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Abstract

Structural Breaks and Regime Switching Models:
Theoretical Extensions and Applications

Bruce Chang-Ming Wang

Chair of the Supervisory Committee:
Professor Yu-chin Chen
Department of Economics

In 3 essays, regime switching and structural break models are explored and used
in the fields of International Economics, Health Economics, and Macroeconomics.
1) Characterizing the Real Exchange Rate in a Switching AR(1) and Unit Root
Model best represents its behavior in our long horizon data for 16 countries,
which raises questions regarding the common practices of utilizing single process
long horizon regressions, panel analysis, and structural breaks. 2) Using the
SEER-Medicare database, the burden of illness of colorectal cancer patients from
1991-2002 is shown to have a break in the average first-year cost of treatment
coinciding with the FDA approval date of irinotecan, a chemotherapy agent. 3)
Simulations exploring the finite sample properties of endogenous structural
breakpoint tests show that the performances of the nonlinear and linear forms are
identical, but bootstrapped critical values should be used in small samples. Using

the NAIRU as an example, the finite sample dangers of these tests are apparent.
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Chapter I

The Search for Stationarity in Real Exchange Rates:

An Unobserved Component Regime Switching Approach
(with Yu-chin Chen)

1. Introduction

The PPP Puzzle asks whether the large and frequent short-term shocks to
the Real Exchange Rate (RER) and the persistence of these shocks can be
supported by theory. Empirical evidence suggests the half-life of RER shocks to
be 3 to 5 years, but traditional theory predicts a quicker reversion to the process
due to goods market arbitrage (Rogoff, 1996). The inconsistency between theory
and evidence leads us to believe that the RER best be described by a regime
switching model. There may be 2 distinct states: real shocks could prove to have
permanent, lasting effects whereas monetary and financial shocks could tend to
constitute volatile yet transitory disturbances. Our results indicate regime shifts in
line with historical events and strong evidence of both types of states for many
country pairs.

This regime switching approach allows us to overcome many of the

present problems in current approaches in the literature. One of the main issues in



testing for PPP is the power of the Unit Root tests in small samples.1 Post-
Bretton Woods data is often used in PPP analysis to have a sample without
nominal exchange rate regime shifts, but it contains less than 40 years of data.’
To circumvent this problem, researchers frequently choose one of two types of
approaches to increase sample size: use long-horizon data series or pool the data
for use in a panel framework. Some examples of long-horizon data include
Lothian and Taylor (1996), Rogoff (1996), and Taylor (2000). Not only do their
efforts fail to reduce the half-life of shocks down to the desired 1-2 years that
would be supported by theory through price-stickiness, but the use of long-
horizon data assumes a constant underlying data generating process, which is
unlikely because of the numerous happenings during the span of the sample. By
allowing for multiple states, our regime switching model can use the large sample
advantages of long-horizon data while relaxing the constant process assumption.

We show that series of RERs are characterized by shifts in the persistence of

! Engel (1999) and Murray and Papell (2000) explore the power of tests in small samples. Murray
and Papell (2005a and 2005b) and Amara and Papell (2004) propose alternative estimation
methods.

? Many papers explore the issue of sample selection. Grilli and Kaminsky (1989) deal with the
historical background of RER through a long set of data and conclude that the RER volatility
depends on its historical setting and not on the nominal regime. But, they concede that the post-
Bretton Woods period exhibits very high volatility. Diebold, Husted, and Rush (1991) choose to
use data from the Gold Standard because those regimes represent the greatest amount of
international cooperation, which is necessary for PPP to hold. Frankel and Rose (1996) use only
post-World War II data in their panel study because the data exhibits a clear shift before and after
the war. Even the choice of countries has an effect on the result of the studies. Cheung and Lai
(1998) claim that developed countries are less likely to exhibit stationarity than their developing
counterparts.



shocks to the processes, which are not properly picked up in analyses of long
horizon data using a single series.

Our model also exposes flaws in the popular method of getting around the
problem of multiple regimes in a long horizon dataset by breaking up the data into
separate periods. Using arbitrary sample selection methods or running structural
breakpoint tests would allow the researcher to keep from mixing regimes. In
Taylor (2000), he breaks up his dataset into 4 periods of history: Gold Standard,
Interwar, Bretton Woods, and Float. Diebold, Husted, and Rush (1991) use the
gold standard periods in their analysis to allow for the greatest amount of
cooperation between countries. A problem with specifying break dates a priori is
that if they are off by a few periods, the estimations might not fully characterize
the true, underlying processes. In the regime switching framework, our model
endogenously selects the dates for shifting regimes, which takes away the
potential for human bias in the analysis.

Using endogenous structural breakpoint tests to find distinct regimes in
long horizon data can also allow the model to select the breakdates directly, but
we show the tests to be biased in the presence of highly persistent data. For
example, Hedgwood and Papell (1998) reduce the half-lives of many RER series
by allowing the process to shift whenever a new breakpoint is encountered. They

coin their result “Quasi-PPP.” We show that the regime switching approach can



correctly identify Quasi-PPP, but Quasi-PPP cannot identify our regime switching
specification with 2 distinct states.

Our regime switching model also has implications on the alternative way
of increasing the sample size to increase the power of Unit Root tests by pooling
data across countries. Frankel and Rose (1996) use 150 countries from the
International Financial Statistics database to find stationarity with a half-life
longer than the acceptable 1-2 years. Alba and Papell (2007) use Feasible GLS
(SUR) in their analysis and conclude that one cannot characterize all countries as
exhibiting stationary or nonstationary shocks.> The results from our estimations
caution the use of this technique because there are clear differences between
countries; pooling the data would assume a certain degree of homogeneity
amongst the countries, which may be unrealistic in the case of RERs.

The proposed model, Switching AR(1) and Unit Root Model,
characterizes the RER as a stationary process with occasional permanent shocks.”
Unlike other regime switching approaches, our model maintains parsimony while
allowing for flexibility in its characterization of the RER.? The stationary process

governs the more common monetary shocks, and the nonstationary process

3 See Wu (1996), Canzoneri, Camby, and Diba (1996), and Papell (2006) for other examples of
PPP analysis using panel frameworks.

* The model is similar to the Innovation Regime Switching (1; 1, 0) model of Kuan, Huang, and
Tsay (2005) used to model Real GDP.

* Other Regime Switching models in the RER context include Engel and Hamilton (1990), Engel
and Kim (1999), Bergman and Hansson (2000), and Frdmmel, MacDonald, and Menkhoff (2002).
See Hegwood and Papell (1998), Diebold, Husted, and Rush (1991), Cheung (1993), Cheung and
Lai (1993), and Papell and Prodan (2006) for other methods.



accounts for the less frequent real shocks. The empirical results strongly support
our method of representing the RER as these 2 states. The model is robust to
variations and encompasses the findings of previous trials using structural
breakpoints and univariate Unit Root Tests. Perhaps most importantly, we show
that the regimes characterized by our model are not arbitrary but are closely
related to historical events, such as wars and nominal currency regime changes.
To further explain shifts between regimes, we tie fundamentals—such as
GDP/Capita Differences, Commodity Price Levels and Volatilities, and Trade
Openness—into our models. The fundamentals play a definitive role in
explaining the RER process, but their effect depends on the country pair in
question, which can be explained by different countries having different policies
and dependencies on commodities. Furthermore, even though distinct states show
up for each RER series, the absolute levels of the parameter estimates vary.
These findings support our conclusion that panel analysis may be too restrictive.
Though our methodology does not reduce the half life of the stationary
process of every country pair, there are a handful of countries that consistently
show quick reversion during the stationary periods. For other countries, the

shocks in the stationary periods remain highly persistent, which is consistent with



the long half-life findings in the current literature and also with recent theories
that suggest traditional theories of PPP reversion to be incomplete.6

The following section presents our models and estimation methodology.
Section 3 covers the results and discussion for the Switching AR(1) and Unit Root
Model and the 2 Unit Root Model; we also include robustness checks for the latter.
In Section 4, we directly model fundamentals to explain the behavior of RERs as
described by our model. Finally, Section 5 concludes and offers extensions to our

project.

2A. Models

The Switching AR(1) and Unit Root Model allows for both stationary and
nonstationary components because shocks could affect RERs in different ways
depending on their inherent nature. For example, real shocks may prove to have
permanent effects on RERs whereas monetary shocks are merely transitory

disturbances. This suggests that the model must allow for only one type of shock

® See Benigno (2004) on how monetary policy rules may influence persistence of RER shocks.
Other reasons for the persistent volatility include MacDonald and Ricci (2002), who argue that the
size and competitiveness of the distribution sector of an economy impacts the price adjustment
mechanisms of its tradables sector. Obstfeld and Rogoff (2000) and Imbs, Mumtaz, and Ravn
(2002) show that transaction costs could impact the price levels of the individual markets as well.
Imbs, Mumtaz, Ravn, and Rey (2005a) argues that an aggregation bias in the data yields larger
half-lives than the individual sectors would produce. This is questioned in Chen and Engel (2005)
but later reiterated in Imbs, Mumtaz, Ravn, and Rey (2005b).



each period if we wish to make this distinction. A reduction of the half-life of
transitory shocks may even lessen the purchasing power parity puzzle.

In the Switching AR(1) and Unit Root Model, the series is composed of a
permanent process and a stationary process, but shocks only affect one process at
any given time. For our annual data, a half-life of 1 to 2 years would coincide
with an AR coefficient of between 0.5 and 0.7.

Switching AR(1) and Unit Root Model:

w=x+tz )

X=X+ Sv

=0z + (1-S) e

v~N(0,6°), e~N(0,a’)
For the Switching AR(1) and Unit Root Model, the RER, y,, is characterized by a
Unit Root nonstationary process, x;, and an AR(1) process with a coefficient of ¢.
The shocks v;and e, ,for the Unit Root process and AR(1) process respectively, are
distributed normally with mean zero and variances o’ and 6.”. S;is a state
parameter that takes the value of 0 or 1.

The unique feature is that the state variable, S;, determines the allocation
of the shock at time 7. If S;= 0 for all 7 in the Switching AR(1) and Unit Root
Model, only the stationary shock, e, enters y;. In other words, for the Switching
AR(1) and Unit Root Model, the process becomes y; = xg +¢ z..; + e, where e, is

the transitory shock. This is merely a stationary AR process with a level shift, x,

For the opposite case where S;= 1, only the permanent process comes into effect



and yields y; =¢ zy +x..; +v;, where v, is the permanent shock. Here, we have a
Unit Root plus a constant, ¢ z,

Unlike many other models that incorporate both permanent and transitory
components for RERs, the model above suggests that the shocks are mutually
exclusive. Other models, such as Bergman and Hansson (2000) are built upon the
single process AR(1) model and only have switching in the intercept and
coefficient, ¢ . The authors cannot attribute the regime shifts to historical events
and, thus, fail to interpret the different states afforded by the model. We allow 2
distinct processes that can be interpreted as real and monetary shocks, which
coincide with historical events. A similar model that also has switching in
variances is presented by Engel and Kim (1999). There are 2 processes, 1
permanent and 1 transitory, which are always on and each have 3 possible
variance states. In total, there are potentially 6 different variances. The
robustness checks for our model show that any additional processes are
superfluous and merely complicate the explanation of the model. So, in our
model, there will either be a permanent shock or a transitory shock but not both in
the same period. Though this may seem restrictive, it keeps the model
parsimonious and allows for a clean interpretation of the empirical results. Note
that it is entirely possible to express the above model in a general form of an

ARMA model with state-dependent coefficients.



2B. Estimation Methodology

To estimate the Switching AR(1) and Unit Root Model, we employ the
classical estimation technique for regime switching models. Using the algorithms
provided in Kim and Nelson (1998), we first put the models in state-space form:

yrzHS,ﬂ+AS,Zt+et (2)

B = ﬁs, +FS,ﬁI—1 +Gs,v1

e R, 0
~N|0, ©
v, 0 O

Equation (2) presents an N x | observed time-series, y, , as a function of a Jx 1
unobserved series, 3, and a K x 1 series of weakly exogenous or lagged
dependent variables, z,. /3 is a function of the shock, v,, which is of dimension

L x 1. The dimensions for the remaining variables are as follows: H; is NxJ,
45 s Nx K, FyisJx J, and G is Jx L. If the variable is governed by an

unobserved Markov-switching state variable, it has the subscript S, .

Then, we estimate the parameters of interest by numerically maximizing
the likelihood functions constructed by their algorithms.
For the Switching AR(1) and Unit Root Model, its state-space

representation is as follows:

y=(1 1)(":) 3

z
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(Measurement Equation of the formy, = Hf))
x| (1 0 x,_1+S, 0 v,
z,) 0 ¢z ) L0 (1-5))¢
(Transition Equation of the form 5 = F3,_ + G v,)

0_2

&

, [ 0
Note that R, =0 andQ; = 0’

The RER is constructed as ¢, = s, + p, — p, , where s,, p,, and p; are the

logarithms of the nominal exchange rate (foreign price of the US Dollar),

domestic and foreign price levels, respectively. The data was obtained from
Taylor (2002) and updated through 2004 (if available) using the IFS database and
include the following countries in our analysis: Australia, Belgium, Canada,
Denmark, Germany, Finland, France, Italy, Japan, Netherlands, Norway, Portugal,
Spain, Sweden, Switzerland, and the United Kingdom. We use annual data in our

main estimations and quarterly data for a robustness check of the US/UK RER.
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3. Results and Discussion

In the Switching AR(1) and Unit Root Model, the shocks are either
permanent or transitory each period—there cannot be both types. This allows for
the interpretation of the existence of real shocks or monetary shocks in each
period. The model stems from the trend-cycle literature for economic output such
as the work of Kuan, Huang, and Tsay (2005) in which they applied a similar
characterization for GDP.

Table 1.1 Program simulations: Switching AR(1) and Unit Root Model

Pr(UR|\UR) Pr(St|Sy) ] oyr2 o512
True Value 0.7 0.8 0.55 0.4 0.8
Estimated (N=150) 0.8420 0.8799 0.6606 0.3663 0.8065

(0.0816) (0.0605)  (0.1026)  (0.0492)  (0.0827)

Estimated (N=3000) |  0.6808 0.7940 0.5079 0.3931 0.8066
(0.0377) (0.0303)  (0.0231)  (0.0141)  (0.0182)

Table 1.1 shows the validation of the Gauss program itself. Note that it
depicts single instances of simulated data series in order to show the potential bias
in a single, small sample series such as what we have for the actual RER data.

