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University of Washington
Abstract

RANDOM SUBCLONING, PAIRWISE END
SEQUENCING, AND THE MOLECULAR
EVOLUTION OF THE VERTEBRATE
TRYPSINOGENS

by Jared C. Roach

Chairperson of the Supervisory Committee: Professor Leroy Hood
Departments of Molecular Biotechnology and Immunology

Mathematical theory for random subcloning is presented and discussed in detail.
The pairwise end sequencing strategy for mapping and sequencing is presented in a general
form; specific examples are analyzed with the aid of computer simulations. The evolution
of the vertebrate trypsinogen multigene family is discussed in the context of newly
sequenced trypsinogen genes from the lamprey Petromyzon marinus and the tunicate

Boltenia villosa.
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GLOSSARY

Coincidental Evolution. A tendency of genes present in the same genome to evolve in a
non-independent manner. The presence of coincidental evolution makes homologous genes
within a genome more similar to each other than to homologous genes from other genomes.
Many authors use the term “concerted evolution” as a synonym for coincidental evolution,
which was originally defined by Hood et al. (1975).

Contig. An island consisting of at least two fragments.
Fitness. An organism’s ability to propagate.

Functional Genomics. The development and application of experimental approaches to
assess gene function by making use of the information and reagents provided by structural
genomics (Heiter and Boguski, 1997; McKusick, 1997).

Gap. A region of a target that is not represented in an island. Gaps are sometimes referred
to as “oceans.”

Gene Product. The product of a gene. Most genes code for proteins, but some code for
structural RNAs, and some affect the structure and/or regulation of the genome without
being transcribed into a downstream product.

Gene. Information encoded in a segment of genomic DNA that affects the fitness of an
organism. Semantically, it is useful to consider some genes as consisting of multiple gene
segments, such as the TCR B gene.

Genome. The information encoded in the DNA of a cell. Every individual, with few
exceptions, has a distinct genome. The genome can vary slightly from cell to cell within an
organism. The term was coined in 1920 by Winkler as an elision of the words “gene” and
“chromosome” (McKusick, 1997).

Genomicist. One who studies genomes.

Genomics. The study of genomes. By contrast, the term “genetics” refers to the study of
inheritance. The term *“genomics” was introduced by Roderick in 1986 (McKusick, 1997).

Homologous Genes. Genes that share a common ancestral gene. Orthology and
paralogy are subcategories of homology. Genes may be homologous without necessarily
being either paralogous or orthologous (see, for example, Tatusov et al., 1997).

Indel. An insertion or a deletion.

Island. A maximal set of fragments each of which is connected to all other island members
by at least one path of overlapping fragments.

Isozymes. Enzymes that have identical (or nearly identical) biochemical properties.



Orphon. A term applied to gene segments separated from a complete functional gene
locus. A typical example is a TCR V[ segment on chromosome 9, unable to recombine
with DB and CP segments to form a functional gene.

Orthologous Genes. Genes in different species that share a common function and
evolved from a common ancestor. By definition, the split between such genes was caused
by a speciation event. The result of speciation (Fitch, 1970).

Paralogous Genes. Multiple genes resulting from duplication within a particular
genome. The result of gene duplication (Fitch, 1970).

Parameterization. A particular choice of parameters for a model (or a project).
Parameters are variables that one can control, such as the choice of how many clones to
analyze, or what length clones to choose.

Pseudogene. A gene that is no longer functional. The ancestral sequence was a functional
gene that acquired one or more mutations that destroyed functionality. Typically, this
would entail the acquisition of stop codons in an open reading frame. Point mutations are
typically responsible for the creation of pseudogenes.

Relic. A fragment of a gene that was once functional. The semantic boundary between a
pseudogene and a relic is fuzzy. Generally in order to be classified a relic, one or more
recombinations or major deletions must have operated on the ancestral gene.

Repeat. A region of a genome that is nearly identical to another region of the same
genome. It should be emphasized that in genomics terminology the word “repeat” does not
imply 100% identity. The percent identity used to define a repeat is somewhat subjective.

Scaffold. An ordered and oriented list of islands. Also referred to as a “gapped island”
(Port et al., 1995) or a “supercontig” (Lawrence et al., 1994).

Structural Genomics. The construction of genetic, physical, and transcript maps of
genomes (Heiter and Boguski, 1997). Genomic sequence is considered to be the ultimate
high resolution physical map of a genome. The definition can be rephrased as, *“mapping
and sequencing genomes” (McKusick, 1997).

Subclone. A clone of a fragment of a larger piece of DNA. The fragment has been
genetically engineered into a vector that facilitates laboratory manipulation of the fragment.

Target. A genome or a subset of a genome that will be analyzed during the course of a
project.

vi



LIST OF ABBREVIATIONS

BAC. Bacterial artificial chromosome.
bp. Base pair.

c¢DNA. Complementary deoxyribonucleic acid.
DNA. Deoxyribonucleic acid.

ds. Double stranded.

EST. Expressed sequence tag.

HMM. Hidden Markov model.

kb. Kilobase pair.

mRNA. Messenger RNA.

OSS. Ordered shotgun sequencing.
PCR. Polymerase chain reaction.
RNA. Ribonucleic acid.

SMG. Sequence-mapped gap

ss. Single stranded.

STS. Sequence-tagged connector.
STS. Sequence-tagged site.

TCR. T-cell receptor.

YAC. Yeast artificial chromosome.

vil



LIST OF VARIABLES

C. An arbitrary length (a partial target goal less than G).

D,. The length of the k" spacing from the left end of the target.

J- The fraction of the target that is covered.

J,- The effective fractional coverage of the target provided by one fragment.

G. The length of a target (in bases). This abbreviation is most appropriate when the target
is a genome, but has come to be used even when the target is something else, such as a
subclone. I do not employ the convention of setting G equal to unity.

G.. The effective length of the target.

g,.- The number of short spacings in the m" island from the left end of the target.

I. The length of an insert.

L. The length of a clone (in bases). I do not employ the convention of setting L equal to
unity.

[,.. The length of the m™ island from the left end of the target.
N. The number of permitted residues at a sequence site.

n. The total number of clones analyzed in a project, either by mapping or sequencing.
N.,,- The number of gaps in a project.

N 1angs- The number of islands in a project.

Ni,ng- The number of long spacings in a project.

N,,.,,;,,,m. The number of single fragment islands in a project.
K. The probability of a mutation per unit evolutionary time.
Pyop- The probability of a gap following a spacing.

R. Redundancy.

R,. The effective redundancy.

S,. The k" spacing from the left end of the target.

viil



T. Evolutionary time.

T. The number of base pairs necessary to determine overlap during the assembly phase of a

random subcloning project. In many practical cases 7<<L, and can be approximated as
zero.

V. The length of the vector sequence.

Z,,- The number of fragments in the m" island from the left end of the target.



PREFACE

The doctoral thesis has a rich history. The tradition of the dissertation binds modemn
students back through the ages to the history and culture of the Renaissance Universities
(Haskins, 1923). The richness of values governing the content of theses dictates certain
compromises with respect to the choice of included material and its style of presentation.

My desire in this thesis is to provide knowledge in a understandable fashion to the
widest possible audience: biologists, mathematicians, computer scientists, engineers, and
those in allied fields. I hope to have made at least a portion of the text accessible to students
at all levels. However, for much of this dissertation, I will assume at least a basic
knowledge of molecular biology, such as that obtainable from The Cartoon Guide to
Genetics (Gonick and Wheelis, 1991) or another introductory molecular biology textbook.
The reader is encouraged to ignore or merely skim material that is either too basic or
advanced. A more compact presentation of much of the material in this dissertation can be
found in my original journal articles which are reproduced in the appendices.

My doctoral research has led me down many disparate paths, of which three have
been significant enough to include in this dissertation, each as a separate chapter. Two of
these chapters group naturally in the area of strategic genomics, while the third strikes out
tangentially into the field of molecular evolution. Rather than attempt an integrated and
detailed introduction to these three subjects simultaneously, I have kept the overall
introduction, which follows, short and generally oriented. I include more detailed topical
introductions at the beginning of each chapter. Also, in each chapter I employ several
specialized terms appropriate to the subjéct matter; I encourage the reader to exploit the
glossary when in doubt of the meaning of a particular term. Readers may also find the list
of abbreviations and the list of variables useful as occasional references.
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INTRODUCTION

The closing decades of the second millennium have brought forth a cascade of
technology and knowledge that promises to bring forth greater changes than were brought
by the twentieth century. Biological knowledge and biotechnology have perhaps lagged
other cornerstones of change such as the microchip revolution, but may in the long run may
have the greatest impact on the evolution of human life and society.

Biological study is increasingly a study of complex systems. It has always been,
and it is becoming more so. Our capacity as scientists to analyze and understand complex
systems is rapidly maturing. An organism, such as a human being, is a complex system
itself composed of multiple complex systems. One of these systems is the genome. It is a
complex task to understand the genome, and such understanding is but a small step
towards understanding the organism.

However, progress is made of small steps. In this dissertation, I will discuss a few
small steps towards understanding the genome. Scientific progress is often driven by a
marriage of new technologies with a cutting edge problem. I will present and discuss two
strategic technologies for genome study. I will then apply genomic knowledge to the
analysis of vertebrate trypsinogen evolution, which is itself a model for the complexity of
genome evolution.

The technologies for genome study I present here are strategies for genomic
analysis. The emphasis underscores a worldwide change in the paradigm for genetic
experiments. To date, most genetics have been done from a “bottom-up” perspective.
Isolated problems in genetics were selected and analyzed in detail. Global genomic
information was not sought. Any global information obtained was added piecemeal and
without coordination to the body of scientific knowledge.

Now, increasing numbers of genomes are being sequenced in their entirety, with
several large genome sequencing projects underway (Rowen et al., 1997). Emphasis is on
a “top-down” perspective, with global information sought primarily.! Intent is that content

! Searching for a needle in a haystack is analogy for a “bottom-up” approach to genome
analysis. The needle represents a sought-after gene such as that for Huntington’s Disease
(i.e., HD) or breast cancer (e.g., BRCA1). The haystack is the genome. The search for
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not only be applied to the study of isolated systems but also to systems that arise from
complex interactions between multiple genes and proteins (e.g., DeRisi et al., 1997). An
expectation is that a comprehensive global effort will not only be more thorough, but will
also be more efficient than multiple “bottom-up” approaches.

Therefore, efficient strategies for genome sequencing are needed. The scale of
genome projects is such that even minor improvements in strategy can effect major changes
in cost, effort, and even feasibility.

In Chapter 1, I focus attention on random subcloning, which is a simple strategy
for genome analysis. Until now, no adequate mathematical analysis of random subcloning
has been available. It has been impossible to predict, other than empirically, project
outcomes or costs. It has been impossible to compare complex strategies with basic
standards. Here, I provide some fundamentals for addressing these issues.

In Chapter 2, I present pairwise end sequencing as an example of a more complex
genome mapping and sequencing strategy. A robust mathematical analysis of pairwise end
sequencing continues to elude researchers, so I analyze the strategy with the aid of
computer simulations. Such simulations are a powerful way to answer the practical
questions of project design and evaluation, even in the absence of a complete mathematical
analysis.’

In Chapter 3, I depart from the purely theoretical themes of the first two chapters
and address the evolution of the genome. I focus on the evolution of the trypsinogens,
which are present in vertebrate genomes as a multicopy family tightly linked to the T-cell

each of these genes can be viewed as having been an independent search through the
same haystack for different needles. A “top-down” approach to haystack analysis would
be to sort through the entire haystack, one straw at a time, categorizing everything found
in the haystack Such an approach might be inefficient if just one needle is sought, but
would become more efficient the more needles there were in the haystack. Identifying the
approximately 75,000 genes in the human genome would require 75,000 independent
bottom-up searches. Alternatively, one comprehensive search could be conducted.
Providing this comprehensive search is one goal of the Human Genome Project. An
excellent summary of the present state and future potential of genomic study has been
provided by McKusick (1997). Estimates of the number of genes in the human genome
have been tabulated by Fields et al. (1994). UW manuscript #1.

2 For background on the power, utility, and limitations of computer simulations, the reader
may wish to consider Galper and Brutlag (1993). The need for computer simulations in
the Human Genome Project is highlighted by Koonin (1998).
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receptor B locus. These genes display a panoply of evolutionary modalities, including
striking examples of coincidental evolution. Coincidental evolution is the tendency of genes
present in the same genome to evolve in a covariant manner. I also point out several
difficulties that complicate evolutionary analysis of multigene families.

Strategies for genomic analysis are often analyzed with simple assumptions about
the nature of multigene families and other repeated elements. These assumptions are often
used to call into question the utility of proposed genomic strategies. Understanding the
nature of repeats, includiﬁg multigene families, and how they are formed is thus an
important adjuvant to a discussion of structural genomics. With an understanding of the
nature of evolution, we can begin to predict how similar repeats are likely to be, and this
prediction, in turn, affects parameterizations of strategies and overall cost.

From a functional genomics point of view, the nature of repeat families tells us
much not only about evolution, but also of the nature of complex biological systems
interaction. Complex modern vertebrates are positioned at a pinnacle of billions of years of
biological evolution on Earth.’ An important enabling feature of this evolution has been the
ability of the evolutionary process to reuse and readapt previously constructed building
blocks (Henikoff et al., 1997). Since the dawn of vertebrate evolution 600 million years
ago, it may be that very few truly new genes have evolved (Holland and Garcia-Fernandez,
1996). Rather, nature has adapted previously existing genes, sometimes in novel
combinations, to new functions. Original genes are usually left untouched, with novel
adaptation operating on duplicate copies of original gene family members. The resulting
multiple isoforms of genes permit the establishment of complex systems with multiple
similar but subtly different components. Evolutionary operations on gene families are likely
to have been a major mode of evolution in the vertebrate subphylum.

The serine proteases, of which trypsin is a member, are one of the largest and most
diverse gene superfamilies (Barrett and Rawlings, 1993). Their origins lie buried in the
earliest stages of evolution — trypsin genes are present in eubacterial genomes (Rypniewski
et al., 1994). Modern vertebrate serine proteases include chymotrypsin, elastase, the

* All currently living species are positioned on their own respective “pinnacles of
evolution.” The height of each pinnacle is the amount of evolution that has occurred to a
species since the origin of life. If evolution is measured by time, all current pinnacles are
equally high. The pinnacles that were reached by extinct species are lower. An
introduction to evolutionary concepts can be found in Dawkins (1990 and 1996).
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recently-evolved prostate specific antigen, blood clotting enzymes, several granzymes, and
many other genes involved in immunological defense. The serine protease gene
superfamily rivals the immunoglobulin gene superfamily in terms of its importance to both
vertebrate evolution and vertebrate immune defense (Smyth et al., 1996; Hunkapiller et al.,
1989). It is fascinating to ponder the close genetic linkage of the trypsin and T-cell receptor
B gene loci.

The vertebrates almost certainly possess the most complex immune system of all
living organisms. This has been made‘possible by the repeated use of duplications in
multicopy gene families (see, for example, Ohno, 1978; Hunkapiller et al., 1989; Hood
and Hunkapiller, 1991; Raport et al., 1996). These families include the immunoglobulins
the serine proteases, and many others. There are, in fact, few genes of importance to
immunology that are not members of multigene families. To study multigene families is to
study the fabric of immunological complexity.



CHAPTER 1. RANDOM SUBCLONING

“You cannot see the wood for the trees.”

English Colloquial Saying

Peer as we might, we find ourselves in a deep entangled forest, seeing about for
only a short distance. What we see is vivid, in great detail, but it is not enough. Standing in
one place we cannot grasp the whole. This is the state of genome research.

Imagine visiting the Louvre with a great magnifying glass, constrained to examine
each painting one tiny fleck of paint at a time, unable to step back, unable to see the art
itself. As you look at the Mona Lisa, with each glance, you are only able to see a spot one
twentieth of a millimeter in diameter. The textures and colors of the cracked oil pigments
leap out at you. You make detailed notes, recording each observation in a computer
database. Your computer churns out statistics on pigment height, color, and crack length
distribution. You become frustrated by your inability to see the Mona Lisa.

The human genome, packaged into a living cell a few microns in diameter, is
paradoxically too large to see. It is true that chromosomes, the structural material encoding
the genome, can be seen, but not the information itself. The word “genome” defines an
informational concept. Chromosomes contain DNA. A genome contains information. DNA
is an ink that forms words. Genes are sentences and stories, information conveyed by
DNA. The genome is often analogized as a book of life (e.g., Wills, 1991)."

It is not proper, however, to compare the genome to a book, for a book can be read
by human eyes, while the genome cannot. A better analogy is that of a magnetic storage
disk, able to release its information only with the aid of a mechanical interpreter, such as a
computer. Within the confines of a living cell the genome is read with biological machines -

' Humans are by no means currently capable of understanding all of the informational
content of any genome. Nor will such understanding come solely from genomics.
Progress in all allied disciplines, particularly those focusing on protein function, is
necessary to contribute to such understanding. Biological understanding is the result of a
vast friendly collaboration between workers in an amazingly diverse array of fields.



6
polymerases, ribosomes, and a multitude of supporting enzymes and structures. Human
observers use other machines — DNA sequencers — to read the genome. It is the limitations
of these machines, and of the chemistries that underlie their workings, that place the
genome researcher in the shoes of the magnifying-glass-toting art connoisseur.

Each machine can read only a small fraction of the genome at a time. The human
genome contains three billion base pairs arrayed on twenty-four separate chromosomes. If
this information were stored on a computer disk, it would occupy about a gigabyte of
space. A single “sequence read” from a DNA sequencer permits the visualization of only a
tiny amount of this data, currently about five hundred to one thousand base pairs.

1.1 MAPPING AND SEQUENCING LARGE GENOMES

Genomicists wish to obtain the entire sequence of the human genome. This is the
goal of the Human Genome Project, which is currently a major intemnational effort
(McKusick, 1997; Rowen et al., 1997). However, the methodologies developed for the
human genome will not end there, for many other genomes await. Nor will the human

genome be the toughest genome ever to be sequenced. The genome of the lily Fritillaria
davisii, for example, contains 3x10'' bp, while Amoeba dubia has 6.7x10"" bp (Wachtel
and Tiersch, 1993; Li and Graur, 1991).

How to sequence these genomes is problematic. How to best sequence these
genomes is even more problematic. Optimizing genome sequencing is not merely an
academic question. The scale and expense of genome projects is such that slight differences
in the efficiencies of various strategies can spell the difference between feasibility and
impossibility. The first step in choosing the best strategy is to understand the consequences
of pursuing any given strategy. We must ask ourselves, “What results can we expect to
obtain given a certain level of expenditure of resources?” If we can decide upon our goals
ahead of time, we should be able to estimate how much it will cost us to reach these goals.

Random subcloning is a popular strategy in use by genomicists. ‘Random
subcloning is simple, and is the easiest strategy to implement. The strategy iteratively
generates sequences from random locations in a genome until, by chance, sequences from
the entire genome have been obtained. At this point, data analysis algorithms are used to
reconstruct the global picture from the random fragments. The “forest” is reconstructed
from a random collage of local snapshots of the “trees.”
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Random subcloning is not merely a sequencing strategy. The principle of breaking
down large problems into small problems is not unique to sequencing. It is possible to
analyze the genome without determining the details of its sequence. Such an analysis is
termed “mapping.” A genome mapping project seeks to identify and order landmarks of the
genome. A physical map uses structural landmarks, such as restriction sites, or the ends of
clones. A genetic map uses informational landmarks, such as genes. The methodologies of
genetic mapping are quite different from those of physical mapping, but when landmarks
from the different methodologies can be correlated with each other, the maps can be
integrated. I will not discuss genetic mapping further in this dissertation, and will focus on
physical mapping and sequencing.

It is possible to use physical mapping techniques to analyze fragments of DNA that
are much longer than the length of a sequence read. It is quicker and easier to build up a
global picture with such techniques, as the fragments of the puzzle can be a thousand times
larger than individual sequence reads. The trade-off for speed is that the resulting picture is
fuzzier, much like an impressionist painting compared to a sharp color photograph. One
advantage of physical maps is that their component subclones can be used as targets for
sequencing. Since subclones are smaller than genomes, they present far more tractable
problems. In practice, sequencing strategies are not applied directly to a target as large as
the human genome, although they are to much smaller genomes, such as those of certain
bacteria.

An important and recurring debate among structural genomicists is when and in
what proportions to use directed strategies as opposed to random strategies. Examples of
both of these types of strategies are discussed further below, but the strategies can be
characterized briefly: random strategies are cheap but necessarily redundant, with an
exponentially decreasing return on investment as a project progresses; directed strategies
are expensive but non-redundant, with a constant rate of return. This dichotomy
immediately suggests compromise. It is possible to begin a project with a random strategy
and switch to a directed strategy in a “finishing” phase. Timing this switch is an important

economic choice.

? Sequencing and mapping can be interleaved. A promising strategy is described by Venter
et al. (1996) and analyzed in detail by Siegel et al. (in preparation). Bacterial genomes
sequenced to date include those described in Fleischmann al. (1995), Fraser et al. (1995),
Himmelreich et al. (1996), Bult et al. (1996), Kaneko et al. (1996), and Blattner et al.
(1997).
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Until 1993, when I was able to approach the mathematics of random subcloning,
little was known about the expected outcomes of random subcloning projects given certain
levels of resource expenditures and parameter choices. A simple equation for expected
target coverage was communicated to the genomics community by Clarke and Carbon in
1976. In 1988, Lander and Waterman addressed several additional issues, and developed
additional equations describing random subcloning projects, but these equations were valid
only at low redundancies, and had little value for strategy determination. In fact, because of
their flaws at high redundancies, these equations were often misleading. Most random
strategies were thus conducted and evaluated empirically, but seldom could enough
empirical data be collected to yield generalizable results.

The most fundamental question to ask of a random subcloning project is, “How
many clones on average does one have to sequence or analyze before I completely cover
my target?” Before we address this question, let us step back a bit, and discuss why a
simple directed strategy, sequence walking, fails.

1.2 SEQUENCE WALKING

If one were presented with an unknown genome of 3x10’ bp, it would seem that
the easiest and most efficient way to sequence it would be to sequence all 3x10° bp in
order, just one time, and be done with it. This strategy is known as “sequence walking”
and it, in fact, works quite well, at least for very short genomic targets. The difficulties of
sequence walking lie in the technical details of sequencing.

One cannot start a sequencing reaction, which will produce a sequence read, at any
arbitrary point in the genome. Each sequencing reaction must be primed, and priming
requires known sequence. A sequencing reaction can only start where the sequence is
already known. The reaction can extend into an unknown region, but it must start in a
known region. The required length of this known region is not set in stone, but it is about
20 bp. Each sequencing reaction starts with a primer, which is a short DNA oligonucleotide
complementary to the known region.

Each primer must be unique. The need for unique primers adds to the expense of
sequence walking.’ If the known region on the target genome to which the primer binds is

* The commercial cost of primer synthesis is approximately $0.70 per base, or $15 for a
typical sequencing primer (e.g., Operon sales literature, 1997). Due to significant
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repeated in more than one site, the primer will bind at all these sites, and multiple
sequencing reactions will occur simultaneously, producing nonsensical and useless
sequence reads.* There are 4”° different possible 20 bp primers (4% is roughly 1x10'?).
However, three additional factors must be considered. First, a primer will recognize not
only a site that is exactly complementary, but also many other sites that are merely similar.
Secondly, the composition of genomes is not completely random, in ways that increase the
probability of a given sequence occurring more than once. Thirdly, not all primers are
particularly good at initiating sequencing reactions, so many of them cannot be used.’
These factors limit the complexity of target templates used in sequencing reactions. It is
hard to obtain sequence reads from templates that are longer than a few hundred kilobases.
In addition to this, it is difficult to physically manipulate such templates in the laboratory.

With these factors in mind, it is not surprising that the quality of sequence data
diminishes as the template length increases. So although sequence can be obtained from
bacterial artificial chromosomes (BACs), the highest quality sequences are obtained from
phage or plasmid templates, which are only a few thousand base pairs long.

Template complexity is only one problem. Consider now the basic strategy of
sequence walking. The idea is to start at one end of the target and “walk” towards the other
end.® Each sequence read provides known sequence that can be used to generate a primer
for the next sequence. If each sequence is 500 bp, and each primer is designed from the last
20 bp of the previous sequence read, then it would take 42 sequencing reactions to cross a

twenty kilobase target. The redundancy R of such a project would be calculated as follows:

competition in the commercial primer synthesis field, this price is probably a good
reflection of the actual cost of synthesizing primers. On-site primer synthesis can be done
overnight; commercial synthesis incurs an additional delay due to shipping. These delays
add to the net opportunity cost of sequence walking. On-site robotics drop the individual
cost of primer synthesis, secondary to a large initial investment in equipment.

* There are some clever tricks for doing multiple sequencing reactions in the same tube
(i.e., Wiemann et al. 1996). However, none of these bypass the target sequence
complexity issue discussed here.

* For chemical reasons, primers are usually chosen so that their G-C content is about 50%.
Additionally, the last base of a primer is usually chosen to be a guanine or a cytosine.

S An obvious and common extension to the strategy is to start “walking” at both ends at
meet at the middle.
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_ Total Sequence Obtained _ nL
Target Length G

R (1.1)

Here, and in general, n is the number of fragments sequenced in a project, L is the length

of a fragment, and G is the length of the target. In this case R is 1.05, which is very close
to the ideal of 1. Redundancy is one measure of the efficiency of a project. If this were the
only measure of efficiency, the extremely low redundancy would be a compelling argument
for sequence walking, at least on targets that were short enough so as not to be too complex
for a sequencing reaction.

One might ask how a walking strategy is initiated. In many cases, sequencing
targets are cloned DNA. A clones consists of unknown sequence embedded in a known
“vector” sequence. The ends of the unknown target sequence are flanked by known vector
sequence. It is thus a simple matter to initiate a walking strategy on cloned DNA. In other
cases, such as mapping, a walking strategy can only be initiated from a previously analyzed

region.

There is an additional problem that limits sequence walking. Regardless of the
template complexity, some sequencing reactions will nevertheless “refuse” to work. When
walking, each sequence read provides the data for priming the next, so if even one fails, the
project halts.” Reactions fail for many reasons, some of them unknown, but one cause
might be the presence of tertiary structure such as a hairpin loop in the target DNA. Even if
such failures are rare, the longer a template is, the more likely such a problem is to occur.
Failure rates vary highly. If one primer fails, a nearby primer or alternative chemistry can
be tried, often with success, but occasionally with repeated failure and always with project
delay. In practice, few sequence walking projects tackle targets longer than 20 kb.

One of the most significant causes of the failure of a walking iteration is not so
much that the reaction has failed to work, but rather that it has worked more than once.
This happens when the target sequence contains sequences that are nearly identical to each
other, known as repeats. Such repeats are common in metazoans and infrequent in other
organisms. The presence of such a repeat brings a sequence walk to a halt as soon as the
walk attempts an iteration from within a repeat. The only solution is to fragment the target

7 Even if the project is not terminated, a considerable amount of effort must be expended in
order to continue walking, such as running sequencing reactions with alterative
chemistries or using a different primer.
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and initiate sequencing on a smaller subclone. If the target is going to have to be subcloned
anyway, it would have been better to subclone it initially followed by detailed mapping of
the subclones or, more likely, random sequencing.

Nevertheless, one of the largest headaches of sequence walking has nothing to do
with chemistry, but rather administration.® An administrative step must occur after every
sequencing reaction in a sequence walking strategy.’ This step involves analyzing the data
from the previous reaction, designing a new primer, synthesizing the primer, and then
initiating a new sequencing reaction. Much of this administration can be implemented by
computers and robots, but an unavoidable consequence is that each reaction must be done
consecutively. Contemporary automated DNA sequencers have the capacity to run about
fifty samples simultaneously. Well-equipped labs can process thousands of reactions per
day. With a sequence walking strategy, all this capacity is wasted, as only one reaction can
be done at a time.'® Keeping track of data, primers, clones, and targets can easily be the
greatest challenge and cost of a walking strategy, far exceeding any savings in efficiency

gained from an ultra-low redundancy.

Furthermore, an extremely low redundancy is not desirable. Errors occur in
sequencing reactions at a rate of roughly 1%.'' The desired accuracy of most projects is

® This general observation holds for many things in life.

® A detailed analysis of administrative costs is beyond the scope of the present work. From
an operations research viewpoint, estimating such costs is one of the most difficult
aspects of analyzing strategy costs. A series of preliminary forays into this difficult field
can be found in two papers by Siegel et al. (1998b, in preparation). Many costs can be
reduced by automation. However, the development costs, ultimate utility, and life cycle
of robots are extremely hard to predict, or even in retrospect to calculate. Failed efforts at
automation (i.e., “dud” robots) should be accounted for in such calculations. In the face
of these difficulties, empiricism provides powerful insight into some of these hard to
calculate costs. For example, all major sequencing labs have abandoned primer walking
in favor of random subcloning. This suggests either mass delusion or a consensus that
the overall opportunity cost of random subcloning is lower. However, even assuming
that this global shift in strategies was originally fundamentally sound, it remains ever
possible that improvements in alternative strategies might tip the opportunity cost balance
in another direction. In future sections, I will point out a few potentials for such balance
shifts.

' In practice, many targets are analyzed in parallel, allowing the laboratory’s full capacity
to be used. However, this adds to the administrative complexity.

'! The exact error rate varies as a function of position in the sequence read. Additional
parameters include the sequencing chemistry, the template, the primer, the choice of
automated sequencing machine (or absence thereof), and the choice of run parameters
such as voltage and run time. For example, ABI sales literature claims production of 800
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about 0.01%."* Therefore it is not sufficient to obtain a single sequence read across each
region of the target. A bare minimum is to obtain one read from each strand of the target,
bringing the theoretical ideal redundancy to 2. In practice, more than two reads are often
needed for accuracy, particularly in places where the first two reads disagree. For targets
that have highly similar repeats, even two sequence reads may not be enough to distinguish
minor variations between the repeats. This presents significant challenges to a directed
strategy or even to a low redundancy random strategy. A highly redundant random strategy
will usually have relatively little problem resolving such repeats, often with no further need
for experimentation. It can turn out to be less expensive to do more up-front random
sequencing than to solve problems that arise from low redundancy data. Another approach
to problem resolution is to use mapping data such as those provided by a pairwise project.
Pairwise projects are described in Chapter 2. It should be noted that as advances in
technology drop the error rate of sequence reads, then directed strategies become slightly

more favorable.

Not all of the drawbacks to sequence walking apply to mapping projects. The
technologies and chemistries involved in mapping projects are quite different. However,
the problem of administrative overhead remains. Additionally, the problem of the “rare
failure” becomes much worse. The iterative step in a sequence walking strategy that can fail
is a sequencing reaction. The analogous step in a physical mapping project is the
identification of a clone that overlaps a known map and extends into an unknown region.

bp of 98.5% accurate sequence in 8 hours on a PRISM 377 DNA Sequencer using a
LongRead DNA cycle sequencing standard, beginning from base twenty of the read.
Many genome centers maintain statistics on error rate as a function of sequence position,
and will usually provide such statistics upon request. These statistics are constantly
changing however, as centers implement incremental advances in technology. The
estimate in the text of roughly 1% error is a ballpark estimate of current error rates. A
detailed discussion of error rates is beyond the scope of the present work. One starting
point for the acquisition of additional information is the web site of the National Human
Genome Research Institute (www.nhgri.gov). Between 520 and 550 “high quality”
bases are obtained for sequence reads from the Pseudomonas aeruginosa project
underway at the University of Washington (Maynard Olson, personal communication).
“High quality” is a statistic produced by the programs PHRED and PHRAP (Phil
Green, author).

'2 The current standard for federally funded Genome Centers is 1 error in 10 kb (National
Human Genome Research Institute guidelines). The error rate for genomic sequencing in
the Hood lab from 1991 to 1994 ranged between 0.98 and 1.4 errors per 10 kb. For
1996 and 1997, the error rate was 0.16 to 0.20 errors per 10 kb (Lee Rowen, personal
communication). Error rates are estimated based on discrepancies between overlapping
clones derived from the same haplotype.
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This identification process can also have a high failure rate. Most mapping walking projects
are doomed to long-term failure, and are thus reserved for the generation of very short
maps. An excellent review of the technology and difficulties of map walking has been
provided by Stubbs (1992).

The considerable drawbacks of walking strategies have fueled the exploration of
alternative strategies, including random subcloning.'?

1.3 OVERVIEW OF RANDOM SUBCLONING

The forest-and-trees analogy can be rephrased in molecular biology terms: large
DNA targets are intractable to direct analysis and must be broken down into smaller
fragments before techniques such as restriction mapping or sequencing can be employed.
Following detailed analysis of the many, a map or sequence of the target can be
reconstructed.

As [ move to a more technical description of random subcloning, I wish to be clear
with my terminology. I mean different things by the word “fragment” when referring to
mapping or sequencing. The use of the term “fragment” will allow me to discuss both
methodologies concurrently and to develop a mathematical model applicable to both.
Physical mapping requires fragmentation of the target. The resulting fragments are cloned
into vectors. If the target was a clone, the new constructs are called “subclones.” I refer to
the unknown DNA present in these clones or subclones as “fragments,” and this quite
literally represents an actual physical fragment of the target. For sequencing projects I refer
to each sequence read as a “fragment.” Although less literal, this definition allows me to
maintain a precise analogy.

' There is a constant interplay between cost, strategy choice, and advances in technology.
For example, a recent advance in primer initiation chemistry may permit sequencing
walking without the necessity of synthesizing a new primer for each walking iteration
(Mugasimangalam et al., 1997). This method exploits “differential extension of
nucleotide subsets.” Short primers from a presynthesized library upstream from target
regions lacking a particular nucleotide, then extended without that nucleotide at low
temperatures. Spurious priming sites are not extended due to the missing nucleotide.
Subsequently the temperature is raised and the missing nucleotide added in order to
complete a sequencing reaction. Early implementations of this technique entailed a
compromise in sequence read length and an increased failure rate. However, optimization
might eliminate such drawbacks. In any case, the use of this technique would still involve
the administrative overhead of clone tracking through iterative steps.
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Ideally, a direct strategy is pursued by analyzing a minimum number of fragments

such that a minimum tiling path is followed. Walking, described above, is an example of a

minimum-tiling-path strategy. In general, the determination of a minimum tiling path

requires prior knowledge of the relation of each fragment to the original target. Such

information is not easily available. Sequence walking obtains this data by iterative stei)-by~

step sequencing. An alternative to sequence walking is to physically map a large number of

subclones before sequencing any of them. If the number of subclones mapped is much

larger than the number needed to define a minimum tiling path, it is usually possible to
choose a path of subclones to sequence that approaches a minimum tiling.

In a prototypical random subcloning sequencing project, only one end of a
subcloned fragment is sequenced. This is largely a matter of convenience, as the same
primer, derived from known vector sequence, can be used for every sequencing reaction.
The unknown DNA in a subclone is often much longer than a sequence read - perhaps a
couple of thousand of base pairs compared to a read length of about 600 bp. Thus a tiling
path for such a project will involve clone ends spaced less than one sequence read length
apart.

The cost of producing a minimum tiling path map can be quite large. The exact
costs of generating such “sequence-ready” maps are hard to determine, either empirically or
theoretically. In all cases, however, these costs must be weighed against the alternative of
using a less optimal map, or even no map at all. Without a map, fragments must be picked
and analyzed at random. This limiting case is the strategy of random subcloning, also
known as “shotgun sequencing.”

Note that if one could analyze a single target molecule at a time, additional strategies
would become available. One can imagine fragmenting a single DNA target molecule, and
keeping track of each fragment and where it came from. One could analyze each fragment
and then immediately reconstruct the target sequence. One would reach the ideal project
redundancy of 1. It is actually be possible in some circumstances to pursue such a strategy.
Optical restriction mapping promises exactly this (see, for example, Anantharaman et al.,
1997). Currently, it is not possible to sequence DNA in such a fashion.

During shotgun sequencing, fragments are generated from a vast number of
identical target sequences, typically about a trillion. The resulting “library” from which the
fragments are selected for further analysis is thus redundant. Individual fragments may
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overlap in the sense that they mutually possess, in part or entirety, the same bit of target
sequence. In particular, because of the effectively infinite number of fragmented target
sequences, each fragment chosen at random from the resulting fragmented mixture is
independent of all the other fragments. The locations from which these fragments arise can
thus be considered to be uniformly distributed."*

One difficulty of random strategies is the problem of retrospectively determining
from where a fragment came. If a fragment by chance happens to overlap known sequence,
such as would occur on the boundary between the vector and the unknown target, the
region of known DNA can be extended. If another fragment overlaps the first fragment, the
known region can again be extended. The process of extending the known region of the
target sequence is similar to that of sequence walking, but with the methodology reversed.
In walking, one first identifies an unknown fragment overlapping known sequence, and
then analyzes. In shotgunning, one first analyzes a very large number of fragments, and
then finds one that overlaps known sequence.

The beauty of the “assembly” stage of a shotgun project is that it is not linear. Since
every fragment has been analyzed up front, they all represent known sequence. The
relationships of the known sequences to the original unknown target sequence are not
known, but the sequences themselves are. Every fragment is a “seed” from which longer
known sequence can be “grown” by identifying overlapping fragments. Every fragment is
a starting point. Shotgun assembly works like a polymerization reaction, with eventual
coalescence of all the fragments into one final assembled sequence. If enough fragments
have been analyzed, this final assembly will continuously cover the target sequence, and
the project will be over.

If not enough fragments have been analyzed, there will be gaps in the target. This is
undesirable. On the other hand, analyzing more fragments than necessary to cover the
target is also undesirable. Understanding the mathematics of shotgunning permits a
judicious choice of the number of fragments to be analyzed up front. If not enough
fragments are analyzed at first, a trial assembly can be made, and if gaps are discovered,

'* In practice, fragments from some locations are observed less often than others. The
deviations from uniformity depend on the technique used to fragment the DNA (see, for
example, Deininger, 1983). However, most modern techniques, such as shearing by
HPLC, tend to be quite uniform. As long as ‘the deviations in start site uniformity are
small compared to the fragment length, a uniform distribution works well as an
approximation.
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more fragments can be analyzed until the gaps are closed. Altematively these gaps can be
closed by other strategies, such as walking. Determining the costs of gap closure of various
strategies is important in choosing between alternative approaches to gap closure. It should
be emphasized, however, that iterative strategies are undesirable, as they require extra
administrative overhead.'” It is more desirable to analyze all necessary fragments at once
and then make one final assembly than to analyze fewer fragments at first than necessary,
assemble them, determine the need for more analysis, and then repeat the process, perhaps

several times.

Assembly of analyzed fragments is a fascinating theoretical challenge. For random
projects, no map exists to determine that two fragments lie adjacent to each other. Initially,
decisions of adjacency must be made by pairwise comparison of fragments. Two fragments
that overlap will share a portion of target sequence in common. By looking for these
common sequences, adjacency can be detected. Sequence reads may contain errors, so
fragments may be declared to overlap even if their common sequences do not match
perfectly. Furthermore, even if two sequences match each other perfectly, or nearly so, the
fragments from which they are generated may not overlap, as the target may contain two or
more nearly identical sequences. Often higher-order comparisons, with checks for
consistency between three or more sequences, are necessary to resolve ambiguities in
assembly. Assembly is a task best done by computers. Algorithms for assembly, such as
that of PHRAP, are constantly improving (Phil Green, author).

' The costs of iterative steps are undesirable, but not necessarily prohibitive, depending on
the strategy. An example of strategically desirable iteration is illustrated by the “sequence
tagged connector” (STC) strategy of Venter et al. (1996). There are several key
differences in the nature of the STC iterations and sequence walking iterations. First,
STC iterations are mapping iterations that occur with low periodicity. A laboratory must
cycle through one STC iteration for each BAC sequenced. If an iterative sequencing
strategy were employed on a BACs completely sequenced during the course of an STC
mapping and sequencing project, the complete BAC sequencing iterations would have to
occur two to three orders of magnitude more frequently than the mapping iterations.
Secondly, the failure rate of STC mapping iterations is predicted to be low (Siegel et al.,
in preparation). Furthermore, the “cost “of a rare failed STC mapping iteration will be
low — in the worst case, a non-contiguous BAC will be completely sequenced, reducing
the cost of future work. This cost will not be completely recouped due to inefficiencies
introduced by the rogue BAC into the final sequenced tiling path. More likely than this
scenario, however, would be an extremely early termination of complete BAC
sequencing due to recognition of sequence inconsistencies. The STC strategy is a
member of the pairwise end sequencing family of strategies, which I discuss at further
length in Chapter 2.
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As mentioned above, from a theoretical standpoint, random mapping and
sequencing strategies can be treated identically. It is worth emphasizing, however, that they
involve very different scales. Most physical mapping projects approach targets on the
megabase scale or larger, such as entire genomes. These large targets are randomly
fragmented into YAC, BAC, cosmid, or phage subclones ranging in size from tens of
kilobases to several megabases. Analysis techniques include restriction mapping, STS
content mapping, in situ hybridization, and many others.

Sequencing projects employ both smaller targets and smaller subclones. In
particular, the targets of sequencing projects are often the subclones of mapping projects.
Fragments of these subclones (i.e., subclones of subclones) are small enough to be
employed as sequencing templates for automated DNA sequencing machines. A schematic
diagram of a random subcloning project is shown in Figure 1.1.

In the increasingly automated modern scientific laboratory, an additional appeal of
random subcloning is rooted in the absence of need for prior information about particular
fragments. This allows projects to be undertaken with a great deal of “blind” automation
and with a decreased need for highly trained human intervention. The main drawback of
shotgun strategies is their dependence on overdetermination of information, with a need to
generate several times as much raw data as an ideal directed strategy would. Accordingly,
actual strategies may be a mix of both random and directed approaches, beginning with
random and progressing to directed when the cost of choosing and sequencing directed
subclones is judged to be less than the cost of continued shotgunning. Such decisions are
predicated on the ability to determine such costs. Experience, simulations, and analytical
models are the tools for this analysis.

