
one dimensional functions f(x). To develop a multiresolution approximation we will

use the following guidelines.
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MRA Conditions

1. Ay is a linear operator.

. Among all the approximated functions at resolution 27, Ay, f(z) is the func-

tion which is most similar to f(x). This requires that the Ay operator is an

orthogonal projection on the vector space V.

The approximation of a signal at resolution 27*! contains all of the information
necessary to compute the signal at a coarser resolution 2. Since A, is a

projection operator on Vy; this principle is equivalent to
Vj E Z, V2) C V2)-‘rl
where Z is the set of all integers.

The approximation operation is similar at all resolutions. Thus, the spaces of
approximated functions should be derived from one another by scaling each

approximation function by the ratio of their resolution values.

When computing an approximation of f(x) at resolution 27, some information
about f(x) is lost. However, as the resolution increases to +00, the approx-
imated signal converges to the original signal. Conversely, as the resolution
decreases to 0, the approximated signal contains less and less information and

converges to zero.
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Condition 2 relates the fact that at a given resolution 27, the approximation to f(r)
given by A, f{x) is the closest one to f(z) that is possible. Condition 3 specifies that
a signal approximation at a given resolution can be used to develop approximations
al, lower resolutions. Mathematically speaking. the vector space Vy, is a subset of
V1. For normalization purposes. we shall assume the original signal to be at
resolution 1. i.e. the original signal is at the finest resolution.

In order to numerically characterize the Ay operator. an orthonormal basis of
V. must be found. The following shows that an orthonormal basis can be defined

by dilating and translating a unique function o(z).

Assumption 1 Existence of Unique a Scaling Function

Let (Vy )jez be a multiresolution approximation of L2(R) . There exists a unique
function ¢(r) called a scaling function. such that for j € Z. (the dilation of o(r) by
Qj), then

hon(r) = 27202 ~ 1)
(Q]'l( ) Q( : ,) {jn}eZ

is an orthonormal basis of Va; .

The assumption shows that we can build any basis function on Vo, by scaling a

function &(x) by 27 and translating the resulting function on a grid whose interval is
. N d P N . . . . .

proportional to 277, The 277/? coeflicient is a normalization factor for the scaling op-

eration. For a given MRA (Va ) z. there exists a unique function o(r) that satisfies
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Assumption 1. Figure A.13 shows an example of a spline smoothing function which
oscillates in a symmetric exponentially decaying envelope. The Fourier transform

®(w) of ¢(z) reveals the scaling function to be a low pass filter. Figure A.14 shows

i3y

™)

D(w)

0
%]

Figure A.13: A typical scaling function’s (a) impulse response o(7) and (b) frequency response
®(w). The scaling function is a low pass filter.

a grid of dilations and translations of the scaling function o{r) shown in Fig. A.13.
Each row can be seen as a subset of all the fuuctions that form the orthonormal
basis in (Vg )jez for j = —1.0.1 as we descend the rows. As j decreases so does
the resolution of the scaling filter. This is apparent in the stretching of the scaling
function in time as the resolution decreases. It is this very dilation that allows the
scaling function to be used as a sort of mathematical microscope capable of zooming

in at short lived bursty behavior (high resolution) and long lived low frequency be-



havior (low resolution). Notice also that as the resolution decreases. the amplitude
of the scaling function envelope decreases as well. This is due to the fact that we
wish to keep the energy of the scaling function (which amounts to the area under
(¢bjn())? ) at a constant equal to one. In this sense. the Ay operator neither adds

nor diminishes the energy Ef of a signal f(r). The orthogonal projection on Vy can

Figure A.14: Example of translations and dilations of a typical scaling function ¢(x) by ¢;.,.(z) =
2% (2 — ).

now be computed by decomposing a signal f(x) on the orthonormal basis given by
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Assumption 1. Specifically,

vf(z) € L*R),

m

Ay f(x)

277 3 (f(w) din(w)) $inlz)

nz=-—-00

where () is the inner product operator. The discrete approximation of the signal

f(z) at the resolution 27, A, f(z), is characterized by a set of inner products

ALT = ((fw), din(w) ) . (A.17)

nez

Each inner product can be interpreted as a convolution evaluated at point 277n.
Thus, we can round off our analogy in recognizing that the camera itself is analogous
to the smoothing function ¢(u) and the dilation of the smoothing function serves
as the lens. i.e. the camera ¢(u) uses its lens ¢;n(u) to focus in on a signal at a
resolution 27. It has been stated that as resolution is increased, there is a natural
decrease in the global view of the scenery. To capture the entire scene at finer
resolutions, the cameraman must sweep the scene. This is mathematically equivalent
to the convolution of the signal with a dilated version of the scaling function (Eq.
A.17). In this manner, ¢;,(u) absorbs information across the entire span of the
signal and not just in the local frame.