The probability of a Unit Root state this period given that the previous
period was a Unit Root state is Pr(UR|UR). Likewise, the probability of a
stationary state this period given that the previous period was stationary is
Pr(St|St). our’ and a7’ are the variances of the Unit Root process and of the

stationary process respectively. The simulation indicates that the program
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correctly estimates the true parameters even in our small sample (N=150)
example. As expected, the estimates become closer to the true parameter values
as the sample size increase to 3000.

Table 1.2 shows the above program’s estimations for the log RER data
series for our 16 countries with the US Dollar as the base currency. Since our
data frequency is annual, an estimate of 0.5 to 0.7 for the AR coefficient, g,
would fall in the range of a 1-2 year half-life. As the results indicate, the half-
lives varying tremendously based on the country pair in question. In particular,
Portugal, Finland, and Belgium now have a transitory process with a half-life that
falls within the acceptable range dictated by theory. France, with an AR
coefficient of 0.7675, has a half-life of only 2.6 years.

Table 1.3 shows the AR coefficients from our model for all possible
country pairs.” The large probabilities for remaining in each state demonstrate
that both processes come into effect during our long horizon data series. Half-life
estimates below 3 years are shown in bold. We see that a few of countries—
Belgium, Denmark, Portugal, Spain, and Switzerland—frequently have low half-
lives after allowing for the occasional permanent process in our regime switching

model. This finding leads us to caution both the use of long horizon and panel

7 Note that exchange rates are two-sided, so the results are the same when running US/UK and
UK/US, so only one of the possible pairs are recorded in the table.
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Table 1.2 Switching AR(1) and Unit Root Model. Standard Errors are in
arentheses. US Dollar as base currency.

Pr(UR\UR) Pr(S1\St 0 o o5’ LLH Value

Australia 0.8881 0.8375 0.8440 0.0358 0.1288 164.0230
(0.0562) (0.1028) (0.0681) (0.0079) (0.0209)

Belgium 0.9751 0.6997 0.5277 0.0806 0.5832 80.4131
(0.0150) (0.1324) (0.1255) (0.0077) (0.1273)

Canada 0.9472 0.9224 0.8074 0.0314 0.0608 228.9060
(0.0479) (0.0660) (0.1333) (0.0046) (0.0078)

Denmark 09834 0.9673 0.9267 0.0350 0.1340 1258168
(0.0138) (0.0202) (0.0457) (0.0038) (0.0113)

Germany 0.9398 0.9075 0.9580 0.0270 0.1280 169.5601
(0.0299) (0.0493) (0.0150) (0.0024) (0.0145)

Spain 0.9493 0.8634 0.9997 0.0530 0.1592 954154
(0.0314) (0.0667) (0.0065) (0.0087) (0.0194)

Finland 09125 0.7205 0.6673 0.0587 0.3224 85.5425
(0.0353) (0.1141) (0.1390) (0.0072) (0.0508)

France 0.8251 0.8292 0.7675 0.0434 0.1084 1256131
(0.0948) (0.0787) (0.1903) (0.0092) (0.0119)

Italy 0.9846 0.9099 0.9985 0.0265 02211 109.3920
(0.0122) (0.0470) (0.0010) (0.0025) (0.0223)

Japan 0.9876 0.8856 0.9919 0.1130 0.0297 104.8256
(0.0101) (0.0601) (0.0031) (0.0088) (0.0047)

Netherlands 0.9379 0.9483 0.9442 0.0275 0.1241 166.6399
(0.0308) (0.0320) (0.0257) (0.0026) (0.0117)

Norway 09505 0.8880 0.8208 0.0327 0.1633 163.0848
(0.0275) (0.0606) (0.0445) (0.0028) (0.0195)

Portugal 0.9722 0.6299 0.5519 0.0753 0.3473 77.8230
(0.0170) (0.1511) (0.0655) (0.0061) (0.0781)

Sweden 0.9373 0.8877 0.8510 0.0263 0.1379 154.2002
(0.0326) (0.0480) (0.0410) (0.0029) (0.0139)

Switzerland 0.8495 0.8663 09610 0.0227 0.1477 127.9609
(0.0597) (0.0622) (0.0142) (0.0031) (0.0150)

United Kingdom 09175 0.8900 0.9406 0.0247 0.1227 194.3264
(0.0417) (0.0655) (0.0351) (0.0026) (0.0135)
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data. When working with long horizon data on a country pair that may have shifts
in its process, the estimated coefficients may not reflect the true underlying
process. If the RER follows a model such as ours, then the single process models
become inaccurate. In a subsequent section, we present a robustness check
showing our model can correctly identify a single process, but our regime
switching model can be mistaken for a Unit Root process when regime shifts are
not permitted.

When including countries such as Belgium in a panel framework, a
researcher is then pooling together a series of RERs with dissimilar characteristics
and regime shifts, which could make the estimates biased. The countries we use
are in the OECD and often used in pool analysis, so it is necessary to carefully
study the inclusion criteria into a panel data set. For example, Alba and Papell
(2007), Murray and Papell (2004), Frankel and Rose (1996), and Wu (1996),
include Belgium, Portugal, and Spain in their panel analysis. Canzoneri, Cumby,
and Diba (1999) use Belgium and Spain. These countries have much quicker
mean reversions when allowing for the distinct regime switching processes, so we
believe using them in a panel framework would be mixing regimes and give
misleading results.

On the other hand, many of the countries have results like the US/UK
RER whose AR coefficient is 0.9406, which shows stationary shocks as

dissipating very slowly. In fact, the highly persistent stationary process could be
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“mistaken” for being a Unit Root itself. For these country pairs, the Switching
AR(1) and Unit Root Model can be approximated by 2 Unit Roots switching back

and forth, which is when the AR coefficient, ¢, is set to be 1 in our original model:

Y, =Xtz (4)

x/ = xt—l + Stvt

z,=z_+(1-8))e,
=y, =x_,+z,+Syv,+(1-5)¢,
=y, +Sv,+(1-S8)e,
v, ~N(0,c2)and e, ~ N(0,57)

This Switching 2 Unit Root specification holds for the highly persistent
country pairs because it is difficult to distinguish between highly persistent
transitory shocks and “quiet” permanent shocks in small samples.® Given that
the results from the Switching AR(1) and Unit Root Model indicate the shocks to
the stationary process last a long time, the characterization imposed by the 2 Unit

Root specification is a reasonable statistical approximation for those country pairs

with highly persistent stationary processes.’

® See Hamilton (1994), page 444, for a detailed explanation of this equivalence.
® The new model can be interpreted as having “quiet” and “noisy” periods.
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Table 1.4 Program simulations—Switching 2 Unit Root Model

Pr(LOILO) Pr(HI\HI) 010" oul’
True Value 0.7 0.8 04 0.8
Estimated (N=150) 0.6366 0.4309 0.3165 0.6860
(0.3352) (0.2802) (0.1300) (0.1016)
Estimated (N=3000) 0.7732 0.8210 0.3858 0.6784
(0.0515) (0.0536) (0.0219) (0.0296)

Simulations show that the program can correctly identify the different
variances. Table 1.4 shows the estimated parameters of a generated series for
which we defined the parameter values. Pr(LO|LO) (Pr(HI|HI)) is the probability
that the current state is quiet given the previous state was also quiet. Likewise,
Pr(HI|HI) is the probability that the current state is noisy given the previous state
was also noisy. o610’ and oy’ are the variances of the quiet state and noisy states
respectively. Again, this is just a single simulation of a small sample size and of a
larger sample size. The reason behind this is that we wish to show the potential
variation in estimating a single, small-sample series. Monte Carlo simulations
show that as the simulations increase, the average parameter estimates become
increasing close to the true parameters. Nevertheless, from the above tables, we
see that, for the small sample size, the true variance of the quiet process, 0.4000,
is estimated to be 0.3165 with a standard error of 0.1300 by the program. As the

sample size increases to 3000, the estimated parameter is 0.3858 with a standard
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error of 0.0219, which is not significantly different at the 95% confidence interval
from the true parameter of 0.4.

Next, we check to make sure the program does not falsely break the
processes into quiet and noisy states. We generate a single unit root process with
normally distributed error terms to see how the program reacts. The results are in
Table 1.5. The program is attempting to characterize the single series into 2 series
with different variances. Regardless of the sample size, the large standard errors
surrounding the probabilities of staying in their respective states indicate it does

not know in which state the process resides. The variances are all around 1,

Table 1.5 Program simulations—Single Unit Root Process run on Switching 2
Unit Root Model

Pr(LO|LO) Pr(HIHI) 010" oul’
Estimated (N=150) 0.6505 0.6184 1.1172 1.1173
(4.2793) (1.8384) (0.1422) (0.1328)
Estimated (N=3000) 0.6514 0.6171 0.1011 0.1011
(0.3781) (0.3792) (0.0545) (0.0182)

which is the true variance. So, given that the 2 identified processes are identical,
it makes sense that the program does not know in which state it belongs.

Table 1.6 shows the Switching 2 Unit Root program run for our 16
countries and that this new characterization is indeed a good approximation for

many country pairs. We see that the different variances are indeed present. For
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Table 1.6 Switching 2 Unit Roots Model. Notes: Standard Errors are in
parentheses. RERs are in terms of USD.

Pr(LOILO)  Pr(HI|HI) 610 oui LLH Value

Australia 0.8911 0.8966 0.0311 0.1227 164.0491
(0.0570) (0.0463) (0.0043) 0.0131)

Belgium 0.7660 0.9916 0.0951 0.8250 80.0729
(0.1703) (0.0091) (0.0070) (0.2683)

Canada 0.8748 0.7150 0.0136 0.0551 231.6840
(0.0665) (0.1178) (0.0033) (0.0049)

Denmark 0.9811 0.9401 0.0360 0.1360 121.6769
(0.0154) (0.0339) (0.0039) 0.0114)

Germany 0.9102 0.9406 0.0271 0.1257 166.8682
(0.0465) (0.0309) (0.0028) (0.0142)

Spain 0.8565 0.9650 0.0540 0.1604 87.9914
(0.0681) (0.0231) (0.0073) (0.0790)

Finland 0.7297 0.9005 0.0561 0.3302 81.8098
(0.1071) (0.0451) (0.0113) (0.0565)

France 0.8733 0.7301 0.0217 0.1053 130.1611
(0.0541) (0.1141) (0.0042) (0.0093)

Italy 0.6247 0.9671 0.0829 24071 80.7979
(0.2397) (0.0191) (0.0060) (0.6779)

Japan 0.1053 0.9914 0.1000 6.2768 96.0614
(3.9427) (0.0088) (0.0065) (4.4975)

Netherlands 0.9519 0.9416 0.0291 0.1264 164.1804
(0.0292) (0.0289) (0.0027) (0.0120)

Norway 0.8946 0.9550 0.0349 0.1564 154.3472
(0.0531) (0.0270) (0.0033) (0.0166)

Portugal 0.7786 0.9894 0.0894 0.3603 73.4821
(0.1624) (0.0146) (0.0089) (0.1000)

Sweden 0.9039 0.9500 0.0291 0.1409 147.4977
(0.0447) (0.0281) (0.0037) (0.0144)

Switzerland 09112 0.8803 0.0258 0.1443 125.2769
(0.0500) (0.0512) (0.0034) (0.0146)

United Kingdom 0.8770 0.9098 0.0252 0.1258 191.4932
(0.0702) (0.0427) (0.0027) (0.0138)
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the US/UK RER, the quiet and noisy periods have variances of 0.0252 and 0.1258
respectively, which is identical to the Unit Root and stationary variances from the
Switching AR(1) and Unit Root Model. "

Returning to our original Switching AR(1) and Unit Root Model, the plots
in Figure 1.1 show the probability of being in a transitory state (vertical axis)
during a given year (horizontal axis). For most of the countries, the plots show
shocks are transitory most of the time and only becomes permanent on a few
occasions. For example, Italy is shown to have transitory shocks with a couple of
exceptions such as during the period around 1945 when it was involved in World
War II. In the next section, we will show in more detail how the spikes indicating

noisy periods coincide directly with historical events.

3. Robustness Checks

We run a series of robustness checks. For instance, we add an I(2) process
to simulate a double-drift, but those results do not differ much from our current
model. The addition of time trends to these models does not reduce the half-lives,
which is consistent with the findings in the current literature. The model is also

robust for data of other frequencies too; using Post-Bretton Woods monthly data,

1 For the highly persistent countries, this characterization of the RER as having quiet and noisy
permanent shocks is consistent with the results from the current literature showing very persistent
shocks to the RER. The shocks during the quiet periods are small, permanent deviations from the
mean. This suggests that there is no arbitrage possibility unless the deviations from the mean
exceed a certain threshold. Transportation costs, transaction costs, and aggregation bias could
explain the lack of reversion within a certain limit.
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we observe the distinct regimes in our RERs. The unifying result in all of these
variations implies a model exhibiting a (sometimes highly persistent) transitory
process and a Unit Root process: the Switching AR(1) and Unit Root Model. The
robustness checks against structural breaks and Unit Root tests are presented
below. Then, we show how the regime shifts coincide with actual events by using

the US/UK transitions as an example.

3A. Robustness Check: Quasi-PPP

In Hedgwood and Papell (1998), the authors find a short half-life for the
shocks on the RER and call their result “Quasi-PPP.” They use endogenous
structural breakpoint tests on series of RERs and then run simple AR(1)
regressions on the data while allowing for structural shifts for the dates indicated
by the breakpoint tests. Their resulting AR coefficient is low enough to fall into
the 1-2 year range for PPP to hold in the short-run. If their result holds true, the
persistence exhibited by the Switching AR(1) and Unit Root Model for some
country pairs is not consistent with their findings. In this exercise, we attempt to
replicate their results given a data generating process from the 2 Unit Root

specification. '  Our method is as follows:

' If the transitory process is not persistent, then the switching AR(1) and Unit Root Model and the
Quasi-PPP results are identical because the latter will always reduce the half-life down to an
“acceptable” level. So, we use the extreme case of highly persistent shocks, which exist quite
frequently as indicated in our earlier results (See Tables 1.2 and 1.3).
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1) Generate the 2 Unit Root Model data with persistent states and different
variances

2) Confirm high ¢in a simple AR1 model:

4= 9411+ v, v ~N(0.0,7) 5)
3) Run Bai and Perron (1998) programs to find multiple breakpoints
4) Estimate AR(1) model allowing for different levels for each regime:
gr= 4] +Dyt;+ ..+ Dty +v;, v ~N(0,6,7), (6)
where D;is a dummy variable that can take the value of 0 or 1 and
1;is the level shift for the period without breaks.
In our generated series of 135 observations, which is the same number we have
for US/UK RERs, we find a high coefficient (0.9983) in the simple autoregressive
model. Then, the multiple breakpoint test program finds 3 breaks that would
coincide with the years 1881, 1901, and 1970.'% This is somewhat disturbing
because we know our true data generating process is merely 2 Unit Roots
switching back and forth and not a process with 3 breaks.!> Nevertheless, we

proceed and run the AR(1) regression allowing for level shifts in our 4 regimes.