In the following sections, I will present analytical models and simulations of
random subcloning. I will illustrate these with empirical observations, where available.

1.4 MATHEMATICAL MODEL - BASIC FORMULATION

I assume a linear target of length G. In Section 1.13, I will modify my analysis to
make it applicable to circular targets. Most sequencing targets consist of a single linear
strand of DNA cloned into a circular vector, resulting in a circular construct similar to the
original vector, just much bigger.
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For purposes of this mathematical model these seemingly circular targets are
properly considered to be linear. The reason for this is that the vector sequence is already
known. No additional information is gained by analyzing fragments that arise exclusively
from the vector. One method of avoiding analyzing vector sequence is to “screen” all
fragments before analyzing them. A labeled probe made from vector sequences can be used
to tag any fragments that contain vector sequences, allowing then to be excluded from
further analysis. This is seldom done, as it involves extra labor and invites the possibility
of error. In particular, unknown target sequence might be accidentally screened out by the
labeled vector probe. Also, fragments that overlap both the vector and the unknown target
would be screened out. This is usually undesirable, as such fragments can provide critical
anchoring information during the project assembly phase.

More often, a sequencing project will not screen out vector sequences before
fragment analysis begins. Thus any fragments that exclusively overlap vector will be
sequenced regardless. This will represent wasted effort. However, fragments that overlap
both the vector and the target contribute information to the final assembled sequence.
Therefore the best way to set up a theoretical framework for the analysis of typical random
shotgun sequencing projects is to ignore fragments that exclusively overlap target except
for their presence as “wasted” sequencing reactions. Fragments that overlap the target by a
base pair or more are not ignored, so the effective target length in such typical situations is
increased by the length of a fragment (minus a base pair) on each of two ends.

Now, the total subclone length is the vector length V plus the target length:

Subclone Length=V + G (1.2)

Fragments, each of length L, that overlap both the vector and the target will be included in
assembly, so the total length of the linear target should be calculated as:'®

' Note that V is assumed to be greater than 2L-2. If 2L-2>V2>L-1, then V should be used in
place of 2L-2 in equation 3. If V<L-1, then the project should be analyzed using the
results for circular targets presented in Section 1.13. In this final case, gaps in the vector
sequence can be ignored, so the expected number of gaps should be modified as:

G
N expecteda gaps = (m')N predicted gaps
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G =2L+G-2 (1.3)

Furthermore, if screening is not employed then not all analyzed fragments will be usefully
included in the assembly, so the effective redundancy will be less than the actual
redundancy:

G’
R, =|——mr 1.4
effective (V + G)Rncmal ( )

I will be defining “gaps” in such a way that the uncovered target sequences, if any,
at either end of the final assembled target are not counted as gaps. At the high redundancies
necessary for project completion, these uncovered end regions are likely to be quite short.
Furthermore, if the project is a typical shotgun sequence project as described above, these
end regions will actually be vector, so it won’t matter if they are not covered by analyzed
fragments.

End regions do, however, become a concem if the target actually is physically
linear, and not cloned into a vector. The only practical examples of this of which I am
aware are genomic physical mapping projects targeted at a eukaryotic chromosomes. On
average, the probability of a particular base pair of the target in such a project being covered
by at least one fragment is:

LY
})covmgc =1 —(l - E) (15)

This probability drops precipitously near the ends of the target, however. In particular, the
probability of the first or the last base pair being covered is:'®

Other equations should be modified appropriately. None of these cases is likely, as
vectors are usually longer than two fragment lengths.

' The general equation for a base pair of a distance d away from the target end, with

O<d<L, is:
Pcovcmge =1 _(1 _i)
G

These probability “edge effects™ could become important if the fragment size was on the
order of the target size. This does not occur in typical random subcloning projects, but a
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1

Poovcmgezl_(l_a) (1.6)

Therefore such projects need to employ special techniques to analyze the target ends. This
will usually necessitate telomeric cloning, a discussion of which is outside the scope of this
dissertation.

Another kind of project worth mentioning is one in which the target may consist of
multiple linear segments. Most eukaryotic genomes contain multiple linear chromosomes,
so this is the usual case for a eukaryotic mapping project. Universally, the length of each
chromosome is much longer than the fragment length, so such projects can accurately be
modeled using the present linear framework by setting the target length G to be the sum of
all of the chromosome lengths. If the chromosomes are not present in stoichiometric
amounts, appropriate considerations must be made for the underrepresented
chromosome(s). This might occur if a mapping project were undertaken on an entire male
genome, but most projects would seek to avoid this situation. With multiple chromosomes
in a random subcloning project, both ends of each chromosome are likely to be uncovered,
necessitating telomeric cloning or other approaches to the ends. It is also possible just to
ignore the ends and allow their characterization, if necessary, to be carried out by a
completely different project.

With the above considerations in mind, one can define the variables necessary for a
mathematical analysis. For a given project, n fragments of constant length L are generated
from the target and analyzed in some manner such that overlaps between fragments are
detectable. This analysis would be sequencing for a sequencing project and might typically
be restriction digestion for a physical mapping project. All fragments are generated from
distinct identical copies of G."” No fragments may start within L-1 bases of the last,
rightmost base of G as such fragments would not be entirely contained within G. Thus the

effective length G, available for fragment start sites is G-L+1. I designate the starting, or

similar phenomenon occurs with genetic mapping of marker loci. Bishop et al. (1983)
analyze this issue at length.

'" This staternent is made to emphasize the claim that the fragments are independently and
identically distributed. It is reasonable; the ratio of origiinall;/ fragmented target molecules
to randomly analyzed fragments is typically about 10'%:10°, or 10°. The probability that
two fragments are derived form the same target molecule is negligible. Even if this were
not the case, this mathematical model would likely remain quite valid.
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leftmost, base pair of each fragment S, such that §; is the start site of the leftmost

fragment, with §xe[1,2,3,...,G.]. S, begins the rightmost, or last fragment of G. The start

site may be either the 5’ or 3' base pair of the Crick strand of the fragment it begins,
depending on fragment orientation relative to the target.

Because G,>>1, we can consider the possible range of fragment start sites to be

continuous, rather than the quantum entity that it is. In the present analysis, I will switch
back and forth from discrete to continuous models without extensive justification.
Continuous models tend to allow more elegant equations and derivations, while discrete
formulations occasionally give more precise answers. The main difference between these
two formulations is actually quite trivial. As noted above, G,=G-L+1. However, for a

continuous model, G=G-L. In all cases G>>L, so G,=G. Nevertheless, without careful

record keeping, the use of a continuous model will allow some asymptotic limits to
converge towards slightly incorrect limits, such as G+1 rather than G. This is largely an
aesthetic matter without much practical implication. Nevertheless, I believe that a failure of
a mathematical model to converge towards an expected limit in extreme cases is a serious
drawback. Therefore I will use discrete formulations when necessary to satisfy my own
personal aesthetic appreciation for perfect asymptotic behavior. With this in mind, in the
continuous model, the S; are an ordered sample of n independently, identically, and

uniformly distributed observations on the interval (0,G,). The formulation is drawn

schematically in Figure 1.2.

An important assumption is that all the fragments are considered to be the same
length. This is seldom, if ever, strictly the case. The actual length of fragments may vary
by 20% or more. It turns out that this has very little effect on the utility of the mathematical
model developed here. In some cases this can be demonstrated mathematically. This can be
demonstrated quite easily for the equations for target coverage; I will leave this as an
exercise for the reader. Also, the expected number of gaps in a project is unaffected by
varying the fragment length. Siegel and Holst (1982) provide a formal proof of this for
circular targets. Variations in fragment lengths can have subtle effects on the distributions
of the number of gaps and the gap lengths, as well as a few other parameters. For practical
purposes, these subtle effects are insignificant. Monte Carlo simulation, discussed further
in Section 1.14, is another way to verify this assertion.
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1.5 TARGET COVERAGE (1)

Two questions familiar to anyone who has taken a long family trip are “Are we
there yet?” and “How much farther do we have to go?” For a random subcloning project,
arrival means that there are no gaps in the coverage. The question of how much farther can
be answered both in terms of the number of gaps that remain and in terms of what
percentage of the target remains to be covered. It turns out that the number of gaps
remaining turns out to be more useful for gauging the amount of additional effort necessary
to complete a project. Nevertheless, the fractional target coverage is also an interesting
quantity and, perhaps more importantly, is easy and fun to compute.

Consider Xeno’s paradox. Xeno shoots an arrow at a target. The arrow flies half
way, covering half the distance. The arrow covers half the remaining distance, and then
again half the remaining distance, and so on. Supposedly, the arrow never reaches its
target. This is what happens during a random subcloning project. Actually, not quite, but
let us examine the issue in more detail.

Each analyzed fragment in a random subcloning project can be considered to be
generated sequentially. Each time a fragment is generated, it covers a random portion of the
target. Each fragment is of length L. The fraction of the target covered by one fragment is
thus L/G. A subsequent fragment will also randomly cover another region of the target of
length L, on average proportionally distributed between already covered and uncovered
target. Thus, on average, each additional fragment covers a fraction L/G of the remaining
uncovered sequence. The actual amount of additional unknown sequence covered rapidly
gets smaller and smaller, much as Xeno’s arrow will fly shorter and shorter distances with
each iteration. Much as it would seem that the arrow can never reach its target, it might also
seem that a shotgun project could never reach its goal of perfect coverage.'*

It turns out that Xeno’s arrow will actually reach its goal, but for a different reason
than a shotgun project will. Xeno’s arrow is helped along by the nature of time, infinity,
and the convergence of a series towards its limit. Each iteration of the flight of Xeno’s
arrow takes place in half the time of the previous iteration.'> Time is relentless, so the

'* Many researchers have also had this thought during the assembly of particularly difficult
targets.

' This assumes the arrow is not losing velocity. If it is, the arrow may very well never
reach its target.
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arrow hits its target. However, each generation of an analyzed fragment in a shotgun
project requires the same amount of time and effort as was spent on the previous fragment.
Time is not the solution to the shotgunner’s dilemma.

Consider instead a blob of decaying uranium. As each half-life passes, half of the
uranium decays. But not exactly. Only on average. Usually there are a vast number of
uranium atoms in any blob, so an average is a fairly accurate estimate of the percent of
atoms that decay during any given half-life. But consider now the case of an almost
exhausted uranium blob, with only a few atoms left to decay. Quite by chance, all or none
of them might decay. It is a stochastic process. Unlike Xeno’s arrow driven by certainty,
randomness takes charge. With only one atom left, it has a 50% chance of decaying in any
given half-life. Eventually, it will decay. There are no paradoxes for blobs of uranium. The
same is true for random subcloning. As a random process, eventually the target will be
covered. There is a chance that it might not ever be covered, but this chance is infinitely
small. These probabilities will be addressed in more detail later.

For now, let us return to the determination of expected target coverage. Because
radioactivity has an exponential decay, and the analogy with random subcloning fits well,
one expects to find an exponential “decay” equation for shotgunning. Assume for now that
the target is a circle so that we can treat all base pairs identically. Our conclusions will also
turn out to be excellent approximations for linear targets as well.

The probability that any given base pair is not covered is:

L n
I)base not covered = (l - 6) (1'7)

So the probability that a base is covered is:'®

'* As a note of historical trivia, it is this equation that appears in Clarke and Carbon (1976).
The first published use of the eponym “Clarke-Carbon” for equation (1.11) appeared in
Waterman (1995). This equation without the eponym appeared in Lander and Waterman
(1988). It also appeared, in a slightly different genomics context, in Lange and Boehnke
(1982). However, before that, it may have appeared in a classroom lecture by Dr. Carbon
(recollection communicated by a student). To my knowledge, the first derivation of
equations (1.9) and (1.11) was provided by Robbins (1944 and 1945).
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Pbascccovemdzl_(l—i) (1.8)

G
On average, the number of covered bases will be equal to the number of base pairs times
the probability that each one is covered:

Expected Coverage = G(l - (l - é) ) (1.9)

Equation (1.9) is often approximated. Recall that L/G<<]1. Furthermore, for small x:

-X

e'=1l-—x (1.10)

Therefore, we can rewrite equation (1.9) as:

L n
Expected Coverage = G(l - (e G) ] = G(l —e* ) (1.11)

Equation (1.11) is often referred to in genomics circles as the “Clarke-Carbon” equation.
Note that it has the form of an exponential decay, as we had anticipated. The Clarke-
Carbon equation is diagrammed in Figure 1.3.

In future sections, I will return to the subject of coverage in somewhat more rigor
and detail.

1.6 MATHEMATICAL MODEL - THE BETA DISTRIBUTION

Recall that the fragment start sites Sy are an ordered sample of n independently,
identically, and uniformly distributed observations on the interval (0,G,). If one can specify
the distribution of spacings between fragment start sites, then the number of gaps can be
determined simply by counting the number of spacings greater than the length of a
fragment. Furthermore, one can determine many other properties of interest by extending
from this basic formulation. Before we go there, let us cover some basic definitions.



25

Let Dy=S.1-Sk represent the distance between start sites, for k=1,2,....,n-1. Dy
represents the length of the uncovered target region before the first fragment, and equals
Si- D, is the distance G,-S,.

Assume that an overlap of length at least T is necessary and sufficient to detect
adjacency of two fragments. This is clearly a simplification over the complex reality of
fragment assembly.'” This assumption is very reasonable for shotgun sequencing projects,
where T<<L, so variations in T have little effect on the mathematical model. Some mapping
projects necessitate both large and varying overlaps, and in these cases, some care must be
taken in interpreting the mathematical model. Note that the use of this simple assumption is
quite necessary. Without it, the mathematical model quickly becomes very complicated, and
in many cases intractable. When in doubt as to whether this assumption holds, computer
simulations make an excellent adjuvant to the mathematical model.

Redundancy, R, is defined as % For notational ease, I also define the effective

fractional coverage f of the target provided by one fragment as £C;_T’ and the effective

redundancy R, as nfg.

By genomics conventions, an island is a maximal set of fragments each of which is
connected to all other island members by at least one path of fragments overlapping by T or
more. A contig is an island consisting of a least two fragments (Staden, 1980). In the
genomics community, the term “contig” is occasionally used loosely as a synonym for
“island.” This is inconsistent with its original definition and can lead to linguistic
imprecision; I discourage such usage. A contig consists of at least two overlapping
fragments. An isolated fragment is not a contig; it is a singleton island.

In general, a target region not covered in any fragment is a gap. Adjacent islands are
thus separated by gaps. The length of the gap between fragment start sites Si and Si is
Dy-L, but a gap will only occur if D>L-T. If Dy<L-T, then the fragment that starts at Sy

'7 Overlap is more appropriately expressed as a probability, not a certainty, and this
"probability of overlap" is further affected when more than two fragments overlap at the
same position. Also, repeated sequence elements in the target tend to decrease the
probability of certain overlaps. These and other effects bring into question the use of the
parameter T to model real projects. As long as T<<L, or if an “effective” T can be
defined, the current formulation will result in an adequate model. An example of a project
that would probably not meet this constraint would be an STS content mapping project.
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will extend at least T base pairs past the beginning of the fragment that starts at Sy, ;, the
overlap between these fragments will be detected, and no gap will occur in this interval.
The two adjacent fragments will both be assigned to the same contig during assembly. Note
that it is possible for the length of a gap to be negative. A negative gap length indicates that
an overlap is present, but not detected. As mentioned previously, I am not counting the
uncovered ends of the target as gaps.'®

A simple geometric observation provides the basis and elegance for many of the
equations derived from the mathematical model presented here: the domain space of the
spacings Dy is the surface of the simplex Dg+Di+Do+...+D,=G,., and their joint
probability density is constant.'® Since D20, this surface will represent a line segment in
one dimension (n=1), an equilateral triangle in two dimensions (n=2), a pyramid in three
dimensions (n=3), and similar but hard to visualize symmetrical objects in higher
dimensions. The n dimensional simplex is the shadow of the n+1 dimensional simplex.
Executing a shotgun project with n fragments analyzed is exactly analogous to choosing a
point at random from the n dimensional simplex. The Cartesian coordinates of this
randomly chosen point represent Dg, D, D>, ..., D,. The symmetrical nature of all of the
spacings is immediately apparent. In particular, the two end spacings, Dy and D,, will
have the same distribution as all the other spacings. This last point is sometimes hard to
visualize.

Another useful analogy to shotgun sequencing is to imagine a circular piece of
string representing the genome. Take a pair of scissors and make n cuts at random places in
the string. You will now have n pieces of string. These pieces of string do not represent the
analyzed fragments of a shotgun project, but rather the spacings between the fragment start
sites.”® Clearly, by symmetry, the probability distribution for the length of each piece of
string will be identical. This will not change if you start with a linear piece of string and
make n-1 cuts. This is easy to see by recognizing that the linear piece of string may very

'® This is purely a semantic issue; it is very easy to modify the equations to account for a
definition that defines uncovered target ends to be gaps. It is not quite sufficient just to
add 2 to the number of gaps, as there is a small probability that either Dy or D,, will equal
0, resulting in no gap at one target end or the other. Also, in a typical shotgun sequencing
projects such end “gaps,” at moderate to high redundancies, will actually be within vector
sequence (see Section 1.4).

' To my knowledge, the first use of the simplex as an analogy for a problem of this nature
was by Lévy (1939).

20 Recall that all analyzed fragments have the same length.
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well have just been the result of cutting a circular piece of string once. It doesn’t matter if
this first cut is in a non-random location, as long as all the other cuts are random.

These observations permit many probabilities of interest to be calculated by
geometric considerations. Note again that in order for the model to work elegantly, G, and
Dy will usually be treated as continuous rather than discrete. This approximation is quite
minor, given the scope of a genome, or even a cosmid, compared with the unit of

divisibility: a base pair.

The probability distribution of a single coordinate of a randomly chosen point from
a simplex is well known and characterized. This distribution is called the “beta
distribution.”®' I will use the beta distribution to obtain most of the results of interest to this
present study. It should be noted that the beta distribution is a special case of a Dirichlet
distribution. The Dirichlet distribution can characterize the joint distribution of all of the
coordinates of a point on the simplex, rather than just one at a time. This can be important
in some cases, because the length of one spacing can influence the length of another from
the same project. For example, if we know that one of the spacings in a project is greater
than half the length of the target, we know that none of the others are. In most cases
however, I will be ignoring the correlation between spacing lengths. This is reasonable,
since n is universally large for genome projects, so the correlation between any two given

spacings is negligible.

An additional bookkeeping consideration should be mentioned. Strictly speaking,
the beta distribution is defined on the interval [0,1]. However, the effective length of the
target is not 1, but G,. Some authors emphasizing mathematical purity address this issue by
setting the genome size to 1, and allow the reader to retrospectively scale back results to the
size of the genome. There is nothing wrong with such an approach. However, I prefer to
maintain the proper proportionality throughout, as I this results in equations that are
intuitively easier to grasp. Therefore, in what is to follow, I will make a few small
deviations from notational orthodoxy for this purpose.

With these considerations, the density function for the beta distribution of the

lengths of spacings between fragment start sites is:

2l In particular, this is a special beta distribution, i.e., Beta(l,n). As a stylistic choice, I
refer to the distribution employed in this paper as zhe beta distribution, rather than a beta
distribution.
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fo, () =n(l-&)"" (1.12)

Now, the expectation of the beta distribution,

fi(x)=n(1-x)"" (1.13)

is easily verified to be:

E(‘A1)=n—‘+-I (1.14)

This makes intuitive sense, as we expect n+1 fragments when we make n cuts in a string of
unit length. So we immediately have the expected value for the length of a spacing from
equation (1.12):

E(D) =~

(1.15)
n+1

Notice that equation (1.15) specifies that the expected length of a spacing is equal to
the effective target length divided by the number of spacings, which, for a linear target, is
one greater than the number of fragments.

1.7 GAPS AND ISLANDS

As mentioned previously, a gap will occur following a fragment starting at S if and
only if D>L-T. Thus, the probability of a gap following a given fragment is equivalent to
the probability that Dy>L-T, which I will call p,,.:

Pgp = If:rfbg(x)dx
= LG:Tn(l —4) " dx (now lety= ‘é‘)
= nfi (1=y)"" dy
=(1-f)

(1.16)

Recall that my definition of “gap” precludes a gap from occurring in either the first
or the last spacing. Therefore this “gap probability” does not apply to Dg or D, although



29

this does not alter the fact that these spacings are distributed identically to the other
spacings.

Emphasizing the assumption that the lengths of the spacings between each S; are
independent, the distribution for the total number of gaps in a project is binomial. Again,
this assumption is reasonable when there are a large number of spacings, the usual case for
genome projects. In truth, there is a slight deviation from binomiality, as the occurrence of
one gap will tend to inhibit the occurrence of others. Likewise, the absence of a gap in a
short spacing will tend to promote the probability of a longer spacing with a gap. These
effects will cause the actual distribution to have the same mean as the binomial distribution
outlined here, but a smaller variance. The effects can be accurately modeled with a Dirichlet
distribution.??

In a given project there are n-1 opportunities for a gap to occur, one between each
pair of adjacent fragment start sites. This gives us a binomial distribution for the number of

gaps:

n-— l 4 n-l-x
P(Ngp =) = |Pp (1= Pyap)

(1.17)
n-1 nx a\n-l-x
= ( X )(1—fa) (I-1-f)"
One immediately has the probability of project closure as:
P(N,, =0) = (1-p,,)""
gaps 8ap (1.18)

=[1-a-£)r]"

There is no particular need to approximate this equation, but we can if we want, again by
noting that for small x, e =1-x. I will use this approximation twice in a row. So,
continuing from equation (1.18),

2 The specific Dirichlet distribution is D(1,1,1, ... ,1).
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P(N,,, =0) = (1-¢*)"
= (e )"'l (1.19)
- e-nz"

The foregoing approximation is made primarily to draw a parallel with Siegel (1979), who
provides an alternative derivation of equation (1.19) in more rigorous detail.

For the binomial distribution in equation (1.17), we have the expected number of

gaps in a project as:

E(N,,) = (n-Dp,,
= (n=1)1~ f,)"

(1.20)

This is an exact equation. There is no particular reason to approximate it, except to illustrate
parallels with other models, such as that of Lander and Waterman (1988). With this in
mind, one could write equation (1.20) as follows:

E(Ng,,) =ne™® (1.21)

As noted above, the distribution for the number of gaps can be made exact with a
Dirichlet distribution, which amounts to a summation of appropriate areas of an n+l
dimensional simplex. This somewhat awkward but nevertheless elegant distribution is
provided by Stevens (1939) and in slightly different form by Flatto and Konheim (1962).
Stevens’ distribution is approximated by equation (1.17).

The number of islands will be one greater than the number of gaps, as each gap
separates two adjacent islands. To write this definition as an equation,

Nywae =N, +1 (1.22)

is gaps

The expected number of islands is therefore:

2 A perusal of the literature would be incomplete without a glance at Fisher (1940), in
which there is some discussion of Stevens (1939). To my knowledge, the first genomics
use of the equation of Flatto and Konheim (1962) was by Lange and Boehnke (1982).
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E(N ) =1+(n-1)(1- L) (1.23)

1.8 THE NUMBER OF CLONES IN AN ISLAND

Any fragment start site spacing longer than L-T will create a gap. All other spacings
will not. This divides the spacings into two categories: those that form gaps and those that
do not. Now the order of spacings is arbitrary, so all possible orders of gap-forming
spacings amongst non gap-forming spacings are equally likely. This observation will
permit us to determine the distribution of the number of clones in an island as well as the
island length.

Let z,, specify the number of fragments in the m™ island in a project. Now, the total
number of fragments in a project is n and the total number of islands is Nisjands, so the
expected number of fragments z,, in an arbitrary island is clearly:

n

(1.24)
Ivislands

E(Zn.INislands) =

This simple result is easy to obtain and whets our appetite for things to come. It also will
permit us to verify that the mean of the distribution that I derive meets this expectation.

To obtain the probability distribution of z,, formally divide the spacings
{Dilk=1,2,..., n-1} into two subsets: those Dy>L-T and those Dy<L-T. The number of
spacings in the first subset is Ngaps. I will refer to these spacings as long spacings. Since
there are n-1 total spacings, the number of spacings in the second subset is 7n-1-Ngaps. 1
will refer to these as short spacings.

Each island is bounded by two long spacings. An exception may occur for the
island that begins with the first fragment, starting at S,. This is because D, might be a short
spacing. Likewise, the last island ending with the fragment starting at S, will be bounded
on the end by a short spacing if D, is short.

The number of fragments in an island is equal to one plus the number of short
spacings between its two bounding long spacings.>* The shorter the spacings are in an

2 If the last spacing is short, then the number of fragments in the last island will be one
plus the number of short spacings following its initiating long spacing. Regardless of
whether or not the first spacing is short, the number of fragments in the first island will
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island, the more “piled up” will be the fragments in that island. This will result in multiple
coverage of areas of the island. Multiple coverage is more common at higher redundancies.
In fact, the average multiplicity of coverage is exactly equal to the redundancy.”

Now, all orderings of long and short spacings are equally likely, as the Dy are
exchangeable. The probability distribution for z, can be analyzed combinatorically (see
approaches to similar problems by Whitworth, 1897b; also Baticle, 1935), but to maintain
simplicity one may employ a continuous approximation analogous to that employed
previously to model spacing length in equation (1.12). This approximation will be good as
long as the number of long spacings is small compared to the total number of spacings.
This will be the case at higher redundancies when there are few singleton islands. The
approximation should also be acceptable at lower redundancies.

During the actual assembly of a shotgun project, even at high redundancies, some
analyzed fragments never get assembled into any contigs. This will be true even after the
project is completed and there are no gaps. The reason for the continued existence of these
singleton islands is that they represent “orphaned” fragments. These fragments may
represent extremely poor quality sequence reads, a mislabeled or mishandled clone,
contamination from another project, or contamination from a vector organism such as E.
coli.*® Since these singleton islands exist at high redundancies, it can be quite deceiving to
compare the average number of fragments in islands from an actual project to the expected
number of fragments predicted by a mathematical model. It is more informative to examine
the distributions of the number of fragments in the larger islands. An excellent way to do
this is graphically, by a bar graph, for example. I would recommend the inclusion of such a
graphical comparison tool in any shotgun assembly computer program, particularly as it is
relatively simple to program. A valuable use of such a tool would be to detect the presence
of a significant number of orphaned clones in a project by noting a deviation from the
expected number of singleton islands without deviations in other areas. An overall decrease
in the number of clones in islands from their predicted numbers might suggest a problem

be equal to the number of spacings preceding the first long spacing other than D,. I
ignore these minor effects in the main discussion, but they may be accounted for, if
desired, at the cost of a little algebra.

%5 This should not be surprising.

%% Now that the complete genome sequence of E. coli is known (Blattner et al., 1997), this
last source of orphaned fragments should be a bane of the past.
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with detecting overlaps. Comparisons of reality to expectations can be extremely valuable
in troubleshooting problems during the course of a project.

To continue with our task at hand, we seek to know the distribution of the number
of short spacings that lie between two long spacings. We will assume that there are plenty
of short spacings, so that we can treat this number as a continuous variable. We
immediately recognize that we are presented with the same problem of determining the
lengths of pieces of string after random cuts have been made in an original piece. The cuts
are the long spacings. Recall that since all orderings of spacings are equally likely, these
cuts can be considered to randomly (i.e. independently and identically) distributed. The
length of the string is equal to the number of short spacings. We can thus employ the beta
distribution to model the number of short spacings bounded by two long spacings. There is
thus a curious methodological symmetry between determining the distribution of the
lengths of the spacings and determining the distribution of the number of spacings in an

island.

The long spacings, or gaps, are uniformly distributed over the continuous interval
[0,n-1-Ngaps]. As before, we will need to scale the beta distribution from its defined
domain of [0,1], this time by a factor of n-1-Ng,ps. The conditional probability density for
the number of short spacings bounded by two long spacings is therefore:

Ny =1
f(xlNgaps)stnPS[l_—rl_—_lerJ (123)

gaps

This is written explicitty as an approximation because it represents a continuous
approximation of a discrete phenomenon. Note also that it is conditioned on the number of
gaps in an assembled project. This is not a problem when comparing the state of an actual
project to its expected state based on modeling, as the number of gaps in the actual project
will be known. It is a problem when using the model as a predictive theoretical tool for
planning a project. In this case, this distribution can be evaluated approximately by using
the expected number of gaps (equation (1.20)), or at the cost of a little extra algebra it can
be evaluated more precisely by employing a probability weighted summation over all
possible values for Ngaps. At the extreme end of precision, a combinatorial approach could
be used, but this would be straying quite far away from the ideal of elegancy in equations.
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Note that it is the number of short spacings in an island that is beta distributed. The
number of fragments in an island is one greater than the number of short spacings confined
by the two long spacings that bound the island. Recall that there is a fragment associated
with the terminating long spacing of an island. So with z,, as the number of fragments in an
island, z,-1 is the number of short spacings in that island. The conditional probability
density for z,, is therefore:

N -1

x-1

Lf(xINg,) =N, (1——) (1.26)
gaps gaps n—1- Ngnps

An additional reason to write equation (1.26) as an approximation is that here the “edge

effects” of the first and last island are ignored.”’

Recalling equation (1.14), which gives the expected value of a beta distribution,
one can calculate the expected number of clones in an arbitrary island (conditioned on the

number of gaps):

¥ An anonymous reviewer of Roach (1995) suggested the following equation for the
number of fragments in an island:

P(zlesz)=ﬁ(1—x'l]

b=l n-b

This discrete form of equation (1.26) is precisely analogous to the continuous Beta(l,n)
distribution used in the text. Considering the availability of computers, there is no reason
not to use this discrete form in place of the easier-to-manipulate equation used in the main
body of the text. Note that although the discrete equation is an equality, it still requires
conditioning on N,,.., which will be influenced to a small extent by “edge effects.” The
expected value of this equation can be calculated as:

i) S22

x=l L b=l n->b NZ"PS +1

Working the algebra of this last equality can be amusing.
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-1-N.
E(2|Npy) = 4 1 ="

N, gaps +1 lvislands

(1.27)

This equation was anticipated by equation (1.24).

The fraction of singleton islands expected in a project can be obtained by integrating
the probability density in equation (1.26) over the range xe [1,2); the remaining islands will
be contigs. As mentioned above, due to the approximation of continuity, equation (1.26) is
most valid at high redundancies, where there are few singleton islands. Therefore, if just
the number of singletons is sought, then it is more accurate to calculate this more simply as
the probability that a spacing is long and is immediately followed by another long spacing
times the total number of non-end spacings (i.e. excluding D,, D, and D,). Additionally,
if D, is long, a singleton will occur starting at §,, and if D, | is long, a singleton will occur
starting at . This results in:

E(Nogiocns) = (Pap) (1=2) + 2Py (1.28)

The distribution of singletons can be well approximated, if desired, with binomial
considerations, or by making use of the discrete equation given in the last footnote.

Some motivation exists to predict the length of the longest island resulting from a
project, as it is a readily identifiable feature of a work in progress. In particular, a failure to
achieve islands of predicted length is often an indication of a technical inability to detect
overlaps, and thus points to a problem that needs to be addressed. Whitworth (1897a)
shows that for a given project, if the islands are ordered by increasing number of
fragments, the expected number of fragments in the xth smallest island is:

E( number of fragments in the x" smallest island | N,,,,) =

1+n—1—Ngapsi 1 (1.29)
N, N,

gaps LI

ps —X+1

This expected value may be substituted in equation (1.32) below, and enables the
prediction of the longest expected island for a project. A couple of points should be
addressed, however. First, because the expectation is conditioned on N,,,, to be useful in
a predictive manner, a probability weighted summation would have to be employed.
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However, since equation (1.29) will be evaluated by a computer anyway, this extra
computation will perhaps not be extremely tedious. Secondly, Whitworth’s equation does
not address higher moments, such as the variance. There is likely to be high variance in this
statistic, at least for the longest island. Thus, perhaps the best use of equation (1.29) is as a
curiosity. It is nevertheless valuable to bring to light Whitworth’s historic contribution to
this field.

1.9 ISLAND LENGTH

The distribution of the number of clones in an island enables the determination of
the distribution of the length of that island. Each island is the union of one or more
fragments starting at base pairs Sg, Sk+1, Sk+2, .- » and Sgy;,-1. The total length [, of an
island with S beginning its first fragment is the sum of the spacings between its fragment
start sites plus the entire length of the last fragment in the island (see Figure 1.2):

k+z,-2
[ - L+ YD, if z,>1

m x=k

L if z, =1

(1.30)

Now, spacings are exchangeable in that the joint distribution of all Dy is unchanged
under any permutation of subscripts. Or rephrased, the lengths of the spacings are
independent of their order. Expected island length conditioned on z,, is therefore:

E(lplzm)=L+E(D)(zm-1) (1.31)

By assuming that Z,, is equal to its average value, one may approximate expected island

length as:
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E(l,)=L+ E(Dy)(E(z,)—1)

1 n
=t *G'(nu)(s(zvm) “J (132)

=L+G,( l )( - -1)
n+I A1+ -D(1-f,)"

This approximation is most valid when the relative variance of z,, is small, the usual

case for genome projects. The accuracy of this approximation can be improved with the aid
of a computer by summing equation (1.31) over all possible values of z,, rather than
employing the expected value of z,. Note that the use of E(Dy) as calculated above
constitutes an additional approximation, as not all spacings can be included in islands. To
account for this, a modification to E(D;) must be made. Based on evidence from computer
simulations, however, equation (1.32) appears to offer enough accuracy for most
purposes. The modification to E(Dy) is described in the following paragraph.

Spacings greater than L-T form gaps, so are not included in the subset of spacings
that may be included in the length of an island. To proceed, one must eliminate these
spacings from the distribution of D (equation (1.12)) by truncating and normalizing. The
expected value of this truncated distribution is:*®

2% The form of the last algebraic expression in equation (1.33) was suggested to me by the
anonymous reviewer mentioned in the last footnote. The reviewer felt this expression
most effectively brought out the subtle difference between it and E(D,)=G /(n+1).
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[T xn(1— 4y dx

0

[ n(l—4)"" dx

0
_g bya-yydy
Ca-yrdy

: [(l—yr*' -y ]f‘ (1.33)
=G,

E(D,|D,<L-T)= (now lety = &)

n+1 n

-y 1*
n 0

_c| oA +nf)1- f)
L +D1-0- )]

0

Note that the only reason that this equation is written as an approximation is the assumption
of continuity. Thus, it probably would also have been reasonable for me to have written it

as an equality.”

1.10 TARGET COVERAGE (2)

I introduced the Clarke-Carbon equation in Section 1.5. I now consider a couple of
alternative ways to derive this equation. The advantage of considering these different
methodologies is primarily to gain insight. In addition, this will give me an opportunity to
address the mathematical history of coverage problems. This will permit a digression on the
higher moments of the coverage, such as the variance. It will also allow us to interpret

situations where the apparent coverage is greater than the target length.

Perhaps the most obvious way to calculate target coverage is by multiplying the
number of islands by their expected length:

*? The reader may have noticed that I spend some effort discussing whether or not these
equations are exact or approximations, and why. These were points of misunderstanding
by a few anonymous reviewers of Roach (1995), so I felt it prudent to spend the extra
effort here to elucidate. An example at a ludicrous extreme makes it clear that equation
(1.33) is an approximation. The reader is encouraged to explore equation (1.33) with
G=3, L=2, T=1, and n=2.
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Coverage = E(N islandsE(llN istands ))
= E(Ivislnnds )E(l)

(1.34)

In order to demonstrate rough equivalence with the Clarke-Carbon equation, we can
continue to make rough approximations by substituting equations (1.23) and (1.32) into
equation (1.34). Equation (1.23) can be approximated as follows:

E(Iviskmds) = (1 +('l— 1)(1 —'fc;)n)
=l+n(l-f,)" (1.35)

=l+ne®

- and equation (1.34) can be approximated as:

E(z)=L+G,( l ]( 2 —1]
n+IA1+(n=-1)(1-f;)"

)
=— ——1
n\l+ne

Combining equations (1.35) and (1.36) gives us the Clarke-Carbon equation:

(1.36)

Coverage = E(N,... )E(])

3 &G n—1-ne*
~(1+ne )(n)( 1+ne™® )

(1.37)

=G(1-€™) (with lim%=0)

n—reo

The coverage may also be calculated by subtracting the sum of the gap lengths from
the total target length. This would entail the following:

Coverage = G — (N, ~ )| E(D,|D, = Gap length) - L] (1.38)

1S

This calculation will be saved as an exercise for the reader. The necessary iitegral can be
evaluated similarly to that of equation (1.33).
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Note that an excess of negative gap lengths will result in clonal coverage in apparent
excess of the total target length.*® This is most apparent when T is large. This situation has
been known to occur in some physical mapping projects. An apparent coverage in excess
of the target length is a poor prognosticator for the efficiency of overlap detection.’’ If the
“actual” coverage is desired, the length of a gap should be calculated as D-L for D>L;
alternatively, T can be set equal to zero.

Let us consider the issue of coverage a little more generally. Problems of coverage
have intrigued mathematicians for some time. Perhaps the first “useful” application of such
mathematics occurred in World War II. In addition to providing the genesis for the
discipline of operations research, World War II stimulated interest in coverage problems
and their relation to strategic bombing.’* The exact location of bomb and shell hits was
largely a random process, so the percent of the target area affected by explosions could be
calculated using an approach similar to the one that I used in Section 1.5. Robbins (1944)
dealt with this problem more explicitly and rigorously.**

In brief, let a shotgun strategy be executed such that p, is the probability of
coverage of base pair x by any given fragment. The probability that the base pair is covered
by at least one fragment is thus 1-(1-p,)". The expected value and higher moments of f are
calculated by Robbins, with:

G
E(H)=¢(d[1-(0-p,)"]
sz (1.39)

When p,=¢£ for all x, this expected value is approximated by equation (1.11). The
exact manner of coverage is not important. That is, p, times G equals the number of base
pairs sequenced in each of the n coverage iterations, regardless of whether or not the base
pairs are contiguous. Therefore this equation will hold for the pairwise projects discussed

*® This is something that will not be predicted from the simple application of the Clarke-
Carbon equation and is one of the advantages of the present methodology.

*! Other conditions, such as extreme library contamination, could also produce this effect.
In any case, it is not a good sign.

*2 I mention operations research here because operations research methodology has much to
offer genomics. See, for example, Siegel et al. (1997a, 1997b, and 1998).

*3 Robbins was unaware that he was working on a genomics problem. Thus by employing
his equations in this context, we are in essence beating swords into plowshares.
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in the next chapter. For linear targets p, is not constant, and falls off near the edges, as
discussed in Section 1.5. Despite this, unless L is a significant fraction of G, the Clarke-
Carbon equation remains an adequate approximation to that of Robbins (equation (1.39)).

Note that if coverage is determined by the method of Robbins, or by the Clarke-
Carbon equation, the expected island length can be calculated directly, rather than using the
approach of Section 1.9. This is done merely by dividing the coverage by the expected
number of islands. However, such an approach removes any insight into the distribution of
island lengths, which could otherwise be obtained.**

1.11 COMPARISON WITH THE LANDER-WATERMAN EQUATIONS

In 1988, in a watershed paper, Lander and Waterman published a model which
formed a comnerstone of strategic genomic analysis. Their main concern in this model was
to provide a mathematical model for the early physical mapping efforts underway at that
time. Many of these efforts were done at low redundancies with the goal of building partial
fragmented maps. The equations were not intended to model shotgun sequencing. As a
result, the equations were valid at low redundancies, but not at high redundancies.
Unfortunately, many subsequent workers have misinterpreted these results and applied
them erroneously to high redundancy situations such as more advanced maps or to shotgun
sequencing.*® This has led to some remarkably incorrect claims about the state, or expected
state, of completion of several projects.

The Lander-Waterman (L-W) equations were reworked with more painstaking
detail by Port et al. (1995); I will use this more recent paper as a reference for the
comments that follow. Two relevant L-W results are:

** This tabulation can be approached by replacing the expectations in equation 1.32 with
their respective distributions.

%5 Surprisingly, there is neither discussion of the limits of the accuracy nor simulations for
the equations in Lander and Waterman (1988). It is particularly unfortunate that several of
the figures in this paper graph equations into moderate to high redundancies where
inaccuracies occur, making it easier for a casual reader to be misled.
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(1.i) The expected number of islands:

E(N.u,mds) = ne_R(l-%)

(1.40)
— R cb T
~ ne (wnth lrlgﬁ_o)
(1.v) The expected length of an island:
(D))
ey = &—=t 1L
R L
i J (1.41)
G (w’th I 1;—0)

I provide the limits of automatic overlap detection (i.e., T=0) to make the following

discussion clearer.

The most striking thing about the L-W equations is their behavior as the redundancy

grows. To wit:

lim E(Ny) = 0 (1.4
and
,leim E(l)=o0 (1.43)

Clearly, the expected number of islands at high redundancy is one single island that covers
the target. The length of this island should be equal to the target length. An island length
that approaches infinity, or that even exceeds the target length is ludicrous.*® Therefore the

3 Note that the sum of the lengths of two or more islands can exceed the target length if the
overlap parameter 7 is large. No single island can exceed the target length. Also, it is
nonsensical for 7 to be greater than L, so in no case should the sum of island lengths be
greater than 2G. Even this would be ludicrous.
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L-W equations are not accurate at high redundancy. Let us determine how high one must
go before they reach their limit of accuracy.

In the present model, let us approximate equation (1.23) as follows:

E(Nyue) =1+ (=11 - f5)"

R

(1.44)
=]+ne”

Now if ne™® >> 1, then we can claim that the L-W equation will approximate the current

model. This will occur when n >> e®.

Likewise, in the present model,

_G(_n __ i
E(l)~n(l+ne‘k l) (nowletne >>l)
G( 1
= 4
G/ r
=Z(eF -1
S e

Again, the models are almost exactly equivalent as long as n >>e”®. This defines an upper
bound as a function of n (or R) for the accuracy of the L-W equations. This bound occurs
at redundancies in excess of threefold, depending on the exact parameterization of the
project. A graph of the percent relative error of the Lander-Waterman and the current
(“beta”) models relative to average island lengths from simulated projects is shown in
Figure 1.4. The “beta” model is better at all redundancies, and considerably better at high

redundancies.’’