To implement our discrete approximation operator we need to find a relation be-
tween the discrete approximation of f(x) at resolution 2/ with that of a coarser reso-

lution 27*1. Using the fact that (¢j+1‘k(z))k Z is an orthonormal basis of Vg;+1 and
35
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that for any n € Z, the function ¢;,(x) is a member of Vy; which is included in

Vg1, it can be shown that the relation between A%, f(x) and Ag., f(x) is

(fu),djm(u)) = Z h(2n — kY S (), dyann(n)) .
k=-n0

Thus, Ag; f(x) can be calculate from Al f(x) by convolving Aj,., [(x) with the
flter & and keeping every other sample. Here H is the mirror filter of H with impulse

response E(ll) such that E(n) = h(—n) where
vn € Z, h{n) = (V2 '¢ vo(u), do.n(u).) (A1¥)

In a similar manner to development of Ag] [ (&) above, the difference in informa-

tion between the approximations at resolution 247! and 27 can be calenlated by

W f(w) = (£ ¥snw) ) (A.19)

ni:'Z.
where WY f(u) is a vector containing the wavelet coefficients at vesolution 27 and

¥() is a wavelel function. I turns out that
Winl(e) = 25y (D — n)

forms an orthonormal basis on the vector space O where Oy is the orthogonal
complement, of Vi in Va1 Thus, it can be seen that the Wi,/ are created in
exactly the same manner as the A% [. The difference is between the filter functions.
Because the WY, f represent the difference in information between the approximate

signals A, f for consecutive resolutions, and because the frequency response of the
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scaling function ¢(z) is a low pass filter, it is intuitive that the frequency response of
the wavelet (x) is a band-pass filter. That is, the relatively high frequency content
lost, between successive approximations comprise the detail signals.

With the same derivation steps as used to find the relation between A3, f(z) and
A%, f(z), it can be shown that W, f can be calculated by convolving AL S(x)

with a discrete filter G whose form we will characterize.

o0

(flu) vin(w)) = > G20 = k)(f(w),¥e16(w)) .

k=—x

where G is the mirror filter of G with impulse response g(r) such that g(n) = g(—n).

Here, g(n) is discrete filter defined by
Vn € Z, g(n) = <\/2‘1d/'..1,0(u),¢0'n(u).> (A.20)

Thus, W4, f(z) can be calculate from AY .. f(z) by convolving Ad . f(x) with the
filter § and keeping every other sample.

At this stage, all of the components are in place to perform a multiresolution
signal decomposition of f(z) into a series of approximate signals A4, f and wavelet
coefficient vectors W4, f for =1 > j > .J (Fig. A.15). The discrete wavelet anal-
ysis begins by splitting the original signal into two separate signals by convolving
f(z) — Alf(z) with the high and low pass filters g and h, respectively. These
signals are then downsampled by a factor of 2 to form a new pair of signals de-
noted as W4_, f(z) and A¢_, f(z), respectively. The wavelet coefficient vector and

approximate signal pair forms the wavelet representation at resolution 27! = —é- The
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Figure A.15: Multiresolution signal decomposition algorithm.

algorithm is then reapplied to the approximated signal at resolution 271 to form the
wavelet representation at resolution 272 and so on. Figure A.16 shows the wavelet

representation for a sawtooth signal in a 7-resolution split.
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Figure A.16: The wavelet representation for a sawtooth signal in a 7-resolution split. The AS, f
and ng f are abbreviated in the graph as Aj and W j, respectively, for j < 0. That is. A-3is the
approximate signal at resolution 273, At a given resolution 24, the wavelet coefficient vectors W j
represent the difference in information between Aj and A(j+1). Thus, W-1 represents the difference
in information between A-1 and the original signal A0 (not shown). The program used to generate
these graphs uses an algorithm similar the one shown in Figure A.15, known as the Mazimal Overlap
Discrete Wavelet Transform (MODWT). The main difference between the MODWT and the DWT
described above is that there is no decimation in time at every stage of the analysis algorithm.
In this manner, temporal information is easier to line up in time across the resolutions. It is for
this very reason that the MODWT was chosen over the standard DWT to display the A4, [ and
W f. The concept behind both remains the same; thus the interpretation of the roles for Ag,

and W, f does not change.

W-1
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TIME
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In 1985, Stephane Mallat discovered the relationship between quadrature mirror
filters (QMF) and orthonormal wavelet bases|[50|. The filters g and h are quadrature
mirror filters; so named because they comprise a pair of filters that have mirror image
amplitnde responses about a certain frequency. and maintain a phase difference of
Z at all frequencies. Their mirror pairs, h and g, are used to reconstruct the signal
f(x). This process is referred to as the synthesis operation. To perform both a
multiresolutional analysis and synthesis of a signal, four filters are needed. Once a

suitable low pass filter A is chosen, the remaining three filters are calculated by

h{—n)

=
-
=

I

g(n) = (=1)'""h(1 —n) (A.21)

g(n) = y(=n)