'2 We use the tests from Bai and Perron (1998). See http://people.bu.edu/perron/code.html for
code.

1 Nunes, Kuan, and Newbold (1995) use simulations to show that unit root processes can generate
“spurious breaks.” Bai (1998) provides a note in which he presents a mathematical proof for this.
Another issue for testing structural breaks in RERs is the low power in the Bai and Perron (1998)
tests; this issue is addressed in Prodan (2005).
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Using Eviews 5.1, our regression yields a ¢ of 0.63, which falls into the range of
1-2 years for the half-life on a shock to the system.

We have shown that the 2 Unit Root specification can be mistaken as
Quasi-PPP, but can Quasi-PPP be mistaken as the 2 Unit Root specification? If
the models are all equivalent in small samples, it would be impossible to identify
the “true” model. We generate a series of data following the Quasi-PPP method.
We assume 1) 3 breaks, 2) 4 levels that are 0.7, -0.5, 0.6, and -1 in that respective
order, 3) AR(1) coefficient is 0.6, and 4) errors are iid (0,1). Then, we generate
data for sample sizes of 150 and 1000 for both the Switching AR(1) and Unit
Root Model and the 2 Unit Root specification. The break dates occur on
observations 30, 60, 90 for the small sample and on 100, 500, and 750 for the
large sample.

Table 1.7 Program simulations: Quasi-PPP (Switching AR(1) and Unit Root
Model)

Pr(URUR)  Pr(StSt) 9 ouK’ asr’
N =150 0.8625 0.9595 0.6053 1.4928 0.8975
(0.1343) (0.0279) (0.1184) (0.2744) (0.0859)
N =1000 0.0001 0.9853 0.5984 1.4062 0.9798
0.0000 (0.0073) (0.0299) (0.3251) (0.0215)

As Table 1.7 indicates, the autoregressive coefficients are estimated to be close to

0.6, which is the true parameter from the data generating process. As the sample




26

size, N, increases, the unit root process fades into the background, which is shown
by the estimate of Pr(UR|UR) as 0.0001.

In Table 1.8, the program for the 2 Unit Root specification only identifies
a single Unit Root process for both the small sample and the large sample.
Furthermore, the variances are not very different. The results we get from using
RER data for these models are different from what we just simulated above. Our
RER data yield both low and high AR coefficients, 2 processes, and distinct
variances. It does not appear that a Quasi-PPP data generating process can
correctly replicate the empirical results brought forth by our models."

Table 1.8 Program simulations: Quasi-PPP (Switching 2 Unit Root Model)

P(URIURI)  P(UR2UR2) our’ ours

N =150 1.0000 0.0208 1.1955 12239
(0.0043) 0.0000 (0.0700) (10.1152)

N =1000 0.5671 0.0001 1.0126 1.3354
(0.1441) 0.0000 0.0000 (0.0805)

3B. Robustness Check: Unit Root Tests
Next, we test the robustness of the Switching AR(1) and Unit Root Model

against standard Unit Root tests. Many studies using Long Horizon data, such as

' This phenomenon can also be interpreted as spurious structural breaks due to heteroskedasticity.
On the flipside, structural breaks are not mistakenly attributed to be heteroskedastic processes.
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Taylor (2002), run series of Unit Root tests to determine the stationarity of RERs.
If a Unit Root is present, then the shocks are permanent and PPP does not hold.
We first show that 2 commonly used Unit Root Tests (Augmented Dickey-Fuller
and Dickey-Fuller GLS) cannot account for the switching processes in our model
and, hence, incorrectly conclude that the process is actually a Unit Root series. "’
Then, we demonstrate the robustness of our model in that it can correctly
characterize single process series.

The parameter assumptions used to generate the simulated data follow the
estimates from the Belgium/US RER, which exhibits quick reversion in the
6

transitory process. See Table 1.9 for the parameter assumptions. '

Table 1.9 Parameters used to generate simulated data

Pr(URIUR)  Pr(S{St) 0 ouR’ ost’

True Parameter 0.95 0.7 0.5 0.08 0.55

We double-check that a single process AR(1) with constant regression would
yield persistent shocks under this data generating process. The output from a least

squares regression done in Eviews 5.1 is in Table 1.10.

' Taylor (2002) shows the evidence for stationarity to be inconclusive in univariate settings.
'® Sample size is 135.
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Table 1.10 Output from AR(1) with constant regression for generated data

Variable Coefficient Std. Error t-Statistic Prob.
Constant -0.049155 0.029627 -1.659108 0.0995
Lagged Value 0.965463 0.020188 47.82455 0.0000

The large coefficient of the lagged variable, the AR(1) parameter, is indicative of
persistence and is consistent with the findings in the current literature using long
horizon data. Next, we run the same series of data through 2 separate Unit Root
tests: Augmented Dickey-Fuller and Dickey-Fuller GLS. The null hypothesis of
the tests is that the series has a Unit Root.

Table 1.11 Unit Root test results on generated data

ADF DF-GLS

Test statistic -1.7108 -0.8986
Test critical values: 1% level -3.4797 -2.5823
5% level -2.8831 -1.9432

10% level -2.5783 -1.6151

In Table 1.11, we see that neither Unit Root test can reject the null hypothesis. So,

one may incorrectly conclude that our generated series is a Unit Root process.
Next, we show that a single process series is correctly picked up by our

Switching 2 Unit Root Model. We generate data from the following series:

Vi =@ Yi.; +e,, where e, is iid (0,1) shock.!”

' Sample size is 135.
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le processes run on Switching AR(1) and UR Model

Pr(UR|\UR) Pr(S1St) P OUR o5’
True ¢ =0.5 0.0013 1.0000 0.5631 0.0003 0.0720
(0.1615) (0.0001) (0.0717) (0.0570) (0.0044)
Truep =1 0.9681 0.1044 0.5715 0.0827 0.0094

(0.0145) (0.0040) (0.0026) (0.0057) (0.0302

In the first trial,

the AR coefficient is set to equal 0.5 in order to produce a half-

life of 1 year and in the second trial, it is merely a Unit Root process. When ¢ =

0.5, only the stationary process exists because the probability of entering a Unit

Root state is effectively zero. Then when the series is truly a Unit Root, p = 1,

the Switching AR(1) and Unit Root Model is again correct in showing the Unit

Root process to be dominant. So, if the process was indeed simply a single series

without any regime shifts, then our model would characterize it as so. However,

the results run on real data (see Table 1.2) clearly indicate that this is not the case

and there are 2 distinct processes that govern the RER. This robustness check is

evidence that the use of long horizon data without accounting for regime shifts

may produce spurious results.
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3C. Historical Implications

|
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Figure 1.3 Estimated Probabilities of High Variance Regime for Switching AR(1)
and Unit Root Model (US/UK). The blue/solid lines are the smoothed estimates
and the pink/dotted lines are the filtered estimates.

Figure 1.2 is of the US/UK in which the vertical axis represents the
probability of being in a permanent, Unit Root state at the date indicated on the
horizontal axis.'® Our goal is to explain the permanent states indicated by the
model. Using the smoothed estimates, we define a period to be in the permanent

state should its probability exceed 0.5. Otherwise, it is in a transitory state. The

following are the resulting permanent states with potential explanations.

'® Figure 1.1 shows plots for the other countries; again, the variations in the figures are another
indication that panel analysis may be too restrictive.
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1870-3: The United States government passes the “Fourth Coinage Act” in 1973
as a response to newly discovered Silver in the American West. The US
leaves the bimetallism currency system where the dollar could be
expressed in both Silver and Gold out of fear that the increased Silver
supply would cause inflation.

1915-1921: This is a period of great instability for both the United States and the
United Kingdom because of World War I. Furthermore, the world shifts
towards an Anchored Dollar Standard in which the other currencies base
themselves on the American Dollar.

1931-4: During the early 1930s, many governments change their currency away
from being based on Gold. In 1931, the United Kingdom leaves the Gold
Standard and the United States follows suit in 1933. The following year,
the United States raises the price of gold from $20/0z to $35/0z. Another
reason for the noise during this period is the Great Depression, where
much of the stability is lost in the financial markets and the economy as a
whole.

1946-9: After World War I1, the United Nations held a conference and established
the Bretton Woods institutions. The participants agreed to use Gold as the

common currency standard.



32

1967: This spike does not have as clear of an explanation as the others. It could
be a result from the American War in Vietnam or the formation of OPEC a
few years earlier.

1971-present: The Bretton Woods agreement collapses after the US abandons it.
Ever since, both the United States and the United Kingdom have been in a
world of flexible exchange rates.

The continued Unit Root state since the end of Bretton Woods is
consistent with current findings dubbed as the Exchange Rate Disconnect Puzzle.
Economic fundamentals should, in theory, be closely related to exchange rates.
As the previous figure indicates, the RER has experienced large, highly volatile
shocks since 1971, but this volatility is not reflected in the fundamentals. There is
seemingly a “disconnect” between the exchange rate and the underlying,

economic variables. "’

4. Modeling Fundamentals
In the previous section, we established the robustness of the models and

showed how the different states coincide with historical events. Now, we will

" Flood and Rose (1995) have a thorough discussion of this disconnect, but recent work —such as
Cheung and Lai (1997), which uses two efficient unit root tests to find PPP holding—challenge
this finding.
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apply rigorous, econometric techniques to explain the behavior of the switching.
First, we apply OLS and regress the filtered probabilities on fundamentals. Then,
we include the fundamentals directly within the measurement equation to see if it
results in reduced residual volatility. Lastly, the model is allowed to have Time-
Varying Transition Probabilities dependent on fundamentals. These exercises
show that while fundamentals do influence the switching behavior of our model,
the effect varies depending on the choice of bilateral exchange rates. This is more

evidence that pooling the data may lead to spurious results.

4A. OLS Regressions
The filtered probability of being in a transitory state or a permanent state

is the dependent variable. Even though there is little difference in the 2 series for
our models, we use the filtered as opposed to the smoothed probabilities because
the latter depicts an overall “trend” by utilizing the entire data sample whereas the
former only uses the data up to the point in question to derive its estimate. We
include both prices and volatilities of Gold, Silver, Oil, and The Economist
Commodity Index. Then, we construct 3 series of dummy variables:

1) When the US is on the Gold Standard, DUM_GOLDUS takes a value of 1

2) When the UK is on the Gold Standard, DUM_GOLDUK takes a value of

1
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3) Ifthe US is involved in a war, the WAR dummy takes a value of 1.0
Other variables in the analysis include Inflation Volatility Differences,
GDP/Capita Differences, and Average Openness, which is the average Total
Trade / GDP between the 2 countries.?’ The data is obtained from Global
Financial Services. We log the prices and construct volatilities by taking the
standard deviation of monthly data over the year in question.

Table 1.13 shows the OLS results for selected countries.”? The variable
inclusion criterion is based on Bayesian Model Averaging.” For the US/UK,
Openness, US on the Gold Standard, Silver Volatility, and Commodity Index
Volatility have significant effects on the probability of being in a low or high
variance state. We note that each variable (except for Inflation Volatility
Differences, which is not listed in the table) is significant under some country
pair.2* Perhaps different countries have different dependencies on fundamentals
due to different industry structures, commodity endowments, monetary policies,

and inflation expectations. The results point out that fundamentals do have

% We include DUM_GOLDUS (DUM_GOLDUK) when the US (UK) is one of the countries in
the bilateral RER. For US/UK, we use DUM_GOLDUS but both dummies yield similar results
because both countries were on the Gold Standard during nearly identical periods.

*! For our selected countries, Inflation Volatility Differences are available for only US/UK, and
Openness is constructed for only US/UK and Switzerland-US.

22 Results for other country pairs are available upon request.

= See Raftery (1995).

* Inflation Volatility Differences is only available for US/UK from 1914 onwards.
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Table 1.13 OLS Regressions on Fundamentals selected by BMA grouped by
quick reverting (top) and persistent (bottom) country pairs.

Gold Gold Silver Silver Oil Qil GDP/Capita
Volatility Volatility Volatility Difference
Belgium-US -- -- 0.3035 -1.3353 0.2850 - --
(0.0401)  (0.7009)  (0.0873)
Finland-US -- -1.9730 - - -- 1.0260 0.5469
(0.1337) (0.3711) (0.1768)
France-US -- - e 1.0538 - - --
(0.5011)
Portugal-US - - 0.2836 - - - -
(0.0634)
Denmark-UK 0.0010 - -0.2170 - - 1.5970 -
(0.000s) (0.1059) (0.3504)
Canada-Swi. -- - 0.2000 - 0.1727 - -
(0.0453) (0.0844)
Can. - Ger. -- - 0.1241 - 0.2360 - --
(0.0405) (0.1335)
Canada - US 0.0009 - - (1.2943) - - 1.4498
(0.0002) (0.3668) (0.2414)
France - UK -- - -- - - - 0.2959
(0.1119)
Ger. - UK - - 0.1244 - 0.3575 1.1101 -
(0.0552) (0.0624)  (0.2967)
Swi.- US - 2.6854 -- 0.3085 0.3251 - -
(0.9287) (0.0743)  (0.1144)
US-UK -- - - 1.4389 -- - (0.3197)
(0.3782) (0.1383)
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Table 1.13 (continued) OLS Regressions on Fundamentals selected by BMA

rouped by quick reverting (top) and persistent (bottom) country pairs.