There are several key assumptions that limit the L-W equations to low redundancy.
First, the fragment start points (S,) are assumed to follow a Poisson process. This is a
deceptively facile assumption to make. In particular, a Poisson distribution looks very
much like a beta distribution, so it would seem legitimate to expect only small differences
between the two models. However, the problem with using a Poisson distribution lies with

37 Neither model is particularly good when n<10, mostly due to a failure of continuous
approximations and growing “‘edge effects.” This is moot because such cases can be
analyzed discretely and, furthermore, nobody at the lab bench is interested in random
projects with less than ten clones.
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certain assumptions of independence. A Poisson distribution assumes that the distance
between two start sites is completely independent of the distance between any other two
start sites. Thus the use of a Poisson model precludes analyzing any problems that involve
fragment dependence, such as those discussed in the next section.

A consequence of using the Poisson distribution is that the exact number of clones
in a project can not be prespecified.”® This problem is noted by Port et al. (1995). As a
result, one immediately has a feeling of uneasiness while using the model. From a
biological point of view, this parameter (n) is precisely the parameter over which the
investigator has the most knowledge and control.

The most damaging assumption for the L-W equations is that an island must be
bounded on its right by a long spacing (D>L-T). In fact, there is almost always an island
that does not meet this assumption. The reader is asked to visualize this island before
reading the answer in the footnote.*

If the last spacing D, is short, then the L-W equations will undercount the number
of islands by one. This is not a very big deal if the number of predicted islands is large, but
as the number of islands shrinks, an extra island becomes a significant factor. In fact, at
even moderate redundancies, the L-W equations will predict less than one island in a
project. This is clearly ludicrous.*® Nor can the problem be dismissed by suggesting that a
miscount by a single island is a minor deviation. Project closure is defined by the arrival at
a state of one island. If one cannot predict when this state occurs, then this most important

question becomes unanswerable.

3% Suppose n was prespecified. Then there would be a random and independent distance
between each clone start point. The sum of these distance would not necessarily add up to
G. It would be close, but not quite. A few clones would have to be added to or subtracted
from the mathematical model, bringing it out of synch with the reality of the project. It is
not immediately clear, however, that this particular objection will cause major
consequences to the accuracy of any derived equations.

* The rightmost island in a project is bounded by the spacing D,, which at high
redundancies is more likely to be short than long.

* An individual at a scientific meeting once gave a lecture in which they claimed that,
because the Lander-Waterman equations predicted less than one island for their then-
underway genome mapping project, they were therefore nearly certain to have no gaps in
their project. The importance of making the limitations of mathematical models clear to
the end user cannot be overemphasized.
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Furthermore, the prediction of island length is profoundly altered by the miscount
of islands. Island length is, in essence, calculated as the reciprocal of the number of islands
times the coverage. Thus, the difference of a miscount of one in the estimated number of
islands, say between 0.1 and 1.1, results in a tenfold overestimate of expected island
length. This miscount of one island is noted in Port et al. (1995), but no solution is
offered, nor are the bounds of island length accuracy determined.

It might be naively suggested that the L-W equations can be “fixed” merely by
adding one to the number of islands predicted. Unfortunately, the L-W equations are only
off by exactly one in the limit as redundancy tends towards infinity. Below this limit, they
are off by slightly less than one. Therefore, the determination of island length and project
closure probabilities would remain open questions. Thus, what appears to be a subtle
problem is actually somewhat difficult to fix, and requires that a Poisson model be
discarded so that the interdependence of fragment spacings can be accounted for. What
appear to be mere “edge effects” shake the foundation of the model. Nor does it turn out
that increasing the genome size will diminish these “edge effects.” The reason for this is
that in real projects the number of fragments n increases proportionally with the genome
size to keep the redundancy R constant. In order for the “edge effects” to be negligible, the
number of islands must be large, which occurs only at low redundancies, regardless of the

genome size.*!

One additional note: The L-W equations were developed for linear targets.
Nevertheless, as we shall see in Section 1.13, it turns out that they are more accurate when

applied to circular targets (i.e., bacterial genomes).*

1.12 ISLAND CO-DEPENDENCY

One must be careful when considering more than one island from a given project,
as their lengths are not independent. For example, if there are two islands in a project, it

*! It might be argued that I have shrugged off some “edge effects” during the course of the
development of the “beta” model. This was done with due consideration for their effects
on the relevant variables. The reader is encouraged to verify that the impact of these
particular “edge effects” on calculations of interest to genomics is negligible.

*2 Some intuition for this at first surprising result can be gained by re-reading the last few
paragraphs. In some ways, a circular target is an infinite target, and has no “edge
effects.”
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might be that either one is greater than half the length of the target, but it is certain that both
of them are not (barring undetected overlap). There are several calculations where it is no
longer sufficient to assume that the sizes of the spacings, gaps, and islands are independent
of each other. These calculations are somewhat more arcane than what has been presented
hitherto, and tend to have more of a niche utility. Nevertheless, from time to time they can
be useful. The calculations also provide a powerful illustration of the mathematical model
constructed here, as it is extremely difficult to accurately adapt other models to the same

ends.

For example, one may wish to consider the probability that a project contains at
least i islands of length greater than a certain critical length C. This sort of calculation may
be. useful in evaluating performance of fragment-assembly algorithms or in planning
projects with limited goals. Such a limited goal might be to sequence or map until at least
one contig greater than a fixed length has been obtained, perhaps as part of an exploratory
or preliminary survey of a target or genome.

Let Njong be the number of long spacings. Let gy, be the number of short spacings
contained between adjacent long spacings. Now,

. =L+ E(D)g, (1.46)

Thus:

C_L] (1.47)

Pl >C)=Plg,>——
¢, >C) [gm ED)
The number of short spacings preceding the first long spacing is gg; the number following
the last long spacing is gMong.“3 Now, since the distribution of long spacings is uniform

among the set of all spacings, the distribution of g is defined on the simplex

3 Since either Dg or D, may be long, Njg, may be up to two greater than Ngaps. Ngaps is
nevertheless a good approximation to ﬁ,ong. This is true at low redundancies where
Ngaps>>2. At high redundancies n>>Nqyg, s0 it is unlikely that either Dg or D, is long.
If greater accuracy is desired, an appropriate summation can be made.
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(8 +8*8&: +~'~+glv,m)
(n+1-N,

long )

=1 (1.48)

with all points of the simplex equiprobable. The reader should be by now familiar with the
previous invocations of this analogy. To continue, we might employ the Dirichlet
distribution instead of the beta distribution. However, rather than to invoke its full
complexity here, I will borrow only a result from Stevens (1939), who was the first to
address this particular aspect of the distribution.

C-L
E(D)(n+1-N,,)’
let k be the greatest integer less than 1. Then one has directly from Stevens:

Let R be the number of islands exceeding length C, let ¢ = and

P(R= N, )= 2( )"( (Vo +1) (1'jf)Nm (1.49)

N__ +1- )(j—z)'(z—l) J

£3ps

In particular, the probability of having a contig in a project greater than half the
length of the target can be approximated (e.g. c=+) as follows:

P(one contig > §) = Z P(N,

v=0

~Z( )(1—fc>""(1—(1—fa) Y

v=0

= v)P(one contig > §| N =V)

gaps

(1.50)
v+1

2

At moderate to high redundancies, only the first few terms of this last sum are necessary,
as the subsequent terms rapidly diminish. In any case, this formula is best evaluated by a

computer.

1.13 CIRCULAR TARGETS

The equations presented in the foregoing sections were designed explicitly with
linear targets in mind. It is somewhat simpler, however, to write similar equations for
circular targets. The choice to begin with equations for linear targets was motivated by the
fact that the vast majority of targets are linear. Even targets that are seemingly circular, such
as cosmids and BACs, need to be treated as linear due to the presence of the vector
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sequence. In current practice, only bacterial genomes would be modeled as circular

targets.**

I will briefly recap the discussion of the “beta” distribution analysis, with
appropriate modifications for circular targets. Note that G,=G, so that S, [1,G]. D,=S,, -
S, is the distance between start sites, for k=1,2,..., n-1. D, is the distance between S, and
§,- We therefore have the underlying beta distribution (cf. equation (1.12)):%

(n-DA-%"7 n>1
= 1.51
S, (%) {5(0) nel (1.51)

The expected spacing length for the circle is (cf. equation (1.15)):

E(D,)= S (1.52)
n

The gap probability for the circle is (cf. equation (1.16)):
Py = (1= 1) (1.53)

The gap distribution for the circle is (cf. equation (1.17)):

n X n—x

P(Ngaps =X) = x pgap (l—pgﬂp) .

(1.54)

n (n-1)x n=1y\n-x
=[x)(l_fc) a-U-s5)")

The approximation for the circle closure probability is (cf. equation (1.18)):

* Organellar genomes are also circular, but due to their small size they are seldom targets
for random subcloning.

43 8(n) is the Dirac delta function. In this case, it implies that with only one fragment in a
project, then the sole spacing length is G.
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P(N,, =0) =(1-p,,,)"

- (1.55)
=[1-0-£)"]
The expected number of gaps in a circle is (cf. equation (1.20)):
E(N,,,)=n(1-f5)"" (1.56)

Note that the calculation in equation (1.56) for the expected number of gaps in a circular
target is exact. This is because there are no “edge effects” for a circle.*

The number of islands will equal the number of gaps, unless there are zero gaps, in
which case there will still be one island. So (cf. equation (1.22)),

N, if N, >0
lelimds ={ &aps . gp (157)

1 if Ivg“ps =0

and the expected number of islands can be calculated as (cf. equation (1.23)):
E(N,ps) =1-P(N,,, =0)+ Y xP(N,,,, = x)
x=l
=P(N,, =0)+ Y xP(N,,, =x)+0

x=l (1.58)

=P(N,,, =0)+ Y xP(N,,, = x)
x=0
=== f5)") +n(l- f5)"

A few subtle changes must also be accounted for in order to determine the
distribution of the number of clones in an island. The number of long spacings is Ngaps.
The number of short spacings is n-Ngaps. Now the number of fragments in an island is
equal to one plus the number of short spacings between its bounding long spacing(s), or

* David Gordon and Phil Green independently Brought this to my attention.



50

simply n if there are no long spacings. The conditional probability density for z, is

therefore (cf. equation (1.26)):*

Npen—2
~1
N -D1-—= N >1
f(xINg, )= W )[l n—Nm} s (1.59)
o(n) N, <1

The expected value of z,, is therefore (cf. equation (1.27)):

n n

Ngaps
E(N,,) T EW, istands )
E(z,IN,,) =
- N,
E(Nyn4)

>0

(1.60)
=0

The definition of island length can be expressed mathematically as (cf. equation (1.30)):

L+ x z,>1
[ - P Nms>0
" L Z, =1

G N, =0

We can approximate expected island length as (cf. equation (1.32)):

(1.61)

*7 8(n) is the Dirac delta function. In this case, it lmphes that if the number of gaps is one

or zero, then the number of clones in an island is certain to be n.
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E(,)=L+E(D)(E(z,)—1)

=L+ E(Dk)(E(N—n)' - l)
islands

= L + G(—l—)( n—lrfl n-1 - l)
nA(1-(1-f5)7) +n(l-f;)
R (RS R
n A== f)"7) +n(1-f;5)

l n
= G(_)( (1 n-l\n _ n—l)
nA(A-Q0=-f)"") +n(l-f5)

_ G

T (A=-A=f) T +nl - f)
.G

" E(N i)

Pick whichever successive approximation you are most comfortable with. The last
approximation can also be made for the linear case. This approximation is very intuitive,
and can be arrived at quickly as a “back-of-the-envelope” scribble, perhaps multiplied by
(1-fG)", or maybe (I-e®).** Again, the use of E(D;) constitutes an additional
approximation, as not all spacings can be included in islands. To account for this, a
modification to £(D) must be made (similar to that done in the linear case). As usual, the
accuracy of this approximation can be improved with the aid of a computer by summing
over all possible values of z,, rather than employing the expected value of z,, and by
taking into account the alternative cases in the distributions fed into equation (1.59).

The literature provides an exact formula for the expected number of fragments
“needed for closure of a circular target (Flatto and Konheim, 1962). Begging "edge effects,”
this equation can also be applied to the line. It is, for the limit as T—O0, and where B is the

greatest integer smaller than <:

* At high redundancies the coverage l-e® is very close to one, and can be so
approximated.
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: oyt L=k
E(n needed for closure) =1 -y (-1)* *—5_—
k=1 (k 5) ( 1 .63)

One can also obtain a reasonable estimate for this value from the probability of project
closure, equation (1.18), by assuming that the redundancy required to obtain a 50% chance
of closure is roughly equal to the expected redundancy necessary for closure.

Some results for the circle are also available for the case of a varying parameter,
L-T, where its distribution is known (Siegel and Holst, 1982). These results include the
distribution for the number of gaps and its corollary, the probability of project closure. The
utility of considering such cases is evident, since in actuality both the lengths of the clones
and the amount of overlap necessary for detection will vary. The effects do not have to be
considered separately, but can be combined into a single new parameter (L") equal to L-T.
Such equations will nevertheless get complicated very quickly, and it may be that rather
than pursue such a route, computer simulations would be a superior option. Unless, and
perhaps even if, L' varies greatly, the assumption of a constant L' is reasonable.

Variations in fragment length should not cause much concern for the average
genomicist. Siegel and Holst (1982) provide a proof that the expected number of gaps is
dependent only on the expected fragment length, conditioning on the number of fragments.
This proof is provided for coverage of a circle. Variation of the expected number of gaps
on a finite line due to variation of fragment length is thus expected only due to "edge
effects” and is predicted to be small. Computer simulations confirm this prediction (data not

shown).*

1.14 SIMULATIONS AND DATA

A large number of Monte Carlo simulations of projects can be generated quickly
with a computer. They provide a useful comparisori to the mathematical models, and can
either support them or point out areas of weakness. The JASON Report, an independent
review of the U.S. Department of Energy’s contribution to the Human Genome project,
calls for solicitation and support of detailed Monte Carlo computer simulations of the
complete mapping and sequencing process (MITRE Corporation, 1997). Such simulations

* Although the expected number of gaps remains constant with varying fragment lengths,
the distribution of island sizes will change. The probability of project closure will also be
affected, but except in extreme cases these effects will be slight.
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have been very useful for modeling other large-scale scientific efforts, encompassing areas
such as particle physics, astronomy, and oceanography. The JASON Report has been
summarized by Koonin (1998).

Computer simulations nicely demonstrate the accuracy of the present model, as
shown in Figure [.5. Computer simulations are particularly valuable, as many
approximations necessary for mathematical tractability are easily incorporated into
simulations. For example, fragment lengths and other variables can be modeled as
distributions rather than a constant. An exploration, allowing such parameters to vary, can
help validate the approximations of mathematical model, such as the “beta” model described
here. In particular, modeling the fragment length as a square pulse of 100 bp width, rather
than as a constant, has almost no effect on the statistics of Figure 1.5 (data not shown).

The model presented here also agrees with experimental data, where such data is
available. There are few compilations of robust statistical data taken during intermediate
project assembly points, particularly because compiling a statistically significant set of such
data is burdensome. Nevertheless, experience in our laboratory is that cosmid sequencing
projects require redundancies around sevenfold for closure (Rowen and Koop, 1994). This
is also what the mathematical model predicts. Results from other laboratories support this
view (Davison, 1991; Bodenteich et al., 1994, Martin-Gallardo et al., 1994).

1.15 EXAMPLES

I will briefly present a few examples to illustrate the use of a few of the equations

developed in previous sections.

[.15.1 MAPPING THE HUMAN GENOME WITH YACS

Suppose one wishes to map the human genome with restriction digested YACs.
The target G, in this case the entire human genome, has a length of 3x10” bp. The average
YAC fragment length L has an average size of around 2.5x10° bp. The minimum detection
overlap T for restriction mapping is around 3x10* bp. These numbers are approximate, and
would be subject to the exact implementation of the strategy.

If a project were to undertake the analysis of 2.4x10° YACs, one would obtain a
redundancy of twenty. From the Clarke-Carbon equation (1.9), there would be an average
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of 6.18 uncovered bases. From equation (1.18), the probability of closure would be
99.46%. From equation (1.21), the expected number of gaps would be S 44x107. From
equation (1.32), the average island length would be 2.98x10° bp. This would be a robust
project.

1.15.2 SHOTGUN SEQUENCING A BAC

Consider the task of shotgunning a BAC with a target length G of 1.5x10° bp.
Imagine sequencing it to a redundancy of seven, which is typical for shotgunning cosmids.
Assume a typical sequence read length L of 650 bp. Assume T to be 20 bp.

Sevenfold redundancy will entail sequencing 1.62x10° fragments. The Clarke-
Carbon equation predicts an average of 135 uncovered bases. The probability of closure
will be 17.40%. The expected number of gaps will be 1.75. The average island length will
be 5.48x10*. From equation (1.50), the probability of obtaining an island greater than half
the target length will be 78.21%.

If we were to sequence a 3.5x10* bp cosmid target to a redundancy of sevenfold,
our probability of closure would be 70.40%. Obtaining analogous project goals for a BAC
requires higher redundancies than for a cosmid.

1.15.3 THE CHOICE oF PHAGE CLONES, BACS, OR COSMIDS AS SEQUENCING TARGETS

Planners of high-throughput genome sequencing projects are faced with the
decision of what type of clone to use as targets for shotgun sequencing. One can address
the sequencing costs associated with different choices of clones with the aid of the
equations presented here. To consider a simple example, hypothesize that a mapping
protocol has produced an approximation to a minimum tiling path of sequencing targets,
with adjacent targets overlapping by 5 kb. Assume that each clone is sequenced to the
expected redundancy needed for closure, and then any remaining gaps are closed by
directed sequencing. Continue to assume L=650 bp and 7=20 bp. Consider an overall
project goal of sequencing a 100 Mb genome (but the results can easily be scaled to an
arbitrary genome size).

If the targets are A clones with G=20 kb, then the expected number of fragments for
A closure is 177 (equation (1.63)), which is a redundancy of 5.75. The expected number of
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gaps per A clone (equation (1.20)) will be 0.50. The average gap length will be 126 bp.%°
Considering the 5 kb target overlaps, one needs to sequence 6667 target A clones to span
100 Mb. The total number of fragments sequenced will be 1.18x10°. Each gap has a one
third chance of being covered by sequence from an overlapping A clone, so a total of
(0.50)x(6667)*(0.66)=2231 gaps need to be closed.

If the targets are cosmids with G=35 kb, then the expected number of fragments for
cosmid closure is 345, which is a redundancy of 6.42. The expected number of gaps per
cosmid will be 0.58. The average gap length will be 99 bp. Considering the 5 kb target
overlaps, one needs to sequence 3334 target cosmids to span 100 Mb. The total number of
. fragments sequenced will be 1.15x10°. Each gap has a 17% chance of being covered by
sequence from an overlapping cosmid, so a total of (0.58)x(3334)*(0.83)=1598 gaps need
to be closed.

If the targets are BACs with G=150 kb, then the expected number of fragments for
BAC closure is 1869, which is a redundancy of 8.10. The expected number of gaps per
BAC will be 0.69. The average gap length will be 66 bp. Considering the 5 kb target
overlaps, one needs to sequence 690 target BACs to span 100 Mb. The total number of
fragments sequenced will be 1.29x10°. Each gap has a 3.5% chance of being covered by
sequence from an overlapping BAC, so a total of (0.69)x(690)*(0.965)=460 gaps need to
be closed.

Assuming the cost of generating all three maps is equal, then clearly cosmids are a
better choice than A clones, as there are fewer overall sequence reads with fewer gaps to be
closed. If BACs are employed instead of cosmids, then the required number of sequence
reads increases by 1.38x10°, but the number of gaps to be closed by directed sequencing
drops by 1138. So if the price of closing a gap by directed sequencing is less than 121
times the price of a single random sequence read, then a cosmid strategy would be cheaper.
In reality, the cost of constructing a BAC map will be less than constructing a cosmid map,
which will bias the choice of sequencing targets towards BACs.

% See the discussion in Section 1.10 for approaches to calculating gap length. A useful
quick approximation for the expected gap length is:

Ge®?

E(N,,,)

E(gap length) =
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Note that the above analysis assumes that the projects stop at the expected
redundancy for closure and then move to directed gap closure. The choice of when to stop
is another important parameter in strategy choice.’* Consider the next example.

1.15.4 WHEN To SToP RANDOM SUBCLONING AND START DIRECTED GAP CLOSING

From the last example, one can recognize that there may be an optimal juncture at
which to stop random subcloning and start directed sequencing. This juncture will depend
on the relative costs of random and directed sequencing. Let us consider several possible
cost ratios for the case of BAC sequencing: 10, 20, 75, and 1000. A directed to random
cost ratio of 10 might represent a scenario with negligible primer synthesis costs and
completely automated clone selection and primer design for gap closures. A ratio of 1000
might represent a scenario with high personnel and primer synthesis costs.’

The expected costs to close a BAC are graphed in Figure 1.6. The parameters from
the previous example are employed. As the cost of directed sequencing rises relative to an
arbitrarily fixed random sequence read cost, clearly the overall project cost rises as well.
The optimal stopping point for random sequencing occurs at a progressively higher
redundancy as the cost of directed gap closure increases. Note that this example assumes
that when a fixed number of sequence reads is obtained, random sequencing stops
regardless of the number of gaps, and then gaps are closed by a directed strategy.>

5! Knowing when to stop is important in many things: cars, genomics, and life activities in
general.

52 A December, 1997, price quote from a commercial sequencing company gives
approximately $25 as the price of generating a single sequence read and approximately
$600 as the cost of closing a gap (Genome Systems, price quote). Costs in a genome
center setting are considerably lower: approximately $8-$10 to generate a single read
(Stephen Lasky and Maynard Olson, personal communications).

53 An additional complication to consider is that some gaps are harder to close by a directed
strategy than others. Short gaps that are spanned by known sequencing templates are
straightforward to close with a simple walking iteration. Gaps without templates must
generally be closed by first generating a PCR sequencing template, which involves extra
cost and can increase the sequencing error rate. At high redundancies, particularly with a
pairwise strategy (discussed in Chapter 2), all gaps are highly likely to be spanned by
known sequencing templates, so the approximation of constant cost per directed gap
closure is reasonable. However, at low redundancies, the average cost of a directed gap
closure may rise due to increasing frequency of gaps not spanned by known templates.
Figure 1.6 can be modified for this effect by assigning different gap closure costs to each
type of gap and assigning the relative frequencies for gap type according to a model for
the strategy in use. In this case, both the clone length and the sequence read length must
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A slight decrease in expected cost might be obtained by altering the strategy in a
manner that involves iterative feedback between assembly and shotgun sequencing. This
would entail shotgun sequencing until a fixed number of gaps (e.g., 2) was obtained, and
then closing the gaps in a directed manner. The administrative costs in executing a project
in this fashion are slightly more intangible than described above. Nevertheless, this is an
extremely common actual implementation of the shotgun strategy, with the number of
sequence reads obtained in batches of several hundred between assemblies. Shotgunning
stops when one of these incremental assemblies reduces the number of gaps to a point at
which directed sequencing can begin.

1.15.5 THERISE IN CoST AS THE TARGET LENGTH IS INCREASED

A higher redundancy is needed to reach a state of expected closure for a longer
target. Thus all other things being equal, shotgunning each clone in a minimum tiling path
of mapped subclones of a target is cheaper than shotgunning the whole target. This is
analogous to arguments that a divide-and-conquer strategy for STS-mapping the human
genome chromosome by chromosome is cheaper than mapping all markers
simultaneously.’® However, creating such a tiling path has a cost. Additionally, the
resulting “minimum” tiling path invariably has considerable overlap, increasing the total
sequencing redundancy by perhaps 30%. Thus the decision to “divide and conquer” or to
“brute force” the target must be made by comparing the decrease in shotgunning cost per
base pair for shorter targets with the increase in mapping cost. This is a common dilemma
in structural genomics. A typical example is a decision whether to subclone a BAC into
cosmids or to directly shotgun the BAC. Another example would be the choice of
subcloning a bacterial genome or shotgunning it directly.

be incorporated, as well as any mapping data, such as that obtained form a pairwise
project. Incorporating these details is not difficult, but does depend on the exact strategy
parameterization.

5% This is discussed by Lange and Boehnke (1982). Note that these authors mistakenly
exaggerate the cost of mapping 24 discrete linear chromosomes relative to the cost of
mapping one hypothetical chromosome with length equal to the sum of the lengths of the
24 chromosomes. Presumably, this results from a specification in their computer
simulations that the extreme telomeric ends of the chromosomes must be within a
specified distance of a marker. A more thorough treatment of this issue is provided by
Bishop et al. (1983). .
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We can determine the exact expected redundancy for closure of a circular target by
employing the equation of Flatto and Konheim (1962). Alternatively, we can approximate
the expected redundancy for closure by numerically integrating the weighted derivative of
equation (1.55) (or, for a linear target, equation (1.18)). Such numerical integration is best
carried out by a mathematical analysis package such as Mathematica 3.0 (Wolfram
Research), which is what I used for this purpose.’® With respect to the expected
redundancy for closure of a circular target, and for parameterizations of interest to
genomics, the relative error of the numerical integration with respect to the Flatto-Konheim
summation was between one and three percent. The use of numerical integration allows one
to calculate probabilities not provided by Flatto and Konheim. For example, one can
compute the expected redundancy necessary for a project to reach a state of three or fewer
gaps as follows:

E(n) = ]:n 3(P(N,,, <3))

dn (1.64)
. on

Here, W is the minimum number of clones with which it is possible to span the
target (i.e., the number of clones necessary for onefold redundancy). If the lower bound W
is not used, then semantic difficulties arise as to exactly what is meant by a project with
three gaps. Technically, most projects with three clones also have three gaps. We do not
wish to include such cases in our integration, so we reasonably but somewhat arbitrarily
specify that a compléted project must have at least onefold redundancy. The probability of a
project having three or fewer gaps can be approximated by summing appropriate
parameterizations of equation (1.54) for the circle or equation (1.17) for the linear case:

=2)+ P(N

gaps

P(N =3) (1.65)

gaps

<3)=P(N,

gaps

=0)+ P(N,

gaps

=1)+ P(N,

gaps

The resulting equation becomes quite bulky but is easily handled by Mathematica.
By employing this technique, I have calculated the expected redundancy to reach a state of
three or fewer gaps for a variety of target sizes, as well as the expected redundancy to reach
a state of six or fewer gaps (Figure 1.7). The Flatto-Konheim predicted redundancies for

% Tt should also be noted that the Flatto-Konheim summation employs alternating
differences of ratios of very small numbers. This requires a numerical precision of
approximately 400 digits for some parameterizations of relevance to genomics. The sum
does not converge quickly, and cannot be approximated by a truncation.
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closure are shown for reference. Note that this calculation is invariant to scale; G, L, and T
can be altered proportionately with no change in redundancy costs to reach an expected
number of gaps.

One can see that per-base-pair costs rise roughly logarithmically with respect to
target length. This occurs when either closure or a fixed number of gaps is sought.
However, if one allows projects to stop at a stage with a number of gaps proportional to the
target length, then costs will rise at a slower rate, and in fact are almost invariant, at least
with respect to this choice of parameters. For exaniple, sevenfold redundancy will take a
600 kb projectto a state of six gaps, while the same redundancy will take a 300 kb project
to a state of three gaps. This observation tends to support the conclusion that longer is
better.

1.16 RANDOM CLOSING REMARKS

The general approach to modeling finite genomes presented here may be useful
when applied to other mapping and sequencing strategies, such as those based on random
transposon insertion. Such strategies represent a genomics implementation of the well
established theory of “coverage processes.” Hall (1988) provides a nice entry into some of
the relevant mathematics literature. Solomon (1978) provides a good overview of the

problem of random arcs on the circumference of a circle.

The equations derived here have many applications.’® To begin with, a strategist is
interested in the amount of work necessary to complete a project. This can be expressed as
the probability of project closure at a given redundancy (equation (1.18)). These results are
consistent with the expected redundancy needed for closure (equation (1.63)). I have
combined results from these two equations in Figure 1.8.

Figure 1.8 highlights some of the most useful results to arise from the “beta” model
for random subcloning. The figure shows that longer targets have a higher cost in
redundancy to close. This means that, all other factors being equal, it is cheaper to shotgun
two halves of a target separately than to do both at once. A practical application of this

58 A reader interested in quick access to some simple Java implementations of some of the
equations presented in this paper might wish to explore Andrei Grigoriev’s web pages at
www.embl-heidelberg.de/~toldo/JaMBW and www.mpimp-berlin-
dahlem.mpg.de/~andy/calc/mapcalc.html
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observation might be to partition a multiple chromosome genome into its individual
chromosomes before commencing a shotgun project (but see also Section 1.15.5).

In addition, Figure 1.8 shows that, in general, fewer longer fragments are more
desirable than proportionally more shorter fragments. There are situations in sequencing
projects where longer reads can be obtained, but at higher cost. The trade-off of increased
cost per read versus decreased redundancy needed for closure can be analyzed. The payoff
is more than linear as fragment length increases. This result, in particular, is completely
unanticipated by the Clarke-Carbon formula, which predicts the same amount of coverage
at a given redundancy, regardless of fragment length.’’

At high shotgun redundancies, the cost of directed sequencing is roughly constant
per gap, no matter how long the gap is. This is because at high redundancies gaps are
almost universally shorter than a sequence read length. Efforts to close such a gap will be
equally expensive to administrate and execute whether the length of the gap is one base pair
or L-T base pairs.”

Should one choose to close gaps by continuing random subcloning, there will be an
exponentially increasing cost in redundancy to close gaps as a project proceeds. Choosing
whether and at which point to stop shotgunning and begin directed sequencing is a
fundamental economic question. For this purpose it is useful to calculate the incremental
redundancy cost of shotgun projects per gap expected to be closed. This cost can be
compared with the cost of directed sequencing to determine if and when directed
methodology is appropriate for a project. A graph of gap closure cost is shown in Figure
1.9.% The more gaps there are in a project, the cheaper it is to close them by shotgun
sequencing. The cost of closing gaps rises exponentially with each successive gap closed.

57 To rephrase: there are fewer gaps in projects with longer fragments, but these gaps are
longer. Thus the total uncovered area remains constant as long as redundancy stays the
same.

%% A gap can be closed by primer walking along an existing template known to cross the
gap. See Chapter 2 for discussion of one method to determine template positioning
relative to a gap. In the absence of an existing sequencing template, a gap can be closed
with PCR methodology.

5% There is a subtlety here worth elucidating. Before a project starts, the redundancy cost of
a project with x expected gaps is easily calculated from equation (1.20). However, once a
project is underway, and a preliminary assembly has been made, the information gained
from that assembly affects the prediction of how many gaps will be present in a future
state of the project. In most cases this effect will be minor, particularly if the actual
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One potential objection to any mathematical model for DNA cloning is that there
may be regions of the target that are nearly impossible to clone. For example, some regions
of the HIV genome are genetically unstable and thus absent from subclone libraries (Jon
Anderson, personal communication). From a mathematical point of view, this will result in
a very large local deviation from the uniformity of fragment start site distribution. Such
large variations in uniformity tend to be target idiosyncratic and very difficult to model.
This by no means dooms the utility of mathematical models. In fact, such cases are
precisely where mathematical models can be of great service. Unexpected deviations in the
actual target parameters from predicted values of these parameters serve as an indication of
subcloning problems. Once detected by comparison with the mathematical model, such
problems can then be addressed and corrected. Also, once knowledge is obtained of an
unclonable or unanalyzable region, the model can be appropriately modified to reflect the
new constraints.

There must be a constant interplay between theory and practice. Each serves to
refine the other. Neither exists alone, nor is valuable without the other.

number of gaps is close to the expected number of gaps. However, the effect cannot be
predicted ahead of time. Therefore the cost of closing a gap in Figure 1.9 is calculated by
determining the redundancy necessary for an uncommenced project to reach a state with
an expected number of gaps that is one less than the expected number of gaps of a project
executed at the redundancy graphed on the abscissa.
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Generation and analysis
of fragments

Inference of original
target sequence

Figure 1.1. A schematic cartoon of a random subcloning project. Fragments of multiple
identical copies of a target sequence (here a rainbow of colors) are analyzed and then
reassembled based on bits of overlapping sequence identity.
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Figure 1.3. Expected coverage of a target with respect to redundancy (the Clarke-Carbon
equation: Expected Fraction of Target Covered =1-¢7%).
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Figure 1.4. Relative error of the Lander-Waterman and “beta” models. The predicted
average island lengths are plotted with respect to island lengths generated from simulations
(L=600, T=20, G=40000). Each simulation data point is the mean value of the mean island
length from 1000 project simulations. The small high-order variability is due to
randomness in the simulations.
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Figure 1.5. A graph of data points from computer simulations. Theoretical curves from the
Lander-Waterman and “beta” models are provided for reference. Each data point represents
the average of 1000 independent Monte Carlo simulations. (O) simulated data from a
project with a linear target. (G=40 kb; L=500 bp; 7=20 bp)
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Figure 1.6. The ‘expected cost of closure for a BAC shotgun sequencing project with
directed finishing. The ratio D:R is the relative cost of closing one gap versus executing a
single random sequence read. Cost is standardized to the cost of a random sequence read
[Cost=n+(D:R)E(Nsnps)]. The abscissa represents the number of random reads obtained
before directed sequencing begins. Note that all curves are asymptotic to a purely random
strategy that has produced closure. (G=150 kb; L=650 bp; T=20 bp)
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Figure 1.7. The expected cost of reaching a project state of three or fewer gaps graphed
versus target size. The cost for six or fewer gaps is also graphed. These costs were
calculated by numerical integration (see text). The expected costs of closure calculated by
the equation of Flatto and Konheim are shown as a reference. A circular target is assumed.
(L=650 bp; T=20 bp)
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Figure 1.8. The probability of project completion with respect to redundancy, calculated
using the exact equation of Stevens (1939). This equation is approximated in the text by
equation (1.18). Four parameterizations are shown. The vertical lines intersect the expected
redundancy necessary for closure, calculated using the exact equation of Flatto and
Konheim (1962), with their parameter o set to (L-7)/G.
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CHAPTER 2. PAIRWISE END SEQUENCING

“Let the praises of God be in their mouth: and a two-edged sword in their hands.”

The Book of Common Prayers

Random subcloning is a simple tool for mapping and sequencing DNA. In the
previous chapter I provided a detailed analysis of mathematical models for random
subcloning. More sophisticated strategies exist. With the maturation of the science of
genomics, a wide variety of clever and innovative strategies have been developed (e.g.,
Evans, 1991; Burland et al., 1993; Li and Tucker, 1993; Kasai et al., 1992; Siemieniak et
al., 1991). This plethora of strategies is a welcome delight to the researcher, for it adds to
the armamentarium of tools available for genetic analysis. However, it brings with it the
sometimes difficult decision of choosing which strategy is best.

Mathematical modeling, simulations, and experience provide the data upon which a
strategy decision is made. In the previous chapter, I concentrated on a mathematical model
supported by simulations as a tool for evaluating random subcloning strategies. However,
it is not always possible to develop a sufficiently accurate mathematical model for a
strategy. This is particularly true for the more complex strategies. In such cases, however,
it is often possible to use simulations to acquire the necessary data. In this chapter I will
describe a promising strategy for which a useful mathematical model has not been obtained
and illustrate the use of simulations to provide data necessary for strategic decision making.

2.1 THE DOUBLE-BARREL SHOTGUN

Large-scale genomic projects are typically divided into two phases: first mapping,
and then sequencing. A common strategy is to produce a rough map of approximately 40
kb completeness (terminology of Olson and Green, 1993), which is the level of cosmids.
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Cosmids provided by such a mapping effort can then be employed in sequencing strategies,
often using a shotgun approach.'

After a genome has been sequenced, a map becomes useless. This is because the
information in the map is redundant with information in the genomic sequence.?> Mapping
information is a subset of sequencing information. A map is only valuable insofar as it can
reduce the cost of subsequent sequencing.’ For this reason, some have sought to combine
mapping and sequencing. Because sequencing provides data that can be useful mapping
information, it can make sense to begin sequencing before mapping is completed, so that
the early sequence information can be used to lower the final cost of mapping. Taking this
principle to its extreme, one can imagine a strategy that uses sequence data exclusively to
build a map, bypassing completely the need for a separate mapping phase. Pairwise end-
sequencing provides data that is particularly useful for this sort of approach. A varjation of
this strategy has recently been proposed as the method of choice for sequencing the human
genome (Venter et al., 1996). The strategy in its pure form, dubbed “double-barrel shotgun
sequencing,” is described here.

The double-barrel shotgun is a complete integration of mapping and sequencing,
with a fine-scale map arising automatically from sequence data as a project proceeds. The
strategy I describe retains the simplicity of random shotgun approaches, but, due to the
fine-scale map produced, eliminates the need for more than minimal overdetermination of
target sequence. It can half the final sequencing redundancy necessary to complete a project
compared with a pure shotgun strategy. Its primary process of “scaffold building,”
described below, is highly automatable and requires neither iterative steps nor intervention
from highly trained individuals. At a low sequence redundancy this strategy can achieve
target-spanning maps. However, since sequence accuracy is largely a function of its

! More recently, BACs have become a preferred sequencing template, necessitating maps of
only about 100 kb completeness.

* One exception is that the map can be used as a partial check on the accuracy of the
sequence. Information used to construct maps can also be used as a partial check on the
integrity of a clone library. Mapping data can be used to detect chimeric and deleted
clones. Thus, the actual economics of how much mapping data (and what type) to acquire
is more complex than I can cover in detail here.

* In the interim period (perhaps indefinite) between mapping and sequencing, a map can
have considerable value. This interim is becoming shorter with the worldwide increase in
sequencing capacity and speed.
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redundancy, after the initial scaffold-building phase, a directed sequence-finishing phase
will be necessary to complete the sequence. The scaffold constructed in the first phase is
ideal for choosing templates for sequencing in the final phase.

Recall that DNA is double stranded. Typically a sequence is read from only one
strand of a clone. A sequence read is currently 600 to 1000 bp long; a clone can be as long
as 10 kb. Thus much of a clone in a pure random sequencing project remains unsequenced.
Some technical and economic reasons for this were discussed in Sections 1.2 and 1.3. It is
advantageous to use the same primer for every sequencing reaction, so this primer must be
derived from the end of the vector sequence. However, the vector attaches to both ends of
the unknown cloned DNA, forming a circle. As a result, there are two ends of vector
sequence from which two separate standard primers can be derived.* Therefore a clone can
be sequenced at both ends. For a double barrel strategy, it is best to choose clones that are
at least as long as twice the length of a sequence read. Therefore, from a sequencing
perspective, one will obtain two fragments® from the same clone.

From the most simplistic viewpoint, double-barrel shotgunning is merely a way to
obtain twice the number of sequence reads from a set clones, thereby halving the cost of
clone isolation over the course of a project. This is indeed a major advantage, but the true
beauty of this approach lies in the use of the knowledge of the pairwise correlation of
fragments. For each pair of fragments, not only is their separation distance known, but also
their relative orientation. Together, these data enable map construction, empowered
tremendously by the orientation data, and aided to some extent by the distance data.

A depiction of an executed pairwise strategy is shown in Figure 2.1.

2.2 FORMULATION

A project begins with a target of length G. The length of unknown cloned inserts is
designated I. The Monte Carlo simulations presented here, except where indicated, assume
a constant insert length. Practically, insert lengths seldom are less than kb or exceed 10 kb;
it is this range that I will focus my attention on.

* In most cases, these primers would be the m13-forward and m13-reverse primers.
3 The term “fragment” was defined in Section 1.3.
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For these simulations I assume the sequence read length L to be a constant 400 bp.°
The number of inserts successfully sequenced in a project is denoted n. Since inserts are
sequenced at both ends, the total number of sequence reads will be 2n and the total amount
of sequence determined will be 2nL. The redundancy of sequence data, denoted R;, is
defined to be 2nL/G. Most of my results depend primarily on redundancy and only
secondarily on sequence read length or quantity. Thus many short sequence reads are
roughly equivalent to proportionally fewer long reads, and my choice of 400 bp for L is not
critical. Note also that in mapping projects, redundancy is usually defined as the total length
of all subcloned inserts analyzed. In the formulation presented here this quantity is denoted
R, and defined to be nl/G. The use of R, permits comparison of double-barrel mapping
results with other mapping techniques, such as restriction mapping.

After all insert end sequences have been determined, data can be analyzed and
sequences can be assembled into islands and contigs. With a pairwise sequencing strategy,
assembly of contigs is facilitated by knowledge of the pairwise orientation of sequences
derived from the same insert. At low redundancies, it will not necessarily be possible to
determine a single non-degenerate map for a project, as there may be sequence islands for
which order or orientation is not determined. For a map to be finished, there must exist a
path of bridging inserts between any two sequence islands, either directly or indirectly
through other islands. Until enough redundancy is present to overcome this potential
problem, there may be multiple coexisting and possibly overlapping contigs of clones. In
order to address and discuss this issue, I define an ordered and oriented list of sequence
islands to be a “scaffold.” Since a scaffold consists of one or more overlapping subcloned
inserts, it could also be legitimately called an island, and would be if our discussion
centered solely on mapping issues. Here, I reserve the term “island” to denote a set of

overlapping sequence reads.’

® This choice of sequence read length is already antiquated. The simulations presented here
were initially run in early 1993. A more typical sequence read length today would be 600
bp A motivating factor behind the choice of a short sequence read length was to present a
“worst case scenario” to demonstrate the power of the double-barrel shotgun even under
adverse conditions. The desirability of the strategy improves as sequence read length
improves.