Figure A.17 shows the impulse responses for typical synthesis and analysis filters
while Fig. A.18 shows the corresponding frequency responses. The analysis filters
h and g are used to decompose the original signal into a multiresolutional analysis
while the synthesis filters g and A are used to build the signal back up. The original
signal can be reconstructed by building on the approximated signal at the coarsest
resolution with the higher frequency content found in the wavelet coeflicient vectors
at finer resolutions. The original input signal can be fully recoustructed provided

that all temporal portions of the signals in all the respective resolutions are used.
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Figure A.17: The impulse responses for Daubechies’ extremal phase 16 tap synthesis and analysis
filters. Once 2 has been specified, the remaining filters can be built via Eq. A.22. The filters in
each row are quadrature mirror filters.
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Figure A.18: The frequency responses for Daubechies’ extremal phase 16 tap synthesis and analysis
filters. The QMF filters have mirror image amplitude respouses about a certain frequency; in this

case at /2.
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The synthesis algorithm is shown in Fig. A.19. An alternative and equivalent means

Figure A.19: Multiresolution signal synthesis.

of synthesis is to form an approximation of the original signals with each and every
wavelet coefficient vector by essentially zeroing out all the remaining energy found
in other resolutions. The resultant synthesis using only the energy of one WY f
is known as the detail signal from resolution 27 and is denoted DY, f(r). These
signals mainly contain the band pass frequency information lost between resolutions:
hence the name detail signal. The lowest resolution approximate signal Al [(x)
is often referred to as the residue signal since it contains the leftovers of the MRA.
Figure A.20 shows the coding scheme for a three band split. An advantage in using
this analysis/synthesis techinique is that the resulting wavelet coefficient vectors and
the residue can be summed together directly to reconstruct the original signal. In

addition. at a glimpse one can isolate the effect of various features in the original
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signal by panning across the scales at a given time. Using the zeroing technique

High Pass Linear Convolution
Low Pass Downsample by 2
High Pass Synthesis Upsample by 2

@ Low Pass Synthesis Subband Coder

~Hoo

[~Ho
[~}(a3)

Figure A.20: The multiresolution wavelet coding scheme used to create the detail and residue sig-
nals. Three subband splits of the input X are performed. In this particular scheme, the bands
D1, D2, D3, A3 are constructed by essentially zeroing out all the energy in the other bands. An
advantage in using this synthesis technique is that the subbands can be summed together to re-
construct the original signal while doing a good job in preserving the temporal distribution of the
spectral energy.

described above, the lowest resolution detail signal DY_, f(z) is added to the residue
Al ,f(z) to form an approximation to the original signal. The resultant signal is
denoted as a wavelet smooth at resolution 27771, or RL ., f(z). The RY.,.. f(r) is
then added to the next highest resolution detail signal Di. ., f(z) to form a better
approximation RZ_ ., f(z) to the original signal f (z). It is clear that eventually the

wavelet smooth will converge to the original signal; i.e. R{f(z) — f(z). Thus, the



295

principle of superposition holds in regard to the wavelet details and residue signal.
Figure A.21 demonstrates the gradual convergence of the wavelet synthesis for a
sawtooth waveform. The wavelet synthesis converges in a similar manner to the

Fourier synthesis (Compare Fig. A.2 and Fig. A.21).

@ N S S i
(0) 2
(© {4}

(d) /W 8)

Figure A.21: The gradual reconstruction of a sawtooth wave broken down into a full scale multires-
olution analysis. The numbers in brackets to the right of each plot indicates the level of synthesis.
The first plot (a) is the residue E-E,‘_f-,, (z) which is proportional to the mean of the signal. The
remaining plots are the approximations 24, f() of the saw-tooth function f{x) for resolutions (b)
278 (c) 276 and (d) 27"

Now for a word on wavelet semantics. Because wavelets got their start from two
main scientific communities, often times there are different terms used to refer to the
same component in wavelet analysis. As an example, consider the wavelet coefficient
vectors WY, f. The W, f are orthogonal to one another and each is associated with

a distinct logarithmic frequency band or octave. Thus, the signals Wi fflorjeZ
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and the residue signal Ag- ;[ are referred to as subbands. Still another interpretation
is to refer to the W, f’s and the AY_, f as scales. For example, the Wj_, [ signal
in a J-level split is either referred to as the (J — k + 1)* scale wavelet coefficients or
the (J — k4 1)'" subband for & = 1,2,...,J. The resolution of a signal is linked to
its frequency content while scale refers to the topographical sense of the word; i.e.
scale here implies that of the scale of maps. It is often convenient to think of scale as
the size of the yardstick you are using to measure with. Scale and resolution are not
always commensurate. For example, low pass filtering a signal keeps its scale, but
reduces its resolution[81]. However, by the manner in which a MRA is implemented.
the scale and resolution of a signal are proportional and thus the phrases scale and

subband are used interchangeably in MRA.
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