Commedity Commodity Openness War Gold Intercept R?
Index Volatility Standard

Belgium-US - - - - - -0.8039 0.4190
(0.2063)

Finland-US 0.1716 -- - - -0.2113 -0.6127 0.3220
(0.0705) (0.1043) (0.2892)

France-US - - - -0.3325 -0.2068 0.6346 0.2990
(0.0725) (0.1065) (0.2968)

Portugal-US -0.1116 - - - - 0.1961 0.4060
(0.0759) (0.2659)

Denmark-UK - -- -- - -- 0.6333 0.3910
(0.2076)

Canada- Swi. - - - -0.0937 -0.2943 -0.3651 0.4590
(0.0556) (0.0603) (0.2207)

Canada - Ger. 0.1335 3.7104 - -- - (0.7850) 0.5158
(0.0407) (0.9894) (0.1747)

Canada - US - 22652 - (0.1495) (0.1927) (0.0479) 04193
(0.7954) (0.0546) (0.0530) (0.0985)

France - UK - 39612 -- (0.2091) - 06772 0.2730
(0.2959) (0.0667) (0.0625)

Ger.- UK -- 42346 -- - (0.3464) (0.6456) 0.6151
(0.9753) (0.0861) (0.1703)

Swi. - US (0.1173) - - -- (0.4912) (0.2448) 0.3100
(0.0574) (0.1226) (0.2307)

US-UK - 3.5897 1.9174 - (0.3231) 0.2558 0.6439

(0.8532) (0.3772) (0.0590) (0.0543)
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explanatory power on the behavior of shocks in our model, but which
fundamentals depends on the bilateral RER being analyzed. This is another
outcome that suggests pooling countries for analysis is not suitable. We do not
find any systematic differences between the country pairs exhibiting quick

reversion and those that do not.

4B. Parameters in the Measurement Equation

In this exercise, we incorporate the fundamentals directly in the
measurement equation. We use the Switching 2 Unit Root specification because
the country pair analyzed is US/UK, which has a highly persistent transitory
process in the original Switching AR(1) and Unit Root model.?* If the
fundamentals affect our RER series, the model should pick up a significant
coefficient in £ and reduce the weight placed on the original switching UR
processes.

Vi = X + z, +B*Fundamental, €
X=X + Sty

Zy=Zn1 T (I-Sg) (3
vi~N(0,0°), ei~N (0, 0.°)

The results for the US/UK RER series are in Table 1.14.

3 Using the Switching AR(1) and Unit Root Model yields the same results, which is further
evidence that this alternative specification holds for the country pairs with slow reversion.
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Table 1.14 Fundamentals in Measurement Equation (US/UK)

Pr(LO\LO) Pr(HIHI) o, oui p LLH Value
Gold 0.9035 0.8752 0.0252 0.1146 0.1586 194.5409
(0.0493)  (0.0801) (0.0028) (0.0144) (0.1044)
Gold Volatility 0.8890 0.8055  0.0253 0.1368 (0.4467) 193.1937
(0.0468) (0.0834) (0.0033) (0.0182) (0.3426)
Silver 0.9128 0.8858  0.0243 0.1241 0.0364 192.6870
(0.0419)  (0.0632) (0.0027) (0.0132) (0.0202)
Silver Volatility 0.9106 0.8774  0.0252 0.1259 (0.0099) 191.2102
(0.0425)  (0.0699) (0.0027) (0.0139) (0.0776)
Oil 0.9081 0.8719  0.0252 0.1263 0.0058 191.2342
(0.0439) (0.0750) (0.0026) (0.0141) (0.0221)
Oil Volatility 0.9098 0.8762  0.0252 0.1259 (0.0017) 191.2028
(0.0429) (0.0715) (0.0027) (0.0141) (0.0498)
Commodity Index 0.8994 0.8579 0.0244 0.1256 0.0669 192.6646
(0.0494) (0.0842) (0.0026) (0.0140) (0.0383)
Commodity Volatility | 0.9097 0.8763  0.0252 0.1257 (0.0113) 191.2050
(0.0429)  (0.0706) (0.0027) (0.0139) (0.1184)
Openness 0.8803 0.7568  0.0241 0.1379 2.6612 184.0305
(0.0501) (0.1088) (0.0025) (0.0176) (0.4497)
'War 0.9113 0.8855  0.0231 0.1226 0.0282 195.6347
(0.0429)  (0.0615) (0.0025) (0.0127) (0.0087)
Gold Standard 0.9122 0.8778  0.0241 0.1290 0.0432 193.7624
(0.0406)  (0.0670) (0.0024) (0.0139) (0.0177)
GDP/Capita Difference] 0.9008 0.8329  0.0257 0.1312 0.0166 189.5344
(0.0474)  (0.0950) (0.0033) (0.0164) (0.0627)
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The coefficient on the fundamental, 3, is not significant for any of the
series, and the other parameter estimates are very close to the original estimates.®
The sample size is too small for the confidence intervals to be tight enough to

yield significant regressors.

4C. Time Varying Transition Probabilities

In our current specification, the transition probabilities are constant for the
duration of our data sample. It is quite conceivable that the behavior of the RER
is linked directly to the performance of underlying, economic fundamentals. Here,
we attempt to explain the switching states in terms of these fundamentals. Again,
we choose to analyze the US/UK series, so we run this program on the Switching
2 Unit Root specification. If these extra parameters have a significant impact on
our model, it hints that there are other processes that must be accounted for in
addition to the two permanent processes. The basic methodology is to enhance
the original program to allow the transition probabilities to vary based on other

variables. The basic probit probabilities are:

PPr = Pr (St=Hi | St=Hi) = 1- ! (8)
1+exp(p, + pZ,)
QPr=Pr (St=Lo| St=Lo)=1- !
1+exp(q, +¢,Z,)

* We ran the Commodity Index as a fundamental for the US-Australia RER because Australia is a
commodity economy. Again, the coefficient for the fundamental is not significant. Then, we ran
this exercise for the AR(1) with Unit Root Model and the other models with AR(1) processes.
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Do»Pys 4y, and g, are unconstrained parameters in the optimization and Z, is the

value of the fundamental at time ¢. Figures 1.3 and 1.4 show the plots PPr and
QPr with their 95% confidence bands for Oil.” Oil Prices show significant

movement through time, the horizontal-axis.
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Figure 1.4 Time-Varying Transition Probabilities (PPr)
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Figure 1.5 Time-Varying Transition Probabilities (QPr)

Even so, the confidence intervals are wide enough that a straight line can be
drawn through the entire timeframe, so a constant probability could fit the 2 Unit
Root Model. This is even more apparent for the other commodities, so the

?7 Figures for other fundamentals are available upon request.
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Table 1.15 Time-varying Transition Probabilities (US/UK)

LLH

Po 4o 0,2 G2 pr q Value

Gold 2.4745 1.7331 0.0252 0.1293 24317 2.9870 195.321
(0.6136) (0.7046) (0.0028) (0.0147) (1.1866)  (1.3996)

Gold Vol. 0.4406 0.7762 0.0245 0.1297 (91.2717) 21.6333 196.581
(1.0719) (0.7685) (0.0027) (0.0144) (43.2762) (24.4934)

Silver 2.0829 1.5488 0.0246 0.1284 14715 0.3384 193.722
(0.5613) (0.6453) (0.0031) (0.0145) (0.7861) (0.8208)

Silver Vol. 2.5899 14.6758 0.0224 0.1139 (72.7028) 355.5128 201.585
(0.8714) (7.1335) (0.0022) (0.0100) (36.1170) (197.909)

0il 1.1290 (0.1143) 0.0245 0.1358 (3.7771) 2.4490 198.008
(0.4707) (0.6389) (0.0024) (0.0158) (0.5661)  (1.1434)

Qil Vol. 2.7608 2.2264 0.0249 0.1236 (9.8680) 3.0652 193.320
(0.7493) (0.6426) (0.0027) (0.0128) (5.1328) (0.8255)

Comm. Ind. 2.6422 1.9619 0.0250 0.1248 3.3886 2.0477 192.188
(0.6693) (0.6190) (0.0029) (0.0133) (3.1249)  (1.8179)

Comm. Vol. 1.0920 1.1860 0.0215 0.1216 (58.9334) 89.7928 197.482
(0.5184) (0.8175) (0.0031) (0.0125) (31.7486) (51.6711)

Openness 0.5839 0.7913 0.0248 0.1435 (58.1809) 19.5544 186.0224
(0.9521) (0.6960) (0.0026) (0.0176) (35.8827)  (14.695)

War 2.4331 2.0640 0.0243 0.1240  (1.8569) (1.9195) 193.533
(0.6458) (0.6344) (0.0027) (0.0136) (1.2003)  (1.1515)

Gold Std. 1.8747 0.7391 0.0240 0.1266 2.2930 (2.4198) 195.831
(0.5694) (0.9110) (0.0027) (0.0145) (1.2689) (2.1376)

GDP Diff 1.6572 2.1023 0.1273 0.0254 (1.3025) 2.9605 192.590
(0.6876) (0.5312) (0.0145) (0.0029) (3.0261) (2.5029)
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probabilities do not necessarily vary through time in our finite sample. Table 1.15
shows the numerical estimation produced by the program. We see that Oil yields
significant coefficients for both probabilities. The coefficients and the
probabilities move in opposite directions, so as Qil increases, PPr (probability of
remaining in a Unit Root state) decreases and QPr (the probability of remaining in
a stationary state) increases. In other words, as the log of Real Qil Prices
increases, the probability of staying in (or moving to) a more volatile RER regime
increases. Nonetheless, the smoothed and filtered plots of the states barely
change after allowing for the additional parameters. In general, the confidence
intervals for the probabilities are very wide, so there is not enough power in our
sample size to determine whether or not the transition probabilities are indeed
time-varying.

From our 3 ways of incorporating fundamentals into the regime switching
model, we find it difficult to pinpoint the exact fundamentals that determine the
RER process. The OLS approach shows the fundamentals to play a role in
determining the state of the RER (transitory of permanent), but there is much
collinearity among the regressors, and fundamentals are significant for different
country pairs; perhaps, due to different industry structures, commodity
endowments, monetary policies, and inflation expectations, different countries
have different dependencies on fundamentals. Nevertheless, certain series—such

as GDP/Capita Differences—show up frequently. This suggests the Balassa-
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Samuelson effect may explain some of the variation in the RER. In general, the
estimations reveal parameters to be of different values and significance for

different country pairs, so the data should not be pooled.

S. Conclusion

Using over 100 years of data from 16 OECD countries, we find that the
RER is best described as having both transitory and permanent shocks, a
framework that overcomes many issues arising from typical long horizon,
structural break, and pooled data analyses. The Switching AR(1) and Unit Root
Model allows the RER to possess either stationary or Unit Root nonstationary
shocks in any given period. The majority of the shocks to the RER are transitory
ones though the degree of persistence varies depending on the country pair in
question. Certain countries, such as Belgium, Portugal, and Spain, consistently
have half-lives below 2 years during the transitory states.

This leads us to caution the common practices of both using long horizon
data analysis and panel analysis as means of circumventing the testing power
issues associated with the search for the existence of PPP. Our model clearly
shows distinct regimes that would become mixed in simple long horizon and
panel frameworks, which in turn could lead to biased estimations. One of the

robustness checks for the model shows that using structural breaks to account for
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regime shifts is also misleading. If the stationary process in our model is highly
persistent, then the endogenous structural breakpoint tests show spurious breaks.

Our specification presents regimes that are consistent with historical
events. The model implies that shocks due to wars and currency standard shifts
are permanent, whereas the other shocks are transitory and mean reverting an a
stationary regime. After the collapse of Bretton Woods, our model consistently
shows noisy periods, which supports the current literature exploring the Exchange
Rate Disconnect Puzzle, where the large volatility observed in exchange rates is
not reflected in economic fundamentals.

In a more rigorous analysis of the regime shifts, we find that the inclusion
of fundamentals diminishes the puzzle by providing explanatory power for the
changes of regimes. The fundamentals we use are commodity prices and
volatilities, GDP/Capita differences, inflation differentials, war periods, openness,
and gold standard periods. In addition to OLS regressions selected by BMA, we
model the fundamentals as time-varying transition probabilities and also directly
in the measurement equation; the significance of the variable depends on the
bilateral RER used in the analysis, which could be because different countries
have different policies and dependencies on fundamentals. The variation in the
role of each fundamental further supports the potential problems in pooling data

to increase sample size.
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Though a handful of countries have reduced half-lives, the PPP Puzzle still
remains for many others. Our model is in agreement with that literature that finds
a long half-life for the shocks to RERs. One possible extension would be to pool
highly persistent country pairs could and use the Switching 2 Unit Root
framework to increase the power of the tests. Assuming proper correction for
heteroskedasticity, this would allow the researcher to exploit the increased sample
size while maintaining a homogenous sample. However, countries, such as
Belgium, that clearly possess a transitory process must be omitted from such
panels. Lastly, we could modify the model to include more states, but that would

reduce the parsimony of our current framework.
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Chapter 11

Trends in First-Year Costs and Survival for Colorectal Cancer

Patients: Empirical Testing for Structural Breakpoints
(with Louis Garrison)

1. Introduction

Colorectal cancer is the third most prevalent cancer and accounts for 10%
of all cancer deaths in the United States (Jemal et al, 2005).28 In 2005, there were
over 145,000 cases of colorectal cancer and experts predict there is a 6% lifetime
chance of getting the disease (Winawer et al, 2003). The monetary cost of the
disease is clearly great: one report estimates the direct medical costs alone were
over $5.7 billion in 1997 (Brown, 2001).

In this study, we analyze trends in both first-year costs and survival for
colorectal cancer patients using time-series techniques. Table 2.1 shows the
approval of new drugs during the past 45 years. Most new introductions have
been in the last 10 years, which could lead to a change in average treatment costs
and outcomes. Our analysis focuses on the societal impact of these new drugs on
costs and survival. This information could be important not only for individuals
diagnosed with colorectal cancer but also for the decisions of insurance providers

and medical care providers.

% From 1998-2002, the incidence of colorectal cancer per 100,000 individuals was 62.1 for men,
46.0 for women, 61.7 for white men, and 72.5 for black men (Jemal et al, 2005).
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We perform a time-series study of the first-year costs and first-year
survival probabilities of newly diagnosed colorectal patients from 1991-2002.
This is in contrast with the lifetime cost studies done by Ramsey et al. (2002) and
Etzioni et al.(2001). We examine the underlying cost structure changes through
time, which can provide useful information on the homogeneity assumptions,
perhaps overly restrictive, sometimes made in lifetime costs analyses.