" Port et al. (1995) refer to scaffolds as “gapped islands,” and sequence islands as “block
islands.”
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Beyond a certain point, as redundancy increases, the number of both islands and
scaffolds will decrease, ultimately resulting in a single scaffold. Such scaffolds usually
contain the entire target and as such are termed “complete.” A complete scaffold usually
contains vector sequence as well, but for statistical purposes is considered to be equal to the
length of the target. The longest scaffold resulting from a project is termed the “maximum”
scaffold. Gaps in sequence data intemnal to a scaffold have previously been termed
“sequence-mapped gaps,” or SMGs (Edwards and Caskey, 1991). For a complete
scaffold, the size of the SMGs determines the completeness of the physical map, in the
sense of Olson and Green (1993).

For my computer simulations, I assume that a mutual overlap of length T is
necessary and sufficient to detect overlap between two sequence reads. This overlap T was
set at 30 bp, but the effect of choosing a different 7 would be slight, particularly because
T<<L. Assigning T any value between | and 50 does not noticeably alter my results (data
not shown).

For most projects, a target sequence will have been fragmented along with its vector
(ie. YAC, BAC, cosmid, phage). To minimize the sequencing of vector, one might
employ target sequence as a probe to pick positive inserts, or vector sequence as a probe to
screen out vector: I present here only simulations of the first strategy, which I also find to
be representative of other strategies (data not shown).® To this end, I assume that any insert
that contains at least 40 bp of target sequence is a candidate for inclusion in a project. One
advantage of this “positive screening” approach is that a few inserts will overlap vector
sequence, and can be used to anchor the ends of some scaffolds to the vector.” However,
this effect is slight, especially with longer target lengths.

My analysis centers on two target lengths: 35 kb and 200 kb. I chose 35 kb as a
representative length for cosmids. I chose 200 kb as a representative length for a BAC or
YAC, to demonstrate the feasibility of using pairwise data to facilitate sequencing targets of

% Screening is a labor intensive process. Therefore, as sequencing cost continue to drop,
while screening costs might actually rise, it is more likely that projects of the future will
not bother to screen, but rather accept the slight increased cost in redundancy due to
sequencing the vector as well as the target.

? If a screening approach were to be used, a “negative” screen would be more likely, as it is
easier to implement. Also, “positive” screens generally have higher false positive and
false negative rates.
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that size or larger. All computer simulation data points represent the average of 100

determinations.

2.3 COMPUTER SIMULATIONS

Complete scaffolds are often an ideal project endpoint, so I focused on determining
optimal methods for their derivation. I have also characterized the expected values for
certain parameters, including average SMG size and total scaffold length. To these ends, I
employed computer simulations which I in turn supplemented with a raw data simulation
based on a highly redundant random shotgun project. I will discuss the computer

simulations first.

The results of the computer simulations are presented in Figure 2.2 for 35 kb
targets and in Figure 2.3 for 200 kb targets. In general, the number of scaffolds rises
sharply at low redundancies and then declines at higher redundancies. The sharp rise
occurs because each pair of insert sequence data added to a project at low redundancy has a
high probability of forming a new scaffold. At higher redundancies, inserts begin to merge
scaffolds and the number of scaffolds drops. For most projects, a single scaffold will form
at a sequence redundancy between twofold and threefold. Slightly greater sequence
redundancies were necessary to achieve single scaffolds of 200 kb targets than of 35 kb
targets. Nonetheless, when 10 kb inserts were used, a single scaffold was always obtained
at a redundancy less than twofold. In general, fewer scaffolds resulted when longer insert
lengths were used. This is a result of longer inserts having a higher probability of spanning
greater distances between sequence islands, and emphasizes the value of using as long an

insert length as possible, which maximizes R,,.'°

At high redundancies complete scaffolds are always obtained, as seen from the
graphs of average maximum scaffold length (Figure 2.2 and Figure 2.3). For example,
when 1.2 kb inserts are used for a 200 kb target, complete scaffolds are obtained around
sevenfold redundancy. However, to obtain an improvement over traditional random
shotgun sequencing strategies, complete scaffolds should be obtained at lower
redundancies. This was clearly possible when longer insert lengths were employed. For

' This result is intuitive, at least in retrospect. One of the more useful contributions of the
work presented in this chapter was the demonstration that “longer is better,” at least with
respect to pairwise insert length.
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example, redundancies of twofold were sufficient to ensure complete scaffolds when 10 kb
inserts were simulated. When a project resulted in a single scaffold, this scaffold was also
complete, or nearly so (data not shown).

I did not notice significant differences in redundancies necessary to achieve
analogous results for either 35 kb (Figure 2.2), 200 kb (Figure 2.3), or even 1 Mb targets
(data not shown). This suggests that sequencing effort scales roughly linearly to results,
and not exponentially, even with relatively large targets. This rough linearity stems from
the use of pairwise data, and indirectly from the high mapping redundancy R,,."’

The number of SMGs in maximum scaffolds increases, then decreases, as sequence
redundancy increases. The initial increase is due to both the increasing length of the
maximum scaffold, enabling it to contain more gaps, and to the division of large gaps into
smaller gaps as sequence islands bisect them. The subsequent decrease in SMGs is due to
additional sequence data closing gaps. Roughly speaking, the largest number of SMGs
tends to occur in complete scaffolds that have been obtained with a minimum of sequence
redundancy. Thus, at the redundancies between twofold and fourfold that we envision as
reasonable for pairwise projects, a significant number of SMGs are likely to result.

For many projects a complete target sequence is desired, with no gaps fragmenting
continuity. For other projects, such as gene finding, complete sequence is not a priority,
but gap characterization may be of interest. In general, project design should aim for gaps
no longer than a single sequence read, or at most two reads. A gap that is a sequence read
long can be closed by one directed sequence form either end of the gap using the spanning
insert as a template. Double stranded coverage can be obtained by a single read from each
direction. A gap that is two reads long can be covered by sequence walking with one
walking iteration. If gaps longer than two read lengths occur in a project, it is likely that a
cost-benefit analysis will dictate continuing the random phase.

I
"' Note that R_ = R, —. Therefore, for 10 kb inserts and 400 bp read lengths, R_ will be
2L
25 when R, is 2. Plugging a redundancy of 25 into the equations presented in Chapter 1
will give the reader an intuitive feel for exactly how powerful the double-barrel shotgun
can be as a mapping tool. This back-of-the-envelope approach also brings home the value
of using large insert lengths.
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The simulations demonstrate that large gaps occur as expected at very low
redundancies, but at redundancies above 1.5 average gap length tends to be less than a
single sequence read length. More importantly, for all projects with sequence redundancies
above twofold, the maximum observed gap length tended to be less than 800 bp, requiring
at most two sequence read lengths to close. Occasionally longer gaps occur. For example,
at a redundancy of 2.5 with a 35 kb target, 100 simulations of a project employing 2 kb
inserts contained one gap greater than 800 bp in 17 cases, and two such gaps in a single
case. Above twofold redundancies, there were no significant differences in SMG length
resulting from alternative choices of insert size. In consequence, an occasional project will
require continued random sequencing after a complete scaffold is obtained in order to
eliminate long gaps.

Long insert lengths are not always convenient sequencing templates.'> For this
reason, I sought a strategy that minimized the need for longer inserts, and explored
strategies that employed mixtures of insert sizes. In general, I found that benefits derived
from large inserts could be obtained even when they represented a small fraction of the total
number of inserts sequenced. In particular, I simulated strategies that employed a mixture
of 2 kb and 10 kb inserts (Figure 2.4). For these simulations I held redundancy constant at
2.25 and assumed a 200 kb target. I found no significant differences between projects
utilizing entirely 10 kb inserts and those that used only 15% 10 kb inserts.

I also envisioned strategies that mix pairwise data with data derived from a single
strand only, such as might be obtained with m13 templates. A relatively small fraction of
pairwise data suffices for the formation of complete scaffolds which are largely composed
of single strand data (Figure 2.5). With a mixture of 60% single strand data, 30% 2 kb
pairwise insert data, and 10% 10 kb pairwise insert data, a maximum scaffold was reached
before threefold redundancy for a 35 kb target. This simulation addresses a practical
question, for sequencing reactions will occasionally fail, which implies that most pairwise
projects will be supplemented with a cohort of widowed sequences.

My simulations met the 1-eR expectation of the Clarke-Carbon formula (data not
shown). Therefore, at any given redundancy R;, target coverage will be the same for either
a traditional shotgun or a pairwise sequencing strategy. I emphasize that increased target

12 Discussed further in Section 1.2.
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coverage is not an advantage of pairwise strategies. The advantage of pairwise strategies
lies in their ability to map and not in more efficient placement of random sequences. At the
redundancies of about 2.5 necessary to build complete scaffolds, target coverage will be
about 92%.

The computer simulations presented here hold both sequence read length L and
insert lengths I constant. In actual projects, such as that represented by the raw data
simulation presented below, these parameters will vary. I have incorporated variations into
several additional computer simulations (data not shown), particularly by allowing / to vary
as a squarewave centered on a target value. No significant differences in predicted results
were noticed when / was allowed to vary. Variations in L also have no significant effect, as
long as redundancy remains constant (data not shown).

Another assumption of the computer simulations was that all target fragments are
equiprobable. The accuracy of this approximation is dependent on the fragmentation
method (see, for an out-of-date example, Deininger, 1983). For most cases this
approximation is quite valid, for the regions of fluctuation in fragmentation probability tend
to be smaller than the length of the inserts. See a more detailed discussion in Section 1.3.

2.4 RAW DATA SIMULATION

I wished to verify that results from my computer simulations accurately modeled
real projects. Such projects utilize raw sequence data and might employ templates with
significant repeat elements. In addition, I was interested in determining the ease of
assembling scaffolds by hand.'? To this end, I designed a simulation built around a cosmid
from the human T-cell receptor B locus that had previously been sequenced to a high
redundancy using traditional shotgun sequencing.

This cosmid, designated Al-4, had been sequenced using a random shotgun
strategy to a final redundancy of 8.4 (Koop et al., 1993). This cosmid consists of a 35343
bp target cloned into a 8213 bp vector. The target is notable in that it contains several
repeats, including two 8.4 kb homologous elements. Their identity ranges from 85% to
over 99% when 400 bp sliding windows are used for analysis. For this reason, the cosmid

'3 Computer programs are yet to be developed that can maximally utilize pairwise data.
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Al1-4 was judged to represent a significant challenge for assembly (Lee Rowen, personal
communication). The sequences used for the original assembly of Al-4 were derived
primarily from single-stranded M 13 templates and were sequenced with either Sequenase®
or Taq cycle sequencing protocols.'*

For my pairwise assembly simulation I chose a subset of these 678 sequences that
might represent typical data from a pairwise project. To this end I planned for a 2.25 final
redundancy R;. I wished to pursue a strategy that employed a mix of long and short
templates, so simulated 88 2.5 kb inserts and 22 7 kb inserts. I determined the start
locations of these fragments with a random number generator. The length of the fragments
was modified randomly with a squarewave to simulate uncertainty in fragment length, as
might occur if such fragments were size selected by banding on an agarose gel. Sequence
reads of the proper orientation were then chosen from the Al-4 data set to represent the
pairwise end sequences of my hypothetical fragments. The closest raw sequences to my
randomly generated fragment endpoints were used, although no sequence was used twice.
The final range of short fragment lengths was 1738-3418 bp (2375 +/- 287 s.d.), while the
range of long fragments was 5312-8245 bp (6819 +/- 781 s.d.). For my initial assembly,
all sequences longer than 400 bp were clipped to 400 bp in order to demonstrate that long
sequence reads are not necessary for the success of pairwise assemblies. In addition, a few
sequences were shorter, although no sequence was less than 250 bp. My final redundancy
R was thus slightly less than 2.25. I judged my protocol for sequence selection to be a
reasonable approximation of what might be likely to result from an actual pairwise project.

I then assembled these pairwise sequences into a single scaffold. Before and during
this assembly I was blind to the nature of the repeats in A1-4 other than that it was a
“difficult” cosmid. Additionally I was blind to the exact length of the fragments, other than
that they were either “long” or “short.” Sequence contigs were assembled with the software
package DNA*® (Madison, WI). Scaffolds were assembled by sliding pieces of paper on a
large table and were ultimately merged into a single scaffold (Figure 2.1). This assembly
took about a day, illustrating that it would be a task best relegated to software
implementation. Following the generation of this scaffold, each sequence contig was edited
by hand for maximum accuracy. At this point, for editing purposes, the ends of sequences
extending beyond 400 bp were used. Some of these sequences, although often low-

'4 The Sequenase® protocol is now obsolete.
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accuracy, served to verify the ordering and orienting of the contigs within the scaffold.
Additionally, they helped improve the overall accuracy of the sequence data.

The results of this raw data simulation compared favorably with the averages
predicted by my computer simulations (Table 1). 89% of the target sequence was
represented in this scaffold. The remaining unknown sequence was contained in 17 SMGs.
Sequence accuracy was 99.9%. All but one of the 44 errors were present in regions
covered by only a single strand. This suggests that double-strand coverage is capable of
obtaining extremely high accuracy, which could be obtained for these regions by
sequencing opposite strands. The exact lengths of the 17 SMGs were unknown, but could
be estimated. Ten of these SMGs were spanned by the low quality ends of sequence reads
present in my data set. This data was insufficient for base calling, but allowed the
estimation of gap lengths to within a few base pairs. The lengths of the remaining SMGs
could be estimated based on the lengths of the fragments that spanned them. As
subsequently verified, all 17 SMGs were less than 800 bp and all but two were less than
300 bp.

2.5 PERSPECTIVE ON PAIRWISE STRATEGIES

Pairwise knowledge was first used extensively during the sequencing of the HPRT
locus (Edwards et al., 1990). The strategy itself was elucidated by Edwards and Caskey
(1991). Smith et al. (1994) describe an approach in which the sequence islands in a
scaffold can be employed as landmarks in a physical mapping project. Such landmarks
were termed “mapped and sequenced tags,” or MASTSs.

One notable example of a pairwise strategy has been designated “ordered shotgun
sequencing” (OSS). OSS was proposed by Chen et al. (1993). OSS is characterized by a
low-redundancy pairwise approach that produces muitiple unlinked scaffolds which form
the basis for further directed sequencing. The genome-wide strategy described in Venter et
al. (1996) bears many similarities to OSS. A few preliminary simulations and a review of
pairwise strategies was provided by Richards et al. (1994).

Notable recent implementations of pairwise projects include scaffold construction
from the 115 kb sigL locus of Bacillus subtilis (Fabret et al., 1996), the identification of a
MHC class I-like gene linked to hereditary haemochromatosis (Feder et al., 1996), the
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identification of a candidate gene for Branchio-Oto-Renal syndrome (Abdelhak et al.,
1997), and the complete sequencing by OSS of a 135 kb YAC (Chen et al., 1996).

It would seem that the advantages of pairwise strategies are overpowering. There
appear to be no drawbacks. By executing a random strategy in a pairwise manner, one
gains all the data of a traditional shotgun strategy, plus additional mapping data. This
mapping data is acquired at no additional cost. In fact, the cost is slightly less, as fewer
templates need to be prepared in a pairwise project. There is, however, one consideration
which favors a pure shotgun approach.

The template best suited for sequencing is derived from the virus ml3. This
template is single stranded (ss), and can only be sequenced from one direction, preventing
a pairwise strategy. Thus, for a pairwise strategy to be executed, one of two solutions must
be employed. The usual approach is to use double-stranded (ds) plasmids as templates in
place of ss m13. The problem with this approach is that with current methodology there is
usually a small compromise in sequence read length. This creates a difficult cost-benefit
decision. Should one pay a small cost in decreased sequence read length in order to benefit
from the advantages of the double-barrel shotgun? In order to answer this question an exact
dollar amount needs to be assigned to the components of the calculation, but once this is
done the equations presented in this and the previous chapter enable the decision to be
made. In most cases it is likely that the double-barrel benefits will outweigh any cost
associated with a slight decrease in sequence read length."’

The second pairwise solution is the Janus strategy described by Burland et al.
(1993). In this solution, after a single read is obtained from a ss m13 clone, the clone is
transformed into a ds ml3 plasmid, and the opposite strand is read. This permits
acquisition of higher quality data, but at a considerable increase in clone handling and
isolation costs. Therefore this strategy is not economically viable unless few clones are
chosen for pairwise sequencing, leaving the majority of the reads as orphaned data. It is

'* In practice, it is extremely difficult to discover the actual dollar cost involved for any of
the various costs, such as isolating a clone or sequencing it, and even more difficuit to
estimate the value of benefits such as a decrease in the difficulty of assembly due to the
presence of pairwise data. Nevertheless, reasonable attempts can be made to estimate
costs, particularly by standardizing on “laboratory operations” in place of dollars (see
Siegel et al. 1996 and 1997). Genome Systems quotes the cost of subcloning a cosmid
into ml3 clones as $1500 and the cost of generating a single sequence read as
approximately $25 (price quote, 12/97).
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conceivable that such a strategy might be economically competitive with a plasmid-based
pairwise strategy, as Figure 2.5 demonstrates that only a small amount of pairwise data is
necessary for complete scaffold building. However, for now the high cost of converting ss
m13 clones has sidelined this strategy.

It is unclear with current sequencing methodologies exactly how much is lost from
the sequence read length when double-stranded in place of single-stranded templates are
used. The effect appears to be rather slight, however, which will tend to bias a decision
towards a plasmid-based pairwise project.

2.6 MATHEMATICAL MODELS

Little progress has been made towards the development of a mathematical model for
the double-barrel shotgun strategy. An attempt was made by Port et al. (1995) to extend the
approach of Lander and Waterman (1988) to pairwise data, but in addition to suffering
from the drawbacks discussed in Section 1.11, these authors were limited to considerations
of algorithmically “greedy” definitions of scaffolds.'® It is unlikely that further progress can
be made with this approach.

A very simple attempt to predict the expected number of SMGs and scaffolds was
offered by Edwards and Caskey (1991). Their approach was to apply the Lander-
Waterman equations independently to the inserts and the sequence reads, and to assume
that the number of SMGs was equal to the gaps in the sequence islands, with the number of
scaffolds equaling the number of gaps in the insert islands. This approach fails to take into
account any of the topological intricacies of scaffolds. It can be recommended only for its
simplicity, which gives some rough insight into the number and kind of gaps likely to be
present in a pairwise project.

It is my intuition that a potentially useful model for pairwise projects may eventually
be developed by treating the pairwise-characterized inserts as analogs to polymer building

' In short, the greedy algorithm blinds itself to certain intricate topological interconnections
of scaffolds that consist of three or more clones. These interconnections are more likely
with longer inserts, so one drawback of the greedy approach is a failure to predict the
advantages of using longer inserts.
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blocks in solution and applying mathematical analyses originally designed for gelling
reactions. The scaffold-building process can be thought of as a gelling process.

As an alternative to the possible elegance of a gelling analogy, brute mathematical
force may be utilized. For each number of inserts n, all possible topologies can be
explored. The probability of each topology can be determined together with the
characteristics of that topology, such as average scaffold length. The enumeration of
topologies quickly becomes difficult. In Appendix A, I present an analysis for n={1,2,3}.
I have not had the patience to work out the n=4 case. In actual projects, n will be on the
order of hundreds to thousands. The limitations of the brute force approach should be
obvious.'” One result described in Appendix A is applicable to all n — increasing the insert
length results in an increased scaffold length and an increased probability of obtaining a
single contig. This is consistent with the results of the simulations.

2.7 DISCUSSION

The work on pairwise end sequencing presented here focuses on utility. I was
primarily interested in determining the minimum amount of sequence redundancy necessary
to reach satisfactory endpoints for projects that might actually be implemented in a
laboratory. A scaffold that equals or exceeds target length is an ideal endpoint for a random
strategy. Such a “maximum scaffold” is an ideal starting point for a directed strategy. I
determined that it is possible to achieve such scaffolds at sequence redundancies around
twofold.

A key factor in producing scaffolds at twofold redundancy is the choice of insert
lengths. I found that the longer an insert is, the more useful it is. This is in considerable
contrast with a misconception that the ideal insert length is three times the sequence read
length.'® Nevertheless, there is a practical upper limit to useful insert size. This limit
depends on three factors. First, it is difficult to routinely clone large fragments. Secondly,
longer inserts have correspondingly more sequence complexity, which tends to degrade the

'” A computer algorithm could be designed to enumerate and evaluate pairwise topologies.
This could surely work for cases above n=3. However, the problem appears to be quite
“hard” in the computer sense of the word. This would imply that even a computer would
have a hard time “brute-forcing” calculations at practical choices of n.

'® This misconception was common prior to 1995.
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quality of the raw data. Thirdly, assembly becomes more difficult with longer fragments,
as the absolute uncertainty of the length between pairwise ends tends to increase. These
limitations vary in stringency depending on available technology and resources. Thus the
optimal choice of fragment size may vary from one laboratory to another. However, given
the option, fragment sizes should be chosen as large as possible. It should be noted that in
addition to their advantages in scaffold-building, large fragments are also extremely useful
in detecting and resolving repetitive elements in target sequence.'’

The use of 2 mixture of small and large inserts gains most of the advantages that
would occur with the sole use of large inserts (Figure 2.2 and Figure 2.3). This is true
even when the large inserts represent a relatively small fraction of the total. Generally
speaking, the total length of all the inserts should be chosen to maximize the mapping
redundancy R,. If for technical reasons an insert library is constructed of a single
intermediate size, a slightly higher sequence redundancy can be used to ensure
completeness. The exact balance between redundancy and insert lengths will depend on the
laboratory and should be determined on a case-by-case basis with the aid of computer
simulations.

Double-barrel shotgun sequencing has many advantages over traditional shotgun
sequencing. Notably the mapping redundancy R,, for single-barrel sequencing is 2nL=R;.
The mapping redundancy for double-barrel sequencing is n/, which should be several
times greater than R;. This creates a high-redundancy mapping situation which permits
efficient low-redundancy sequencing. Pairwise strategies are not confined to low-pass
sequencing and are equally valuable at high redundancies, particularly for sequence
assembly. For these reasons, I feel that all random strategies should employ pairwise data,
at least with the goal of generating complete scaffolds as a basis for further sequencing.
Such sequencing can either continue to be random or switch to directed approaches.

I expect that most projects will move to directed sequencing after a complete
scaffold is obtained. This “gap closure” phase will entail obtaining sequence for SMGs as

' A detailed discussion is beyond the scope of the present work. As a general rule, a repeat
cannot be properly analyzed if it is longer than the size of the mapping fragment, or
smaller than the uncertainty in the position of the markers in the map. The positional
uncertainty of finished sequence is very close to zero, so repeats can be efficiently
detected if only if they are shorter than the mapping fragment size. For traditional shotgun
sequencing this is L, but for double-barrel sequencing it is /.
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well as reverse sequence from regions of single-strand coverage. The templates localized
during scaffold construction are ideal substrates for such directed sequencing. One gap
closure methodology is to sequence a PCR product spanning the gap. If the entire target
sequence is not needed, only gaps of* interest need be filled. For example, the entire target
may not be needed once a gene is localized in a gene-finding effort. Likewise, if a gap of
known size is clearly bounded by the 5' and 3' ends of a known element, such as an Alu
repeat, the gap need not necessarily be sequenced.

For any reasonably large project, computational tools will be necessary to assemble
and analyze scaffolds. I expect that such software will evolve in the future, as the
advantages of pairwise assembly drive the market for assembly software. On the other
hand, without assembly software many of the advantages of pairwise sequencing are
tempered. Thus pairwise sequencing will not become a universal tool until such a time as
good software becomes available to the community at large. Currently no available
software tools use pairwise data to aid the assembly algorithm, although several are capable
of displaying pairwise data or using it to verify accuracy.

Building a first generation software tool should be straightforward. One simple
assembly algorithm is a four step process. First, assemble individual sequences into
islands, blind to their pairwise. nature. Second, order the resulting sequence islands by
linking together sequences with their mates from opposite ends of the inserts. Third, check
for inconsistencies, remove suspect pairs of sequences, and iterate the process. Finally,
make rough estimates of gap distances based on insert lengths and on low quality ends of
sequence reads. This algorithm was successfully employed by hand to assemble the cosmid
Al1-4, which I believe to have been a robust test of its efficiency. Improvements on such an
algorithm can be made, but even an implementation as straightforward as this would be
tremendously useful to workers in the field. The finished sequence from pairwise
algorithms is more robust and accurate than that of traditional algorithms. Each paired
sequence offers a positional check on its mate, allowing a majority of misplaced sequences
to be immediately located following an assembly. For example, without this check I would
have misplaced several sequences during my raw data simulation of the A1-4 assembly.

One concern occasionally raised to pairwise sequencing is that the exact lengths of
the pairwise inserts is uncertain. Such uncertainty arises because fragments are typically
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band purified on an agarose gel and not subsequently characterized.”® In extreme cases,
particularly at low redundancies, such uncertainty might result in indeterminate island order
within a scaffold.” However, in my raw data simulation of cosmid Al-4, I found that a
redundancy R; of 2.25 was more than enough to avoid any such problems. Thus, a
knowledge of exact insert lengths would have contributed little to this project. This will be
generally true in practice, for all SMGs are highly likely to be less than a sequence read in
length. Therefore, rather than measuring their size, one should simply sequence across
them. In the rare event that the gap was not closed after one or two iterations of sequence
walking, the lengths of the fragments could at that point be determined.

Many modifications to the basic pairwise strategy have been proposed. For
example, Burland et al. (1993) suggest sequencing only one end of inserts initially, and
then only sequencing opposite of ends of clones that are likely to produce new information,
such as those ends from inserts that extend beyond contig edges. This strategy makes sense
if the cost of sequencing an opposite clone end is considerably greater than the cost of
sequencing an initial end, as in the Janus strategy. It can also, however, alter the
independent and random accumulation of sequence information. For example, one can
intentionally avoid sequencing a fragment that lies in region already covered to a high depth
in previous sequence reads. However, this comes at a high cost in clone isolation and
clone-tracking administration. Additionally, an increased use of orphan sequences will
prolong the achievement of a complete scaffold. I recommend sequencing both ends of all
inserts, at least until complete scaffolds are obtained.

Another modification to the basic pairwise strategy is to halt a project before it
reaches the complete scaffold stage. This is the approach of OSS.?? An extreme example is
presented by Smith et al. (1994), in which cosmid clones are entirely mapped before their

20 1t is possible to more accurately measure the lengths of fragments, but this involves extra
effort. Conveniently, such effort is not needed as the length information obtained is
redundant with information which will be gained during the sequence finishing phase. In
specific cases, if deemed worthwhile, one could measure the length of a fragment
retrospectively.

2! Such a scaffold would fail to meet the strict definition of a scaffold, which requires that
all islands of a scaffold be ordered and oriented.

22 1t is also the approach of Venter et al. (1996), but in the Venter case, the BAC end
sequences are not used for sequence finishing, so there is a driving incentive to halt the
pairwise sequencing early.
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ends are sequenced. I see no advantage in halting pairwise projects before complete
scaffolds are achieved. The extra sequence redundancy necessary to achieve complete
scaffolds is relatively small compared with the labor that is otherwise necessary to assemble
unlinked scaffolds into a complete map.

Pairwise strategies can effectively handle megabase targets. My simulations
demonstrate that sequence redundancies between twofold and threefold are more than
adequate to span such targets with complete scaffolds (data not shown). By permitting
direct shotgun sequencing, double-barrel strategies eliminate the need to use intermediate
subclones of large mapping vectors such as BACs or YACs. This elimination of cosmid
subcloning and mapping can represent a significant increase in the efficiency of genomic
sequencing efforts. I particularly recommend double-barrel shotgun sequencing for small
bacterial and viral genomes. Pairwise strategies were used extensively during the
sequencing of the Haemophilus influenza genome, the first genome ever to be completely
sequenced (Fleischmann et al., 1995). Pairwise strategies were again used for the
Mycoplasma genitalium genome (Fraser et al., 1995). The speed with which these
genomes were sequenced stunned the genomics community.*

Low redundancy pairwise strategies are particularly useful for gene finding, as they
provide most of the sequence data from a target region, which can then be utilized in
similarity or feature identification searches. High accuracy sequence is not needed, nor is
complete coverage. Regions of interest can be singled out for subsequent special attention.
facilitated by the structured nature of the scaffold. '

To summarize: pairwise end sequencing can be characterized as mapping at high
redundancy, but sequencing at low redundancy. It generates complete scaffolds more
economically and more quickly than traditional shotgun sequencing. The advantages of this
strategy include its simplicity and the absence of any need for clone mapping other than that
which results as an incidental by-product of sequencing. It is capable of handling relatively
large repeats or complex templates. Its utility includes STS generation, gene finding, low-
and high-pass sequencing, and ultra-fine-scale mapping.

% By contrast, the E. coli genome project did not use pairwise data and took years (rather
than months) to complete (Blattner et al., 1997). To be fair, other factors influenced the
slow rate of E. coli sequencing.
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Figure 2.2. Parameters from a 35 kb pairwise project evaluated as a function of sequence
redundancy. (L=400; 7=30)
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Figure 2.4. Pairwise strategies employing a mix of insert sizes were simulated. Here, a mix
of 2000 bp and 10000 bp inserts were simulated at a constant sequence redundancy (2.25).
As seen, a small proportion of larger inserts produces results comparable to those achieved
when only large inserts are used. At 2.25 redundancy, complete scaffolds can be obtained
with only a 15% mix of longer insert lengths. A 200 kb target was assumed (L=400;
T=30). Maximum scaffold length, solid line; Scaffolds, dashed line.
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Figure 2.5. A hybrid strategy employing a combination of single strand and pairwise data
was simulated. A mix of 60% single strand, 30% 2000 bp, and 10% 10000 bp data was
employed. With this approach a complete scaffold can be obtained at less than threefold
redundancy. A 35 kb target was assumed. (L=400; T=30)
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Table 2.1. Results from a raw data simulation of a pairwise strategy employed on a 35343
bp cosmid which had previously been shotgun sequenced to ninefold redundancy. For this
simulation, 2.25 sequence redundancy was derived from the end sequences of a mixture of
hypothetical subclone inserts, 20% approximately 7000 bp in length, and 80%
approximately 2500 bp in length. These results agree with results from my computer
simulations and suggest the practicality of obtaining complete scaffolds in the range of
twofold redundancy. The computer simulation column depicts average values from 100
independent determinations.

Computer Simulation Raw Data Simulation
Number of Scaffolds 1.02 1
Scaffold Length (bp) 35267 35343
Number of SMGs 21 17
Average SMG Length (bp) 169 223

% Target Covered 90.1 89.2



CHAPTER 3. VERTEBRATE TRYPSINOGEN EVOLUTION

“He [...] saw them subject to chances, the complications of existence, and saw them
vividly, but then had to find for them the right relations, those that would bring them

out.

Henry James

The motivation for studying evolution is circular: one studies evolution to
understand genomes; one studies genomes to understand evolution. Each axis of study .
fuels the other, and both are goals in their own right. An attempt to distinguish the two
fields of inquiry might employ the argument that the study of evolution fulfills a
philosophical need to quest for origins, while the study of genomes fulfills a practical need
to understand and manipulate biological systems. But any attempt to make such a
distinction must ultimately fail, one cannot study one without the other.

I approached the study of the molecular evolution of the vertebrate trypsinogens
with several interrelated aims. First, I wished to document the natural history, or
phylogeny, of the trypsinogens. Secondly, I wished to elucidate the mechanisms of
evolution that produced this phylogeny. Thirdly, I wished to produce cloning reagents that
could be used to study syntenic relationships. Lastly, I wished to gain insight into possible
functions of trypsinogen beyond its established role in digestion. An unexpected dividend
of my studies was the identification of a novel gene recently evolved from one of the

trypsinogen genes.

The basic elements of evolution are random variation and natural selection.
Understanding evolution involves understanding the details of random variation of DNA
and the natural selection acting on gene products. Genome analysis through genomic
sequencing provides a major axis for understanding evolution. Sequencing provides direct
observation of the endpoints of evolutionary processes. These endpoints are DNA
sequences either within genes, or between them. The examination of many evolutionary
endpoints is the primary approach to acquiring data on evolutionary processes.
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The comparison of two or more sequences is the basis for such evolutionary
analysis. Comparison reveals similarities which can have arisen through one of three
mechanisms: random chance, sharing a common ancestor, or sharing a common selective
pressure. Consideration of sequences in a phylogeny can reveal information about these
three processes. Likewise, understanding these three processes can improve efforts to
reconstruct phylogenies.

My efforts in this chapter will focus first on reconstructing the phylogeny of the
vertebrate trypsinogens and on the complications that prevent the reconstruction of this
phylogeny with high confidence. I will then employ my partial reconstruction of the
trypsinogen phylogeny to draw conclusions about the nature of the evolutionary
mechanisms that have operated on the trypsinogens. The most important of these
conclusions is that the vertebrate trypsinogens have been subject to coincidental evolution.

3.1 COINCIDENTAL EVOLUTION

Multigene families do not necessarily demonstrate expected phylogenetic
relationships. Imagine a multigene family that consists of two genes, YFG1 and YFG2.
This gene family originated from the duplication of a single original ancestral YFG gene.
Consider a phylogeny in which YFG1 and YFG2 are present in the genome of an ancestral
species that undergoes a speciation event to produce two descendant species, such as Mus
musculus and Xenopus laevis. One would expect the Mus YFG1 to be more similar to the
Xenopus YFG1 gene than to the Mus YFG2 gene. This is because the two YFGI1 genes
share a more recent common ancestor than either one shares with a YFG2 gene. However,
it is commonly observed that, in this type of situation, the Mus YFG1 gene more resembles
the Mus YFG2 gene than it does the Xenopus YFGI gene. This phenomenon is called
coincidental evolution.

Coincidental evolution was first observed in the mid-1960’s with the application of
DNA reannealing techniques to the repetitive sequences present in eukaryotic genomes.
Edelman and Gally (1970) noticed that repetitious strands from one species more readily
reannealed to one another than they did to homologous strands from another species. A
similar phenomenon was noted by Brown et al. (1972) while studying the rRNA intergenic
spacer regions of two species of Xenopus. Many other examples have since been noted; Li
(1997) provides a review.
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The history of the terminology of coincidental evolution is tangled. The first general
term describing this process was “coincidental evolution” (Hood et al., 1975). A later term,
“concerted evolution,” due to Zimmer et al. (1980) has gained popularity in the literature,
but will not be used here, as the word “concerted” connotes teleological conspiracy, which
is not desirable.' The earlier terms, “horizontal evolution” (Brown et al., 1972) and
“coevolution” (Edelman and Gally, 1970), refer specifically to direct transfer of genetic
information, and not to the plethora of mechanisms that can account for the phenomenon of
coincidental evolution. “Coevolution” also carries the connotation of a non-random driving
force, which is a more specific connotation than desired. “Coincidental” carries a
connotation of randomness, which is also a more specific connotation than desired, but in
an opposite manner than “co-” or “concerted.” Although not perfect in connotations,
“coincidental evolution” does have historical precedence as the first term defined with
enough generality to cover all possible mechanisms and manifestations of the phenomenon.
If an opportunity again arises to revise the nomenclature, perhaps the term “covariant
evolution” will be proposed and accepted as having the desired meaning and connotations.

Several mechanisms can account for coincidental evolution. Horizontal transfer of
genetic information has a sudden and dramatic effect on the similarity of two genes.
Horizontal transfer can be accomplished by unequal crossing over, gene conversion, or
possibly other mechanisms. Common selective pressures on function can produce a slow
but inexorable convergence of similarity. A similar effect can be produced by a common
bias in the mechanism of random variation, such as a nucleotide usage bias, or exposure to
an environmental mutagen. However, it is unlikely that biases in random variation play a
detectable role in vertebrate coincidental evolution. An overview of the mechanisms of
coincidental evolution is provided by Li (1997).

3.2 HISTORICAL PERSPECTIVE ON TRYPSINOGEN

Trypsin from the bovine pancreas was one of the first proteases isolated with
sufficient purity and enough quantity for precise biochemical studies (Northrup et al.,
1948). This bovine trypsin was one of the first proteins to be sequenced (Walsh and
Wilcox, 1970). Three-dimensional trypsin and trypsinogen protein structures were early

' Webster’s Dictionary defines “concerted” with the phrase “mutually contrived,” which
has led to the following tongue-in-cheek terminology proposal: “contrived evolution.”
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conquests of X-ray crystallography (Sweet et al., 1974; Kossiakoff et al., 1977). Thus,
over a period of several decades, the details of the sequence, structure, and mechanism of
action of trypsin were worked out (reviewed by Male et al., 1995). The early availability of
data on trypsin and other serine proteases helped fuel the birth and development of the field
of molecular evolution.

Because trypsin was of early interest to molecular biology, many trypsin protein
sequences were obtained before it became easier to sequence DNA. Now that DNA
sequencing is far cheaper than protein sequencing, new molecular sequences determined
are DNA sequences. DNA sequences contain more information than primary protein
sequences. This is due to the degeneracy of the genetic code that transfer RNAs employ
during mRNA translation.? In some of my analyses, I have used algorithms that operate on
DNA sequences, but for the most part I have employed algorithms that operate on protein
sequences. This has allowed me to utilize all available data on trypsinogen, including the
earliest protein sequences determined.

Often, interest in a particular gene is driven by interest in a disease caused by a
defect in that gene. However, trypsinogeﬁ research has seldom been driven by such an
interest. The only known disease to result from a defect in a trypsinogen gene is hereditary
pancreatitis. The relationship between trypsinogen and hereditary pancreatitis was only
recently discovered (Whitcomb et al., 1996). Hereditary pancreatitis affects only a few
thousand people worldwide, but is very likely to be related to trypsinogen.

A clinical condition ascribed to a defect in trypsin has also been described:
trypsinogen deficiency disease (TDD). There have been only six reported cases of TDD,
none of them more recent than 1967 (Farber et al., 1943; Townes, 1972). Due to the
multicopy nature and multi-chromosomal positioning of the trypsinogen genes, it seems
unlikely that TDD is due to a molecular defect in a trypsinogen gene locus, but rather to
another defect, such as an aberrant enterokinase gene. This cannot be verified unless
another case of TDD is discovered.

? Currently, few algorithms that operate on DNA sequences fully exploit the information
present in inferred coding regions (but see, for example, Zhang et al., 1997). This has
led some to imply that primary protein sequence has utility beyond that of the
corresponding DNA sequence. This is an incorrect implication, but it does serve to point
out inadequacies of current DNA algorithms.
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The trypsinogen genes and proteins, now and historically, have been studied
primarily due to interest in trypsin as a model for protein structure and function. For
example, one type of effort building from the trypsin knowledge base has been the design
of proteins with novel functions (e.g., Corey and Craik, 1993). Trypsinogen genes have
recently received renewed attention from a genomics viewpoint, following the
serendipitous discovery of trypsinogen genes within the human T-cell receptor (TCR) B
locus. This discovery was the result of an early large-scale genomic sequencing effort
specifically directed at the TCR f locus (Rowen et al., 1996).

The topology of the genomic organization of the TCR [ locus in humans, mice, and
chickens is shown in Figure 3.1. As can be seen, the syntenic relationship of the
trypsinogen genes and the TCR B locus is maintained in the mouse and chicken genomes
(Lee Rowen, Genbank AE000522; Kai Wang, personal communication). In each of these
three species the organization of the trypsinogen genes varies. These variations in
organization highlight the dynamic nature of their evolution.

In all three cases, there is a physical separation of two groups of trypsinogen genes:
one towards the 3' end of the TCR B locus, and one towards the 5' end of the TCR P locus
(Figure 3.1). This separation defines the nomenclature for trypsinogen grouping, first
introduced in Roach et al. (1997). Group I trypsinogens are those found 3' in the TCR B
locus, and group II trypsinogens are those found 5' in the TCR B locus. This definition is
supported by a logical grouping of trypsinogens from sequence distance and other
considerations, and is discussed at length in later sections of this chapter.

As a rule of thumb, group II trypsinogens appear 5' to TCR V[ gene segments,
while group I trypsinogens appear 3' to TCR Vf gene segments. In the human there are no
functional group II trypsinogens, but there are two trypsinogen relics (T1 and T2) and a
pseudogene (T3), all of which are immediately 5' to the entire TCR B locus.? These are all
derived from group II trypsinogens. The interval between VB29S1 and DB1 in humans
contains 3 functional trypsinogen genes (T4, T6, and T8) and two trypsinogen
pseudogenes (TS and T7). All of these trypsinogens are group L. The 3' end of the human
TCR B locus is duplicated on chromosome 9, where a fourth functional group I
trypsinogen (T9) is found 3' to the orphon VB29S2 gene segment.

3 Human T1 is not a true relic; see Section 3.21.
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A similar organizational grouping of the trypsinogens is found in the mouse.
However, the mouse has several functional group II trypsinogens. Two pseudogenes, two
relics, and three functional group II genes lie 5' to the mouse TCR B locus (T1-T7).* Five
relics and eight functional group I trypsinogens lie between mouse VB18S1 and D1 (T8-
T20).

The organization of the trypsinogens in the chicken differs somewhat. There are
two families of V gene segments in the chicken TCR B locus: VB1 and V2. All the VBI
segments appear 5' to the VP2 segments. Each V segment is tandemly linked to a
trypsinogen gene. There are three known chicken group I trypsinogens, in tandem with the
three known V2 segments, with the last trypsinogen located between the most 3' V(2
segment and DB 1. There are approximately 6 group II trypsinogens and VB1 segments,
tandemly linked with opposite orientations. Characterization of the chicken TCR B locus is
not complete (Kai Wang, personal communication).

Linkage of the TCR B locus to trypsinogen genes has not been established in other
organisms, but I postulate that the two will always occur together. The synteny of
trypsinogen and TCR B may be due to an important functional synergism of the two loci or
merely due to random association. If a random rearrangement was originally responsible
for the syteny of the two loci, then there may be a mechanism that prevents successful
chromosomal rearrangements that split this synteny. With trypsinogen genes internal to the
TCR B locus, it may be that splitting rearrangements destroy the TCR B locus, and
significantly decrease the fitness of the resulting mutant. Alternatively, there may be no
such constraining selective force. In this case, the two loci remain syntenic merely because
a random event has not separated them. I will return to this discussion in Section 3.18.

The tandemly repeated nature of trypsinogens has been observed in other
organisms. Three repeated trypsinogens are present in the pufferfish genome, two in
tandem and one with opposite orientation (Kai Wang, personal communication). Two or
more repeated trypsinogens are linked in tandem in the lamprey genome. The Drosophila
genome has four tandem trypsinogen genes in alternating orientations, but presumably not
linked to a TCR locus (Davis, 1985), as the immune receptor loci are hypothesized to have
first evolved in the chordate lineage.

* Mouse T is not a true relic; see Section 3.21.
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Intrigued by the evolutionarily conserved genomic organization of the trypsinogens,
I sought to expand my knowledge of trypsinogen gene sequences and their modes of
evolution. Already, a tremendous amount of information was available. Over the past
decades, a large number of protein, cDNA, and genomic DNA sequences have been
determined for either trypsin or trypsinogen from a variety of vertebrate species. In many
cases, several different sequences representing different isozymes had been obtained from

the same species.

In an effort to acquire molecular data from all vertebrate classes and to increase
representation from within some classes, I obtained additional cDNA and genomic
trypsinogen sequences from the lamprey Petromyzon marinus, while my colleague Kai
Wang obtained sequences from the pufferfish Takifugu rubripes and the frog Xenopus
laevis (Roach et al., 1997). These sequences allowed me to study the gross outlines of
trypsinogen evolution across the entire vertebrate phylogeny.’ These sequences all arose
from a common set of trypsinogen sequences present in the ancestral vertebrate species that
lived approximately 600 million years ago.

To give focus to a phylogenetic study, it is helpful to study at least one sequence
that is equally distant from all of the other sequences in the study, but not so distant that it
has lost most or all of its relatedness. Such a sequence is referred to as a phylogenetic
outgroup. No vertebrate sequence could serve this purpose. Therefore, in an effort to
obtain an outgroup, I sequenced a trypsinogen cDNA from a urochordate, the tunicate
Boltenia villosa. The urochordates, together with the hemichordates (acorn worms), the
cephalochordates (amphioxus), and the vertebrates, form the phylum Chordata. Recently,
another laboratory has sequenced two trypsinogens from the urochordate Botryllus
schlosseri (Pancer et al., 1996).

3.3 THE COMPILATION OF TRYPSIN AND TRYPSINOGEN SEQUENCES

Previously published trypsin and trypsinogen sequences were culled from Genbank
and SwissProt using a variety of text and homology based searches (Gish and States,
1993; Altschul et al., 1990). The homology searches were used to rule out the possibility

5 Many years from now, when complete trypsinogen sequences have been determined from
several hundred vertebrate species, a detailed phylogeny may replace the gross outlines
described in this paper.
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that a trypsin or trypsinogen sequence might be present in a database under a different
name. However, no such “mislabeled” vertebrate sequences were identified.

Most known vertebrate trypsin and trypsinogen sequences are described in the
literature. A table of many previously published sequences with original references can be
found in Rypniewski et al. (1994). An expanded listing of literature references of all
known chordate trypsinogens is presented in Table 3.1; a summary of additional data for
these trypsinogens is presented in Table 3.2.

Two vertebrate trypsinogen cDNA sequences present in Genbank was not included
in any of my analyses: those of Pleuronectes platessa and Dissosthicus mawsoni.® The
Pleuronectes sequence was a direct submission to the database and has never been
documented in any publication. It fails to meet basic criteria for inclusion in the trypsinogen
gene family. The Plueronectes active site sequence GSRDACNGD differs from the
almost-absolutely conserved trypsin consensus of GGKDSCQGD. The glutamine to
asparagine alteration occurs at one of four key “pocket specificity” residues which are
absolutely conserved in all trypsins (Hedstrom et al., 1992). The specificity pocket more
resembles that of granzyme A more than any other serine protease pocket. The carboxy-
terminus of the Pleuronectes sequence is neither the correct length nor homologous to the
other trypsin carboxy-termini. The Pleuronectes sequence contains an insertion near
residue 150 as well as several other discrepancies that are difficult to reconcile with
inclusion in the trypsin family. These discrepancies are clearly due to mistaken gene
idéntiﬁcation. Inclusion of this rogue sequence would have distorted the phylogenies that [
derive for the trypsinogens. This distortion is similar to the effect produced by inclusion of
a too-distantly related outgroup (see Section 3.17). The Dissosthicus sequence was
originally isolated by PCR and was most likely identified as a trypsinogen based on its
resemblance to the Pleuronectes sequénce (Chenetal., 1997).

3.4 CLONING AND SEQUENCING PETROMYZON MARINUS TRYPSINOGEN

Poly(A)-mRNA was prepared from the dissected gut of a Petromyzon marinus
ammocoete (a gift of James Seeley, Hammond Bay Biological Station, MI). The mRNA
was reverse transcribed and cloned as cDNA into the A-ZAP directional cloning vector

$ Genbank X56744 and U58835.
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(Stratagene). Additionally, RT-PCR was performed on the poly(A)-mRNA with the trypsin
specific primers TRYF and TRYR. The PCR primers used in this study are tabulated in
Table 3.3. The sequence of the 387 bp TRYF-TRYR PCR product was consistent with
trypsin and was used to probe the Petromyzon gut cDNA library. Thirty-one positive
plaques were sequenced at their 5' ends with the mi13 reverse primer. Several of these
plaques hybridized weakly to the probe, and were picked due to the possibility that the
probe might have hybridized to something unexpected but interesting.

Of these 31 plaques picked for sequencing, 17 were trypsinogen, 4 were
chymotrypsinogen, one was similar to the chitotriosidase precursor cDNA, one was similar
to the oligosaccharyl transferase STT3 subunit, and the other eight cDNAs were not
positively identified. Seven of the cDNAs identified by 5' end sequencing as trypsinogen
were completely sequenced by primer walking on both strands with the following primers:
LT2, LT3R, LT3, LT4R, LTSR, XTAS, and TRYR.” Based on contig assemblies, the
seven completely sequenced and ten partially sequenced lamprey trypsinogen cDNAs fell
into at least five clusters, indicating the presence of at least five different expressed lamprey
trypsinogen isozyme genes (or alleles).

3.5 LAMPREY TRYPSINOGENS

The lamprey trypsinogen cDNA sequences contain all of the important sequence
features expected of a trypsinogen. They possesses overwhelming similarity to the known
trypsinogens. In particular, they possess the three absolutely conserved cystine bridges
present in all serine proteases, the four key trypsin “pocket specificity” residues, the three
residues of the catalytic triad, a signal peptide (described in Section 3.8), an activation
peptide (described in Section 3.9), a stabilizing trypsin amino-terminus, and a conserved
calcium binding site. The conserved residues that are characteristic of the vertebrate
trypsinogens are detailed Section 3.14. The overwhelming similarity of the lamprey
trypsinogens to all other vertebrate trypsinogens, coupled with the origin of the cDNA
library from the gut, permitted the lamprey sequences to be classified as trypsinogen with
certainty.

” Genbank AFO!1352 and AF011898-AF011901.
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One significant exception to the preponderance of similarity of the lamprey
trypsinogens to all other trypsinogens is that the lamprey trypsinogen activation peptides all
end with a histidine residue. This novel property is discussed in Section 3.9.

I designated the five lamprey trypsinogen clusters: Al, with nine cDNAs (two
completely sequenced); A2, with three cDNAs (one completely sequenced); A3, with one
completely sequenced cDNA; B1, with three cDNAs (two completely sequenced); and B2,
with one completely sequenced cDNA. The untranslated 3' tails of the three A-cluster
trypsinogens are 92.0-96.0% identical. The untranslated 3' tails of Bl and B2 are 85.9%
identical. The A- and B-cluster tails could not be aligned with each other. The coding
regions of the A-cluster sequences are 98.9-99.7% identical at the nucleotide level. The
coding regions of Bl and B2 are 97.7% identical at the nucleotide level. The nucleotide
identity between the coding sequences of the A and B clusters is 92.5-93.2%.

Different lamprey trypsinogen genes (or alleles) can clearly be over 99% identical
across regions longer than a single sequence read. This high similarity of multiple
trypsinogen genes is observed in other species (Wang et al., 1995). The lamprey
trypsinogen genes are probably encoded by highly similar tandem repeats, as is the case in
humans, mice, and chickens. Two of the lamprey B cluster trypsinogens have been
observed to be linked in tandem following double-barrel shotgun sequencing of a genomic
cosmid clone (data not shown).

The lampreys diverged from the other members of the vertebrate subphylum early
in vertebrate evolutionary history, so the presence of tandemly repeated trypsinogens in
lampreys is strongly suggestive that this general organization of the trypsinogens has been
maintained throughout vertebrate history. The presence of highly similar repeats is known
to facilitate mechanisms of horizontal transfer of genetic information, such as unequal
crossing over and gene conversion (Li, 1997). Therefore the vertebrate trypsinogens have
been prime candidates for horizontal gene transfer throughout their history. Such horizontal
transfer would result in coincidental evolution (see Section 3.1 and Section 3.17).

3.6 CLONING AND SEQUENCING BOLTENIA VILLOSA TRYPSINOGEN

Poly(A)-mRNA was prepared from the dissected gut of a specimen of Boltenia
villosa (a gift of William Moody, University of Washington, WA). The mRNA was
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reverse transcribed and cloned as cDNA into the A-ZAP directional cloning vector
(Stratagene). Additionally, RT-PCR was performed on the poly(A)-mRNA with degenerate
primers designed to amplify serine proteases: H and S. The PCR primers used in this study
are tabulated in Table 3.3. The Hand S primers correspond to conserved sequences of the
serine protease active site. Similar primers are described by Kang et al. (1992) and
Wiegand et al. (1993). A resulting H-S PCR product of approximately 350 bp was
agarose-gel isolated and used as a probe to screen the cDNA library. This band failed to
sequence due to polyclonality and was judged to be a diverse mixture of serine-protease-
derived products. Twenty-three positive plaques were picked and sequenced. Seven
cDNAs identified by 5' end sequencing as trypsinogen were completely sequenced by
primer walking on both strands with the following primers: TUN2F1, TUN2RI,
TUN2F2, TUN2R2, TUNI19F!l, TUNI19RI1, and TUN2R3. All seven of the tunicate
trypsinogen cDNAs I sequenced appeared to represent the same allele, as I could
distinguish no sequence variation between them.! Of the other sequences, five were
chymotrypsinogen, two were ribosomal proteins, one was actin, one was glutathione S-
transferase, one was from the mitochondrial 16S RNA, and six were not positively
identified. The chymotrypsinogen sequences were identified based on the presence of a
methionine at the position that is 192 according to the bovine chymotrypsinogen numbering
system, as well as overall similarity.

3.7 TUNICATE TRYPSINOGEN

The Boltenia trypsinogen sequence was identified based on its presence in a gut
derived cDNA library and its sequence similarity to the other chordate trypsinogens. The
Boltenia trypsinogen cDNA sequence contains all but one of the important sequence
features expected of a trypsinogen. These were mentioned in Section 3.5 for the lamprey
trypsinogens, and are further detailed in Section 3.14.

The Boltenia trypsin appears to lack the residues forming the calcium binding site
found in all vertebrate trypsins. The two known trypsinogens from the tunicate Botryllus
schlosseri also appear to lack these residues. Therefore, the tunicate trypsinogens may bind
calcium at an alternative site, much as the Streptomyces griseus trypsin does (Read and
James, 1988). It has been suggested that calcium binding confers stability against thermal

8 Genbank AF011897.
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or chemical denaturation (Martin, 1984). Additionally, a requirement for calcium may
ensure that trypsin is only active extracellularly, since intracellular calcium concentrations
are extremely low (Kretsinger, 1976). There is still uncertainty as to the exact location,
function, and importance of calcium binding sites in active trypsin (Read and James, 1988;
Smalés et al., 1994).

I identified only one trypsinogen isozyme in Boltenia. This raises the possibility
that trypsinogen is single copy in Boltenia, rather than encoded by multiple repeats, as is
likely in the other chordates. Boltenia feeds continuously, rather than periodically with
meals. Therefore, Boltenia may have a decreased need for dynamic control of trypsinogen
expression. It is conceivable that maintenance of multiple trypsinogen isozyme genes in
vertebrates is driven by selective pressure for dynamic control of expression by gene
dosage. If this pressure were absent in Boltenia, it might explain a single-copy

trypsinogen.

However, it must be bomne in mind that two different trypsinogens were identified
by Pancer et al. (1996) in the tunicate Botryllus schlosseri. This would seem to contradict
the above scenario for Botryllus, suggesting that if Boltenia lost multiple trypsinogens,
this loss was recent. It is perhaps more likely that Boltenia does indeed possess multiple
trypsinogens, and merely that I failed to identify the additional isozymes. This could have
occurred if only one isozyme was dominantly expressed in the organism that I used to
generate my Boltenia gut cDNA library. Boltenia and Botryllus both belong to the order
Stolidobranchia of the class Ascidiacea, but to different families within this order. It is
unclear when the two families diverged.

[t is interesting to note that the Botryllus and Boltenia trypsins are quite divergent.
They share only 37% amino acid identity. They are as identical to the trypsin from the
crayfish Astacus fluvialtilis, at 34%-38% identity, as they are to each other. Considered
together, the tunicate and crayfish trypsins possess eleven indels with respect to the
vertebrate trypsinogens. Of these eleven, four are shared by Boltenia and Botryllus, three
are shared by Astacus and Boltenia, three are shared by Astacus and Botryllus, while at
one site they all differ.

There are three possibilities to explain the large divergence of the tunicate trypsins.
First, the trypsins from the two species may have different functions, and thus be subject to
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different selective pressures. If this is the case, then one should expect that there are
additional trypsins to be found in Boltenia and Botryllus. Secondly, the two families of
tunicates may have diverged from each other very early in chordate evolution. Thirdly,
there may have been a dramatic increase in the rate of evolution following a recent
divergence of the two tunicate families.

3.8 SIGNAL SEQUENCES

Most, if not all, trypsinogens are secreted proteins. The secretion process begins
with the translocation of the nascent polypeptide across the membrane of the endoplasmic
reticulum. Residues at the amino-terminus of the trypsinogen polypeptide form a signal
which is recognized by the signal recognition particle which serves as a chaperone for entry
into the endoplasmic reticulum. A review of this process has been provided by Rapoport
(1990). The signal sequences are cleaved by a signal peptidase within the endoplasmic
reticulum. The resulting protein is properly called a trypsinogen; before cleavage the
polypeptide is referred to as a “pretrypsinogen.”

An alignment of chordate pretrypsinogen signal sequences and activation peptides is
shown in Table 3.4. Only in the case of the canine have the sites been determined
experimentally (Carne and Scheele, 1982). All of the other signal peptidase cleavage sites
in Table 3.4 were predicted with the program PSORT (Nakai and Kanehisa, 1992), which
implements the algorithm of von Heijne (1986).

The chordate pretrypsinogen signal sequences are highly conserved and conform to
the general rules for eukaryotic signal sequences (von Heijne, 1985). These rules define a
central hydrophobic region bounded by a charged amino-end and a polar carboxy-end. The
vertebrate pretrypsinogen signal sequences are 15 or 16 residues in length. The majority are
exactly 15 residues long and are therefore easy to align.

The short length of these sequences limit the statistical significance of any
conclusions to be drawn from the alignment. Wang et al. (1995) have suggested that slight
differences in signal sequences between “anionic” and “cationic” pretrypsinogens might
bias targeting towards different cellular locales or influence the rate of secretion. The
leucine-isoleucine-leucine sequence present at positions 5-8 of several anionic
pretrypsinogens is suggested to fill this role. I feel that it is more likely that this similarity
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stems from the common ancestry that these group I pretrypsinogens share. There is no
need to invoke differential selection to explain trends observed from the alignment of the
pretrypsinogen signal sequences.

Human trypsinogen T9 is expressed in two alternatively spliced forms, originally
dubbed trypsinogen III and IV. Wiegand et al. (1993) identified trypsinogen IV by PCR,
and this observation has since been confirmed by the addition of two ESTs to Genbank
(AAO088815 and AA045553). Although trypsinogen IV was originally designated “brain
trypsinogen,” it does not appear to be specifically expressed in brain tissue. Trypsinogen
IV uses a unique first exon, and so lacks the signal sequence found in all other
trypsinogens. An intracellular role has been suggested for its function.

3.9 ACTIVATION PEPTIDES

Before a trypsinogen gains full enzymatic activity it must undergo a proteolytic
cleavage that removes its activation peptide (Neurath and Dixon, 1957). Trypsin is a
protease that specifically cleaves polypeptides after the basic residues lysine or arginine.
Most trypsinogen activation peptides end with a lysine or arginine, so trypsin is capable of
catalyzing the activation of trypsinogen. The enzyme enterokinase is also capable of
cleaving the trypsinogen activation peptide. Enterokinase has a very high specificity for the
highly acidic trypsinogen activation peptide (Maroux et al., 1970). Due to the presence of
the acidic residues in the activation peptide, trypsin has a low specificity for this site, but
nevertheless a greater specificity for cleavage after the activation peptide than anywhere else
in trypsin (Abita et al., 1969). This system of cleavage specificities lays the groundwork
for the exquisite regulation of trypsinogen activation within the vertebrate digestive system.

Following activation, the newly freed amino-terminus of the trypsin enzyme tucks
itself into an internal pocket of the globular protein. This “isolecuine-valine-glycine-
glycine” sequence stabilizes the conformation of the enzyme, raising its catalytic rate
constant by several orders of magnitude (Huber and Bode, 1978; Morgan et al., 1972).°
This sequence is shown in orange in Figure 3.2. The amino-terminus sequence of Xenopus

° The second order rate constant for the reaction of trypsinogen with
diisopropylphosphorofluoridate is 0.041 liter mol™ min™; the second order rate constant
for trypsin is 300 liter mol™ min" (Morgan et al., 1972).
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I and the two Botryllus trypsins is isolecuine-isolecuine-glycine-glycine, but this difference
seems too minor to alter its function.

The activation peptides of the chordate trypsinogens are shown in Table 3.4. The
key feature of trypsinogen activation peptides is a cluster of at least three anionic residues
preceding a lysine or arginine. However, the lamprey activation peptide has only two
penultimate anionic residues, while the tunicate has just one. Many of the Osteicthyes
trypsinogens and one of the Xenopus trypsinogens have three anionic residues, while the
higher vertebrates tend to have four or more such residues, suggesting a progressive
increase in selective pressure for such residues during the course of vertebrate evolution.

Strikingly, none of the activation peptides for the lamprey trypsinogens end in a
lysine or arginine residue. All lamprey trypsinogen activation peptides end in a histidine.
Thus it seems unlikely that lamprey trypsin is capable of autocatalyzing its own activation,
as trypsin is not capable of cleaving after a histidine residue. This suggests that lampreys
rely exclusively on enterokinase for trypsinogen activation. The life cycle of the lamprey
may explain selective pressure for greater control of digestive enzyme activation. For
example, adult lampreys will go months to years without eating. The lamprey
chymotrypsinogen activation peptide ends in an arginine and so could be activated by
trypsin.'® This would allow lamprey enterokinase to function as a master control switch for
digestion, allowing for little or no basal digestive enzyme activation.

3.10 CYSTINE BRIDGES

Acquisition and loss of cystine bridges is a rare evolutionary event and thus a useful
phylogenetic marker. It is, however, unclear exactly how useful they are. Each cysteine
residue alone is highly conserved, and the added knowledge that a bridge links two does
not necessarily provide much additional information to phylogeny inference. Some bridges
will be more conserved than other bridges, and the rare gain or loss of such a bridge will be
particularly informative, much as would be a change in an active site residue. These issues
aside, consideration of cystine bridges will strengthen the already strong case that the

' The Genbank accession numbers for the lamprey chymotrypsinogen ESTs are
AAG618645-AA618648.
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human T3 trypsinogen pseudogene is descended from a group II trypsinogen, in contrast to
all of the functional human trypsinogens.

Statistical models for evolution, such as those discussed in Appendix B, are
necessary for the implementation of many approaches to phylogeny inference, such as
maximum likelihood. However, parsimony can be employed without such models, and
shines when only rare events are used as the basis for inference. A backbone phylogeny of
the serine proteases can be developed by considering the parsimonious addition and loss of
cystine bridges (De Haén et al.,, 1975). Cystine bridges can characterize protein
superfamilies. For example, the relatedness of members of a growth factor superfamily
have been characterized with the aid of the consideration of cystine bridge topology
(Murray-Rust et al., 1993).

For the trypsinogens, assignment of cystine bridges can be made from
considerations of the homology of cysteine residues. Each cysteine residue can be assigned
to a bridge based on its position in an alignment of the primary amino acid sequences of the
serine proteases. Since the serine proteases differ in length, the absolute position of each
conserved residue will vary between sequences. Therefore, it is useful to adapt a standard
numbering system for the conserved residues of the serine proteases. By convention of the
serine protease research community, this numbering system is that of chymotrypsinogen. A
description of the chymotrypsinogen numbering system can be found in Zwilling and
Neurath (1981). For this dissertation, I will place the letter “C” before numbers utilizing the
chymotrypsinogen system.

There are six cystine bridges in most vertebrate trypsinogens (Kauffman, 1965). Of
these, three are absolutely conserved in all serine proteases. The bacterial and crayfish
trypsins lack all three of the “optional” vertebrate bridges (Titani et. al., 1983; Kim et al.,
1991). The tunicate trypsin gains one bridge (between residues C136 and C201, designated
C136/C201; Table 3.5). The lamprey trypsin gains another two bridges (C22/C157 and
C127/C232) to reach the vertebrate standard. Curiously, all group I human trypsins have
lost the C127/C232 bridge. Furthermore, human trypsin T4 has also lost the C136/C201
bridge. Thus, a progressive increase of cystine bridges is seen during the course of
vertebrate trypsin evolution. The human lineage shows a subsequent decrease. This
demonstrates that the consideration of trypsinogen cystine bridges for parsimony inference
is particularly appropriate, as they are neither absolutely conserved nor extremely labile. If
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they were absolutely conserved, they would provide no differentiating information. If they
were labile, independent events might masquerade as descendants from a common

ancestor.

The group IT human trypsinogen T3 pseudogene possesses eleven of the twelve
cysteine residues necessary to make the six cystine bridges labeled in Table 3.5. Thus, the
functional precursor to this pseudogene had all six bridges, in contrast to all functional
human trypsins. The loss of the cystine bridges from the group I human trypsins is
therefore recent, as it occurred after the mammalian divergence, and in only one of the two
major branches of the trypsinogen phylogeny.

3.11 INSERTIONS AND DELETIONS

Evolutionarily conserved insertions and deletions are expected to be rare events,
and thus serve as good markers for tracking gene family phylogenies over large time
scales.

The tunicate shares a single residue insertion at position 21 in common with rat
trypsin IV. This event is most likely a coincidence, as it is found in no other vertebrates. A
second tunicate insertion occurs near residues 45-51. This coincides precisely with the
boundary between exons two and three. The crayfish shares this insertion (Titani et al.,
1983). Of the vertebrates, only the lampreys have an insertion at this site, but the lamprey
insertion consists of only two residues. This is consistent with a progressive loss of
residues at this site during early vertebrate evolution, with five lost prior to the Agnathan
divergence, and another two lost prior to the elasmobranch divergence. These residues
appear to be part of a surface loop (Figure 3.2). They are thus unlikely to have much
functional significance, other than possibly a role in determining substrate specificity. A
third tunicate insertion of five residues occurs near positions 115-119. The tunicate also has
a deletion of three residues around position 223. Neither of these events is observed in any
other trypsin, consistent with the 600-700 million year period of independent evolution
since the urochordate/vertebrate split.

The tunicate, lamprey, dogfish, and all but one of the Osteicthyes trypsins lack a
residue at position 130 that is found in all other vertebrate trypsinogens. A residue is
present at this position in salmon trypsin III. Therefore, most likely, there were at least two
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trypsinogen isozymes present in the common Osteicthyes/tetrapod ancestor, one of which
gained a residue at position 130. Both variations were maintained by the Osteicthyes, but
the insertion became the exclusive variant for the tetrapods, perhaps due to coincidental
evolution and/or gene copy number contraction and expansion (Hood et al., 1975). Note
that rat trypsin V lacks a residue near position 130. This most likely represents an
independent deletion event, especially considering that this gene appears to have undergone
rapid evolution in recent times. This recent “burst” of evolution is discussed further in
Section 3.18. An alternative multiple alignment with only a minor loss in alignment score
permits the rat V deletion to align precisely with the deletion noted in Osteicthyes. It is
conceivable that these deletions descend from a common ancestor. However, in order for
this hypothesis to be supported, the deletion would have to be present in tetrapod trypsins
yet to be sequenced.

3.12 INTRON/EXON BOUNDARIES

Point mutations that alter codons are not the only means of introducing variability
into genes. Nevertheless, as discussed in Appendix B, most statistical models for evolution
focus exclusively on point mutations. One potentially important mechanism for variability
is junctional sliding. Junctional sliding refers to the reassignment of a splice acceptor or
donor site for an intron. Junctional sliding has been referred to by other names, such as
“intron shifting” or “intron sliding,” but this has resulted in confusion with a mechanism
that reassigns both acceptor and donor sites simultaneously. The frequency, if any, of
intron sliding is under debate (Stoltzfus et al., 1997). Junctional sliding is well documented
(e.g., Mayo et al., 1985; Higashimoto and Liddle, 1993). Junctional sliding has been
postulated to play a role in the development of certain insertions and deletions between
members of the serine protease family (Craik et al., 1983).

Intron/exon boundaries for the vertebrate trypsinogens, where known, are shown
in the multiple alignments as vertical lines (Figure 3.3 and Table 3.4). These are determined
from the available genomic sequences for human, mouse, chicken, and lamprey. Of note is
the absolutely conserved location of the boundary between exons four and five which
occurs near the active site serine. The 1/2 and 3/4 exon boundaries are also highly
conserved, so sliding of intron boundaries does not appear to have been a major mode of
evolution for the vertebrate trypsinogens. A notable exception is the 2/3 exon boundary,
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which occurs immediately adjacent to a position of inserted residues in lampreys and
tunicates (see Section 3.9).

3.13 CATIONIC AND ANIONIC TRYPSINS

It has been known for some time that vertebrate trypsinogens occur in at least two
different isoforms, termed “cationic” and “anionic” (discussed by Le Huerou et al., 1990).
Most species appear to express one or more representatives of each of these isoforms.
Whether a trypsin is cationic or anionic is determined by its isoelectric point. The predicted
and experimental isoelectric points for the chordate trypsins are presented in Table 3.6.

There are no “key” residues at specific sites that are characteristic of either the
anionic or cationic isoform groups. In other words, neither the cationic nor the anionic
trypsin sequences possess highly significant conserved residues that the other isoform
group does not also possess. Rather, net charge is governed by variations in a number of
highly variable surface residues. This phenomenon is discussed by Smalis et al. (1994).

No difference in functional role has been demonstrated between the cationic and
anionic trypsins, although a possible difference in substrate specificity has been proposed
(Fletcher et al., 1987). The trypsins do, however, vary in their catalytic efficiencies for
certain substrates as well as in their stabilities at a particular pH or temperature (Smalis et
al., 1994). The trypsins also differ in their susceptibility to inhibitors (Read and James,
1988).

It is unclear that there is a selectivé advantage for an organism to have multiple
trypsins with different isoelectric points. Such an advantage, if any, may be as simple as a
need for different trypsin isozymes to have different substrate specificities .in order to most
efficiently digest a wide variety of foods. If this were the case, one would expect
organisms with diverse diets to have more trypsin isozymes than organisms with restricted
diets. This hypothesis will have to wait to be tested until more complete sets of trypsin
sequences from particular species are available.

An alternative hypothesis to explain a selective advantage for two groups of trypsin
isozymes is that there are two very distinct functions carried out within an organism by the
trypsins, with one function the task of the anionic trypsin(s) and the other function the task
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of the cationic trypsin(s). However, if this were the case, one would predict a more clear
grouping of the isoforms, including specifically conserved residues critical to the unique
task of the particular group. Also, one would predict a selective pressure towards optimal
pls for each of the two tasks, resulting in a bimodal distribution of the trypsin pls.
However, this is not seen. The predicted isoelectric points of the vertebrate trypsins span
the pl spectrum continuously from 4.4 to 8.3 (Table 3.6). Note that measured isoelectric
points depend not only on the net charge, but also on the distribution of the charge,
whereas the charge predictions do not take this into account (Smalds et al. 1994). Also,
based on data available to date, the lampreys and tunicates possess only biochemically
anionic trypsins, suggesting no absolute need for a chordate to have trypsins of two
different charges. |

The relevance of the cationic and anionic groupings of the vertebrate trypsins to
their phylogenetic origins is discussed in Section 3.16.

3.14 MULTIPLE SEQUENCE ALIGNMENTS

In order for a comparison between two sequences to be made, they must be
aligned. In the general case, alignment can be quite difficult. However, for trypsin, it is
extremely easy.

The potential difficulty in sequence alignment is uncertainty in which positions of
the sequences correspond to each other. The sequences may start or end at different
positions. They may be different lengths. One sequence may have insertions or deletions
with respect to the other. The similarity between the sequences may not be sufficient to
recognize across the whole length of the sequences, but may be confined to one or a few
small regions. Thus multiple alignment is often extremely difficult. To address this
difficulty, a number of algorithms have been developed (e.g., HMMER, CLUSTAL W,
and several others).'" However, none of these algorithms are necessary for the
trypsinogens. Vertebrate trypsin sequences can be aligned manually.

"' CLUSTAL W is described by Thompson et al. (1994); HMMER is described by Eddy et
al. (1995). Overviews of multiple sequence alignment algorithms can be found in several
sources, such as Gusfield (1997) or Waterman (1995).
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The trypsinogen multigene family possesses a number of features that make it
particularly amenable to multiple sequence alignment. These include a cleavage site
following an activation peptide, six cysteine residues necessary to form the three absolutely
conserved cystine bridges, four active-site pocket-specificity residues embedded in
conserved sequences, three catalytic residues embedded in conserved sequences, and
several other highly conserved sequences. These conserved sequences are spread
throughout the length of the protein, allowing members of the multigene family to be easily
aligned, as regions of low similarity are inevitably flanked by conserved residues.'?
Variations in sequence length between two conserved residues can be recognized as
insertions or deletions.

There is considerable variation in overall sequence length between the various
subfamilies of the serine protease gene family, including some of the invertebrate trypsins,
as discussed in Section 3.7. However, there is very little variation in overall length within
the vertebrate trypsinogens. Insertions and deletions have been rare during vertebrate
trypsinogen evolution. Those that do exist are either one or two residues long. Both the
amino- and carboxy-termini of trypsin are conserved, allowing for no uncertainty in
aligning the protein ends.

The multiple alignment used for most of my analyses was performed at the amino
acid level. This was necessary, as there are two vertebrate trypsinogens for which only
amino acid sequence exists: the dogfish and pig sequences.” These sequences represent
key nodes in the vertebrate trypsinogen phylogeny so it would be limiting to restrict an
analysis solely to known nucleic acid sequences. The nucleic acid sequences were
incorporated into these alignments as hypothetical translations.

In some cases complete pretrypsinogen sequences are not available. For example,
the protein sequence of the pig and dogfish trypsinogens do not include signal sequences.
Therefore, I have limited my formal analysis to multiple alignments of the portions of the
sequences coding for the mature trypsin peptide. Also, activation peptides vary in length,

"> A series of papers by Hedstrom et al. (1992, 1994a, 1994b) describe many of the key
functional constraints on trypsin residues and provide a review of relevant literature.

"> Until recently, the bovine cationic trypsinogen was also known only by its protein
sequence. However, in 1994, Okajima made a direct submission of the identical “cattle”
cDNA sequence to Genbank. Although not a vertebrate trypsin, the crayfish trypsin
sequence is also only known at the amino acid level (A00951). .
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which would lead to ambiguity in precise alignment and distance calculations for complete
trypsinogen or pretrypsinogen sequences (see Section 3.9). However, the last residue of
the activation peptide, which is always a lysine, arginine, or histidine, can be
unambiguously included in muitiple alignments. The last residue of the activation peptide
has therefore been included in my alignments, as it provides a small amount of additional
phylogenetic information.

A multiple alignment of most of the known vertebrate trypsins is shown in Figure
3.3. Vertebrate trypsins that are not shown are nearly identical to one of the displayed
trypsins. A sequence logo for the vertebrate trypsinogens is presénted in Appendix B
(Figure B.2). Sequence logos provide a graphical method of viewing the information
content of the conserved residues in a multiple alignment. The multiple alignment and the
corresponding sequence logo highlight the sequence features that are characteristic of the
vertebrate trypsinogens.

All trypsins contain six absolutely conserved cysteine residues, which are necessary
to build the three cystine bridges observed in all serine proteases (see Section 3.10). These
cysteines are at positions C42, C58, C168, C182, C191, and C220.

All serine proteases, including the trypsins, contain three key catalytic residues: a
histidine at position C57, an aspartate at position C102, and a serine at position C195. Each
residue is positioned in highly conserved sequence contexts (reviewed in Zwilling and
Neurath, 1981).

All trypsins contain four key “pocket specificity” residues: aspartate, glutamine,
glycine, and glycine at positions C189, C192, C217, and C227 (Ken Walsh, personal
communication). These four residues distinguish the trypsins from all other serine
proteases. Hedstrom et al. (1994) provide a more extensive discussion of the sequence
characteristics that determine the catalytic specificity of trypsin.

Mature trypsin sequences always begin with one of two nearly identical sequences:
IVGG or IIGG at positions C16-C19 (see Section 3.9). Most serine proteases begin with
similar sequences (Zwilling and Neurath, 1981).

All vertebrate trypsins possess a calcium binding site on a “calcium loop,”
characterized by the residues glutamate, asparagine, valine, glutamate, and glutamate at
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positions 56, 58, 61, 63, 66 (Bode and Schwager, 1975). The negatively charged acidic
residues chelate the positively charged calcium ion. The role of calcium binding in trypsin
was discussed in Section 3.7.

3.15 SEQUENCE DISTANCES

Once sequences have been aligned, evolutionary distances between them can be
determined.'* There are many methods for calculating evolutionary distance. Most of these
are algorithms that operate on a pair of sequences. Some, based on maximum likelihood,
operate on an entire data set. Maximum-likelihood methods are favored, but are
computationally intensive, and so may not be possible with large data sets (Felsenstein,
1983). Maximum-likelihood algorithms operating on nucleic acid sequences are more
advanced than those that operate on protein sequences.'” Both because of lack of
computational resources and lack of implemented protein algorithms, most of my trypsin
analyses were done with pairwise distance methods.

For multidimensional scaling, described in Section 3.16, and phylogeny
construction and jackknifing, described in Section 3.17, I used distances derived from the
program Protdist, part of the PHYLIP package (Felsenstein, 1993). Protdist was
executed with the “Dayhoff” algorithm, which utilizes Dayhoff’s PAM 001 matrix
(Dayhoff, 1979). I chose this simple algorithm for this purpose for its ease of use and
speed of execution. The distances used for the phylogeny in Appendix B (Figure B.3) and
the statistics of coincidental evolution (Figure 3.16) were calculated with the algorithm
described in Appendix B. In no case did I observe a qualitative difference in results when
different distance algorithms were employed.

Distances calculated between pseudogenes were not generally considered. The
model for distance calculation assumes that all genes are evolving under the same selective
constraints. Pseudogenes evolve with a near lack of selective pressure, so it would be
inappropriate to include them in distance calculations with functional genes. It is true that

'* Tt is often best to consider alignment and phylogeny simultaneously (see, for example,
Vingron and von Haeseler, 1997). However, in the case of trypsinogen, with its
unambiguous alignment, there is no need for this complication.

'> The two current protein maximum likelihood programs are PROTML, which is part of
the MOLPHY package (Adachi and Hasegawa, authors), and PAML (Yang, 1997).
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the assumption of uniform selective pressure is violated even by the functional
trypsinogens. However, differences in selective pressure between functional genes will be
negligible compared to a complete absence of selection. After construction of a phylogeny,
pseudogenes can be assigned topological locations based on similarity or identity
comparisons.

The differences in selective pressure operating on the functional trypsinogens may
prevent accurate reconstruction of a phylogeny. This would occur if the rates of evolution
in different branches of the phylogeny were skewed to such an extent as to warp the tree
topology. This may indeed have happened, as discussed in Section 3.17.

Sequences that are distantly related to each other but subject to common selective
constraints will still resemble each other. As the divergence time grows, the calculated
distance between two sequences will approach the maximum distance dictated by the
selective constraints. Such selective constraints play an important role in trypsin evolution
(Read and James, 1988).

The aligned vertebrate trypsin amino acid sequences contain 228 sites (Section
3.14). As discussed in Appendix B, 115 of these sites are highly or absolutely conserved.
Most of the variation from sequence to sequence occurs at the other 113 sites. Thus, almost
exactly fifty percent of the vertebrate trypsin sequence is highly conserved. This suggests
that two infinitely diverged vertebrate trypsin sequences will still share high identity.

It is relatively easy to calculate the expected identity of two “infinitely” diverged
vertebrate trypsin sequences. As sequences approach large divergence times, converging
mutations become as common as diverging mutations, obscuring the actual divergence
time. The expected identity at infinite divergence time can be calculated from equation (B.8)
by setting the divergence time, T, to infinity. The resulting expectation is 53%. It turns out
that several vertebrate trypsin sequences are nearly this far apart from each other. For
example, Cod I and Rat V share 56% identity. This suggests that many vertebrate trypsin
sequences are indeed very far apart from each other phylogenetically, despite their apparent
similarity. The same statement can be made more generally of all trypsins. For example, the
least identity between two chordate trypsins is 34%, between Botryllus I and Mouse T8.
Several authors have debated the implications of similar observations (Hartley, 1970 and
1979; Hewett-Emmett et al., 1981).
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If the vertebrate trypsinogens are truly confined by selection to share at least 53%
identity plus or minus some variance, then there must be an explanation for the lower
identity observed between vertebrate trypsins and trypsins from non-vertebrates. There are
two possible explanations for this. The first is that changes in selective pressure account for
the difference. The second is that one or more extremely rare events operated to create
specific changes in the trypsin sequences. Indels might serve such a role.

If one imagines a multidimensional structure-space, representing all possible
sequences, and a subset of that space representing all possible functional trypsins, then
there may be several regions of that space which are separated by large mutational
distances, with few functional sequences providing a mutational “pathway” connecting
functional regions of the trypsin-space. This “sequence-space” concept was introduced by
Eigen (1988) for application to viral phylogenies. Vertebrate trypsins may occupy one
particular area of the trypsin function space, confined to that area by selection, only able to
mutate out of that area if a rare mechanism of random variation operates on them. I propose
that such a mechanism operated to effect the separation of the vertebrate and non-vertebrate
trypsinogens, perhaps in conjunction with altered selective constraints.

If such a rare event (or events) separated the vertebrate trypsins from the other
trypsins of the living kingdoms, then it will be hard to develop statistical models to estimate
the sequence distances between them. Statistical models are discussed in Appendix B. It
may be that parsimony is more suited for analysis across such great distances. A
parsimonious analysis of rare events, such as indels, or gain and loss of highly conserved
residues such as those in certain cystine bridges, may ultimately provide the topology not
only of trypsin evolution, but of serine protease evolution in general.

There is one rare event in particular, which if it had occurred, would be of great
interest. There are two sets of codons that can code for serine: TCN and AGY. It takes two
point mutations to convert a codon of one set into a codon of the other set. The first of
these two point mutations would alter the serine residue. Therefore, if a serine protease
employed a codon of one set to code for its active site serine at C195, then that protein
could not point mutate its active site to a codon of the other set without becoming non-
functional after the first point mutation (Brenner, 1988). A switch of the codon for serine
C195 from one set to the other in the vertebrate phylogeny would represent a rare and
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intriguing event. However, this event is not observed. All trypsins, including the vertebrate
trypsins, employ a TCN codon for serine C195.

One additional problem impedes distance calculations between trypsins. As
mentioned above, the aligned vertebrate trypsin amino acid sequences are only 228 residues
long. The corresponding nucleic acid sequences are three times that long, with 684
nucleotides. However, accurate reconstruction of the topologies of complex phylogenies is
hypothesized to require about 2,000 sites, even in “easy” cases (Hillis, 1996). Thus one
expects some uncertainty in a distance-based topology generated for the trypsin phylogeny.
Such uncertainties can be evaluated with bootstrapping or jackknifing, as discussed in
Section 3.17. Recent advances in tree-construction algorithms may ease the recovery of
correct tree topologies for short sequences (Tandy Warnow, personal communication).

3.16 MULTIDIMENSIONAL SCALING

Once pairwise sequence distances have been calculated, the relationships between
the sequences can be explored. Before embarking on a phylogenetic analysis, other
techniques are useful for investigating sequence relationships. In particular one seeks to
determine if the trypsins fall naturally into certain clusters based on their distance
relationships. For example, one is interested in determining if clusters based on distance
relationships correspond to “anionic™ or “cationic” clusters. One is also interested in
determining the sequence-distance clustering relationships of the group I and group II
trypsinogens, which occupy different syntenic relationships with respect to the TCR Vf
gene segments, as discussed in Section 3.2.

An introduction to the subject of clustering is provided by Everitt (1993). In many
cases it is not possible to provide rigorous statistical support for or against alternative
clusterings of data. Therefore, one of the main goals of cluster analysis is to provide
hypotheses which must be confirmed with external data. There may be many alternative
hypotheses. For example, there are 2.2x10'? ways to cluster the 42 known vertebrate
trypsin sequences into 2 groups. This can be calculated as follows (Liu, 1968):
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In equation (3.1), n is the number of sequences; g is the number of groups; N is the
number of possible groupings.