Unlike most pharmacoeconomic studies of costs and survival that are
based on clinical trial data, we use “real-world” data collected in the SEER-
Medicare databases. Then, we compare our empirical results to the
pharmacoeconomic modeling results. Our methodology and estimates can serve
as a baseline for future assessment of the real-world impact of drug regimens.

Though individual-level data is available, we use an aggregated time-
series in our analysis in order to look at the overall burden of colorectal cancer to
society. By not identifying the introduction of particular drug treatments ahead of
time, we impose no preconceptions on the data. For example, non-pharmaceutical
events, such as changes in Medicare reimbursements, may also change the
average cost of illness for colorectal cancer. Using aggregated data allows us to
examine the overall pattern of costs and survival before searching for

explanations in their potential shifts through time.
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Table 2.1 Colorectal Cancer Drug Approval Dates?

Drug

When Approved by FDA

General Indication

Fluorouracil (5-FU)

Apr. 25, 1962

Colon-Rectum

Leucovorin

Dec. 12, 1991

In combination with 5-FU

Irinotecan (Campto)

June 14, 1996

Metastatic CRC

Capecitabine (Xeloda)

Apr. 30, 2001
Sept. 7, 2001
June 15, 2005

Metastatic CRC (1% line)
Metastatic CRC (27 line)
Adjuvant therapy-Dukes’ C CRC

Oxaliplatin (Eloxatin) Aug. 9, 2002 Metastatic CRC (2 line)
Jan. 9, 2004 Metastatic CRC (1¢ line)
Nov. 4, 2004 Adjuvant therapy-Stage III CRC
Cetuximab (Erbitux) Feb.12, 2004 EGFR-expressing metastatic CRC
in patients refractory to irinotecan-
based chemotherapy (combo) or
intolerant to irinotecan
Bevacizumab (Avastin) Feb. 24, 2004 Metastatic CRC (1¢ line)

For this analysis, we employ the endogenous structural breakpoint test for

multiple breaks on series of costs. *° To our knowledge, this is the first study

utilizing these techniques for analyzing trends in cancer costs. There may be a

break in cost and survival for a variety of reasons, such as if the impact of the new

drug regimens is substantial or if there is a change in the Medicare reimbursement

scheme. On the other hand, the new drugs could be priced to capture any

potential savings in other costs; for example, even if the pharmacy costs are

** From Best (2007)

*® See Bai and Perron (1998) and Qu and Perron (2005) for a detailed description of the tests.
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greater, they could be offsetting the lower laboratory costs. The end result would
be no change in the overall cost. Additionally, the changing trend in overall
medical spending could be affected by medical price inflation, as reflected in the
CPI Medical Deflator (base period of 1982-84), which we use to adjust nominal
amounts to real amounts.

The results indicate a clear break in average first-year costs for Stage II,
II1, and IV patients. However, there is no break in average first-year survival for
any group of patients. This would imply a break in the average cost-effectiveness
of colorectal cancer treatment in the recent past.

This empirical study of costs can be compared with the
pharmacoeconomic projections based on the results of clinical studies. We find
significant changes in real costs in the time-series in the average cost of first-year
patients by $8,433 to $13,424, corresponding in time to the introduction of
irinotecan. For survival, however, we fail to find a break in the time-series that
might be reflective of the 20 percentage point increase in first-year survival
probability attributed to irinotecan in clinical trials.

On first glance, the break date lines up with the introduction and use of
irinotecan. Then, we perform a series of robustness checks by analyzing
subcomponent costs, including a time-trend, removing irinotecan patients, and an

alternative measurement of cost. These exercises show that the introduction of
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irinotecan alone cannot fully explain the break, so there are most likely other
reasons for the changing cost-effectiveness.

The following section describes the Materials and Methodology used.
Section 3 presents the Results and Discussion. Section 4 has our Robustness

Checks. Finally, Section 5 concludes and suggests extensions to this project.

2. Materials and Methodology

Our data combines the Surveillance, Epidemiology and End Results
(SEER) and Medicare databases. SEER has 17 registries in the United States that
provide individual level data on demographics, clinical diagnosis, and cause of
death for cancer patients. See Figure 2.1 for a map of the SEER registries. Stage
of disease is directly assessed only at baseline when each patient enters the
database: thus, progression of the disease can only be inferred from other
indicators. The Medicare database provides claims data for health services, which
covers institutional stays, physician/supplier bills, outpatient services, home
heélth services, hospice care, and durable medical equipment claims. Though the
database records all processed claims for Medicare Part A and Part B, it does not
have data on outpatient, out-of-pocket expenses.’' The linked SEER-Medicare

database allows researchers to track the medical expenses of cancer patients on an

*! Medicare Part A covers hospital stays and Part B covers outpatient, medical expenses for
services and products not included in Part A. Recently Part C (Medicare Advantage Plans) and
Part D (Prescription Drug Plans) have become options to those who qualify, but these choices
became available only after the end of our data series.
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individual level. The database is publicly available for researchers and is updated
on a continuing basis, most recently in 2006 to include Medicare data through
2002 and SEER data through 2003. For our analysis, we use Washington State
patient data from 1991-2002, which provides us with 12,714 colorectal cancer

patients in total.

Arpzong

) | indhans

. SEER Area
Funded by NCI

SEER Area
Funded by NCI & CDC

Figure 2.1 Map of SEER Registries™

In our final analysis, the patients must be covered by both Parts A and B
for the entire first year following their initial diagnosis. The subjects must be 65

years or older unless disabled; we also exclude Medicare End Stage Renal

32 See http:/seer.cancer.gov/registries/ for more information.
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Disease Program patients. Any individuals with prior diagnosis of cancer are also
excluded. After processing our exclusion criteria, we are left with 10,038
individuals.

Table 2.2 Observations per Stage

Stage 1 2 3 4 0 or unknown
Observations 2,210 2,943 2,122 1,425 1,338

We combine the individual-level data to create a time-series of average
first-year costs in the aggregate. Any filed claims from the Medicare files that
occur within 365 days of initial diagnosis contribute to the total first year cost of
the individual.® Then, we adjust the average first-year cost for all individuals in
a given period by the CPI Medical deflator.*

The measure for survival is the probability of surviving the first-year after
initial diagnosis. The initial date is based on the entry into the SEER database.
We then calculate the percentage of patients who are alive 365 days after the
initial date. Finally, we create a time-series of survival probabilities based on the
entrance date in SEER.

The time-series frequency is quarterly because higher frequency data—

such as monthly or daily—is not only very noisy but also too small in sample to

*> The variable name depends on the claim file used. For Medicare Provider Analysis and Review,
Carrier Claims, Outpatient Claims, Home Health Agency Claims, and Hospice Claims, the series
is “Claim Total Charge Amount.” For Durable Medical Equipment, it is “Submitted Charge
Amount.” Note that using charges may overestimate the actual payment amount. See Section 4.4
for more analysis using payment series.

** See Bureau of Labor Statistics for detailed information on the CPI.
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aggregate for this type of time-series analysis. Lower frequency data (semi-
annual and annual) would give us a small sample of data points with which to
work and also assumes a constant data generating process within the longer
duration. Our choice of quarterly data leaves us with 48 periods, which also
allows us to use the asymptotic critical values in our analysis.3 3

To find breaks in our cost and survival series, we employ the endogenous
structural breakpoint tests of Bai and Perron (1998) and Qu and Perron (2005). In
particular, we use the sequential method to determine if multiple breakpoints exist.
The test extends the traditional structural breakpoint tests of the Chow Test where
the researcher specifies an a priori break date and then tests the potential
subsamples for consistency using an F-test. Our tests are “endogenous” in that
the break dates are not pre-specified but rather each date remaining (after 15%
each end of the sample is trimmed for analytical purposes) is tested as the
potential breakpoint. Ifthere is indeed a break, the subsequent subsamples are
then tested in the same manner for additional breaks. After finding breaks in our
cost series, we then show the break dates coincide with the introduction and

adoption of irinotecan for the treatment of colorectal cancer in Medicare patients.

%% Chapter 3 shows that endogenous structural breakpoint tests in small samples should rely on
bootstrapping techniques. A sample size of around 50 is large enough to use the asymptotic
critical values.
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The datasets are constructed in SAS 9.1 TS Level 1M3 for Windows XP.

We utilize the code provided by Pierre Perron and run it on Gauss Light.*

3. Results and Discussion

Our analysis segments first-year costs, i.e., by different stages of disease.
In practice and in clinical trials, staging is the determining factor in selecting
treatment regimens as well as in outcomes of patients with colorectal cancer. The
choice of treatment does not vary greatly with the sex and race of the individual,

so we omit the results from using those specific segments.
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Figure 2.2 Average First-Year Cost by Stage of Disease at First Diagnosis

3¢ See http:/people.bu.edu/perron/code.html for code.
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A simple plot of average first-year costs by stage can be seen in Figure 2.2. Since
there is no clear indication of a change in costs, we perform the endogenous
structural breakpoint tests. Table 2.3 shows the break date, average first-year real
cost pre- and post-break, and break size for each of the stages. Aside from Stage I,
each of the other stages of disease experiences a single break during our sample
from 1991-2002.%7 For Stage II patients, the break occurs in the April 2001. The
breaks are in January 1997 and July 1998 for Stage III and Stage IV respectively.

Also in Table 2.3, we see that both the absolute change and the percentage
change in average first-year cost increases with stage of disease. The most
dramatic change in costs occurs in Stage IV patients, where it jumps from
$26,623 to $40,047 after the break date—a 50% increase in real costs. Next, we
show that the break dates for Stage III and Stage IV coincide directly with the
approval of irinotecan.

Irinotecan, marketed as Campto® by Yakult Honsha and Camptosar® by
Pfizer, is a chemotherapy agent that inhibits Type I topoisomerase. It was given
accelerated approval in June 1996 for “treatment of patients with metastatic
carcinoma of the colon or rectum whose disease has recurred or progressed

following 5-FU-based therapy,” but regular approval was not obtained until

%7 The program allows for multiple breakpoints to be detected for each series, but it finds only a
single point. This may be due to the sample size because the sub samples created after the initial
break is discovered are only around 24 points each, which may be too limiting to discover
subsequent breaks.
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Table 2.3 Breaks in Average Real First-Year Cost (1982-4 US$) for CRC
Patients by Stage (Coefficients with standard errors in parentheses and confidence
intervals in brackets)

Break Date 1st Level 2nd Level Change % Change
Stage I -- -- - - -
Stage II 2001 Q2 35407.79 43208.62 7800.83 22%
[2000Q2, 2002Q1] (687.69) (1664.32)
Stage 111 1997 Q1 36559.35 44992.01 8432.65 23%
[1995Q1, 1998Q1] (1150.28) (1150.28)
Stage IV 1998 Q3 26622.99 40047.36 13424.37 50%
[1996Q3, 1999Q1] (1230.81) (1588.97)

October 1998.°® Table 2.4 shows the frequency and average cost of the irinotecan
procedure based on patients’ entrances into the hospital. It clearly confirms that
the treatment was not available prior to 1998, so it was not used until the drug
received regular approval from the FDA. The 1998 break date in Stage IV
patients coincides directly with the introduction of irinotecan into oncology
practice, which is a reasonable observation because it was approved for only

Stage IV patients.

% See FDA Press Releases. http://www.fda.gov/cder/cancer/druglistframe.htm
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Table 2.4 Number and Average First-Year Real Cost of Patients Initiating
Irinotecan Treatment by Quarter

Date Frequency Avg. Cost Date Frequency Avg. Cost
1991 Q1 - - 1997 Q1 -- --
1991 Q2 - -- 1997 Q2 - --
1991 Q3 - - 1997 Q3 - -
1991 Q4 - - 1997 Q4 - .
1992 Q1 -- - 1998 Q1 16 1031.6
1992 Q2 -- - 1998 Q2 13 1233.48
1992 Q3 - - 1998 Q3 8 1942.5
1992 Q4 - -- 1998 Q4 12 1757.08
1993 Q1 -- -- 1999 Q1 7 1442.63
1993 Q2 - - 1999 Q2 6 1151.19
1993 Q3 -- -- 1999 Q3 12 1087.03
1993 Q4 - -- 1999 Q4 9 1523.98
1994 Q1 -- -- 2000 Q1 27 3127.68
1994 Q2 - -- 2000 Q2 13 1635.28
1994 Q3 -- - 2000 Q3 23 2413.15
1994 Q4 - -- 2000 Q4 17 2690.4
1995 Q1 - -- 2001 Q1 22 1650.11
1995 Q2 - -- 2001 Q2 11 1340.38
1995 Q3 -- -- 2001 Q3 17 1763.99
1995 Q4 - - 2001 Q4 26 232424
1996 Q1 -- - 2002 Q1 13 1798.66
1996 Q2 - - 2002 Q2 13 2253.66
1996 Q3 -- -- 2002 Q3 19 2158.48
1996 Q4 -- -- 2002 Q4 21 2104.09

The question remains, though, of why the Stage III average cost series
would experience the same (and perhaps earlier) break date. The estimated break
date for Stage IIT occurs in 1997, which is slightly before the time of irinotecan.>
One plausible explanation is that those who were first diagnosed with Stage III in

1997 progressed to Stage IV by the following year—just in time for the new drug.

% The confidence intervals for the Stage III and Stage ['V break dates overlap, so we cannot
statistically identify which break came first.
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While Stage IV patients have only an average of 9 months overall survival, Stage

I1I patients have a longer average survival duration.