One of the more useful methodologies of cluster analysis is termed
“multidimensional scaling.” This methodology can be used to convert data from high-
dimensional distance matrices, which cannot be visualized graphically, into two or three
dimensional plots. Two and three dimensional plots can be visualized, and may illuminate
important distance relationships and clusterings. Visual inspection of these plots can often
permit one or a few hypotheses for clusterings to be selected from the myriad of
alternatives. A introduction to the subject of multidimensional scaling is provided by Everitt
and Dunn (1991); Cox and Cox (1994) provide additional details.

Other techniques of cluster analysis can be employed to suggest relationships
between proteins. For example, Yee and Dill (1993) demonstrate the use of “minimal
spanning trees” and “hierarchical clustering” to analyze the structural relatedness of
globular proteins, including the serine proteases. However, both of these techniques are
particularly susceptible to bias from coincidental evolution. Avoidance of this bias was a
major factor in my selection of multidimensional scaling as a technique to analyze the
trypsinogen sequences.

Multidimensional scaling is rarely used for phylogenetic analyses, but its use is
increasing. For example, Suyama et al. (1997) employ multidimensional scaling to
investigate the three-dimensional “structure profile” distances for the globins.
Multidimensional scaling has the advantage of being free of a key assumption about
phylogenetic relationships. This assumption is that sequences evolve independently after
diverging. This is synonymous with assuming that coincidental evolution does not occur.
The assumption of independence is fundamental to all current phylogeny programs, such as
those in the PHYLIP package. As a result, extensive coincidental evolution will confound
the topological reconstructions of such programs. Multidimensional scaling can help clarify
the topology of the real phylogeny and, in the process, provide evidence for the occurrence
of coincidental evolution.

Multidimensional scaling of the vertebrate trypsin distances is shown in Figure 3.4.
Only 32 of the 42 known sequences are utilized; each of the remaining 10 sequences is
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nearly identical to one of the included sequences. Note that multidimensional scaling is
invariant to orthogonal transformations, which include rotations and magnifications.
Therefore the rotational positioning of the axes is arbitrary, as are the units of distance. The
informational content of the plot lies in the relative distances between points. If a
“molecular clock™ hypothesis held, as discussed in Appendix B, then these distances could
be interpreted as units of time.

Two notes of caution should be sounded before reaching conclusions based on
multidimensionally scaled plots. The first is potential existence of alternative minima; the
second is the potential for overzealous dimensional reduction.

Figure 3.4 represents a global minimization but gives little insight into alternative
possible local minima. Given the high variance of distance data from short sequences, and
the large number of points, alternate minima may represent equally valid depictions of the
data. However, I am unaware of programs that explore alternative local minima. Therefore,
I would welcome the addition of such options in relevant computer programs, perhaps
implemented with a simulated-annealing algorithm. I currently have no good method for
evaluating alternative minima, so will not discuss it further.

The simplified subset of trypsin data is inherently 31-dimensional, one dimension
less than the number of plotted sequences. Therefore, informational content is lost as the
data is “compressed” into a lower-dimensional space. This loss in informational content can
be characterized by the “stress” statistic, which is based on the squared differences between
the original and the scaled distances (Cox and Cox, 1994). The. stress for the
multidimensionally-scaled plot in Figure 3.4 is graphed in Figure 3.5. The stress of the
two-dimensional plot in Figures 3.4 is below 25%, and thus low enough to indicate that
this plots adequately portrays the underlying structure of the data (Everitt and Dunn, 1991).
The utility of this plot is supported by the gradual rise in stress through two dimensions,
with a large increase occurring only between two dimensions and one dimension. This
suggests that although one dimension is not enough to portray the data, two dimensions is
sufficient. It is nevertheless interesting to examine the data in three dimensions. Views of a
three-dimensional scaling of the data in Figure 3.4 are provided in Figure 3.7 and Figure-
3.8.
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An additional heuristic exists that can be used to gauge the validity of
multidimensional scaling. The Euclidean pairwise distance matrix that is produced from the
original data can be employed as input data for a phylogeny construction algorithm. If the
“scaled” distances produce the same phylogeny as the original data, then one is reassured
that scaling has not grossly altered the data. For the vertebrate trypsinogen data, this
exercise produces a phylogeny which is identical in topology and nearly identical in branch
lengths to the original phylogeny (data not shown). Phylogenies are discussed in greater
detail in Section 3.17.

Having considered these cautionary notes, one can generate several possible
hypotheses for clustering the trypsins are suggested by the multidimensionally-scaled plot
in Figure 3.4. In particular, there seems to be a natural division of the trypsins into two
groups, one at the top of the plot, and one at the bottom of the plot. This forms the basis of
a hypothesis that the vertebrate trypsins cluster naturally into two groups. I propose that
these two groups correspond to the two groups of trypsinogens defined in Section 3.2. I
propose that the origin of the cluster is a schism of the ancestral vertebrate trypsinogen
multigene locus into two separate multigene loci that were maintained by all descendant
species of the ancestral species. I also propose that this schism occurred after the
Agnathans diverged from the ancestral vertebrate lineage, so that the Agnathan trypsins
belong to neither of the two groups of trypsin. This hypothesis is displayed in color in
Figure 3.6, which, other than the added colors, is a reproduction of Figure 3.4. In this and
in all subsequent figures, blue indicates group I trypsinogens, and red indicates group II
trypsinogens.

The two possible general mechanisms for the schism of an ancestral trypsinogen
multigene family are shown in Figure 3.7. The first mechanism is the insertion of a foreign
gene into the locus, dividing it. The second mechanism is the duplication of the locus to the
opposite side of a foreign gene. There are a number of specific molecular mechanisms that
could account for either general mechanism (see, for example, Li, 1997). For the remainder
of this chapter, I will refer to both of these mechanisms as the “division” of the trypsinogen
multigene family, incorporating the possibility of division by duplication into this meaning.
This division is analogous to the allopatric division of a species. Allopatry is a term used
in population genetics to refer to the division of a species by a geographic barrier, such as a
mountain range. Such a barrier can result in speciation, which is the division of a single
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ancestral species into two descendant species. By analogy, I will refer to the division of the
trypsinogen multigene family as an “allopatric” division.

Three-dimensional multidimensional scaling of the trypsin data supports the
hypothesis of a single major division of the trypsinogen multigene family (Figure 3.8 and
Figure 3.9). The three-dimensional views, in particular, support the hypothesis that the
lamprey sequences belong to neither group I nor group II. The view in Figure 3.9
strikingly illustrates the division of the two groups along a central plane.

The syntenic positions of several trypsinogen genes with respect to the TCR B
locus are known. This allows these sequences to be assigned to either group I or group I
with certainty. Additionally, each of the rat sequences can be assigned to a group with near
certainty, due to the extreme similarity they share with orthologous mouse genes.'s The
trypsinogens with known synteny are colored in the plot in Figure 3.10. This data is
absolutely consistent with the hypothesis suggested in the preceding paragraphs, but leaves
a few sequences unassigned, other than based on the clustering suggested by
multidimensional scaling (Figure 3.6).

The grouping of the remaining sequences is supported by a consideration of their
isoelectric points. The isoelectric points of the trypsins are indicated on the plot in Figure
3.11; the actual values for the isoelectric points are tabulated in Table 3.6. It is immediately
apparent that the group I trypsins are mostly anionic, while the group II trypsins are mostly
cationic. Thus, there is a concordance of three different data types with independent
components that supports the hypothesis of exactly two natural groupings of the vertebrate
trypsins, with the lamprey sequences not belonging to either. These are: one, syntenic
evidence; two, multidimensionally-scaled distance data; and three, isoelectric point
evidence.

Consideration of isoelectric points is particularly valuable for grouping the dogfish
and Osteicthyes trypsins, for which no syntenic data is available. Without this data, an
alternative grouping of the trypsinogens might gain consideration. From the

' It is difficult to prove orthology. Additionally, the term is somewhat meaningless for
members of a multigene family. My use of the word “orthology” in this instance is meant
to imply recent divergence from an ancestral gene with the same syntenic relationship to
the TCR B locus. The orthology of the rodent trypsinogens is discussed further in
Section 3.17.
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multidimensional scaling plots, it is possible visualize the trypsins grouped into about four
clusters (Figure 3.4). In addition to division of the plotted points by a horizontal line, one
can also imagine division by a vertical line separating the fish sequences from the remaining
sequences. If one divided the trypsins in this manner, that might lend credence to an
alternative hypothesis that there were two or more independent major duplications or
divisions of the trypsinogen multigene family. However, the assignment of isoelectric
points for the fish trypsins is absolutely consistent with their division in to exactly two
groups. This supports my hypothesis of a single major division of the trypsinogen
multigene family.

Significantly, the lamprey trypsins are strongly anionic. This suggests that they do
not belong to group II. Additionally, as noted above, they do not cluster with either group I
or Group II in three-dimensional multidimensionally-scaled plots (Figure 3.8 and Figure
3.9). Together, these data support the hypothesis that the division of the trypsinogens
occurred after the divergence of the Agnathans.

Several discrepancies between isoelectric point data and phylogenetic expectations
can be noted. Mouse T4, rat IV and rat V, which phylogenetically should be “cationic,”
have predicted anionic charges. Human I and Xenopus 51, which phylogenetically should
be “anionic,” have cationic charges. Thus isoelectric points merely correlate with
phylogenetic grouping, rather than mirror it. For this reason, I feel that there is little utility
in designating trypsins as “cationic” or “anionic,” and suggest a re-evaluation of this
nomenclature.

The lack of absolute correlation of the isoelectric points with phylogenetic group is
not a major obstacle to the “two group” hypothesis. First of all, all three discordant rodent
sequences — mouse T4, rat [V and rat V — are already known to be group II based on
synteny, as discussed above. The same is true of the discordant human T8 trypsinogen.
This leaves only the discordant Xenopus 51 trypsinogen to be explained, but its similarity
with Xenopus 1 coupled with its unambiguous position in the multidimensionally scaled
plots leave little doubt as to its group I assignment. It remains possible that Xenopus 51 is a
group II trypsin that has undergone extensive coincidental evolution, but if this were the
case, it would have little impact on the conclusions of the “two group” hypothesis. It
would, in fact, support the contention of Section 3.18 that coincidental evolution has
played a major role in vertebrate trypsinogen evolution.
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There is a possible explanation for the discordance of the human T8 isoelectric
point. Recall from Section 3.2 that humans possess no functional group II trypsins.
However, as mentioned in Section 3.13, it may be that both anionic and cationic isoforms
have a functional niche, with the jawed vertebrates requiring both. In this scenario, human
trypsin I, which is biochemically cationic but phylogenetically group I, would fill a
crossover role by filling a niche vacated by the missing group II trypsinogens. Also since
rat C and mouse T7 are cationic, in this scenario there might be little selective pressure on
mouse T4, rat IV, and rat V to remain cationic, so their charge could have “drifted.”

[ did not incorporate pseudogenes into my multidimensionally scaled plots. The use
of pseudogenes might skew the structure of the data. Such skewing effects can be severe
for phylogenies, as shown in Section 3.17. However, skewing due to distorted distances
for multidimensional scaling can be surprisingly mild (Everitt and Dunn, 1991). This may
be the case for vertebrate trypsin data. Several pseudogenes are incorporated into the data
for Figure 4 of Appendix F (Roach, 1997). As expected, the group II pseudogenes cluster
with the functional group II genes, and the group I pseudogenes cluster with the functional
group I genes.

In an effort to further explore the utility of multidimensional scaling, I
multidimensionally scaled the distances for the rodent group I trypsinogens, including
several sequences that were not included in the simplified vertebrate data set (Figure 3.12).
In this case, multidimensional scaling provides little insight beyond what can be obtained
from a traditional phylogenetic analysis (see Section 3.17). A difference between the rodent
group I data set and the vertebrate data set is that all of the group I rodent trypsins are very
closely related. Multidimensional scaling may be most useful for examining distant
relationships. The stress for the multidimensionally-scaled plot in Figure 3.12 is graphed in
Figure 3.5. |

3.17 PHYLOGENIES

A consideration of the data presented in the previous section leads one to conclude
that the trypsinogen multigene family underwent an allopatric division about 500 million
years ago, during the Ordovician or Silurian Periods. One thus predicts the existence of
two groups of trypsinogen in all of the jawed vertebrates. All of the members of each group
should be more related to each other than any are to members of the other group, as each
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group shared a more recent ancestor. This assumes that no coincidental evolution has
occurred (see Section 3.1). With these assumptions, a hypothetical phylogeny can be
sketched (Figure 3.13). This figure also assumes a roughly constant rate of evolution. This
figure can be compared to the computed phylogenies discussed below. Such comparisons
highlight the impact of coincidental evolution on the vertebrate trypsinogens.

A phylogeny of the vertebrate trypsinogens can be computed from a pairwise
distance matrix, calculated as discussed in Section 3.15. Such a phylogeny, for forty-two
sequences, is shown in Figure 3.14. This phylogeny can be recalculated with fewer
sequences. This can be done with little loss of information, as there are several sequences
that are nearly identical to each other: mouse T11, T2, T15, and T16; mouse T8 and T9;
mouse T4 and T5; chicken 1 and 38; salmon I and II; cod I and X; lamprey Bl and B2;
lamprey A1 and A2. Not only is the resulting phylogeny less cluttered, but it also demands
fewer computational resources to calculate.

A thirty-two sequence phylogeny is shown in Figure 3.15. The branches of the
phylogeny are colored to correspond with the group to which the sequences at the terminus
of the branch belong.

This phylogeny is striking in two major respects. First, it fails to support a
molecular clock hypothesis. This is most striking for several of the rodent trypsins (Rat IV,
Rat V, and Rat Cationic). Since mice possess nearly identical homologs to all the known rat
trypsinogens, these rate variations must have occurred before the mouse/rat divergence.
The largest intra-species rate variation observed in this data set occurs between the Rat C
and Rat V branches of the phylogeny. In Figure 3.15, the ratio of the Rat V to Rat C
branch lengths is 4.62. This represents an average rate difference. Rate differences in any
given period after the divergence of these sequences from a common ancestor may have
been larger or smaller. Therefore, since the mammalian radiation, rates of evolution may
have differed by as much as an order of magnitude between different isozyme loci within a
species. This is consistent with “bursts of sudden evolution” at particular loci, perhaps due
to gene conversion events.

The second striking aspect of the phylogeny in Figure 3.15 is that it fails to
reproduce the topology of trypsinogen evolution predicted in Figure 3.13. Notably, neither
the group I nor the group II trypsinogens form a single clade. In particular, all of the
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mammalian sequences appear to be more related to each other than they are to any other
sequences, with the possible exception of chicken 29. The most likely explanation for this
is that coincidental evolution has operated on the vertebrate trypsinogens.

There is an alternate explanation that could explain the deviations of Figure 3.15
from the expected topology of vertebrate trypsinogen evolution. Random variations in
sequences can arbitrarily cause two sequences to appear to be more similar to each other
than would be expected. In extreme cases, this might mimic coincidental evolution. This is
likely to be the reason that the group II chicken sequences form a clade with the group I
Xenopus sequences. During the jackknifing of the phylogeny in Figure 3.15, Xenopus I,
Xenopus 51, and chicken I formed a clade twenty-two times. However, Xenopus I and
Xenopus 51 formed a monophyletic clade more often, thirty-one times. Although this clade
does not show up in the main tree, its significance underscores the lability of the “chicken-
group-II and frog-group-I” clade. This particular clade is therefore more likely to be due to
randomness in the sequences, and not coincidental evolution or independent duplications.

Note that if only one representative of each vertebrate class is considered, the
resulting phylogeny more resembles a star than a tree. A likely explanation for this is that
many of the vertebrate trypsins have reached an equilibrium distance from each other, as
discussed in Section 3.15. Over large divergence times, chaotic fluctuations away from
equilibrium are be expected. This produces deviations from a perfect star phylogeny,
notably small topological deviations in early branchings. The differences in branch length
from the center of the star vary due to alterations in evolutionary rate. Some length variation
is also expected due to the stochastic incidence of accepted mutations.

One can differentiate between random convergence and covariance, the statistical
hallmark of coincidental evolution. For example, one can test the hypothesis that sequences
from one group will co-vary with sequences from the other group that belong to the same
vertebrate class. This can be done by comparing the distribution of all such distances with
the distribution of distances between sequences that not only belong to different isozyme
groups but also belong to different vertebrate classes (Figure 3.16). If there were no
coincidental evolution, one would expect these distributions to be identical. However, these
distributions are very highly significantly different, demonstrating that coincidental
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evolution has had a major impact on vertebrate trypsinogen evolution.'” This finding is
discussed in Section 3.18.

Bias must be considered as an explanation for the differences in these distributions.
In general, these statistics are immune to many types of bias. For example, if one group
has evolved more slowly than the other, the average distance between the two groups will
remain invariant to whether or not the comparison is made within a class or between two

classes.

One type of sampling bias that can mimic coincidental evolution is if a sequence that
has been subject to an atypical rate of evolution belongs to a class that has known
sequences from only one group. For example, only the group I dogfish trypsin is known.
If this sequence has evolved at an atypical rate, then it might confuse the analysis. For
example, if it evolved very slowly, then between-class comparisons would be biased high,
making them more distinct from within-class comparisons, and creating the illusion of
coincidental evolution. If they evolved more quickly, the opposite would happen, and
coincidental evolution would be harder to detect. In general, this effect can occur when
there is an imbalance between the number of between-class comparisons and the number of
within-class comparisons involving a particular sequence. This bias can be corrected by
normalizing the weight of each comparison so that each sequence is involved in the same
net weight of between-class comparisons and within-class comparisons (data not shown).
In this case, classes with only one known group, such as the elasmobranchs, must be
disregarded. This is because, for such a case, there are zero within-class comparisons.
Zero cannot be normalized. The unweighted distribution also shows the highly significant
difference seen in Figure 3.16, suggesting that this type of sampling bias is not present in
the dataset of known trypsinogens. The effect of this weighting is to equalize the number of
sequences in each group for a given class by adding “ghost” sequences identical to known

sequences.

Oversampling of similar sequences is another type of bias. For example,
consideration of some sequences might support the hypothesis of coincidental evolution,

'" Very few non-mammalian within-class comparisons are available. If the mammalian
sequences are excluded from this analysis, the coincidental evolution effect is of low
statistical significance. Therefore, it is possible that the entire effect of coincidental
evolution occurred in the mammalian lineage. More non-mammalian sequences are
needed to clarify this point.
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while consideration of other sequences might refute the hypothesis. For example, the
mouse trypsinogens are highly sampled in the set of known vertebrate trypsinogens. If a
series of recent gene conversion events homogenized the mouse group I sequences with the
mouse group II sequences, then consideration of the mouse sequences will, correctly,
support coincidental evolution. However, if coincidental evolution has not operated on
other classes, and sequences from these classes are undersampled, then the apparent role of
coincidental evolution in evolution will be artificially amplified. This type of bias is difficult
to eliminate by normalization. One can minimize its effects by employing as many
representative sequences from as many vertebrate classes as possible. This was one of my
motivations for obtaining trypsinogen sequences from several different vertebrate classes,
especially where none were known beforehand. The bias can also be minimized by
excluding all but one of a set of recently diverged sequences. Consideration of recently
diverged sequences will amplify the effects of any evolutionary events that have occurred
prior to their divergence. Thus it is more appropriate to use the subset of thirty-two
sequences shown in Figure 3.15 than the entire set of forty-two known vertebrate
trypsinogens.

Pseudogenes can be incorporated into phylogenies. This incorporation must be
done with care. Pseudogenes are not subject to the same selective constraints as functional
genes (see Section 3.15), so should not initially be incorporated into a dataset of functional
genes used to build a phylogeny. However, the topology of pseudogene divergences can
be estimated after the phylogeny is built (Figure 3.17). For this figure, the insertions of the
pseudogene branches were estimated by tabulating the nucleic-acid sequence identities of
the best diagonals for pairwise comparisons with pseudogenes computed with the default
dotplot from the program MegAlign (DNA*®, Madison, WI). Only the three highest
identities for each pseudogene were considered. The topology of the insertion point of each
pseudogene branch was then positioned so as to minimize the least-squares differences in
the proportions of the resulting three branch lengths from the proportions of the three
dotplot-diagonal identities. Because of the difficulty of estimating the exact divergence
times of pseudogenes, no attempt was made to estimate their branch lengths.

This method of assigning a topology to pseudogene divergence points is somewhat
arbitrary. It does, however, highlight numerous independent events that have spawned
pseudogenes during the course of vertebrate trypsinogen evolution. Figure 3.17 also
highlights the recent divergence of several functional trypsinogens and pseudogenes. In
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particular, the close relationship of rat V and mouse T3 can be seen, which allows rat V to
be assigned as orthologous to mouse T3, and definitively to group II (see Section 3.16).

Outgroups are useful when constructing phylogenies. In particular, they can be
useful in calibrating a molecular clock, if one exists (Li and Graur, 1991). They also serve
to root a phylogenetic tree. However, both of these functions can be hijacked if the chosen
outgroup is so distant that it has reached equilibrium distance from all other sequences in
the phylogeny. As discussed in Section 3.15, the tunicate sequences have indeed reached
equilibrium distances from the rest of the vertebrate trypsinogens. The differences in
sequence distances between any two vertebrate-urochordate comparisons is expected to be
random. Inclusion of a urochordate sequence in a vertebrate trypsinogen phylogeny should
therefore result in a random topological insertion of the chordate branch. As a result,

urochordate sequences are poor outgroups.

An example of the type of skewing that can result from inclusion of too-distant
outgroups is seen in Figure 3.18. In this figure, all three tunicate trypsins and the crayfish
trypsin are utilized, but the effect on skewing will be similar if only one of these is
employed. The random nature of the insertion point of the invertebrate outgroup can be best
appreciated by consideration of the jackknife values for the larger clades. For example, the
clade distal to salmon III is equivalent in both Figure 3.15 and Figure 3.18. This clade is
found in 69% of the jackknifes executed with just the vertebrate data set, but only 43% of
the jackknifes when the invertebrate outgroup is included. The topology of the chicken I
sequence with respect to the Xenopus sequences is also altered. These effects are a result of
the random insertion of the invertebrate outgroup.

Another type of error that can skew a phylogeny is the inclusion of a sequence that
has been subject to markedly different selective pressures from the other sequences in the
phylogeny. This would be the case if one of these sequences served a markedly different
function. This effect is discussed by Fitch (1970). Including a pseudogene, as discussed
above, would cause a similar skewing. For example, the Pleuronectes “trypsinogen”
sequence is not a trypsin and therefore will not be subject to the same selective pressures as
the trypsins (see Section 3.3). Rypniewski et al. (1994) include the Pleuronectes sequence
in their phylogeny, quite possibly causing just such a distortion. Independently, Male et al.
(1995) include the Pleuronectes sequence in a phylogeny, again contributing to a skew.
Rypniewski et al. and Male et al. may have missed such skewing as a result of the high
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divergence that exists between trypsinogen groups and species classes. Uncertainty
introduced in these phylogenies by the high divergence of the trypsins may have also
masked skewing caused by extreme outgroups.

Even after the exclusion of the invertebrate outgroups, it is difficult to construct a
trypsinogen phylogeny with high confidence in its topology or divergence times. Vastly
differing evolutionary rates obscure divergence times. The presence of coincidental
evolution and maximally diverged sequences obscures topology. The low jackknife values
for many of the nodes of the phylogeny in Figure 3.15 are a result of these effects.

However, the bootstrap values are more consistent for vertebrate classes, and reach
100% for certain clades, such as the Osteicthyes group I trypsins and the rodent group I
trypsins. Therefore, molecular trypsin data may have some utility for the analysis of recent
evolutionary events. To this end, I have constructed a phylogeny of the rodent group I
trypsins. All of these trypsins have known DNA sequences. Furthermore, there are only
ten of them, so they can be readily analyzed with nucleic-acid maximum-likelihood
algorithms. A phylogeny of the rodent group I trypsins is shown in Figure 3.20. This
phylogeny suffers from having representative sequences of only two species, but
nevertheless has high bootstrap values at its nodes. The dog anionic trypsin is the least
diverged sequence from the rodent trypsins, so I attempted to use it as an outgroup for this
phylogeny. However, dog anionic trypsin rooted randomly during jackknifing, so [
excluded it. A more detailed rodent trypsin phylogeny will have to await the determination
of more sequences, such as those from the hamster.

3.18 MODES OF TRYPSINOGEN EVOLUTION

The trypsinogens are a multigene family, and should evolve as one. There is a large
literature on multigene family evolution, reviewed by Li (1997). Multigene family evolution
is frequently characterized by coincidental evolution. Horizontal transfer of genetic
information in multigene families is analogous to the sexual transfer of alleles within a
population, and this has led to the observation that the principles of population genetics
may be better suited for the analysis of multigene families than traditional single-gene

phylogenetic models.
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From the information presented in the preceding sections, it is clear that trypsinogen
does not evolve as a classical single locus gene with a constant rate. Vertebrate trypsinogen
evolution has been dynamic and multimodal. The trypsinogen genes have been evolving
covariantly, as a population, and not solely independently, as individuals.

In most vertebrate species, there are two groups of trypsinogen isozymes at
separate genomic locations, each coded for by tandem repeats. Tandemly repeated genes
exchange information with each other far more frequently than with genes at different loci
(Li, 1997). Thus one expects significant genetic exchange within a trypsinogen group, but
not necessarily between groups. One would expect trypsinogen genes within a group
within a species to be highly identical to each other, with intra-group variation determined
by an equilibrium between diverging mutations and converging horizontal genetic transfer.
These converging events, such as unequal crossing-over and gene conversion, are a
powerful force for homogenization.

Coincidental evolution can also operate on genes that are not tandemly repeated.
Any component of coincidental evolution due to selective pressure is unlikely to be
influenced by gene location. Crossing-over is unlikely to play a role, particularly in the case
of the trypsinogen/TCR locus, as crossing-over would destroy the functional utility of the
TCR f locus. However, gene conversion can still operate on separated genes, whether they
are located on the same or different chromosomes. This has been well studied in yeast, and
is likely to be true for all metazoans, as reviewed by Petes and Hill (1988), and Petes et al.
(1991). Nevertheless, gene conversion is less frequent between separated genes than
between adjacent genes. Therefore, the homogenization force of horizontal gene transfer is
less powerful between separated members of a multigene family.

The division of the trypsinogen multigene family around the time of the
elasmobranch divergence was perhaps the most significant event of vertebrate trypsinogen
evolution.'® Following the divergence of the two groups of trypsinogens, they tended not
to exchange genetic information with each other, acting largely as separately evolving gene

'* The dating of the divergence is not absolute. The divergence is possibly very old,
predating the vertebrates or even the chordates. If this is the case, the current similarity of
the two groups of trypsins in the jawed vertebrates as compared to the lampreys and
tunicates (see Section 3.16) would have to be explained by coincidental evolution.
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families. However, statistically significant exchange did occur, as documented in Figure
3.16.

The class Mammalia illustrates this point. All of the mammalian trypsinogens are
more closely related to each other than to trypsinogens of other classes, with the possible
exception of the chicken group I trypsinogen (Figure 3.14 & Figure 3.15). It is likely that
this convergence will be more readily observed in other vertebrate classes as more
sequences are obtained.

The quantitative contribution to coincidental evolution of gene- conversion as
opposed to selective pressure is very difficult to determine. Gene conversion dramatically
and suddenly homogenizes sequences, so even if its effects are rare compared to mutations
selected by species-specific pressures, the effect of gene conversion will predominate.
Given the magnitude of this particular coincidental effect, it is difficult to ascribe the overall
coincidental effect to selection. Gene conversion almost certainly played a major role in the
coincidental evolution of the group I and group II trypsinogens.

The molecular traces of such gene-conversion events, if present, have been largely
obliterated by subsequent mutation. In order to observe adjacent covariant point mutations,
which are the hallmarks of gene conversion, sequences separated by very short
evolutionary distances must be obtained. Currently, no such data exists for trypsinogen
sequences. However, such data has permitted the observation of gene conversion in several
immunoglobulin gene superfamily loci. This includes the mouse Class I major
histocompatibility locus (Pease et al., 1993), and the chicken immunoglobulin lambda
locus (Reynaud et al., 1985). The rate of gene conversion at immune receptor loci may be
greater than the genome-wide average. Enhanced recombinogenicity at these loci may be a
result of aberrant activity in the germline of the RAG1/RAG2 recombination machinery that
is normally active only in somatic cells (Hagmann, 1997).

One possible explanation for an enhanced rate of gene conversion for the group I
trypsinogens would be unique to these trypsinogens, if it exists. During T-cell
development, TCR B locus episomes will contain several copies of Group I trypsinogen
genes. This can only occur for genes intercalated between immunoglobulin-receptor gene
segments. Only the group I trypsinogens are known to be in such a position. If an episome
containing a trypsinogen somehow formed in or recombined with germline DNA, there
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could be a striking and sudden change in, transposition of, or even novel generation of a
trypsinogen locus. There is no data to suggest that such episomes form in germ cells.
However, such formation could be extremely rare and still have a major impact over

evolutionary time scales.

As noted in Section 3.13, the general biochemical features within a trypsinogen
group are maintained in the absence of absolutely conserved characteristic residues. It may
be that general selective pressure for a positive or negative charge accounts for this
phenomenon. Alternatively, it may be that the principles of population genetics can account
for this phenomenon. Each element of sequence potentially coding for a charged residue
can be considered to be a locus at which any of several “alleles” may be present.'® Different
“alleles” would code for different charged residues, or the absence of one. Each
trypsinogen group would be characterized by different “allele” frequencies, with negatively
charged “alleles” predominating in the group I trypsinogens and positively charged “alleles”
predominating in the group II trypsinogens. However, even if this is the case, it seems
unlikely that such a model could completely explain the observed trypsinogen sequences.
Coalescence theory predicts the extinction of alleles for which there is no selective
advantage. In the absence of differential selective pressure, new alleles would show no
charge bias for either group I or group II, so over time the two groups of trypsinogen
would converge with respect to their net charges. This would be accelerated by gene
conversion. The extinction of differentially charged alleles coupled with the introduction of
unbiased alleles would erase biochemical differences over evolutionary time scales.
.Therefore, since these differences have persisted, it seems likely that there is a selective
pressure that helps maintain the biochemical differences between group I and group II
trypsinogens. Quantitating this pressure would be very difficult.

An additional modality of evolution may operate on the trypsinogens. The repeat
structure of the loci provides for the maintenance of a large pseudogene reservoir. The
numerous human and mouse pseudogenes are diagrammed in Figure 3.1. These
pseudogenes can evolve rapidly, free of evolutionary constraint, as digestive function is
provided by the functional trypsinogens of a locus. It is conceivable that, rarely, these
pseudogenes will back mutate to functionality, perhaps jump-started by a gene conversion

'> As an addition to pun-derived terminology, I propose the word “trypsinogene” to
designate these trypsinogen “alleles.”
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event. They may also provide a genetic reservoir of material for recombination events with
functional trypsinogens.

All of the mechanisms of horizontal genetic transfer can produce large changes in
evolutionary distance with a single event. For example, gene conversion events in yeast can
alter up to 12 kb of contiguous sequence (Borts and Haber, 1997; Petes et al., 1991).
Unequal crossing-over, episomal recombination, and pseudogene re-activation could also
cause similarly large and sudden evolutionary changes.

The several gross and evolutionarily sudden events described in the preceding
paragraphs can cause the apparent rate of evolution of trypsinogen to vary highly between
species and even between loci within a species. Such events are complemented by a
background of intron junctional sliding, as well as nucleotide transitions, transversions,
insertions, and deletions. Taken together, these modes of evolution will significantly
confound efforts to build reliable models for trypsinogen evolution. This will, in turn,
preclude the construction of reliable phylogenies that span large evolutionary distances,
such as those separating classes. Phylogenies spanning more than one phylum are
particularly problematic, as described in Section 3.15 and Section 3.17.

Determination of species relationships from phylogenies based on multigene family
data is difficult (Cilia et al., 1996; Hollingshead et al., 1994). During the evolution of
Animalia, trypsinogen genes are likely to have been consistently present in genomes as one
or more multigene loci. For example, several insect species are known to have multiple
trypsinogens (Davis et al., 1985). Therefore, it is hard to recommend trypsinogen data for
the reconstruction of unknown phylogenies, or for use in the determination of the
relatedness of populations, such as is often called for in ecological conservation efforts.
Genes definitely known to be single-copy provide the most appropriate data for such
studies.

3.19 EXPRESSION OF TRYPSIN

The hypothesis that trypsinogens of different groups serve different functions
would be supported if the trypsinogens displayed differential expression. If the two groups
of trypsinogen showed a marked difference in the distribution of tissues in which they were
expressed, that would- suggest tissue-specific functions. Differences in the dynamics of
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pancreatic expression might suggest differential regulétion in the face of different substrate
specificities or activities. Studies of trypsinogen expression can help sort out these
possibilities. Additionally, such studies can verify that a genomic sequence is transcribed,
spliced, and translated. A genomic sequence may appear to code for a functional gene, but
may in actuality be a pseudogene if it is not expressed due to a dysfunction in its regulatory
sequences. This possibility cannot be ruled out until a gene product is observed.

Human trypsinogen T6 appears to be a functional gene from its genomic sequence.
An analysis of all trypsinogen cDNA sequences found in the EST database reveals six
human T6 cDNAs: five from pancreas tumors and one from a normal adult male pancreas
(Table 3.7). Additionally, I have observed a PCR product representing a processed human
T6 mRNA (Appendix C). Therefore, human T6 is not a pseudogene. However, human T6
has not been noticed in previous studies, such as the cloning efforts for human T4, T8, and
T9 (Emi et al., 1986; Tani et al., 1990). Additionally, only these three trypsins have been
identified in pancreatic juices (Scheele et al., 1981). The are three possible explanations for
the failure of these studies to detect human T6. First, it may be expressed in relatively low
quantities. Secondly, it may have been confused with one of the other expressed
trypsinogens. Thirdly, the individuals used for analysis may have been heterozygous or
homozygous for a deletion of the human T6 gene. This deletion genotype is known and has
an allelic frequency of approximately 46 percent (Lee Rowen, Genbank AF009664;
Seboun et al., 1989).

There are 64 human T4, 94 human T8, and 14 human T9 cDNAs in the EST
database.’® All 64 human T4 and all 94 human T8 cDNAs are pancreatic in origin.2' Of the

* Spliced genomic sequences of human T4, T6, T8, and T9 were used as BLASTN
queries of Genbank on 11/9/97. All results with a p-value greater than or equal to 0.05 to
any of the four queries were retained. Each retained sequenced was then locally
dynamically aligned to each of human trypsinogens T4, T6, T8, T9, and
chymotrypsinogen. The scoring for alignment was as follows: match, 1; mismatch, 2;
gap, 4. All sequences with a maximum score below 40 were discarded, as were
sequences that maximally matched chymotrypsinogen. Sequences close to this cutoff
were verified by visual examination of dotplot alignments; no false positives or false
negatives were detected. Sequences not discarded were identified as particular isozymes
based on their highest alignment score. All T6 and T9 sequences were verified by visual
examination of the alignments to rule out false positives. A modified version of my
program CrossMatcher (available from my web site) was used for dynamic alignment.

2! One of the T4s is derived from “fetal liver-spleen” and two of the T8s are derived from
“ovarian tumor.” These descriptions are consistent with a pancreatic origin.
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14 human T9 cDNAs, seven are of the alternatively-spliced form described as “brain
trypsinogen” by Wiegand et al. (1993), one is the normally-spliced variation, and six do
not include exon one, so cannot be assigned to a splice variant. The seven alternatively-
spliced human T9 cDNAs are derived from pancreas, colon, pregnant uterus, and fetal
heart. The normally-spliced human T9 cDNA is from pancreas. It is difficult to perform a
clean dissection or biopsy of abdominal organs without minor contamination from
pancreatic tissue, whether from the pancreas itself, or from pancreatic heterotopias.’
Therefore, trypsinogen ESTs found in the colon are likely pancreatic in origin. In
summary, with the exception of two sequences from fetal tissue, all trypsinogen ESTs to
date are likely to be derived from pancreatic tissue. This argues against trypsinogen
performing a significant function in any tissue other than the pancreas.

It seems unreasonable to refer to the alternatively spliced form of human T9 as
“brain trypsinogen,” as it seems no less pancreatic than any of the other isozymes. The
original isolation by Wiegand et al. (1993) employed PCR, so their sequence is not present
in the EST database, but in the main body of Genbank. This alternatively spliced form of
human T9 appears to possess no signal peptide capable of transporting the nascent peptide
into the lumen of the endoplasmic reticulum. Therefore, this form of human T9 may be
targeted to another cellular location, perhaps into the cytoplasm, to play an unknown role.

Trypsinogen is expressed in minute amounts in tissues other than the pancreas.
Wiegand et al. (1993) use PCR to detect trypsinogen expression in the brain. I have also
employed PCR to survey the expression of trypsinogen in various tissues, as described in
Appendix C. Although PCR is not a good measure of relative abundance of cDNA
isozymes, it is a very sensitive measure of the presence of particular cDNAs. Trypsinogen
cDNAs can be detected by PCR in most, if not all, tissues. This implies that trypsinogen
may be expressed at a low level in all cells, or by cells that are present in low numbers in all
tissues. Lymphocytes are present in low numbers in all tissues, so it is conceivable that
they are the source of PCR-detectable trypsinogen expression. If so, this would be

*? The difficulty of obtaining gut tissue free of pancreatic contamination may be more than
an issue of precision dissection. As many as 14% of cadavers have pancreatic
heterotopias somewhere in their digestive tract that are detectable by careful histological
examination (Ravitch, 1973; Thoeni and Gedgaudas, 1980). It is likely that there are
many more pancreatic rests that are too small to be distinguished during a histological
dissection, possibly even with some isolated cells.
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consistent with an immunological function for trypsinogen, as might be predicted from its
syntenic relationship with the TCR J locus.

There are fewer EST's for mouse than for human trypsinogens. These consist of 24
sequences representing mouse trypsinogens T7, T8, and T9 (Table 3.7).> Additionally,
mouse T8, T9, T10, and T11 have been observed as PCR products (Appendix C). The
mRNA for mouse T20 has been cloned and is in the database. Mouse T4, TS, T12, T15,
and T16 are apparently functional as genomic sequences, but their products have yet to be
observed. Not enough murine expression data has been obtained to draw any significant

conclusions from these observations.

Within the pancreas, the different trypsinogen isozymes are differentially regulated.
This is suggested by the relative abundances of the isozyme ESTs in Table 3.7 and the
cloned PCR products described in Appendix C. However, these relative abundance
numbers should not be interpreted as relative levels of expression, as EST databases do not
necessarily reflect tissue abundance, and PCR is subject to the effects of differential
amplification. However, it has been well established that the trypsinogen isozymes are
differentially expressed (e.g., Schick et al., 1984). Control at the translational level is
clearly an important factor in regulating trypsinogen expression (Pinsky et al, 1985;
Steinhilber et al., 1988). Additionally, mRNA stability is likely to play a role (Carreira et
al, 1996). The relative contribution of transcriptional regulation has not been worked out. It
is likely that trypsinogen expression is controlled at all potential checkpoints, permitting
maximum physiological control over an enzymatic activity that must be precisely regulated.
High gene dosage may play an important role in this control, as discussed in the next

section.

3.20 FUNCTION OF TRYPSIN

The only known function of trypsin involves the digestion of food. The presence of
multiple trypsin isozymes within an organism raises the possibility that they may perform
different functions, as discussed in the preceding sections. The tight linkage of the trypsins
to the TCR B locus raises the possibility that one or more trypsinogen isozymes may play

 The EST database was analyzed on 10/24/97 with the same methodology of the human
trypsinogen EST search.
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an immunological role. Their deletion from a functional TCR B locus seems inconsistent
with such a role in mature T-cells, but does not rule out other immunological functions.
Even the deletion of trypsinogens from functional TCR B loci may not necessarily indicate
that trypsin has no role in such cells, for a percentage of peripheral T-cells maintain an
unrecombined TCR f locus.* It is possible that T-cells that express trypsinogen might
represent a functionally significant subclass.

Many serine proteases are known to play roles in immune defense (see, for
example, Miiller et al., 1994). Such roles include antigen processing and cytotoxic
proteolysis. However, in the absence of concrete evidence to the contrary, I feel that the
null hypothesis for trypsinogen is that it performs no function other than alimentary
digestion. Large quantities of trypsin are needed on short notice for digestion, and one facet
of gene regulation could involve high gene dosage. An alimentary selective pressure for
high gene dosage may be sufficient to explain the maintenance of multiple trypsinogen
genes in a genome.

Whether or not there is a need for multiple trypsinogen gene loci is unclear. Since
the humans have no functional group II trypsinogens, it would seem that the group II locus
is dispensable. However, it remains possible that group II trypsins play a role, perhaps
non-alimentary, in vertebrates other than humans. This putative role would either not be
necessary in humans or, more likely, be subsumed by a novel serine protease, perhaps
ancestrally derived from a duplicated trypsinogen gene. To further complicate the picture,
humans have acquired a novel trypsinogen locus by means of the group I translocation to
chromosome 9. Any functional significance of this translocation is unclear.

3.21 GENESIS OF NOVEL GENES

The mechanisms of gene creation are of great evolutionary interest. Multigene
families play an important role in the creation of new genes (Li, 1997; Henikoff et al.,
1997). Duplicated members of a multigene family have a redundant function, so are free to
vary without deleterious effects on the phenotype of an organism.

?* The exact percentage is unclear, but is likely to be between 1% and 50%. Haars et al.
(1986) and Seboun et al. (1992) present differing viewpoints.
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At least once during the course of vertebrate evolution the trypsinogen multigene
family spawned a novel gene. At the time that the human and mouse TCR B loci were first
sequenced, it was thought that human trypsinogen T1 and mouse trypsinogen T1 were
orthologous pseudogenes. It was noted that they had in-frame coding sequences, but there
was no evidence that these sequences were expressed. Additionally, it was clear from
sequence analysis that, if they were expressed, they could not be functional trypsinogens.
They do not possess the key catalytic serine C195, which rules them out as serine
proteases. They have no significant identity at the untranslated nucleotide level, and are
identifiable as trypsinogen descendants only through consideration of their hypothetical
translations. For these reasons, they were judged to be pseudogenes or relics, and assigned
a trypsinogen isozyme label consistent with their position in the trypsinogen/TCR locus
(Rowen et al., 1996).