Table 2.5 Use of Irinotecan by Entrance Into SEER Database Date: Frequency
and Average First-Year Real Cost

Date Frequency Avg. Cost Date Frequency Avg. Cost
1991 Q1 - -- 1997 Q1 7 2664.68
1991 Q2 1 1908 1997 Q2 3 1204.93
1991 Q3 - - 1997 Q3 9 3508.17
1991 Q4 1 1090.56 1997 Q4 10 1394.86
1992 Q1 2 1552.4 1998 Q1 9 3258.16
1992 Q2 - - 1998 Q2 6 2027.5
1992 Q3 1 1272 1998 Q3 10 1618.81
1992 Q4 -- - 1998 Q4 8 1981.49
1993 Q1 1 6950 1999 Q1 3 2761.51
1993 Q2 4 1348.04 1999 Q2 14 1937.84
1993 Q3 - - 1999 Q3 7 2109.83
1993 Q4 3 1479.83 1999 Q4 8 1771.15
1994 Q1 2 740.63 2000 Q1 8 1966.16
1994 Q2 2 1233.51 2000 Q2 5 1588.71
1994 Q3 6 1582.47 2000 Q3 15 2595
1994 Q4 2 4392.5 2000 Q4 5 1851.31
1995 Q1 5 1403 2001 Q1 7 1455.24
1995 Q2 2 3680.02 2001 Q2 8 1574.47
1995 Q3 1 1481 2001 Q3 5 1558.7
1995 Q4 5 1623.38 2001 Q4 14 1776.99
1996 Q1 2 1395.12 2002 Q1 7 1654.95
1996 Q2 5 3368.09 2002 Q2 3 1814.92
1996 Q3 12 1126.38 2002 Q3 13 2531.14
1996 Q4 6 1864.52 2002 Q4 10 1983.77

Table 2.5 shows the use of irinotecan by entrance into the SEER database
date. It indicates that patients who entered SEER in earlier years were also given
the drug. Since we know that the drug was not available until 1998 and was

approved only for Stage IV patients, this indicates irinotecan was indeed also
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given to patients whose cancer progressed in addition to those who were only first

diagnosed by SEER as Stage IV post-1998.%°
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Figure 2.3 First-Year Survival Probability

Although the break dates correspond with the approval of irinotecan, the
break size appears to be significantly larger than could be explained by projected
incremental cost of this drug alone. From Table 2.3, we see that the breaks in
Stage I1I and Stage IV are characterized with an increase in average first-year real
costs of $8,433 and $13,424 respectively. In nominal terms, these amounts would

be about 2.4 times greater—so roughly $20,000-$30,000 in current dollars. Based

%0 Average progression time from Stage 111 to Stage I'V cannot be obtained by this dataset because
SEER only records the initial stage of the patient.
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on clinical trials, Levy-Piedbois et al. (2000) calculate that the increased survival
benefits attributed to irinotecan are worth an additional $9,344 to $10,137 for
each life year; Iveson (1999) shows the gain of irinotecan over 5-FU to be
between £7,685 and £11,947 per life year. Although the incremental cost of
irinotecan could be $20,000-30,000 in the first year, this could not fully explain
the break in the aggregate times series, where fewer than 10% of patients are
receiving irinotecan.

Next, we examine the trend in first-year survival probability segmented by
stage of disease. The plot of survival probabilities in Figure 2.3 shows no clear
pattern, so we proceed to perform endogenous structural breakpoint tests for
multiple breakpoints. However, the tests do not find any breaks in any of our
survival series, so the first-year survival outcomes for colorectal cancer patients
have not changed during our period of analysis.

If the uptake of irinotecan significantly shifted the first-year costs, then we
would expect to see a similar shift in first-year survival probabilities as indicated
in economic studies based on clinical trials. Figure 2.4 shows roughly a 20
percentage point gain in 12 month survival probability in irinotecan over other
care in this key trial, but our empirical tests do not suggest that this is reflected in
the aggregated series.

With an increase in cost after 1998 and no comparable increase in survival

probability over the same period, the data indicates a potential shift in the cost-
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effectiveness of colorectal cancer care. If our preliminary analysis is correct in
attributing the break in cost to the use of irinotecan, these aggregate results might
suggest that the drug is not cost-effective because we cannot detect an increase in
survival. However, given the small proportion of irinotecan patients, more
analyses would be needed to examine and identify the underlying causes of the

shift in first-year cost of illness based on our aggregate analysis.

~—— Irinotecan

===« Other Care
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Figure 2.4 Survival Curves Based on Clinical Studies®'

*! From Cunningham et al. (1998)
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4.1. Robustness Check: Time trend

Can a time trend help explain variations in average first-year real costs in
our quarterly time-series from 1991-2002? The plots of first-year cost in Figure
2.2 do not provide a definitive conclusion. Such a trend could be significantly
present if new treatments and improved care drive a steady increase in colorectal
cancer spending. However, by adjusting by the CPI Medical Deflator, it is clear
that there have been significant increases in total current spending, but it is not
clear how much a time trend in spending is due to increase in real services
received. We explore this factor using a trend analysis of real costs.

First, we estimate a simple OLS regression on a time trend: cost; = mean +
B-times+ g, where g~ iid (0,1). If the coefficient, B, is significant, it indicates that
first-year costs have increased over time. Then, we can include the time trend in
our original analysis of structural breaks.

The OLS results in Table 2.6 show a significant time trend for Stages II,
I1I, and IV. As the severity—stage of disease—increases, there is an increase in
spending. For our sample of Stage IV patients, each subsequent quarter results in
an increase of $452.92 in average first-year real costs.. The R-squared also
increases with stage, so we can interpret this as the time trend playing a larger role

in explaining variations in cost for later-stage patients.
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Stage I Stage 11 Stage 111 Stage IV
[Mean 31604.82 32132.53 34496.44 21013.42
(1324.34) (1278.62) (1705.53) (1978.15)
Trend -1.18 187.78 267.20 452.92
(48.55) (46.87) (62.52) (72.51)
|IR-squared 0.000013 0.258673 0.28422 0.458902

First-year costs for Stage I patients do not have a significant time trend, so
the CPI Medical Deflator accounts for the trend in spending for the least sick
patients.

Next, we perform the endogenous structural breakpoint tests on the
average first-year costs for each stage while allowing for a time-trend.** Table
2.7 records breaks in Stages II, III, and IV. However, the direction and size of the
breaks are unclear. For example, the average first-year cost after the break is less
than it was before the break for Stage II and Stage IV patients; but for Stage III
patients, the break results in an increase in cost of $8089.76. Furthermore, the
break dates no longer correspond with the introduction with irinotecan. Instead,
the confidence intervals overlap around 1995, where no colorectal cancer drugs
were first introduced. The time trend is still significant for Stage II and Stage [V

patients, but it is no longer significant for Stage III patients.

%2 Running structural breakpoint tests on time trends yield no breaks for all stages.
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These inconsistencies serve as motivation for deeper analysis of the basis
of the breaks in average first-year cost. This robustness check no longer points to
the introduction irinotecan as the possible culprit behind the changing cost of
illness. But we do learn two things from adding the time trend. First, colorectal
cancer spending outpaces general medical price inflation (as accounted for by the
CPI Medical Deflator) for all but the healthiest, Stage I, patients. Secondly, there
is no break in the time trend, so the increase in spending is steady over time.
Table 2.7 Breaks in Average First-year Cost with Time Trend

(Coefficients with standard errors in parentheses and confidence intervals in
brackets)

Break Date 1st Level 2nd Level Change Trend
Stage 1 - -- - -- --
Stage 11 1994 Q1 32609.42 27254.04 -5355.38 320.04
[1992Q3,1995Q4]  (1280.67)  (2277.99) (69.70)
Stage 111 1996 Q4 36380.77 44470.53 8089.76 14.29
[1995Q1,1997Q4]  (1885.91) (4488.76) (118.78)
Stage IV 1995 Q2 245744 14731.62 -9842.78 623.88
[1995Q1,1997Q4]  (2301.82) (2692.59) (87.52)
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4.2. Robustness Check: Excluding Irinotecan Patients

To analyze the impact of the uptake of irinotecan on average first-year
costs, we perform the structural breakpoint tests on the sample of colorectal
cancer patients after removing those who received irinotecan treatments. If there
is no break, it would provide evidence that the original breaks in Table 2.3 are
indeed associated with the introduction of the new drug. However, it is also
conceivable that a break still remains because the irinotecan patients are relatively
small in number, so their impact cannot be large enough to be the driving force
behind such breaks.

First, we exclude all patients who were given irinotecan in their
lifetimes.*? Then, we perform the endogenous structural breakpoint tests on each
stage. The results are in Table 2.8.

In our new sample without irinotecan patients, the tests show breaks in
Stage L, I1I, and IV patients. The confidence intervals around the break dates in
Stages Il and IV contain the original break dates from the original sample as
indicated in Table 2.3. Furthermore, the absolute size of the change in average
first-year cost pre- and post-break date are similar to the original analysis. So, if
irinotecan patients are no longer in this sample and the breaks are still present,

then there must be other reasons for the break.

% The drug code for irinotecan takes a value of J9206 in the HCPCS series of the NCH Medicare
claims file.
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Table 2.8 Breaks in Average First-year Cost (No Irinotecan Patients)
(Coefficients with standard errors in parentheses and confidence intervals in
brackets)

Break Date 1st Level 2nd Level Change % Changg

Stage 1 1999 Q3 25678.84 20988.20 -4690.64 -18%
[1997Q4, 2001Q3] (721.59) (1183.99)

Stage II -- -- - -- --

Stage 111 1996 Q3 26655.82 33709.77 7053.95 26%
[1994Q2, 1997Q3]  (1105.29) (1060.13)

Stage IV 1998 Q2 18593.49 31443.66 12850.17 69%

[1997Q1,1999Q1]  (1212.24)  (1564.99)

From this analysis, even more questions arise. For example, why did the
break in Stage Il disappear after removing irinotecan patients? The break in Stage
[ is also puzzling because the early stage patients are not treated with irinotecan.
So, why would there be a decrease of $4,690.64 in average first-year cost among
newly diagnosed Stage I patients in the 1999 Q3? However, for the Stage IV
patients the structural breakpoint changes by only one quarter from the when the
irinotecan patients were included, and the size of the break is similar. Clearly,
something else is happening post 1998 besides the introduction of irinotecan.
More analysis must be carried out in order to answer these questions. One
possible avenue is changes in reimbursement or service use for specific types or

subcomponents of cost.
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4.3. Robustness Check: Subcomponents of Costs

In order to analyze the break, we break the cost into different sub-
components, such as laboratory costs, departmental costs, and accommodation
costs. The structural breakpoint tests show that departmental cost is the only sub-
component with structural breaks across all stages. Table 2.9 shows the break
dates, pre- and post-break levels, absolute change, and percentage change of the
average first-year departmental costs. This series comes from the MEDPAR
hospitalization file which records Medicare Part A claims. Specifically, this
series refers to “the total charge amounted (rounded to whole dollars) for all
ancillary departments (other than routine room and board, CCU, and ICU) related
to a beneficiary’s stay.”*

The breakpoint in departmental cost occurs from April 2000 to January
2001 depending on the cancer stage of the patient; nevertheless, the dates
themselves are not significantly different because the confidence intervals overlap.
Stage Il has the largest change in costs from $7,991 to $12,037, which is an
increase of 51%. This $4,046 increase explains much of the $7,801 increase in

total costs of Stage II patients that also occur in 2001 (see Table 2.1).

* See the MEDPAR Expanded Modified Record from CMS Repository.
http://healthservices.cancer.gov/seermedicare/
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Table 2.9 Breaks in Average First-year Departmental Cost for CRC patient
(Coefficients with standard errors in parentheses and confidence intervals in
brackets)

Break Date 1st Level 2nd Level Change % Change

Stage I 2000 Q3 6789.98 8939.50 2149.52 32%
[1999Q4, 2002Q4]  (199.51) (388.92)

Stage 11 2001 Q1 7991.33 12037.38 4046.06 51%
[2000Q2, 2001Q2]  (257.30) (575.34)

Stage 111 2001 Q1 8501.65 11308.03 2806.38 33%
[2000Q3, 2001Q4]  (231.30) (517.21)

Stage IV 2000 Q2 7462.98 11106.94 3643.96 49%
[1999Q02, 2000Q4]  (250.47) (459.38)

We believe that the Stage II break in Total Costs is driven by this break in
Departmental Costs. The reason it occurs only in Total Cost for Stage II is
because its impact is relatively smaller for other stages. Departmental Costs only
increase by $2,149 for Stage I. For Stage III and Stage IV, the sub-cost increases
by $2,806 and $3,643 respectively, which is small relative to the break size in the
aggregate series occurring in 1998. More research is needed to uncover the
underlying reason behind the break in this subcomponent series, which is used by

many researchers to calculate “actual” cost (Asper, 2005).

4.4. Robustness Check: Payment Amount Series
Using total charges as a measure of cost may overestimate actual medical

payments, so we also perform the endogenous structural breakpoint tests on a cost
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series based on payment amounts.* Though total charges may represent the
value of the procedure from the provider’s prospective, payment amount may be a
better proxy for direct medical costs incurred by society. However, the payment
amounts are predetermined for certain procedures (e.g., by diagnosis-related
group), so it removes much of the variation for individual patients. Therefore
often the payment amount (an expected average) is even larger than the total
charged amount due to the payment rules.

The payment and charge series are historically highly correlated, so there
should be similar breaks in the first-year payments of colorectal patients. If the
Medicare payment rules are slow to adopt new treatments, then there might be a
lag in the break date or even no break if the changes are smooth.

Table 2.10 shows the results from the tests. For Stage IV patients, there is
a break in the first-year payments in 2000 Q1, though the confidence interval of
the breaks encompasses the original break date, 1998 Q3, of the total charges
series of costs. Similarly, the break size is 48% larger than the pre-break level,

which is close to the increase of 50% using the original series (See Table 2.3).

4 For Carrier Claims, Outpatient Claims, Home Health Agency Claims, and Hospice Claims, the
series is “Payment Amount.” For Durable Medical Equipment, it is “Line Payment Amount.” For
Medicare Provider Analysis and Review, it is “Reimbursement Amount.”
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Table 2.10 Breaks in Average First-year Payments for CRC patient
(Coefficients with standard errors in parentheses and confidence intervals in

brackets)
Break Date 1st Level  2nd Level Change % Change
Stage I 1992 Q3 12724.16 10972.54 -1751.62 -14%
[1991Q1, 1993Q1] (303.72) (326.76)
Stage I1 - - - - -
Stage II1 - -- - - -
Stage IV 2000 Q1 16566.96 24597.36 8030.40 48%
[1997Q3, 2000Q4] (649.21) (2103.46)

Unlike the results based on total charges, there is a break in Stage I

patients but none for Stage II and Stage III patients. Though these breaks are

smaller in magnitude in both samples, this discrepancy requires additional

analysis. We confirm the existence of a break in the payment series of Stage IV
colorectal patients in this analysis. The results do not tell us the reason behind the

break, but they also support the finding of a potential unfavorable shift in the cost-

effectiveness of colorectal cancer care in the past decade.