However, recent additions to the EST database have included sequences
corresponding to both human and mouse T1. Their hypothetically spliced and translated
genomic sequences are 66% identical at the amino acid level and align with no indels. The
mouse and human proteins are clearly orthologous. They are highly conserved and are
likely to have an important function. At this point, there is not enough data to speculate on
what this function might be. Furthermore, since these genes have a function other than
tryptic activity, a re-evaluation of the nomenclature will be necessary. It will no longer
appropriate to refer to them as “trypsinogen™ T1.

The creation of novel function in “trypsinogen” T1 is a clear demonstration of the
creation of a new gene from a multigene family. Other cases may exist. For example,
although not trypsinogens, both the Dissostichus and Pleuronectes “trypsinogens” most
likely are direct descendants from an ancestral trypsinogen gene. The divergence of these
cold-adapted fish trypsinogens may have occurred during vertebrate evolution, but the date
of this event cannot be determined. There are several other vertebrate-specific serine
proteases that closely resemble trypsin. These include kallikrein and prostate-specific
antigen. These proteins may have diverged from the trypsins during the course of
vertebrate evolution. Considering how little is known of vertebrate genomes, the
trypsinogen genes could conceivably have spawned many novel vertebrate-specific genes.

The trypsinogens may even be grandparents, in the sense that a gene derived from a
trypsinogen ancestor has in turn become ancestral to another novel gene. The antifreeze
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gene found in an Antarctic fish, Dissostichus mawsoni evolved by replacing the center
region of a putative trypsinogen gene with a repeated nine-nucleotide element encoding
hydrophobic residues (Chen et al., 1997; Logsdon and Doolittle, 1997). It retains the
trypsinogen signal sequence and 3' untranslated region. The resulting gene bears no
resemblance to a serine protease, but clearly evolved from the putative trypsinogen gene.
However, as discussed above, the putative Dissostichus trypsinogen gene is a homolog of
the Pleuronectes “trypsinogen,” and is not a true trypsinogen. However, it is likely to
have a trypsinogen gene as its ancestor, thus participating as both a child and a parent in a
multi-generational spectrum of trypsinogen-derived genes.

Evidence suggests that there may have been a major phase of gene duplication at the
dawn of vertebrate evolution (Holland and Garcia-Fernandez, 1996). The trypsinogens
may have participated in gene duplications at this time, and given rise to many of their
apparent heirs, such as “trypsinogen” TI1, kallikrein, prostate-specific antigen, and
Pleuronectes “trypsinogen.” If this were the case, one would expect all vertebrates to have
essentially the same complement of genes. This hypothesis can be tested when complete
vertebrate genomes are available from species representing a variety of vertebrate classes.

The interest and value of studying multigene family evolution is likely to grow as
more sequences become available. Studying such families will reveal much about the
dynamics and mechanisms of evolution.
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Figure 3.2. A stereoscopic view of the trypsin backbone. The MAGE program (David
Richardson, author) was employed to visualize rat trypsin II (PDB designation ! ANE}.
The “IVGG” amino-terminus is tucked into the interior at the top of this view (residues 16-
19 of 1ANE; orange). The three catalytic residues are shown in green (residues 57, 102,
and 190), with the artificial substrate benzyldiamine (pink) in the active pocket. Cystine
bridges are shown in yellow. A surface loop that has been subject to indels during
vertebrate evolution is shown in magenta (residues C59-C62).
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Figure 3.4. Multidimensionally scaled vertebrate trypsin sequence distances. Each point
represents a trypsin sequence; The distance between two points corresponds to the
calculated phylogenetic distance between the corresponding sequences. The program
SPSS® 7.5 (SPSS, Inc.) was used to scale the trypsin pairwise distance matrix (from
Protdist) as ratio data with a Euclidean distance model. Iterations continued until the S-
stress altered by less than 0.0001 between iterations.
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Figure 3.5. Stress vs. Dimensions. Data for Figure 3.4 (@) and Figure 3.12 (M) was
sequentially multidimensionally scaled into successively fewer dimensions. The stress at
each dimension is shown. There is a gradual rise in stress through two dimensions, with a
larger rise occurring between two dimensions and one dimension, suggesting that two
dimensions is sufficient to portray the data.
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Figure 3.6. Group I vs. Group II. A multidimensionally scaled projection of the trypsin
phylogenetic distances. Each point represents a trypsin sequence; The distance between two
points corresponds to the calculated phylogenetic distance between the corresponding
sequences. Group I trypsins are coded blue; Group II trypsins are coded red; the lamprey

trypsms arc green.



151

‘Ajiurey suaBnjnu papiaip Sunnsai ay) *)) ‘uonesijdnp ‘g ‘uonsosui ‘y
‘Anjedojje suoSninw 10j JuNodoE ued swisiueydsw [exousd om ], “Apwey susSninw uoFoursdAn oy jo uoisiap owmedofy ‘2'¢ aInSig

- - 5

uonesydng
uol3I3su|




—_—
Dogfish g
Chicken1 @
Xenopus I
o
Salmon III Xenopus 51
Bovinc Cg ~ Mouse Ly Human T6
Rat [V uman T4
Mouse T4" oRat c Do a - Human T8
Dog C. Y _ Human T9
Codl g P& @\hleTeTa0
Pufferfish Raig & e T8-
Salmon RatV Rar 11
P. magellanica
L
Chicken 29
Lamprey B1 @
Lamprey Al d

152

Figure 3.8. Group I vs. Group II. A shadow of a three-dimensional multidimensionally
scaled projection of the trypsin phylogenetic distances. Group I trypsins are coded blue;
Group II trypsins are coded red; the lamprey trypsins are green.
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Figure 3.9. Group I vs. Group II. An alternative shadow of a three-dimensional
multidimensionally scaled projection of the trypsin phylogenetic distances. Group I
trypsins are coded blue; Group II trypsins are coded red; the lamprey trypsins are green.
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Figure 3.10. §' vs. 3'. A multidimensionally scaled projection of the trypsin phylogenetic
distances. Each point represents a trypsin sequence; The distance between two points
corresponds to the calculated phylogenetic distance between the corresponding sequences.
3’ trypsins are coded blue; S' trypsins are coded red; sequences with unknown syntenic

relationships are black.
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Figure 3.11. Anionic vs. Cationic. A multidimensionally scaled projection of the trypsin
phylogenetic distances. Each point represents a trypsin sequence; The distance between two
points corresponds to the calculated phylogenetic distance between the corresponding
sequences. Anionic trypsins are coded blue; cationic trypsins are coded red.
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Figure 3.12. A multidimensionally scaled projection of the rodent group I trypsin
phylogenetic distances. Each point represents a trypsin sequence; The distance between two
points corresponds to the calculated phylogenetic distance between the corresponding
sequences.
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Figure 3.13. A hypothetical phylogeny of the vertebrate trypsinogens. Group I branches

are blue; group II branches are red. Branches in green diverged before group I and group II
split.
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Figure 3.14. A Fitch-Margoliash phylogeny of forty-two vertebrate trypsinogens.
Distances from the program protdist, with the Dayhoff matrix, were fed to the program
fitch, with global rearrangements and 20 random “jumbles” (Felsenstein, 1993).
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Figure 3.15. A Fitch-Margoliash phylogeny of thirty-two vertebrate trypsinogens. The
graph is calculated as described for Figure 3.14. The numbers adjacent to nodes represent
the number of times the clade distal to the unlabeled node was recovered during 100 delete-
half-jackknifes of the original data (but with only one random “jumble’). Group I branches
are blue; group II branches are red. Branches in green diverged before group I and group II
split. Black branches are indeterminate.
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Figure 3.16. Weighted statistics of thirty sequences demonstrating distance differences
between within-class comparisons (blue) and between-class comparisons (green). See text

for a more complete description of methodology.
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Figure 3.17. Pseudogenes added to the vertebrate trypsin phylogeny. Pseudogene names
are in pink; pseudogene branches added to the phylogeny manually are bold. Group I
branches are blue; group II branches are red. Branches in green diverged before group I
and group II split. Black branches are indeterminate. The methodology of pseudogene
addition is explained in the text. Pseudogene branch lengths are arbitrary; in this case, they
have been selected for aesthetics.
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Figure 3.18. A Fitch-Margoliash phylogeny of thirty-two vertebrate trypsinogens, with the
addition of five additional highly diverged sequences. The resulting phylogeny is highly
skewed. The graph is calculated as described for Figure 3.14. The numbers adjacent to
nodes represent the number of times the clade distal to the unlabeled node was recovered
during 100 delete-half-jackknifes of the original data (but with only one random “jumble”).
Group I branches are blue; group II branches are red. Branches in green diverged before
group I and group II split. Black branches are indeterminate.
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Figure 3.19. A phylogeny of the rodent group I trypsins. Constructed with the program
DNAML with global rearrangements and 20 random “jumbles” (Felsenstein, 1993).
Values at nodes are the result of 100 delete-half jackknifes of the original data (computed
with global rearrangements but only one random “jumble”). Pseudogenes are in gray and
were subsequently added under the protocol outlined for Figure 3.18.
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Table 3.3. PCR primers used in the analysis of the chordate trypsinogens.

Degenerate Serine Protease Primers
H CTSWCWGCWGCYCAYTG

S YMSWGGKCCNCCRGARTC

Tunicate Trypsinogen Sequencing Primers

TUN2F1 TGGAACACGTGGAAAATAGTTCTC
TUN2R1 CGAGAACTATTTTCCACGTGTTCC
TUN2F2 CAAGCAGCGGAGGAACTATCTCCG
TUN2R2 TCCACTAACAGTACACGCGGTGTC
TUN19F1 GGTGTATACACCCGTGTTGCAGTG
TUNI19R1 ACACTGCAACACGGGTGTATACAC
TUN2R3 TTTGGATGATTAAGGATTTTTATTG

Trypsin specific primers

TRYA TCCGGATCCTGATGACAAGATCGTTGGGGG
TRYB TCCGGATCCTTCTGTGGAGGCTCCCTCAT
TRYC TCCGGATCCATAGCCCCAGGAGAC

TRYD TCCGGATCCTTGGTGTAGACACCAGG

TRYF CTGGATCCGTGAGACTGGGAGAGCAC

TRYR CTGGATCCGAATCCTTGCCTCCCTC

Lamprey Trypsinogen Sequencing Primers

LT2 AGCCAGTGGGTCCTGTCTG
LT3R TCACGAAGATGTTGTGCTC
LT3 TCATGCTCATCAAGCTGTCCTC
LT4R ACGCACATGAGGACGTCGGGAC
LTSR AAGAGTAGTGTGTTAGATCCAC

XTAS CCGGTGGCCCCGTGGTGTG
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Table 3.4. Signal peptides and activation peptides of the chordate trypsinogens. The signal
peptidase cleavage site is the predicted site (see text); only in the case of the canine (marked
with *), have the sites been determined experimentally (Carne and Scheele, 1982). A
dashed line (-) represents undetermined sequence. Intron/exon boundaries, where known,
are indicated by bold lettering.

B. villosa MKIVILLLLGLAAVNA DK - IVGG
B. schlosseri 1 MKVFAILLLAFCGANA DK 1IGG
B. schlosseri 2 MKVFAILLLALYGANA DK 1IGG
Lamprey Al MHGLILALLVGVAAA APYMYEDH IVGG
Lamprey A2 MHGLILALLVGVAAA APYMYEDH IVGG
Lamprey B1* ---LIFALLVGTAAA APYMYEDH 1VGG
Lamprey B2} --GLIFALLVGTAAA APYMYEDH IVGG
Dogfish* =00 e APDDDDK IVGG
Cod 1 RKSLIFVLLLGAVFA EEDK IVGG
P. magellanica MRSLVFVLLIGAAFA TEEDK IVGG
Pufferfish® @ === - LIAAAYA APIDEDDK IVGG
Salmon [ MISLVFVLLIGAAFA TEDDK IVGG
Satmon I @ =0 o——eee—— FAVAFA APIDDEDDK IVGG
Xenopus I MKFLLLCVLLGAAAA FDDDK IIGG
Xenopus 51 MKFLVILVLLGAAVA FEDDDK IVGG
Chicken 1 MLFLVLVAFVGVTVA FPISDEDDDK IVGG
Chicken 29 MLFLFLILSCLGAAVA FPGGADDDK IVGG
Pig8 = e FPTDDDDK IVGG
Bovine A MHPLLILAFVGAAVA FPSDDDDK IVGG
Bovine C? ---FIFLALLGAAVA FPVDDDDK IVGG
Dog A° MNPLLILAFLGAAVA TPTDDDDK IVGG
Dog C* MLTFIFLALLGATVA FPIDDDDK IVGG
Human T4 (T) MNPLLILTFVAAALA APFDDDDK IVGG
Human T6 MNPLLILAFVGAAVA VPFDDDDK IVGG
Human T8 (1) MNLLLILTFVAAAVA APFDDDDK IVGG
Human T9 (III) MNPFLILAFVGAAVA VPFDDDDK IVGG
Human T3 (5’ ¢) HEDLHLPALLGAAAT FPTDDDDK IVGG
Rat I MSALLILALVGAAVA FPLEDDDK IVGG
Rat II MRALLILALVGAAVA FPVDDDDK IVGG
RatC MLALIFLAFLGAAVA LPLDDDDDK IVGG
Rat IV MLISIFFAFLGAAVA LPVNDDDK IVGG
RatV MKICIFFTLLGTVAA FPTEDNDDR IVGG
Mouse T4 MKIITFFTFLGAAVA LPANSDDK IVGG
Mouse TS MKIIFFFTFLGAAVA LPANSDDK IVGG
Mouse T7 MKTLIFLAFLGAAVA LPLDDDDDK IVGG
Mouse T8 MRALLFLALVGAAVA FPVDDDDK IVGG
Mouse T9 MNSLLFLALVGAAVA FPVDDDDK IVGG
Mouse T10 MSTLLFLALVGAAVA FPVDDDDK IVGG
Mouse T11 MNALLILALVGAAVA FPVDDDDK IVGG
Mouse T12 MSALLFLALVGAAVA FPVDDDK IVGG
Mouse T15 MNAFLILALVGAAVA FPVDDDDK IVGG
Mouse T16 MSALLFLALVGAAVA FPVDDDDK IVGG
Mouse T20 MSALLILALVGAAVA FPVDDDDK IVGG
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Table 3.6. Predicted 1soelectr1c points and charges of the chordate trypsins (calculated with
the program DNA *®, Madison, WI). Each Osteicthyes or tetrapod trypsin is assigned to
either Group I or II based on phylogenetic considerations (see text). Experimental values
(in parentheses) for isoelectric points are from Walsh (1970), Liitcke et al. (1989), and
Asgeirsson et al. (1989). Note that measured isoelectric points depend not only on the net
charge, but also on the distribution of the charge (Smalés et al. 1994). Charge predictions
do not take this into account.

Isozyme Group Iscelectric_Point ] Charge at pH 7.0
Tunicate 3.9 -13.18
Lamprey Al 5.2 -5.62
Lamprey Bl 5.8 -3.62
Dogfish I 4.9 -10.11
Cod I I 6.8 (6.6) -0.79
Cod X I 5.8 (5.5) -5.95
P. magellanica I 5.8 -5.28
Pufferfish I 6.2 -2.61
Salmon [ I 5.9 -3.62
Salmon 1[I I 5.5 -4.62
Salmon III II 8.1 4.21
Chicken Pl I 8.2 5.03
Chicken P29 I 4.6 -9.78
Xenopus I 6.7 -0.79
Xenopus 51 I 7.7 2.21
Dog A I 4.9 -5.94
Dog C II 8.3 6.04
Pig II 7.9 (10.8) 3.21
Bovine A I 4.8 -7.62
Bovine C II 8.3 (10.1) 6.03
Human T4 (I) I 7.5 1.28
Human T6 I 6.9 -0.39
Human T8 (II) I 5.0 -6.65
Human T9 (III) I 6.8 -0.55
Mouse T4 I 6.8 -0.62
Mouse T35 II 6.5 -1.62
Mouse T7 I 8.3 6.20
Mouse T8 I 6.3 -1.79
Mouse T9 I 5.9 -2.79
Mouse TI0 I 6.7 -0.79
Mouse Tl1 I 5.2 -4.78
Mouse TI12 I 5.6 -3.78
Mouse TIS5 I - 5.0 -5.78
Mouse T16 1 5.0 -5.78
Mouse T20 I 4.4 -9.78
Rat | I 49 (4.4) -6.62
Rat II I 4.8 (4.3) -6.78
Rat C IT 8.1 (8) 4.20
Rat IV II 6.9 (6.2) -0.29
Rat V II 5.1 -9.11
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Table 3.7. Genbank identification numbers (GIs) for the human trypsinogen ESTs, as of
November 9, 1997. Isozyme identifications are in bold.

T4

1183500 1321005 1324454 1349808 1350157 1350390 1358723 1383458 1947217
1947222 1947267 1947302 1947441 1947671 1947685 1947767 1947841 1947876
1947953 1948021 1948066 1948120 2015973 2016030 2016134 2016136 2018354
2018413 2018415 2018424 2018431 2018496 2018504 2018544 2018665 2018691
2018790 2018855 2018892 2018989 2019014 2019039 2019046 2019072 2019152
2019195 2019233 2019234 2019267 2019367 2019440 2019467 2019475 2019554
2019557 2019623 2019627 2019634 2019697 2019740 2022066 391091 391188
704030

Té6
1947519 1947827 1948133 1965361 2015994 2019622

TS

1324185 1324290 1349770 1350016 1358098 1384253 1503188 1934275 1941124
1947213 1947436 1948039 1965364 2015956 2015978 2015987 2016017 2016029
2016033 2016110 2016148 2018350 2018364 2018381 2018394 2018405 2018421
2018423 2018527 2018547 2018574 2018584 2018592 2018599 2018633 2018646
2018654 2018662 2018696 2018720 2018805 2018808 2018812 2018893 2018907
2018913 2018923 2018954 2018955 2018957 2018978 2019049 2019102 2019132
2019162 2019167 2019243 2019284 2019318 2019338 2019352 2019363 2019366
2019371 2019398 2019410 2019427 2019430 2019442 2019447 2019449 2019460
2019476 2019510 2019513 2019563 2019576 2019588 2019618 2019619 2019653
2019718 2019720 2019725 2019734 2019752 2019772 2038313 391109 391414
391419 391425 475301 475318

normally-spliced T9
1947892

alternatively-spliced T9
1968122 611445 1471327 1525435 1634309 1960755 1960950

un-assigned T9
1183818 1329462 1423350 2015975 2018936 2397944
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Table 3.8. Genbank accession numbers and tissues of origin for the mouse trypsinogen
ESTs, as of November 24, 1997. [sozyme identifications are in bold.

T7
AA260562 liver
AA390094 lymph node
AA537998 diaphragm
AA570969 diaphragm
AA572665 diaphragm
AA615050 colon
AA638704 colon

T8
AA066788 diaphragm
AA066988 diaphragm
AA239834 liver
AA268196 liver
AA530444 diaphragm
AA537800 diaphragm
AA571068 diaphragm
AA571214 diaphragm
AA571693 diaphragm
AA572325 diaphragm
AA572330 diaphragm

T9
AA110460 testis
AA168368 spleen
AA512480 colon
AA537785 diaphragm
AA571280 diaphragm
AAB07527 colon



AFTERWORD

It is my hope that interest in this dissertation may last some time into the future.
Perhaps a few temporally distant readers may only know of microfilm as an antique
curiosity. The dynamic nature of knowledge and publishing may encourage a future reader
to search more versatile archives. To this end, such a reader may wish to start with my web
page, currently located at weber.u.washington.edu/~roach. I will post relevant updates and
related information to this web site.
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APPENDIX A. DOUBLE-BARREL SHOTGUN ALGEBRA

I define the length of an insert to be 1, without loss of generality. Insert length is
assumed to be constant. For this appendix, in a departure from the notation of the main

text, I assume a constant sequence read length of length f, with fe [0,0.5]. If f50.5, the
fragments overlap at the center of the insert. To maintain as much simplicity as possible, I
will consider only the limiting case as T—0. I will explicitly calculate only the probability

of obtaining a single scaffold (i.e., all clones form one scaffold). However, the equations
developed along the way can be adapted with a healthy dose of algebra to give distributions
for the lengths of scaffolds as well as other variables of interest. [ assume stepwise addition
of characterized inserts to a project, in order to aid my descriptions. I will refer to these
inserts (i.e., “clones”) as C,, C,, or C,, with the subscript designating the order of addition
to the project. Adding all the clones simultaneously does not alter the results. I assume a
circular target with G>n. A less restrictive assumption on target size can be made with little

loss of accuracy.'

To aid my descriptions I will refer to each sequence read by whether or not it is the
right or left read from an insert, with a subscript for which of the inserts the sequence read
is obtained from. Thus the left read from C, is designated L,; the right read from C,isR,.

I will use the symbol M to designate overlap. I will use S to indicate the state of a

project with a single scaffold. Therefore P(SIL,NL,) means “the probability of a project
having a single scaffold given that the left end of clone [ overlaps the left end of clone 2.”
P(SI(L,NL,)a~(L,NR;)) means “the probability of a project having a single scaffold given

that the left end of clone 1 overlaps the left end of clone 2 but not the right end of clone 3.”

" If G is smaller than this, it becomes possible for islands to wrap around on themselves.
This alters the number and character of the possible topologies. It will tend to increase the
probability of a single island, possibly quite significantly. If the target is linear, slight
“edge effects” alter the calculations. These effects tend to be minor, particularly if G>>I.
Therefore, the calculations presented here as exact for really big circular targets are
actually better approximations to real linear targets than they are to real circular targets.
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To aid in the descriptions that follow, cartoon sketches of possible clone topologies

are provided in Figure A.1 and Figure A.2.

A.1 ONE CLONE
One clone, by definition, will always form one scaffold.

A.2 TWO CLONES

There are two cases to consider.

A2.1 Casel +2>2f2=>1
The second clone will intersect the first clone with probability 2/G. Note that the

average number of clones in a scaffold will be:

1(3)4-2(1—3) -2
G G)_°"G
3

5)+(-5) &

A2.2 Case2 f<i
The second clone will intersect the first clone with probability 6//G. Note that the

average number of clones in a scaffold will be:

(§)-%) %

2(6—Gf—)+l(l—%) ) l+%£

A.3 THREE CLONES
The cases with one and two clones were relatively simple. The case with three

clones is also simple, in that no complex mathematics is needed, but some care must be
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taken to ensure that all the topologies are properly accounted for. There are three cases to
consider.

A3.1 casel {=>f>4

When f>4, a fragment cannot fall in the unsequenced gap between the two
characterized ends of a clone without overlapping at least one of the ends. This limits the
number of topologies that must be considered.

There are two possible configurations for the first two clones. Either they overlap,
or they do not.

A.3.1.1 configuration | C,nC,

This configuration will occur with probability 2/G. All possible extents of overlap
are equally likely. Fixing the leftmost end of C, at 1, then the leftmost end of C, will vary
from O to 2. The expected probability of C, overlapping either or both of C, and C, can be

calculated as

1 2
¢ [B-0dx+4 [(1+x)d

0 1
2 2G

For example, when the leftmost end of C, is at the origin, the leftmost end of C, can be
anywhere from -1 to 2 and still overlap C, or C,, giving it a probability of 3/G of joining
the scaffold. Due to symmetry, the two integrals contribute equally.

A.3.1.2 configuration 2 ~(C,NnC)

This configuration will occur with probability 1—%. All possible non-overlapping
states are equally likely. Fixing the rightmost end of C, at 0, and letting x represent the
rightmost end of C,, the probability of C, overlapping both of C, and C, is:

G-3

-};j(l—x)dx+-}; dex+g;Gﬁx—(G-3))dx :

G-2 T GG-2)
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Again, due to symmetry, the first and last integrals give the same result.

A.3.1.3 combining the probabilities for the two configurations
The probability of obtaining a single scaffold given += f >4 is the sum of the

probabilities from the last two sub-sections:

P(S)=(l-—2) 1 +2 5 6

G)G(G-2) G26 &

A3.2 case2 {=>f2>4

There are four possible topologies for the first two clones.
A.3.2.1 configuration I LNnL,

This configuration will occur with probability 2f/G. Explicitly writing out the
probability of the third clone intersecting the scaffold formed by the first two clones:

P(S)=

P(SIR,NL,)
+P[SI(R,AR )A~(R,NL,)]

+P[SI(R,NL,)a~(R,NL,)a~(R,"R,)]
+P[SIR,NR,)A~(R;NL )a~(R;AR )A~(R,NL,)]

+P[SI(L;NL )A~(RyNL )A~(R,NAR IA~(R,;NL,)A~(R;MR,)]
+P[SI(L,"R )A~(R,NL )A~(R ;AR )A~(R,NL)A~(R;NR,)A~(L,NL )]

+P[SI(L,nL)a~(R;NL)A~(R;NR A~(R;NL,)A~(RAR)A~(L,NL )a~(L;NR,)]
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+PISIL,OR,)A~Ry L )A~(Ry "R JA~Ry L )A~Ry R, )A~(L AL, JA~(Ly R DA~y L) J=

2fiG
+2fIG

LLH8F—14f
4fG

+—1+8f—l4f2
4fG

+0

+8f—8f2—1
4fG

+0

LoLH8f—14f7
4fG

8f—8f2—1+3(—l+8f—14f2 L16f?
4fG 4fG 4fG
-2+16f—-17f2

2fG

The following identities help in the above calculation:

. P(SIR,NL)=2fIG
2. Ry cannot hit L, if R; hits R, so P[SI(R,"R,)a~(R,"L,)]=P(SIR,NL,)=2f/G

3. P[SI(R;NL)A~(R,NL )A~(R,NR))]=



41

A 2f
i{](f—x)dﬁ [x=prax+ j(x—f)—[x—a—zf)]de
0 S -

$f-1

2f

L 1-2f 2f
i’[!(f—x)dx+ I(x—f)dx+ f(l—3f)dx]
0 i

1-2f

2f

t([s-42) +[42 -] +a-3p@r-D)

2f -
-&(éi+l_6f2—+9f2+(—l2f2 +7f—l))

2f -
{;(—1+8};—l4f2 )
2f -
—1+8f-14f°
4fG

4. If R, hits R, it cannot hit L, so:

PISI(R,AR)A~(R,NL,)a~(Ry R Ja~(RyNL,)I=P[SI(R,AR,)A~(R,AL ) A~(R,AR)]=

-1+8f—14f*
4fG

and this probability is in turn equal to P[SI(R;NL,)A~(R;"L,)A~(R,NR)].
5. If L, hits L, then R, hits R,, so:

P[SI(L,NL)A~R;NL)A~(R,NR )a~(R,NL,)A~(R,NR,)]=0

6. If L, hits R, then L, cannot hit L, and R, cannot hit L,, L, or R, so:

P[SI(L;nR )A~(Ry;NL )A~(R;NAR DA~(R;NL)A~(R;NR,)A~(L,NL, ) ]=

203
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P[SIL;nR)A~(R;NR)]=

1-2f 27
g,( [2fdx+ j(l—x)dx}

1-2f
2f
Her-4H+@fr-9)
2f
s(4f-4f-4)
2f

8f-8f1-1
4fG

7. If L, hits L, then R; hits R, so:
P[SIL;NL)A~(R;NL )aA~(R;AR Ia~(R ;AL )A~(R;NR,)A~(L,AL )a~(L,NR,)]=0

8. If L, hits R, then: R, cannot hit L,, L,, or Ry; L, cannot hit L,; L, hits L, if and only if
R, hits R,. Therefore:

P[SIL;AR )A~(RyNL, )A~(RNR YA~(RyNL)A~(R MR, )A~(L, AL, )A~(LNR  Ja~(L,NL,) 1=

P[SKL,AR,)A~(R,AR )a~(L,AR,)]=

—1+8f-14f°
41G

This last equality is symmetrical to the case in identity 4.

A.3.2.2 configuration 2 ~(C,nC)

Since C, and C, do not overlap, in order for there to be one scaffold after the
addition of C;, it must link C, and C,. I consider only the case where C, is to the left of C,.
This case is symmetrical with the case where C, lies to the right of C,. The probability of
one or the other of these cases occurring is 1-2/G. However, with probability 1-4/G, the
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first two clones will be greater than a clone length apart, with zero chance that the third
clone will link them into one scaffold. I will condition the following probabilities on (i) C,
lies to the left of C,, and (ii) C, and C, are not separated by more than one clone length.
With these conditions, the probability of C; hitting both C, and C, is:

PISI(R;AR A(R,NL,) 1+P[SIL; R )AL,NL)1+P[SKL,ARAR,NL,)]=

-1+8f -6f*
2G

The following identities help in the above calculation:

! 1 2
L. PISIR,AR)AR,NL)1= [ (f - x)dx + [0 = ;G
0 !

2

s I
2. PISILy R )AL,ALy)}= [ (f - x)dx + [0 = f
0 f

2G
1-2f 1 3 )
3. P[SI(L,AR )A(R,NL,)]= j (x+4f —1)dx+ I(l“x)d“—”ifa 8f
Y 1-2f

A.3.2.3 configuration 3 R,NL,
This configuration will occur with probability 2f. Note that this is symmetrical with

the configuration L,R,, which will also occur with probability 2f, so [ will not explicitly

address L,NR,. Explicitly writing out the probability of the third clone intersecting the

scaffold formed by the first two clones:

P(S)=

P(SIR,NL,)

+P(SIR,NR,)



+P[SI(R,NL)A~(R;NL )A~(R,NR )]
+P[SI(R,AR,)A~(R,NR,)]
+P[SI(L;NR )a~(Ry;NL,)A~(R;MR,)]
+P[SIL, R,)a~(L, R,)]=

—1+8f-T7f>
fG

The following identities help in the above calculation:
1. P(SIR,NL,)=2f/G
2. P(SIR,NR,)=2f/G

~1+8f—14f*
4fG

3. P[SI(R;NL,)A~(RyNL))A~(R,MNR))]=

41

J’ (x+1-2f)dx + TZfdx

) ~1+8f7-8f2
. R A~ =2 e =
4. P[SI(R,NR,)A~(R,MR,)] 2/G 4fG

5. P[SI(L;NR )A~(RyALy)A~(RAOR,)I=P[SKL,NR Ja~(R,AL)A~(L,AL,)]=

1-2f

f 2f
%(_f(f—x)dﬁ Jex=prde+ f(1—3f)dx]
0 ! -

1-2f
2f

~1+8f—14f2
AfG
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3£-1 2f
[ Gc+1-2f)dx+ [2fdre Le8f—8/?
A~ =2 /-1 =_ 87 =0f
6. P[SI(L,"R,)a~(L,NR))] : 211G 4fG

A.3.2.4 configuration 4 (C,NCOA~((R,VL))N(R,VL,))

This is the case where the clones overlap, but still form two scaffolds because none
of their characterized ends overlap. The clones are interleaved. Again, this can occur in two
symmetrical states, one with the left end of C, to the left of the left end of C,, and one with
C, to the right. Each of these states will occur with probability (1-3/)/G. I will condition on
the state with C, to the left in the following. Explicitly writing out the probability of the
third clone intersecting the scaffold formed by the first two clones:

P(S)=

P[SI(R,NL)A(R,AL,)]

+P[SI(R,AR )A(R,AL,)]

+P[SI(R;MR)A(R,MR,)]

+P[SI(L,AR )A(L,AR,)]=

10f-2
G

The following identities help in the above calculation:

1=-3f
f(f—x)dx_sf_l

o 3 _
L PSIRALOARAL) == —2 == =05




208

1-3f

A =2 = =

2. P[SI(R,NR)A(R,NL,)] (1-3H)G _ 2G
1-3f

J(f -0y 5F—1

A - 0 = _

3- PISIRORAMRAR== 3567706
1-3f

J(f - xpdx 5F-1

4. PSKL;NR)A(L;MR,) =2 - !

(1-3)G  2G

A.3.2.5 combining the probabilities for the four configurations
With each possible configuration represented by a roman numeral, we have:

P(S)=P(i)P(Sli)+P(ii)P(Slii)+P(iii) P(Sliii)}+P(iv) P(Sliv)=
(g)(-zﬂﬁf-17f2)+2(l)(—1+8f-6f2)
G 2/G G 2G

A28 )l 220

—11+88f —111f2
GZ

A.3.3 case3 +2f=0

There are four possible topologies for the first two clones. These are the same
topologies considered in Case 2. However, the probabilities must be computed differently,
as some of the final topologies that were previously impossible are now possible. Each of
the configurations is as described in Case 2, so I will omit explanations where they are
identical to Case 2.

A.3.3.1 configuration 1 L NL,
P(S)=
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P(SIR,NL,)

+P(SIR,NR,)

+P[SI(RyAL,)A~(R,"L,)]

+P[SI(R,NR,)A~(R,MR))]

+P(SIL,R,)

+P[SIL, R )A~(L,"R,)]=

2fIG

+2fIG
+2G
+2G
+2fIG
+12G

=15/2G

A.3.3.2 configuration 2 ~(C,NC)

P(S)=P[SI(R,"R)A(R,NL,) 1+P[SI(L,AR )A(L;NL,) ]+ P[SIL,NR )A(RNL,)]=

The following identities help in the above calculation:

f2
2G

1. j(f—x)dx+jo=
0 f
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f 1 f?.
2. {(f—x)dx+£0=§
1-4f 1-2f | 4fl
3. |0de+ | (x+4f—Ddx+ [(1-x)dx="1—
i‘; l-'[f I-J;f G

A.3.3.3 configuration 3 R,NL,

P(S)=P(SIR,NL,)

+P(SIR,NR,)

+P[SI(R;nL)A~(R,MR )]

+P(SIR,NR,)

+P[SI(L,NR,)a~(L,NL,)]

+P(SIL,NR,)=

of

G

A.3.3.4 configuration 4 (CNCIA~((R,VL)N(R,VL,))
P(S)=

P[SIR,NAL)OAR,NL,)]

+P[SI(R,NR)A(R,NL,)]

+P[SI(R,NR,)A(R,NR,)]
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+P[SI(L,nR)A(L,NR,)]=

212
(1-3/)G

The following identities help in the above calculation:

j(f x)dx+lf€)

___f
1. P[SI(R;NL )ARyNL,)]= (1-3/)C 2(1-3)G

J'(f x)dx+lf6

fl
2. P[SI(R;AR)DAR,NL,)]= (1-3/)G  2(1-3/)G

j(f x)dx+lf6

__r
3. P[SI(R,AR )A(R,MR,)]= (1-3/)G 21-3f)G

1-3f
j (f - x)dx+ jo )
4. P[SI(L;NR,)A(L;NR,)]=> /

(A-3A)G 2(1—3f)G

A.3.3.5 combining the probabilities for the four configurations
P(S)=P(i)P(Sli)+P(ii) P(Slii)+P(iii) P(Sliii)+P(iv)P(Sliv)=

(A G A )

A.4 MORE THAN THREE CLONES

The algebra quickly gets more difficult. However, a few simple statements can be
made.
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As f becomes a smaller fraction of the clone length, more topologies become
possible. This is the same as holding f constant and increasing the clone length, which is
what is done in actual practice when longer inserts are used to build clone libraries. This is
a partial explanation for why long clones are better. The more topologies the clones have
available to them in order to form a single scaffold, the more likely they are to form a single
scaffold. The probability of clones forming a particular topology never drops as the ratio of
clone length to fincreases. This probability is illustrated in Figure A.3 for the case of three
inserts.

It is interesting to note that this curve is not smooth at the ratio of three. I predict
that this is the only point at which this curve will not be smooth, regardless of the number
of inserts (note that the curve is not defined for ratios less than two). Below a ratio of three,
the opposite ends of the insert are present in each other’s potential region of overlap. This
results in a concave curve. Above a ratio of three, I predict that the curve will be both
smooth and convex.

The number of topologies obviously does not rise continuously as f diminishes.
Rather the number of topologies takes discrete jumps at each fe { 1/xlx is an integer < n}.

The maximum number of topologies is reached when f=1/n, so there is no further gain in
the number of topologies by increasing the clone length beyond nf. Since, in practice, n is
universally greater than 100, and f for sequencing projects is at least 400 bp, this implies
no topology gains for subclones longer than 40 kb. Since 10 kb is the maximum routine
length for sequencing templates, this limit will not be reached in practice.

Evaluating the number of topologies is not a simple task. Nevertheless, it is
undoubtedly feasible, given sufficient effort. Lee Newberg (1993 and 1996) has evaluated
the number of possible topologies for traditional random subcloning maps.> By his
counting, the number of topologies for n=2 is 2, for n=3 is 10, and for n=4 is 94. This
number rises exponentially, with 1.3x10'° toplogies at n=10 and 3.2x10? topologies at
n=20. The number of pairwise topologies will rise even faster. Furthermore, the smaller
the ratio of f to clone length (up to the 1/n limit), the faster the rise.

? Newberg uses a slightly different definition of topology. He treats the clones as
distinguishable. However, his results are easily adaptable.
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The number of topologies affects primarily the probability of the clones forming a

single scaffold. This will also tend to increase the length of the average scaffold. Another

factor intfluencing the length of the average scaffold will be the clone length. With the

number of topologies held constant (i.e., with 1/x-1<f<l1/x), the average scaffold length

will rise proportionally with the clone length. This rise will continue even after the limit of
Jf<l/n is reached.

Therefore there is always a monotonically increasing rise in average scaffold length
as insert length is increased. I postulate that this curve will be convex, indicating that the
most benefit from increasing insert length will occur with shorter inserts (with the
exception of insert:fragment ratios below three). I have not proved this postulate.

Despite the increase in scaffold length with respect to insert length, this increase is
not always useful. Consider the limiting case of a single clone (n=1). The single scaffold
formed will grow linearly in length with respect to insert length. If the insert length equals
the target length, this scaffold will be complete by definition. This increase in scaffold
length is however of little use to the researcher: as the completeness (i.e., resolution) of the
map decreases, the density of SMGs diminishes. Increases in scaffold length accompanied
by increases in SMG density are what is needed at the lab bench. Such an increase cannot
be gained by longer clones alone — the longer clones must be accompanied by an increase
in available topologies. Thus, although there is a theoretical gain in scaffold length above a
clone:read ratio of n, there is no further practical gain. Again, this last point can be
considered trivia, as the clone:read ratio will never reach n in practice.’

Much work remains to be done on this difficult problem and it may be that
approaches that remain hidden today will ultimately provide more insight for a mathematical

model for pairwise end sequencing.

? One might imagine that it could happen during a BAC end sequencing project, where the
clone:read ratio is approximately 100000:400 = 250. However, such sequences are
poorer quality sequences that will not usually be used for constructing finished sequence.
They would rarely be used as part of a project undertaken strictly as outlined in this
dissertation. Additionally, although 250 clones might be used for analyzing a small
target, 250 is significantly less than the actual n that would be used for a human-genome-
sized project (see Venter et al., 1996; Siegel et al., in preparation).
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Figure A.l1. Topologies for one- and two-clone double-barrel configurations. Single-

scaffold topologies are highlighted in red. In some instances, sequence islands will span
regions depicted here as SMGs. '
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Figure A.2. Topologies for three-clone double-barrel configurations. The number of
possible topologies rises rapidly with the number of clones. Single-scaffold topologies are
highlighted in red. The first and third configurations shown here represent any topology in
which their overlapping sequence ends form a sequence island, even if all three ends do not
mutually intersect. In some instances, sequence islands will span regions depicted here as
SMGs.



216

70

d

()]
o
L l

Probability of One Scaffold (xG°)

20 - . . . 1 1 ; ‘ ——
2 3 4
Ratio of Insert Length to Fragment Length

Figure A.3. For the case of three inserts, the probability of obtaining one scaffold versus
the ratio of insert length to fragment length. The probability increases as the insert length is
increased (and the fragment length remains constant). The character of the increase changes
with each discrete increase in the ratio of insert length to read length, eventually reaching a
plateau.



APPENDIX B. ALTERNATIVE SEQUENCE DISTANCE METRICS

There are limitations to all current distance metrics. The predominant distance metric
used throughout Chapter 3 is based on the Dayhoff PAM matrix. This metric was used
primarily for simplicity and speed of calculation, as it is an option of the protdist computer
program, which is part of the PHYLIP package (Felsenstein, 1993). During the course of
my efforts to grapple with multigene family protein evolution, I sought better methods to
evaluate phylogenetic distances. Although it is not clear that I have suceeeded, or even
made a step in what might ultimately be the right direction, I have included this Appendix
describing my preliminary efforts.

B.1 SEQUENCE DISTANCES

A simple way to compare two sequences is to count the number of residues they
share in common. This determines their percent identity:

Percent Identity = number of 1dent.1cal residues (B.1)
total residues

Other methods compute values for similarity. In this case, a similarity value is assigned to
each possible combination of two residues. Residues that are more likely to have replaced
each other over the course of evolution have higher similarity values. For example,
aspartate and glutamate, which are both acidic, are quite similar. There are many methods
of computing sequence similarities and distances.

The distance between two sequences reflects the number of mutations that, on
average, under conditions of natural selection, will convert one sequence into the other. If
the mutation rate is constant and the conditions of natural selection are unchanging, then the
number of mutations can be related to the amount of time separating the two sequences.

Mutations are typically assumed to operate as single base pair substitutions at the
level of nucleotides. However, other types of mutations are possible. Some models allow
for insertions and deletions of base pairs. A few models account for gene conversion
events, but these suffer from lack of empirical data. Gene conversion is often considered to
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be such a rare event that it can be ignored as a mutational mechanism, despite the large
evolutionary impact a single gene conversion event can have. Multigene families are
particularly susceptible to gene conversion, and so may provide a significant challenge to
models that ignore gene conversion.