5. Conclusion

We study the change in important components of the burden of illness of

colorectal patients in the recent past to explore the impact of the introduction of

new drug regimens versus other possible factors. In particular, we examine the

average first-year costs recorded by Medicare Part A and Part B and first-year
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survival probability for newly diagnosed colorectal patients in Washington State.
We use the SEER-Medicare linked database and analyze over 10,000 patients
from 1991-2002. It is difficult to discern any noticeable pattern by simply
analyzing the time-series plots of cost and survival, so we employ endogenous
structural breakpoint tests to econometrically test for breaks.

First, our tests show indicate a break in costs in 1998, which coincides
with the FDA regular approval of irinotecan. We track the uptake of irinotecan
through time and confirm its potential impact on first-year costs of newly
diagnosed colorectal cancer patients. However, we find that it is not likely to have
been the major source of the change. Furthermore, there is no corresponding
break in survival, so, if anything, the average cost-effectiveness of treatments for
colorectal patients appears to have suffered a decline from 1998-2002.

Next, the cost changes coincide in time with the introduction of irinotecan.
The pharmacoeconomic estimates of incremental costs based on clinical trials
suggest that the use of irinotecan would definitely increase average costs. We
estimate the incremental aggregate first-year real cost of treatment to be between
$8,363 and $13,424 depending on the initial stage of diagnosis. Converted to
current dollars, these differences would not be explained by the use of irinotecan

46

in fewer than 10%.™ Also, the aggregate survival estimates do not show that

“ In 1998 dollars, the cost would be between $20,238 and $32,486.
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irinotecan had a significant, measurable impact, despite clinical trials showing
improvements on the order of 20 percentage points due to irinotecan.

We perform a series of robustness checks to further explore the source of
the breaks. First, adding a time-trend proves to be significant, but it does not
remove the break from the cost series. The resulting breaks, though, no longer
match up with the uptake of irinotecan. By removing the irinotecan patients, our
second robustness check clearly shows a break not associated with the new
treatment drug. An analysis of a subcomponent of costs—departmental cost—
shows an underlying break, which might illuminate the reason behind the
changing costs and cost-effectiveness of care. Lastly, we use payment amount as
a measurement of cost to confirm the existence of a break in Stage IV patients.

The next step would be to study potential changes due to Medicare
changes in reimbursement schemes or other procedural shifts. Also, the choice of
price deflators and control samples may have an impact on the break date.
Another extension of this study would be to examine the effects of new drug
regimens on an individual-level to study the direct effects of specific drug
regimens.

Due to the limitations of data, there are a few obvious shortcomings of our
research. For example, our analysis only goes through 2002, so we cannot

account for the effects of capecitabine, oxaliplatin, cetuximab, bevacizumab, or
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any other drug introduced within the last 5 years.*” Nevertheless, we believe our
characterization of average cost and survival in first-year patients is accurate
through the end of our sample. A second notable drawback due to our data
availability is that we are limited to Washington State. There is the possibility
that regional differences could affect the uptake of irinotecan and the costs
associated with the treatment. A wider geographic area must be used before we

can generalize our result to encompass the entire United States.

*” Though capecitabine was approved in 2001 for 1 line and 2™ line treatment in metastatic

colorectal patients, the “trimming” criteria of endogenous structural breakpoint tests does not
allow us to include it in our testable sample.
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Chapter 111

Endogenous Structural Breakpoint Tests:

An Investigation in Finite Sample Performance
(with Jun Ma)

1. Introduction

In recent decades, much research in the fields of econometrics and
statistics has been done on the subject of structural parameter breakpoints.
Though exhaustive in its theoretical treatment of the issue, the validity of the
proposed procedures in practice involving finite samples is still up for question.
The obvious reason that the interest exists for this topic is that economic theory
often formulates parameters and characteristics within their models. For example
in macroeconomics, one estimates the NAIRU or the marginal propensity to
consume, and in microeconomics, the returns to schooling, which could have
drastic implications in their respective models should those parameters shift
overtime. The major shortcoming of the available theory for structural breakpoint
tests is that they are based on asymptotic conditions, which clearly are not viable
in practice. Moreover, there is no reason to assume that a finite sample of, say, 50
observations should behave in the same manner as its asymptotic counterpart.

In this paper, we explore the finite-sample properties of the asymptotic

structural breakpoint tests, namely, the supremum tests proposed in Andrews
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(1993). The theory also suggests that the tests hold asymptotically for linear and
nonlinear models, but again their finite sample behavior has not been touched.
Certain parameters, such as the NAIRU, are naturally estimated in nonlinear form
but are estimated indirectly via linear regressions for tractability (see Ball and
Mankiw (2002)).

Though it seems plausible that processing a small-sample of data in
structural breakpoint tests could yield differing results depending on whether or
not the equations are in linear or nonlinear form, we show that there is no
noticeable difference for regressions that can be transformed between the forms.
This result is consistent with the asymptotic theory. There are major differences
in the performance of differing forms of the supremum tests in finite samples,
which are all equivalent asymptotically in theory. Lastly, we explore the merits
and limitations of bootstrapping critical values versus merely using the asymptotic
critical values that can be calculated in closed form.

The literature on structural breakpoint tests has been numerous with
extensive survey papers already appearing decades ago: Krishnaiah and Miao
(1988) and Zacks (1983). Starting from Hansen (1990) and Andrews (1993), the
theory behind these procedures has been focused on the asymptotics, such as in
Andrews (2002), Bai and Perron (1998), Chu et al. (1996), Diebold and Inoue

(2000), Gagliardini et al. (2003), and Perron and Qu (2004). Though they provide
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a solid foundation on the subject, these above papers mention little regarding the
practicality of their proposed methods in finite samples.

Aside from Andrews (1993), Andrews (2002), and Hansen (1990), the
literature deals with the linear properties of the tests since the nonlinear versions
are identical. Recently, extending the original theory to allow for multiple
breakpoints has also been tackled in Andrews (2002), Bai and Perron (1998), and
Perron and Qu (2004).

When applying these methods in practice, the majority of authors merely
uses the asymptotic properties and assumes that they hold in the finite samples.
Diebold and Chen (1996) propose bootstrapping the critical values for the
supremum tests and show that they provide greater size than the asymptotic
values do. Nonetheless, this practice remains scarce, though Basci et al. (2000)
bootstrap critical values in their research that applies the structural breakpoint
tests in the Turkish financial markets.

The last major niche of this breakpoint literature has to do with the
characteristics of the data series themselves. Zivot and Andrews (1992) show that
these asymptotic tests do not hold if there are unit roots (and that the unit root
tests do not hold in the presence of structural breaks). Diebold and Inoue (2000)
explore the issue of long-memory in data series. Since there has been no clear
answer to this caveat in using these tests, we will use stationary data in our

simulations.
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Section 2 details the procedure and methodology behind our simulations
of these breakpoint tests in finite samples. We present and analyze the results in
Section 3, which is further divided into 6 subsections for each of our findings.
Since we find that bootstrapping critical values have the best performance in finite
samples, Section 4 applies this methodology to the NAIRU, and we compare the
results with those using the traditional asymptotic critical values. Lastly, a
conclusion follows in Section 5 where we propose an extensive set of extensions

that follow from our results.

2. Procedure
We specify our model under the null of no breaks as follows:

Nonlinear — y, = g(x,a, By ) = a(x, + By) +u,

Linear— y, = f(x,, B,) = ox, + B, +4,

Here, B, = af,
Notice that the equations for the linear and nonlinear forms represent the same
relationship between the regressors, regressands, and parameters. This simulates
the problem often faced in practice where the econometrician estimates Sy
indirectly by using the linear equation by simply calculating f/a. Our model

allows us explore the variation of the test results for equations that can be written

in linear and nonlinear representations. Note that x,’s and y,’s are observed data
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values and the a and the f’s are parameters to be estimated. u’s are shocks to the
system. The data generating process that we use for the model is as follows:

{x,} are i.i.d. random numbers uniformly distributed between [0,100].

{u,} are i.i.d random numbers normally distributed with zero mean and unit
variance.
As expected, the model changes under the alternative to include a break. This is
necessary to explore the power characteristics of the finite sample tests.*® In
evaluating the power, we impose a break on [, by introducing a dummy
variable D, which is 0 before our breakdate and 1 after the break. Thus, the
model under the alternative changes to the following:
Nonlinear — y, = G(x,, By, ABy) = al(x, + By + ABy - D) +u,
Linear-y, = F(x,a,B,,AB,)=ox, + B, + AB, - D +u,
Here, AB, and AP, are the size of the breaks in the parameters for the nonlinear
and linear models respectively.
In formulating the test statistics, we adhere to the common practice of using
the supremum Wald-type (SupF), Lagrange Multiplier-type (SupLM), and
Likelihood Ratio-type tests (SupLR).** Though theory also puts forth exponential

and average versions of these test statistics, the supremum ones are most

*8 Diebold and Chen (1996) has a detailed analysis of the size of the structural breakpoint tests in
finite samples and give preliminary results which state that power should be an easy property to
extend from their findings.

* We use 5% significance in our analyses.
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commonly used in practice, so they are of the most interest to us.”® Research has
also shown that the data must be truncated to allow for accuracy and feasibility of
testing for these breaks. Andrews (2002) explores shrinking the truncation
percentage, but we use the common practicing of trimming 30% of the data, so
our truncation is set to be 0.15 and the range to be tested for the structural break is
[t1, t2], where, t1 is [0.15*T], t2 is [0.85*T], and T is the entire sample.

supF = sup T - RSSR— USSR in both linear and nonlinear cases
[1,62] USSR

Here, RSSR and USSR are the restricted sum of squared residuals and
unrestricted sum of squared residuals respectively for both linear and nonlinear
cases. (See Diebold and Chen (1996) or Engle (1984))

supLM = supT - w for linear case;
[11,:2] RSSR

A
'

A
wx (x"'x ) x"u

for nonlinear case;

here, u is the estimated residual in the restricted model and x* is the gradient
vector of G(x,a, B, ,Af,) evaluated at the restricted estimators.”' (See Greene

(2003))

supLR = sup T"- log(RSS%SSR) for both cases.

[e1,62)

%01t follows that the exact same simulations can be implemented for these various types of tests.
*! The LM-style test for nonlinear has been advocated by many because one needs only to estimate
one equation thereby saving much computing time.
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The bootstrapping procedure we implement involves an extra step since we are
interested in the supremum values of each loop and not the individual values. We
bootstrap 100 times for each simulation.*> For both the linear and nonlinear cases,
we simulate the data series 100 times to start; then, after finding that even at such
small simulations, the linear and nonlinear results are identical, we simulate the
linear case 1000 times (the nonlinear case is not done at this higher simulation
because it is highly computer intensive).

A detailed diagram of the flow of the bootstrap technique is included
(Figure 1), but the general concept can be outlined as follows. We start with a
generated data series each time that is simulated under the nuli (to test for size) or
under the alternative (to test for power). Then, we estimate the nonlinear and
linear models under both the unrestricted and restricted forms to get the necessary
information to compute the three supremum test statistics for structural

breakpoints. Using the estimated coefficients and residuals, the semi-parametric

52 See Hall (1986) for a theoretical explanation of the ability of the bootstrap to produce
satisfactory results with few replications of the bootstrap sampling process.
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bootstrap method is implemented to bootstrap the critical values for all three test
statistics.

With the model, data generating process, and bootstrap all specified, we
proceed to test both the asymptotic and the bootstrapped size of each test statistic.
This serves to double-check our results with Diebold and Chen (1996) that exalt
the bootstrap’s size in the linear context and to see whether or not it holds true in
the nonlinear framework. Next, we test both the asymptotic and bootstrapped
power of each test statistic. Lastly, we change the data generating process to see
how robust the methods are when the break size varies. We change the break size
to error variance (BE) ratio from 0.25, 1, to 4 to test the effect on the power for
the asymptotic and bootstrapped test statistics.

Our programs are written in Mathwork’s Matlab 6.5 and incorporate the
maximization and optimization algorithms of the software necessary for nonlinear
estimation. They are then run on a cluster of DEC and IBM UNIX workstations at

the University of Washington, which use AIX 5.2 as their operating system.

3. Results and Analysis
The major findings from the simulations outlined in the previous section

can be divided into 6 subsections.
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i. Equivalence of forms

A question that often arises is whether or not the structural breakpoint tests
are robust when an equation can be written identically in linear and nonlinear
forms. Which form should one use? In our model, where the parameters could be
estimated directly in nonlinear form or indirectly in linear form, we find that the
actual form makes no noticeable difference in the results. The asymptotic tests of
power and size for each of the three supremum tests yield the identical values in
linear and nonlinear form. This result is a relief since it can easily be shown that
the algebraic forms of the critical values should be the same in small samples.

From our model, the estimation of the coefficients in the linear model are:

fY =0, )
a= —
Z(xz _x)2

A ___A____Z(xt_;)(yl_;)_
CO O Y

To get the estimation of the nonlinear model, we first minimize the following:

Min Y (y, —ax, —af,)’

Take the first order condition and simplify to get:

DN R )
a = —
Z(xi _x)2

R e
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This indicates thatu; =ux , so USSR, = USSR, and RSSR, = RSSR, . On a

practical level, the ability to find robust results from linear forms saves immense
computing power. For example, merely bootstrapping a sample of 50 critical
values for a nonlinear model took nearly 20 hours, while bootstrapping its linear
form took no more than 5 minutes. We propose that this equivalence always
holds for any model that can be written in both linear and nonlinear forms.
Therefore, all of the subsequent tables and results in this paper will, thus, show

that the results of the linear and nonlinear models are the same.”

ii. Performance of different tests

Asymptotically, the SupF, SupLR, SupLM tests yield the exact same
results, thus having the same performance. Our simulations for small samples
give us a clear sense of hierarchy when ranking the tests for size and power using
the asymptotic critical values. Tables 3.1-3.3 provide the results of our
simulations ‘for size when varying the sample size at 10, 25, and 50. Since we use
the 5% critical value for 1 break from Andrews (1992), we expect a rejection rate
given no breaks to be around 5%. In all the various sample sizes, the simulations

show that the rejection rate was highest for the SupF tests and lowest for the

%3 When bootstrapping 1000 times, there are slight variations in the results. See Section I11.3 for
further information
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Table 3.1 Test of size for Sample Size=10 (based on 100 simulations)

Sample Size = 10

Asymptotic Bootstrap
Linear supF 0.24 0.08
supLM 0 0.08
supLR 0.11 0.08

Asymptotic Bootstrap
Nonlinear supF 0.24 0.08
supLM 0 0.08
supLR 0.11 0.08

Table 3.2 Test of size for Sample Size=25 (based on 100 simulations)

Sample Size =25

Asymptotic Bootstrap
Linear supF 0.09 0.04
supLM 0.01 0.04
supLR 0.03 0.04

Asymptotic Bootstrap
Nonlinear supF 0.09 0.04
supLM 0.01 0.04
supLR 0.03 0.04

Table 3.3 Test of size for Sample Size=50 (based on 100 simulations)

Sample Size = 50

Asymptotic Bootstrap
Linear supF 0.07 0.07
supLM 0.04 0.07
supLR 0.05 0.07

Asymptotic Bootstrap
Nonlinear supF 0.07 0.07
supLM 0.04 0.07
supLR 0.05 0.07
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SupLM tests with the SupLR tests lying somewhere in between. In Table 3.1
where the sample size is 10, we see that SupF rejects the null of no breaks nearly
25% of the time and SupLM never rejects the null. As the sample sizes increase,
the rejection rates for all three tests become closer together. In Table 3.3, where
the sample size is 50, the difference in the rejection rates of the SupF and the
SupLM is only 3%. Continuing with this pattern, we expect the variation in the
rejection rates between the different supremum tests to disappear altogether as
theorized in asymptotic theory.

When we test for power, our model has a break and we simulate the
rejection rate of the model under this alternative form. Ideally, the tests should
pick up the break, so the rejection rate should be high. In addition to the original
model where the BE ratio is 1, we vary the BE ratio to include 0.25 and 4 in our
simulations. Nonetheless, in the 9 possible simulations that arise—since we have
3 sample sizes and 3 BE ratios—the rejection rates can all be ranked as follows:
SupF, SupLR, and SupLM. Note that this order is the same as for the simulations
for size. Again, the variation of the rejection rates for the tests diminishes as the

sample sizes increase as indicated in Tables 3.4-3.12.
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Sample Size =10

Break size/error ratio = 0.25

Asymptotic Bootstrap
Linear supF 0.25 0.06
supLM 0 0.06
supLR 0.14 0.06
Asymptotic Bootstrap
Nonlinear supF 0.25 0.06
supLM 0 0.06
supLR 0.14 0.06
Table 3.5 Test of power for Sample Size=10 and BE Ratio=1
Sample Size = 10
Break size/error ratio = |
Asymptotic Bootstrap
Linear supF 0.42 0.14
supLM 0 0.14
supLR 0.21 0.14
Asymptotic Bootstrap
Nonlinear supF 0.42 0.14
supLM 0 0.14
supLR 0.21 0.14
Table 3.6 Test of power for Sample Size=10 and BE Ratio=4
Sample Size = 10
Break size/error ratio = 4
Asymptotic Bootstrap
Linear supF 1 0.94
supLM 0.33 0.94
supLR 0.99 0.94
Asymptotic Bootstrap
Nonlinear supF 1 0.94
supLM 0.33 0.94
supLR 0.99 0.94
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Sample Size =25

Break size/error ratio = 0.25

Asymptotic Bootstrap
Linear supF 0.11 0.09
supLM 0.03 0.09
supLR 0.08 0.09
Asymptotic Bootstrap
Nonlinear supF 0.11 0.09
supLM 0.03 0.09
supLR 0.08 0.09
Table 3.8 Test of power for Sample Size=25 and BE Ratio=1
Sample Size =25
Break size/error ratio = 1
Asymptotic Bootstrap
Linear supF 0.59 0.51
supLM 0.37 0.51
supLR 0.50 0.51
Asymptotic Bootstrap
Nonlinear supF 0.59 0.51
supLM 0.37 0.51
supLR 0.50 0.51
Table 3.9 Test of power for Sample Size=25 and BE Ratio=4
Sample Size = 25
Break size/error ratio = 4
Asymptotic Bootstrap
Linear supF 1 1
supLM 1 1
supLR 1 1
Asymptotic Bootstrap
Nonlinear supF 1 1
supLM 1 1

supLR

1

1
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Sample Size =50

Break size/error ratio = 0.25

Asymptotic Bootstrap
Linear supF 0.12 0.12
supLM 0.08 0.12
supLR 0.12 0.12
Asymptotic Bootstrap
Nonlinear supF 0.12 0.12
supLM 0.08 0.12
supLR 0.12 0.12
Table 3.11 Test of power for Sample Size=50 and BE Ratio=1
Sample Size = 50
Break size/error ratio = 1
Asymptotic Bootstrap
Linear supF 0.80 0.78
supLM 0.72 0.78
supLR 0.77 0.78
Asymptotic Bootstrap
Nonlinear supF 0.80 0.78
supLM 0.72 0.78
supLR 0.77 0.78
Table 3.12 Test of power for Sample Size=50 and BE Ratio=4
Sample Size = 50
Break size/error ratio = 4
Asymptotic Bootstrap
Linear supF 1 1
supLM 1 1
supLR 1 1
Asymptotic Bootstrap
Nonlinear supF 1 1
supLM 1 1

supLR

1

1
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iii. Equivalence in the bootstrap

In each of the simulations for size and power, we calculate the rejection
ratio using the asymptotic critical values and using the bootstrapped critical
values. While there is a clear ranking for the rates of rejection using the
asymptotic values (see Section 3, Part ii), the rejection variation between the
bootstrapped Wald-type, LR-type, and LM-type supremum critical values is
completely eliminated.™® This suggests that when using the bootstrap to generate
critical values in small samples, there is no need to use all of the various
supremum tests. The SupLM test, which involves only estimating 1 equation, is
sufficient in providing accurate results for the bootstrapped versions.

Though the variation is eliminated, it does not mean that the performance
of the bootstrapped critical values do not leave more to be desired. In the tests for
power, for example, the rejection rate is not always very high, so there may be
under rejection. But, in scenarios such as those depicted in Table 3.6—where
there is a small sample size and a large break size to error variance ratio—the
bootstrapped critical values take the guesswork out of which test to use since the
asymptotic tests results vary greatly from depending on the form of the supremum

test used.

>* We increased the bootstrap number to 1000 to see if we could detect any variations. There is a
small variation in the bootstrap rejection values for some of the tables, but they remain nearly
identical. See Tables 3.13-3.24,
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iv. Bootstrapping for Size

When the sample size is very small, say 10, the simulations for size based
on the asymptotic critical values are all over the place. SupF rejects 24% of the
time and SupLM never rejects (See Table 3.1). Neither result is satisfactory when
it comes to giving the econometrician confidence of his results. As mentioned in
Section 3.iii, the bootstrapped versions of the simulations are all the same and, in
the case of the sample size being 10, has decent size with 8% rejection. This
indicates that when one is faced with a very small sample of data but wishes to
find a structural break, bootstrapping the critical values is most reliable. As we
increase the sample size to 25 in Table 3.2, the variance of the rejection rate
diminishes for the asymptotic simulations, but the 4% rejection rate exhibited by
the bootstrapped simulation shows that it has better performance. When the
sample size increases to 50, the size of the test improves for the asymptotic

version and the advantages the bootstrap had in the smaller samples decreases.

v. Relative Power of Bootstrap Unclear

| The advantage of the power exhibited by the bootstrap is not as evident as
its advantage in size over its asymptotic counterparts. As shown in the tables, the
rejection rate using the bootstrapped critical values fall within the range of the
rates given by the simulations using the asymptotic values. In a small sample size

of 10, the power of the bootstrap is below that of SupF and SupLR but above that
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of SupLM (see Tables 3.1-3.3). As the sample size increases to 25 and 50, the
power of the bootstrap is still lower than that of SupF and above that of SupLM,
but it is nearly identical to that of SupLR, which falls in between the other two
supremum tests as indicated in Section 3, Part ii.

While the advantage in size that the bootstrapped critical values possess in
the tests for structural change has already been shown in Diebold and Chen
(1996), the power result is unexpected. Unfortunately, we cannot say that the
power of the bootstrap is without doubt greater than using the asymptotic critical
values. In the cases of small samples, the SupF criterion has the best power and

poor size due to its tendency to over reject.

vi. Tradeoff in Break Size to Error Variance Ratio and Sample Size

When testing for the power of the different types of critical values, we
varied the BE ratio as well as the sample sizes. As expected, the power of the
tests increase as the sample size increases to a point where the rejection rate is
near 100% as shown in Tables 3.9 and 3.12. Nevertheless, the deciding factor in
whether or not the tests have good power is not just the sample size but, rather,
the BE ratio. A small ratio would indicate that breaks could be mistaken for
shocks to the system, which are of a greater magnitude. As intuition would
suggest, even if we impose a small break in a large sample, the power of the test

should be small. Tables 3.4, 3.7, and 3.10 show that the power of the test given a
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BE ratio of 0.25 improves only minimally as the sample size increases from 10 to
25 to 50.

If the BE ratio grows to 1, it means that the size of the break is only as big
as the variance of the error term. In this case, though, the gains in power as
sample size increases are much more substantial. The bootstrapped version for
sample size 10 has a power of only 14%, but when the sample size is increased to
50, the power increases to 78%. We arrive at the same results using the
asymptotic power results because, as suggested in Section 3.v, the bootstrap
power is representative of the power of all 3 supremum tests on average.

Once the BE ratio becomes large, such as 4, the power of the bootstrapped
critical values in the small sample size is still 94% (Table 3.6). With the large
ratio, the rejection rate of the null when there is a break is 100% for both
asymptotic and bootstrapped critical values when the sample size is increased to
25 (Table 3.9) and 50 (Table 3.12). These results indicate that if one expects a
very small BE ratio, then it is necessary to have a larger amount of data in order
for the test to have good power. However, if the break is large in itself, then a

very small sample size already exhibits good power.

4. Application: NAIRU
There have been many papers devoted to estimating the NAIRU in the

United States, most of which assume that this measure of the “natural rate” of
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unemployment has not changed post World War II. When the endogenous
structural breakpoint tests of Andrews (1993) are programmed by Bai and Perron
(1998), they use the asymptotic critical values in their analysis. We can estimate
the equation in Section II with Sy as the NAIRU and a as the coefficient if x, is
the unemployment rate in year ¢ and y; is the change in inflation calculated from
the CPIL. Using a sample size of 50, we proceed to run the asymptotic program in
Gauss by Bai and Perron (1998) and see that there is no structural break.

Our research suggests that we must be careful in using asymptotic theory
when working with finite samples for the structural breakpoint tests. So, we use
the same data and bootstrap our critical values in the same manner as described in
Section II. Keeping in mind that the 5% asymptotic critical value is 8.85, the
bootstrapped values for each of our 3 critical values are as follows:

SupF: 8.8883

SupLM: 7.6113

SupLR: 8.2168
The results are consistent with the asymptotic values, so we still cannot reject the
null that there is a no break. This is not surprising since we have 50 years of data
with which to work; our analysis in Section III shows that once we reach a sample
size of 50, the asymptotic critical values have decent size and power since the
bootstrapped critical values begin to resemble them.

However, if we use a smaller sample size, the benefits of having bootstrapped

critical values are evident. Since our program allows for only 1 break at a time, it
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is conceivable that during such a long duration (50 years), there could have been
multiple breaks, which makes our estimation biased. We can revise the question
to ask whether or not there is a shift in the NAIRU in the 1990s. Then, we will
use only data after the post-Volcker monetary policy influence, which could have
been a shock in itself, to cut our data sample down to include just the past 20
years (1983-2003) where we expect no more than 1 break. As before, the 5%
asymptotic critical value is 8.85, but, now, the bootstrapped critical values are as
follows:

SupF: 12.7962

SupLM: 7.9482

SupLR: 9.9899
The respective supremum test statistics for each test are not large enough to reject
the hypothesis of no break:

SupF: 11.517

SupLM: 7.4379

SupLR: 9.1821
If the researcher chooses simply to use the asymptotic critical values, we see that
the test statistics for SupF and SupLR would reject the null (suggesting a break in
1998). But, in a sample size of 20, the bootstrapped critical values have more
power and better size, so one must apply great caution drawing conclusions from

the asymptotic critical values. In this case, the conclusions of the bootstrapped

critical values differ from those using the asymptotic ones.
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5. Conclusion

Our findings indicate that, even in finite samples, there is no difference in
the performance of structural breakpoint tests when the model is written in linear
or in nonlinear form. This is supported by the mathematical equivalency of the
test statistics that hold even in small samples. When using asymptotic critical
values derived from Brownian Bridges (see Andrews (1993)), one must use
caution because in small samples, SupF always rejects more often than SupLR,
which rejects more often than SupLM. The differences in rejection rates are
eliminated if the critical values are bootstrapped. We show the size advantage
that the bootstrapped values have over the asymptotic values but fail to see any
advantage in power for either method. Lastly, when dealing with finite samples,
there is a clear tradeoff in the test performance between the BE ratio and the
sample size.

Though we explore many issues regarding structural breakpoint tests in
finite samples, many possible extensions still exist. First and foremost, the
analysis can easily be extended to allow for multiple breaks. The bootstrap
technique necessary to do so has been proposed in a few papers, such as in
Banerjee et al. (2002). Moreover, we can adopt another test for power, which

Andrews and Ploberger (1994) dubs as the “optimal power test.” Finally, there is
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the issue of the behavior of these test statistics in the presence of unit roots and
other non-stationary processes.

The simulations of small sample behavior indicate that one needs only to
bootstrap a single type of supremum test statistic in its linear form. If we use the
SupLM test, then we only need to estimate the equation once for each bootstrap;
this clearly is more advantages than bootstrapping all of the test statistics in their
nonlinear forms! We caution, though, that bootstrapping critical values can only
do so much in small samples. If the BE ratio is small, then its power is still weak.
In that case, we recommend a sample size of at least 50 observations. On the
other hand, if there is reason to suspect that the break in question has a large
break-error ratio, then a sample size as small as 10 will offer sufficient power

when bootstrapped critical values are used.
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