There are multiple requirements that must be met for sequence distances to be
ititerpreted as a measure of the time separating two sequences. The hypothesis that
sequence distance can be interpreted as time is called the molecular clock hypothesis. In
some cases the molecular clock hypothesis holds, but in many cases it does not.! When a
molecular clock can be used, molecular sequence data provides a powerful source of
information on species phylogeny. It is important to distinguish between those cases in
which the molecular clock is useful and those in which it is misleading. Making this
distinction will be an important part of the analysis of the trypsinogens presented in this
chapter.

All molecular sequence data is contemporary.> Therefore, if two sequences are
related, it is not because one evolved from the other, but because they both arose from a
common ancestor. If two contemporary sequences shared a last common ancestral
sequence 600 million years ago, then evolutionary processes have been operating to
diverge those sequences for a net 1.2 billion years of evolution. To rephrase, 1.2 billion
years of divergent evolution separate the two sequences.

It is generally assumed that evolution is symmetric. This implies that the
evolutionary distance separating a modern sequence from its ancestor would be calculated
identically if the sequences were switched. This assumption allows one to unambiguously
calculate the distances between two sequences without knowing the position of the last
common ancestral sequence in the phylogeny. Seldom does this assumption hold

! Several papers in the first issue of the Journal of Molecular Evolution address this topic,
including Dickerson (1971), Kimura and Ota (1971) and Ota and Kimura (1971).
Dickerson provides a chart showing the rates of evolution for cytochrome ¢, hemoglobin,
and the fibrinopeptides. A molecular clock hypothesis holds for each of these proteins,
according to the original data in these publications.

* Barring discovery of intact genetic material, it is not possible to obtain sequence from
extinct species. In those rare cases where such sequence has been obtained, it is often
incomplete. Furthermore, such sequences are seldom more than a few thousand years
old, which is an almost insignificant period compared to evolutionary time scales.
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absolutely. However, it almost universally holds well enough to be a useful tool. Without
this assumption, molecular distance calculations become wickedly complicated.

Strictly speaking, it is not necessary to calculate pairwise distances between
sequences in order to construct a phylogeny. In fact, in an ideal situation, it is not even
desirable to do so. Information is lost when a data set of multiply aligned sequences is
reduced to a diagonal matrix of pairwise distances. Some of this lost information is
valuable not only in constructing the topology of a phylogeny but also in determining the
evolutionary distances between sequences. Methodologies that employ maximum
likelihood are most capable of properly utilizing all multiple alignment information. Such
methodologies are computationally intensive. Additionally, no maximum likelihood
computer programs are available capable of employing algorithms optimized for
trypsinogen phylogenies. Even if such a program were to be written, it is likely that, today,
the computer resources required to do a full trypsinogen analysis would exceed those
available to trypsinogen researchers. These circumstances are likely to change in the future,
both as novel programs are written and as computing power grows. In the meantime, to
produce a trypsinogen phylogeny, it is necessary to use pairwise distances.

In order to produce as accurate a phylogeny as possible, it is important to choose
the best method of calculating sequence distances. It is interesting to ponder what is meant
by “best” method. A method should accurately produce a value for distance that reflects the
amount of evolution that has occurred between two sequences. The “amount of evolution”
is usually understood to mean the number of fixed point mutations, although it might
conceivably mean other things, such as gene conversion events. Furthermore, if a
molecular clock hypothesis holds, a calculated distance value should be proportional to the
time of divergent evolution separating two sequences.

There is no perfect way to evaluate whether or not one particular distance metric is
better than another. One can compare a phylogeny produced from calculated distances with
a known phylogeny. However, there are few phylogenies known with certainty. Those that
are known are usually sparsely populated, and only the topologies are absolutely certain,
not the distances. Furthermore, one cannot be certain that a phylogeny made from sequence
distances should necessarily reproduce a phylogeny produced by some other means, such
as from paleontological and morphological considerations, or from molecular data derived
from another gene locus. The phylogeny of one gene will not necessarily reflect the
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phylogeny of another gene. Gene phylogenies will not necessarily reproduce species
phylogenies.

Therefore one must rely on imperfect methods to evaluate a distance metric. Three
are mentioned here. The first approach is to compare the metric with known phylogenies
with the assumption that these phylogenies are correct and reflect the phylogeny of the gene
in question. Secondly, one can simulate a phylogeny using an assumed model for
evolution. One then determines whether the metric in question can reproduce the
phylogeny. The problem with this second approach is that never is the process of evolution
absolutely known, so this approach relies on the correctness of the hypothetical model for
the evolutionary process.

Both of the first two evaluations methods are empirical. While employing such
evaluations, one is not concerned with the details of how the distances are calculated. If a
distance metric reproduces known phylogenies, then regardless of the details of the
calculations, it is useful.

The third approach to evaluate distance metrics is not empirical. In this approach,
the details of the evolutionary process are assumed, and a metric is derived from this
evolutionary model. Such metrics are “perfect,” in the sense that they precisely measure
distances (subject to random error) produced by an evolutionary process identical to that
specified in the model. The obvious problem with such metrics is that actual evolution may
not obey the assumptions of the model.

I will now consider the details of the original model for distance metrics, due to
Jukes and Cantor (1969).

B.2 THE JUKES-CANTOR MODEL

We assume that in a given unit of evolutionary time, a base has a probability p of
mutating. We assume that if a base mutates, then it has an equal probability of being
replaced by any of the four bases, including-itself.’ It follows that any base that has

* A commonly encountered alternative definition of [ specifies that when a base mutates, it
has an equal probability of mutating to any of the other three bases. These definitions
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mutated one or more times has an equal probability of currently being any of the four

bases. The probability of a base remaining unchanged after T units of time is

P(base never mutated) = (1 - )" (B.2)

If one is uncomfortable with designating T as a unit of time, then one may refer to it as a
unit of pseudotime. The probability of a base mutating at least once, but currently being in
its original state, is one quarter of the probability that the base has mutated at least once, or

P(base returned to original state) = %[1 ~-(1- y)’] (B.3)

Therefore the probability of a base being in its original state after T units of time is

P(base in original state) = (1- )" +4[1-(1- )]

. (B.4)
=4[3(1- )" +1]
If t is allowed to vary continuously, then equation (B.4) becomes
P(base in original state) = 4[3¢™** +1] (B.5)

Equations (B.4) and (B.5) are equivalent for any practical purpose, as the unit of time will
always be chosen small relative to the minimum distance between two sequences. I tend to
employ discrete forms as it is slightly easier to program these into computer algorithms. To
obtain evolutionary time, one can convert equation (B.4) into the following form:

produce equivalent models, but the value of | in the alternative definition is 3 of the

value of p employed here.
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(419— 1)
In| ——
3/ (B.6)

In(1 - p)

Now, one need only compare two sequences and make the maximum likelihood

estimate for P as the percent identity of the sequences to obtain an estimate for T as the

divergence time. This model is very nice because it is simple.

Unfortunately, it is impossible to use the Jukes-Cantor model with amino acid
sequence data.

B.3 A PEPTIDE VIEW OF THE JUKES-CANTOR MODEL

One can hypothesize an evolutionary mechanism similar to the Jukes-Cantor model,
but that works at the level of residues instead of nucleotides. The mathematics of such a
model would be nearly identical to the Jukes-Cantor model, except that there would be
twenty states available for mutation in place of four. One quickly derives the following
equation:

P(residue in original state) = (1— )" + %[1 -(1- ,u)t]

= 5{19(1- )" +1] &7

There is a major objection to this model. Mutations occur to nucleotides and not to
residues. It is already a big assumption that all possible nucleotide substitutions are equally
likely. It is yet another assumption to assume that all residues are equally likely mutations
from a given codon. In fact, it is only possible for a single nucleotide substitution to change
a given codon into 9 of the 63 other codons. At most, a codon might be able to mutate so as
to code for 9 other residues, but due to the degeneracy of the genetic code, the widest
repertoire of available residue mutations is seven; the narrowest is four (the average is 5.8).

For the model in equation (B.7), the concept of a “mutation” changes from that of
equation (B.4). For (B.7), anything that changes an amino acid residue counts as a
mutation. This could be one or more point mutations, a intron/exon boundary slide, or a
gene conversion event. For (B.4), only point mutations are considered.
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Recall that evolution works by natural selection as well as mutation. To a first
approximation: mutations alter nucleotides; selection operates on residues. Therefore the
use of a nucleotide-based model tends to emphasize the role of mutation in evolution. The
use of a residue-based model emphasizes selection. For a non-coding region unaffected by
selection it would be appropriate to use a nucleotide model and foolhardy to use a residue
model. For a region strongly affected by selection, or by mutational events operating above
the scale of a single nucleotide substitution, then it may make more sense to use a residue
model.

If selection plays a significant role in the evolution of a protein, then there may be a
significant probability that several silent mutations at the nucleotide level occur in one unit
of evolutionary time. The rate of residue change is predicted. to be much smaller than the
rate of nucleotide change. Allowing for several silent mutations to occur between state
changes at the site of a particular residue, then contemplation of the genetic code will
indicate that widest number of available residue mutations is twelve and the narrowest five
(with an average of 7.4). Non-silent mutations at a site are less likely to be fixed. Since
selection operates on the site, it is likely that a non-silent mutation will decrease fitness and
be selected against. Thus under conditions of selection, a residue model becomes more
reasonable.*

I will primarily be employing a residue model to analyze the trypsinogen sequences.
There are three reasons for this. First, my data is amino acid sequences, at least partially.
Second, trypsin is a highly conserved enzyme with a critical digestive function. There are
strong selective constraints governing the evolution of trypsin. Third, the trypsinogen
genes are members of a multicopy gene family. They often reside in repeated elements in
chromosomes. Within a genome, there is a large reservoir of trypsinogen gene material for
gene conversion, unequal crossing over, and other methods of genetic exchange.

Gene conversion events can convert lengths of DNA ranging from a single
nucleotide to several thousand (Li, 1997). A codon may undergo a change at all three of its

* Aaron Halpern, currently at the University of New Mexico, has done some work building
more complex residue models that incorporate aspects of the genetic code (personal
communication). It may be that enough data will eventually be available to conduct
empirical evaluations of different distance metrics. Currently, one can only note that for
vertebrate trypsinogen data, residue-based and nucleotide-based metrics give roughly
similar distances.
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positions as a result of a gene conversion event. Furthermore, this change is less likely to
be selected against, as the donor DNA may be a functional allele. Thus, it may be improper
to consider nucleotide-based models for change when gene conversion is a prominent force
for random variation. Mutation by gene conversion, effectively at the level of codons and
residues, may have been common and dominant during the course of trypsinogen

evolution.

The preceding arguments suggest that a residue model may be more appropriate for
trypsinogen evolution than a nucleotide model. However, the initial model described by
equation (B.7) may be too simplistic. There are several possible modifications to this basic
model. I will describe two simple extensions.

A first possible extension to the basic residue model assumes that strong selection at
a site permits only a few residues to be accepted as substitutions at that site. A change to
another residue, other than these few, will result in a low fitness and effectively a zero
probability that the mutation will be fixed. This, in essence, “slows down” mutation at that
site. The modification to equation (B.7) is as follows:

P(residue in original state) = -1:7[(N - 1)( —%) + l] (B.8)

Here N is the number of allowed residues at the site. Equation (B.7) can be obtained from

equation (B.8) by setting N=20.

A second possible extension to the basic modél is that there is no selection, but the
number of possible mutations at any particular site is limited. This might occur if mutations
occurred solely as a result of gene conversion from a limited number of alternative alleles.
The modification to equation (B.7) would be as follows:

P(residue in original state) = %[(N— )(1-pn) + l] (B.9)

It is hard to make a case for practical use of the model implemented in equation
(B.9), partly because one of the motivations for using a residue model is that natural
selection plays a significant role in evolution, as the available pool of residues is likely to



225
change over time. Additionally, it seems unlikely that gene conversion from a limited pool
of residues would be a dominant mode of evolution. Equation (B.9) is presented here
mainly for reference. Therefore equation (B.8) will form one basis for my evaluation of the
trypsinogens. Note that equation (B.9) can be transformed into equation (B.8) merely by

employing a smaller probability of mutation per unit time (4511 in place of ). This reflects

the idea that selection “slows down the evolutionary rate.””

For the present paper, I arbitrarily set the rate p to 0.01. Were a molecular clock
hypothesis to hold, i could be set empirically. Small alterations in p affect the scale of a
derived phylogenetic tree, but not its topology or proportions. To demonstrate this last
point for the Jukes-Cantor model, I make the observation that (1 - u)° =1 —1u. Note that

u<<l. Therefore from equation (B.4) we have

4(1— (percentage of bases in orginal state))

- (B.1
2 (B.10)

T=

Evolutionary time T is inversely proportional to the mutation rate . This should not be
surprising. If the mutation rate doubles, it should take half as long for a sequence to acquire
the same number of changes. Because of back mutations and saturating effects, this
proportionality is approximate.

Not all sites of a sequence will necessarily have the same number of permitted
residues. Therefore one cannot use an equation similar to equation (B.6) or (B.10) when
evaluating the most likely T for equation (B.8). Rather one must determine the T that results
in the maximum likelihood of the observed identities and differences between two
sequences. This can easily be done by computer, although multiple iterations may consume
considerable processor time.

All of the models presented here assume that each site of a sequence evolves
independently. This assumption clearly does not hold in reality, as gene conversion events
may convert many adjacent residues simultaneously. However, any attempt to account for
covariant effects is extremely unwieldy. Additionally, our knowledge of selective pressures
is too limited to provide a model more accurate than what can be obtained with an
assumption of independence.
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In order to implement equation (B.8) in practice, one needs to determine the number
of possible states possible at each site. For this, I assume that I have a large enough
collection of sequences to have observed all possible permitted residues at each site. This
assumption is most valid for sites with few observed residues. These sites are the most
significant contributors to distance calculations, so this assumption is reasonable. A major
incentive to use this model is to account for a slower rate of change at sites that, due to
functional constraints, have few permitted residues. Note that if a site has only one
observed state, [ will assume that site to be invariant. Such sites contribute no information
to evolutionary distance calculations and must be ignored.” A plot of the variability of each
trypsin site is shown in Figure B.1.

A bizarre but fascinating combination of Sesame Street and information theory has
produced a method of graphing data from multiple sequence alignments. Such graphs are
known as sequence logos (Schneider and Stephens, 1990). A sequence logo for
pretrypsinogen is shown in Figure B.2. Because my aligned pretrypsinogens do not
represent a uniform sampling of the vertebrate phylogeny, the relative residue frequency
depicted by character height in the sequence logo may not be strongly correlated with
biological significance. Nevertheless, the sequence logo strikingly depicts highly conserved
regions. The information in the sequence logo complements the information in Figure B.1.

Some authors have attempted to incorporate site-to-site variability into phylogeny
calculations (e.g., Yang, 1993, 1994, and 1995; Felsenstein and Churchill, 1996; Thome
et al., 1996). Jones et al. (1994) present a mutation data matrix for transmebrane prtoeins,
which is a step in the right direction. However, this matrix cannot be used for trypsin,
which lacks transmembrane motifs.

Hidden Markov models (HMM) are currently in vogue as a method for
incorporating site-to-site variabilty into models. It is not at all clear that a HMM algorithm
would be appropriate for trypsin data. Firstly, the “hidden” aspect forces the researcher to
discard what is known about conserved residues and selective constraints. Secondly,
effective use of an HMM requires that the persistence length of site conservation be at least
moderately greater than a single residue. This constraint is violated repeatedly by trypsin,

5 Technically, using the model of equation (B.8), they do not have to be ignored, as the
probability of the base resting in its original state is 1, so contributes neither negatively or

positively to a maximum likelihood estimate for T.
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as a glance at the numerous narrow spikes and valleys of Figure B.l shows.’ This also
limits the effectiveness of I" distribution models. Although the use of HMM algorithms
may be a step in the direction of incorporating site specific information into protein
phylogenies, it is my feeling that they currently offer no improvement on traditional
methodologies.

Ideally, I would like to construct a separate distance matrix for each trypsin residue
site. Most current distance metrics treat all sites equivalently (e.g., Jones et al., 1992;
Taylor and Jones, 1993). Reliable construction of site specific distance matrices for
trypsinogen (and most other proteins) would require more sequences and a better
understanding of evolution than is currently available.

A preliminary, although simplified, approach to construction of a metric would be
to tabulate all possible residues at a particular site that maintain function at the molecular
level and fitness at the organismal level. This would require a statistically significant
sampling of sequences spanning all clades of the phylogeny in question. Since known
trypsinogen sequences from some vertebrate classes are either very sparse or completely
missing, reliable estimates of the number of permitted residues at a given trypsinogen site
cannot be made. In years to come, reliable estimates will be possible. At such a time,
extensions to this approach for site specific distance estimation might include
accomodations for the underlying mechanisms of mutation or for covariation of sites.
Additionally, computational advances may permit maximum likelihood approaches to be
combined with such models for evolution. For the present, I suspect that the simple
“limited state” method of equation (B.8) provides a reasonable approximation to what
might be obtained with more data.

A phylogeny analagous to that of Figure 3.14 is shown in Figure B.3. This
phylogeny uses the distances calculated according to the methodology described above in
place of the protdist distances used for the same purpose in Chapter 3. The toplogy of the
phylogeny in Figure B.3 is essentially the same as the phylogeny in Figure 3.14. The
distances of the phylogeny in Figure B.3 produce a phylogeny that has slightly more
resemblance to a “star phylogeny” than does Figure 3.14. This results from smaller relative
distances between pairs of sequences calculated with the methodology of this appendix.

¢ Jin and Nei (1990) provide some further discussion on site specific rates of change.
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An attempt to use multidimensional scaling on these distances produces plots with
unacceptably high stress (approximately 0.35; data not shown). This is due to the
moderately “spherical” character of this data in 31 dimensions, making it difficult to
compact the data without skewing it. Despite this, as Figure 3.16 shows, these data still
significantly support a hypothesis of coincidental evolution. If the true divergence time
distances were indeed spherical, that would imply multiple early divisions followed by
coincidental evolution that has created the appearance of a single early division with
corresponding clustering of sequence distances. This possibility is discussed briefly in
Section 3.16. The accumulation of more trypsinogen sequences and further refinement of
sequence distance metrics will ultimately differentiate between the various hypotheses for
the timing of the division(s) of the trypsinogen multigene family.

In order to develop data suitable for inclusion in site-specific matrices, a great deal
of knowledge must be known about the selective pressures on the site in question. It is
conceivable that at some point in the future that such knowledge may be gained from
intense biochemical and genetic study of the gene product in question. At present, it is
beginning to be possible to assign sites based on homology and known or predicted
secondary and tertiary structure. Such predictive efforts work better on some proteins than
others. There are currently several models for sequence based protein structure prediction.
The simplest models employ only three structures: helix, sheet, and loop, so are unlikely to
provide much extra power to phylogenetic analyses.

There are a few models with increased sophistication. One example is the model of
I-sites by Bystroff and Baker (1997). I-site theory was originally and primarily designed to
identify distant relationships between proteins based on similarities between protein folding
initiation sites. However, the theory can be adapted to provide data for site-specific distance
metrics. In short, if a site from a protein of interest can be assigned with confidence to a
specific I-site position, then that position can be assumed to evolve according to the
constraints on that I-site. Such constraints can be estimated from the entire body of I-site
data, rather than limiting oneself to the possibly-skimpy data available from the set of
proteins in question. This approach can form the basis for a more complex model. For
example, there may be additional constraints on a residue beyond those imposed by its
inclusion in an I-site.
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I-site motifs can be assigned to 77 of 238 analyzed trypsin sites. Unfortunately, all
but eight of these are assigned with a confidence statistic 0.80 or less, and all but 23 have a
confidence statistic less than 0.50.” Furthermore, 47 of the positions assigned to I-sites
were either absolutely conserved or showed only two different residues in all vertebrate
sequences. This high conservation is not unexpected, as the original intention of I-site
prediction is to predict structures important for initiation of protein folding, which should
also be conserved.® However, since at these 47 conserved sites the trypsins show an even
more restricted range of variation than is seen in I-site consensus sequences, it suggests
that even stronger selective pressure operates on these positions in trypsin than merely
enough to maintain an I-site consensus. Therefore it would be inappropriate to use
evolutionary change matrices based on I-sites at these positions. These considerations lead
me to conclude that an attempt to incorporate current data on protein motif consensuses
would not have noticeably improved trypsin distance calculations. It may be that this will
change as more knowledge accumulates on the relationships between protein structure and
sequence. Also, I-site data may prove more useful in analyzing proteins other than trypsin,
which might have fewer absolute constraints such as those dictated by the maintenance of a
proteolytic active site.

7 A confidence statistic of 0.50 to 0.80 is judged to be “OK,” while above 0.80 is *“good.”
The confidence statistic is described by Bystroff and Baker (1997).

® There are a total of 113 positions in the vertebrate trypsinogen alignment which permit
either one or two observed residues. Of these, 35 are absolutely conserved.
Approximately two thirds of these highly conserved positions are not assignable to a
known protein structure motif (I-site predictions correlate well with other structure -
prediction algorithms). Many of these positions are involved in catalysis, substrate
specificity, or cystine bridge formation.
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Figure B.3. A Fitch-Margoliash phylogeny of thirty-two vertebrate trypsinogens.
Distances, calculated according to the methodology described in Appendix B, were fed to
the program fitch, with global rearrangements and 40 random “jumbles” (Felsenstein,
1993).



APPENDIX C: PCR EVALUATION OF TRYPSINOGEN EXPRESSION

The polymerase chain reaction is a highly sensitive method for detecting the
presence of a specific nucleic acid sequence. It can be used on RNA derived from a tissue
to ascertain the presence of a sequence of interest, such as a trypsinogen mRNA.

PCR suffers from several drawbacks. It cannot accurately assay the quantity of a
particular sequence. Its high sensitivity makes it vulnerable to false positives from
contaminated samples. During the amplification process, highly identical sequences can
recombine, producing artifacts. The error rate of PCR can be high, making it difficult to
accurately assign the sequence of an amplified product to a particular allele. Therefore,
PCR results must be interpreted with caution.

For this study, I have examined several tissues from the human and mouse to
determine which trypsinogens were present.

C.1. METHODS AND RESULTS

Tissues were obtained as described in Sections C.2 and C.3. Total RNA was
isolated with the guanidine thiocyanate protocol (Promega). Whole frozen tissues were
ground under liquid nitrogen before RNA isolation. Frozen ground powder was added to
denaturation solution and homogenized with a dounce. For peripheral blood cells, isolated
cells were added directly to denaturation solution.

Purified total RNA samples were employed as templates for RT-PCR. First strand
reverse synthesis was accomplished with a poly-T primer. The PCR primers used in this
study are tabulated in Table 3.3. Nested PCR was required to obtain products from all
tissues studied, except the pancreas. Initial amplification was performed with primers
TRYA and TRYD, and subsequent amplification with either TRYB and TRYC or TRYF
and TRYR. Each of these primers has a BamHI 5' leader. None of the predicted
trypsinogen PCR products has an internal BamHI site. Twenty to thirty cycles were
employed for each round of amplification, annealing at 55° for 30 seconds and extending at
72° for 50 to 80 seconds. PCR products were isolated, cleaved with BamHI, and cloned
into the BamHI site of the m13mp9 vector. Individual clones were isolated and sequenced.
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Human tissues were obtained from four sources. Pancreas and liver samples were
obtained from a 45-year-old male who died of arrhythmia 18 hours before the tissue was
quick frozen in an ethanol and dry-ice slurry. Fetal liver, spleen, and thymus samples were
obtained form an 84-day embryo. Tissue was immediately quick frozen. Peripheral blood
mononuclear cells were isolated from a 24-year-old volunteer and purified on a Ficoll
gradient. In addition to these samples, pancreas-, thymus-, liver-, and spleen-specific
c¢DNA samples were obtained commercially (Clontech). The results are summarized in
Table C.1.

Mouse thymus, liver, and spleen tissues were obtained from a freshly killed Balb/C
mouse. Tissues were immediately quick frozen. The results are summarized in Table C.2.

C.2. DISCUSSION

All human trypsinogens with hypothetically-functional genomic sequences are
expressed, as seen by PCR. This observation is consistent with the presence of all of them
in the EST database (Table 3.7). The pancreas shows the broadest range of expression of
the various isozymes. Human trypsinogen T9 is found by PCR in all tissues examined.
However, human T9 also appeared inconsistently in negative control PCR reactions,
indicating the possibility of contamination accounting for this observation. Human T6 was
only observed in the thymus by PCR, but has been found in pancreatic cDNA libraries
(Table 3.7). This raises the possibility that human T6 is somewhat thymus-specific. These
data suggest that there is differential expression of trypsinogen isozymes, although little can
be said with respect to relaitve abundance in various tissues.

An inconsistent competitive advantage of human T6 during PCR could also account
for this observation. Alternatively, the tissue sample employed for PCR may have come
from an individual homozygous for a deletion of human T6.

Assuming that the PCR data from the mouse spleen represents pancreatic
contamination, the mouse pancreas also demonstrates the broadest range of trypsinogen
isozyme expression (Table C.2). Not all hypothetically-functional genomic sequences from
the mouse are observed by PCR - only mouse T8, T9, T10, and T11. ESTs for mouse T7,
T8, and T9 are present in the EST database (Table 3.8). Additionally, the sequence of the
cloned mRNA for mouse T20 is present in Genbank. There is currently no concrete



235

evidence for the expression of the hypothetically-functional sequences mouse T4, T5, T12,
T15, and T16. It may be that they are

expressed at very low levels, or not at all. Alternatively, any of the possible systematic
errors of PCR or EST sequencing, discussed above, may account for the failure to detect
their mRNAs.

ESTs for both the human and mouse “trypsinogen™ T1 are present in the database,
as discussed in Section 3.21.
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Table C.1. Number of cDNAs sequenced by PCR from each of several human tissues.

TS T4 '_I‘§ T6 Total
Pancreas 6 8 5 [%) 19
Cadaver Pancreas (%) 15 2 7] 17
Thymus [7] 4 I1 17 32
Fetal Thymus 1 10 8 [4) 19
Liver 7] D 11 7} 11
Cadaver Liver [7] 7] 32 [7] 32
Fetal Liver %] 1 17 7)) 18
Fetal Spleen [4] [4] 2 7] 2
Spleen [4] [ 4 [7) 4
PBMC [7] 2 3 7} 5




Table C.2. Number of cDNAs sequenced by PCR from each of several mouse tissues.

TS T9 T10 T11 Total
Thymus 10 11 [7] 7] 21
Liver 14 13 [4) [4) 27
Spleen 4 5 8 3 20
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Random Subcloning
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Random subcloning strategies are commonly employed for analyzing pieces of DNA that are too large for
direct analysis. Such strategies are applicable to gene finding, physical mapping, and DNA sequencing.
Random subcloning refers to the generation of many small, directly anaiyzable fragments of DNA that
represent random fragments of a larger whole, such as a genome. Following analysis of these fragments, a
map or sequence of the original target may be reconstructed. Mathematical modeling is useful in planning
such strategies and in providing a reference for their evaluation, both during execution and following
completion. The statistical theory necessary for constructing these models has been developed independently
over the last century. This paper brings this theory together into a statistical model for random subcloning
strategies. This mathematical model retains its utility even at high subclone redundancies, which are necessary
for project completion. The discussion here centers on shotgun sequencing, a random subcloning strategy

envisioned as the method of choice for sequencing the human genome.

Random subcloning is a common tool for large-
scale physical mapping and DNA sequencing.
Large DNA targets are intractable to direct anal-
ysis and must be broken down into smaller frag-
ments before techniques such as restriction map-
ping or sequencing can be employed. A map or
sequence of the original target can be deduced
following analysis of the derived fragments,
termed subclones. Ideally, a direct strategy is pur-
sued by analyzing a minimum number of frag-
ments such that a shortest tiling path is followed.
This requires prior knowledge of the relation of
each fragment to the original target. However,
such information is not necessarily or easily
available. Thus, many strategies resort to picking
and analyzing fragments at random.

In random subcloning strategies, fragments
are generated from a vast number of identical tar-
get sequences, so the resulting library from which
they are selected for further analysis is redun-
dant. Therefore, individual fragments may over-
lap in the sense that they mutually possess some
bit of target sequence. The presence of such over-
laps allows retrospective determination of which
fragments represent adjacent target sequences.
When enough overiapping fragments have been
analyzed, the original sequence or map may be
deduced (Fig. 1).

From a theoretical standpoint, random map-
ping and sequencing strategies can be treated
identically, albeit on a different scale. Most phys-

E-MAIL roach@u.washington.edu; FAX (206)685-7301.
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ical mapping projects employ targets on the
megabase scale or larger. Such targets are ran-
domly fragmented into yeast artificial chromo-
some (YAC), bacterial artificial chromosome
(BAC), cosmid, or phage subclones ranging in
size from tens of kilobases to several megabases.
Analysis techniques include restriction mapping,
sequence-tagged site (STS) content mapping, in
situ hybridization, and many others. Sequencing
projects employ both smaller targets and smaller
subclones. In particular, the targets of sequencing
projects are often the subclones of mapping
projects. Fragments of these subclones (i.e., sub-
clones of subclones) are small enough to be em-
ployed as sequencing templates for automated
DNA sequencing machines. The effective frag-
ment size for sequencing projects is the sequence
read length, which is the amount of sequence
that can be read from one fragment by a sequenc-
ing machine. This length currently ranges from
several hundred to 1000 bases.

The appeal of random subcloning strategies
lies in the absence of need for prior information
about particular subclones. This allows projects
to be undertaken with a great deal of automation
and with a decreased need for highly trained hu-
man intervention. The drawback of such “shot-
gun’’ strategies is their dependence on overdeter-
mination of information, with a need to generate
several times as much raw data as an ideal di-
rected strategy would. Accordingly, actual strate-
gies may be a mix of both random and directed
approaches, beginning with random and pro-

5:464-473 ©1995 by Cold Spring Harbor Laboratory Press ISSN 1054-9803/95 $5.00
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Figure 1 An example of a shotgun strategy, with
a bar code length empioyed as an analogy to a DNA
sequence. A large number of identical but unknown
target sequences are randomly fragmented. These
fragments are analyzed and aligned based on
unique overlapping sequences. When enough frag-
ments have been analyzed, the original target se-
quence may be deduced. The number of fragments
is typically much larger than depicted here.

gressing to directed when the cost of choosing
and sequencing directed subclones is judged to
be less than the cost of continued shotgunning.
Such decisions are predicated on the ability to
determine such costs. Experience, simuiations,
and analytical models are the tools for this anal-

A useful analytic model of the random shot-
gun strategy has been developed previously and
is in common use (Lander and Waterman 1988).
This model is accurate at low subclone redundan-
cies. However, most sequencing projects and
many mapping projects employ higher redun-
dancies, which are necessary to approach com-
plete coverage and closure of targets such as
cosmids and BAC:s (for sequencing) or the human
genome (for mapping), where closure is defined
as the absence of gaps in the knowledge of the
target sequence.

The present analysis initially specifies the dis-
tribution of the lengths of the spacings between
fragment start sites. With this distribution, the
number of gaps can be determined simply by

RANDOM SUBCLONING

counting the number of spacings greater than the
length of a fragment. All orderings of these spac-
ings among spacings not forming gaps are
equally likely, and because spacing lengths are
independent of their ordering, this permits the
determination of the distribution of the number
of clones in an island as well as island length.
Extensions permit additional probabilities of in-
terest to be calculated.

Formulation

A linear discrete target of length G, such as a
genome, is assumed. For a given project, n frag-
ments of constant length L are generated from
the target and analyzed in a manner in which
overlaps between fragments are detectable. All
fragments are generated from distinct identical
copies of G. No fragments may start within L-1
bases of the last, right-most base of G, as such
fragments would not be contained entirely
within G. Thus, the effective length G, available
for fragment start sites is G — L + 1. The starting,
or left-most, base pair of each fragment is desig-
nated S,, such that S, is the start site of the left-
most fragment, with S, € {1,G.]. S, begins the
right-most, or last fragment of G. The start site
may be either the 5° or 3’ base pair of the Crick
strand of the fragment it begins, depending on
fragment orientation relative to the target. In this
model the S, are an ordered sample of n indepen-
dently, identically, and uniformly distributed ob-
servations on the interval (0,G,). The formulation
is drawn schematically in Figure 2. Let
Dy = S,.; - 5; represent the distance between start
sites, for k=1,2, ... 1 - 1. Dy represents the
length of the uncovered target region before the
first fragment, and equals §,. D, is the distance
G. - S,. An assumption is made that an overlap of
length of at of least T is necessary and sufficient
to detect adjacency of two fragments. Redun-
dancy, R, is defined as nL/G. For nota-
tional ease, the effective fractional coverage f; of
the target provided by one fragment is defined as
(L - T)/G., and the effective redundancy R, is de-
fined as nf;. The notation and symbols used here
are summarized in Table 1.

By genomic conventions, an island is a maximal
set of fragments, each of which is connected to
all other island members by one or more paths of
fragments overlapping by T. A contig is an island
consisting of at least two fragments (Sta-
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_ Effective Target Length (G,,) spacing lengths is ignored.
Target Length (G) o However, because n is uni-
- ~ 7 versally large for genome
4 $ — i - e projects, this correlation
58S, S S, S S, S; 545, approaches zero. With
— — —— = - these considerations, the

—
Figure 2 Schema of notation.

den 1980). In general, a target region not covered
in any fragment is a gap. Adjacent islands are
thus separated by gaps. The length of a gap is
Dy -L, for D, >L - T. A negative gap length in-
dicates that an overlap is present, but not de-
tected, so this is still considered a gap.

A simple geometric observation underlies
many of the equations presented here: The do-
main space of the spacings D, is the surface of the
simplex Dp+D; +D,+...+D,=G,, and their
joint probability density is constant. This obser-
vation permits many probabilities of interest to
be calculated by geometric considerations (Levy
1939). Here, G, and D, will usually be treated as
continuous rather than discrete. This approxima-
tion is Quite minor, given the scope of a genome,
or even a cosmid, compared with the unit of di-
visibility, a base pair. Thus, the normalized
length of a single spacing is described by a beta
distribution, which is defined on the interval
[0.1] and is related here to the effective target
length by the factor G.. By employing the beta
distribution in this case, the correlation between

density function for the
lengths of spacings be-
tween start sites is

fo 000 = (1 = 2y &y

G,
and E(D,) = s

Distribution of the Number of Gaps and Islands in
a Project

A gap will occur following a fragment starting at
Scifand only if D, > L - T. A spacing less than this
will result in a detectable overlap between the
two fragments; a greater spacing will result in no
overlap, or an undetectable one. Thus, the prob-
ability of a gap following a given fragment is
equivalent to the probability that D, > L - T (note
the change of variable y = x/G,):

G, G, x \m1
Prp= [ fot0dx = L_Tn( 1 -—G:) i @

=nf (1 -pidy=(1~for

Table 1. Notation and Symbols

G, target length
L, fragment length

nl
= redundancy

-7

R,—T,

G, =G - L + 1, effective target length

n, number of fragments in a project
T, bases necessary to determine overlap

effective redundancy

fe= e effective fractional target coverage per fragment
Sy start'ing base of the kth leftmost fragment

D, = 5., - S, spacing between adjacent fragment start sites
Z,, number of fragments contained within the mth leftmost island
Im length of the mth leftmost island
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Employing again the assumption that the lengths
of the spacings between each S, are independent,
the distribution for the total number of gaps ina
project is binomial. Again, this assumption is rea-
sonable when there are a large number of spac-
ings, the usual case for genome projects. In a
given project there are n — 1 opportunities for a
gap to occur, one between each pair of adjacent
fragment start sites. Thus,

P(NW =x)= (n; l)pppx(l _pm ne-l-x (3)

= ("; l) A=fa™=-Q-f)T "™

One immediately has the probability of project
closure as

P(Npaps = 0) = (1 =)™ = (1 = (1 = f5)1™" (4
Also, the expected number of gaps in a project is
E(Ngape) = (n = 1}(1 - f5)" (5)

As noted above, the distribution for the number
of gaps can be made exact by summing appropri-
ate areas of n + 1 dimensional simplex. This
somewhat awkward but nevertheless elegant dis-
tribution is provided by Stevens (1939) and in
slightly different form by Flatto and Konheim
(1962). Stevens’ distribution is approximated by
equation 3. Siegel (1979) provides an alternate
derivation of equation 4 in slightly different
form.

Not counting the two ends of the target as
gaps, the number of islands will be one greater
than the number of gaps, as each gap separates
two adjacent islands. So by definition,

Nostanas = ms+1r and 6

E(Nytanas) = 1 + (n = 1}(1 - f&)"

Distribution of the Number of Clones in an Island

The total number of fragments in a project is n,
and the total number of islands is N4, SO the
expected number of fragments z,, in an arbitrary
island is clearly E(z,n| Nisianas) = 1/Nigtanas- TO 0b-
tain the probability distribution of z,, one may
divide the spacings {D,|k=1,2,..., n~ 1} into
two subsets: those spacings D, > L ~ T that are

RANDOM SUBCLONING

long and contain a gap, and those D, <L -T
that are short and do not. The number of spac-
ings in the first subset is N,,,,. By elimination, the
number in the second subset is n - 1 - Ny,,,. The
number of fragments in an island is equal to one
plus the number of short spacings between its
two bounding long spacings. The last island
might end with a short spacing, which would
reduce its number of fragments by one. This mi-
nor effect is ignored here, but it may be ac-
counted for, if desired, at the cost of a little aige-
bra. Now all orderings of long and short spacings
are equally likely, as the D, are exchangeable. The
probability distribution for z,, can be analyzed
combinatorically (see approaches to similar prob-
lems by Whitworth 1897a; also see Baticle 1935),
but to maintain simplicity a continuous approx-
imation analogous to that employed previously
to model spacing length may be employed (equa-
tion 1). In short, this determines the probability
that no long spacings occur before the z,,th spac-
ing. If there are enough short spacings, z,, may be
treated as a continuous variable. This approxima-
tion of continuity is valid when n is large, the
usual case for genome projects. Employing a uni-
form distribution of gaps over the continuous in-
terval [0, n- 1 - Ny,,] and scaling by a factor of
n— 1 — Ng,p,, a beta distribution is obtained as be-
fore. The conditional probability density for z,,, is
therefore

x-1 Now—1
x|N, =N, (1-—_) v
Lt N o =N 1 = T

Note that the number of short spacings in an
island is beta distributed. An island will contain
one additional spacing (and a fragment to go
with it) because of its terminating long spacing.
So with z,, the number of fragments in an island,
Zw - 1 is the number of short spacings in that
island. The expected number of clones in an ar-
bitrary island (conditioned on the number of

gaps) is, as expected,
n

n—=1-Nyp
E@miNespd ="N—21 "' " N O

The fraction of singleton islands expected in a
project can be obtained by integrating the prob-
ability density in equation 7 over the range
xe(1,2); the remaining islands will be contigs.
Also if desired, the necessity for conditioning on
Nyaps can be dropped by performing a weighted
summation over all possible values of Ny.ps-

The distribution of the number of clones in
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an island enables the determination of the distri-
bution of the length of that island. Some moti-
vation also exists to predict the length of the
longest island resulting from a project, as it is a
readily identifiable feature of a work in progress.
In particular, a failure to achieve islands of pre-
dicted length is often an indication of a technical
inability to detect overlaps, and thus points to a
problem that needs to be addressed. Whitworth
(1897b) shows that for a given project, if the is-
land are ordered by increasing number of frag-
ments, the expected number of fragments in the
xth island is

E(no. of fragments in xth smallest island [N,,,) =

n-1-N, = 1

saps
-x+1

9
Nyps T Npaps

1+

This expected value may be substituted in equa-
tion 11 below, and enables the prediction of the
longest expected island for a project.

Expected Island Length

Each island is the union of one or more frag-
ments starting at base pairs Sy, Si, 0 Ska2r-- -
and Sy,, ;- The total length /,, of an island with
S, beginning its first fragment is the sum of the
spacings between its fragment start sites plus the
entire length of the last fragment in the island
(Fig. 2):

L X ifz,=1 (10)

keZo~-2
Im={L+ > D, ifza>1

Spacings are exchangeable in that the joint dis-
tribution of all D, is unchanged under any per-
mutation of subscripts. Or rephrased, the lengths
of the spacings are independent of their order.
Expected island length conditioned on z, is
therefore

EUnlz) =L + E(D)(z,, - 1) ay

And so one may approximate expected island

length as

E(l,) = L + E(D)(E(2,) - 1) (12)
1 n
~L+G. (n+ l)(l +n-1(1-fe)" 1)
13)
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This approximation is most valid when the rela-
tive variance of z,, is small, the usual case for
genome projects. Note that the use of E(D,) as
calculated above constitutes an additional ap-
proximation, as not all spacings can be included
in islands. To account for this, a modification to
E(D,) must be made (Appendix A). Also, the ac-
curacy of this approximation can be improved
with the aid of a computer by summing equation
11 over all possible values of z,,, rather than em-
ploying the expected value of z,,. Based on evi-
dence from computer simulations, however,
equation 13 appears to offer enough accuracy for
Mmost purposes.

The expected fraction, f, of the target covered
by fragments can be calculated directly:
f= E(DE(N;,nqs). This fraction can aiso be calcu-
lated independently (Appendix B).

Under low redundancy conditions, where
n >> ef, E(z)=e®. With this approximation
E(D=[L(¢* - 1)]/R is obtained, identical to that of
Lander and Waterman (1988) for the limit as T
approaches zero. This defines an upper bound as
a function of n (or R) for the accuracy of the
Lander and Waterman equations. This bound oc-
curs at a redundancy of approximately threefold.
In particular, above this limit, a geometric distri-
bution ceases to be a good model for the expected
number of clones in an island. At the redundan-
cies of six to eightfold used in common practice,
geometric approximations also have the nonsen-
sical disadvantage of predicting a fractional num-
ber of islands in conjunction with an average is-
land length longer than the target. This arises
when a significant fraction of the clones in a
project are contained within a single island and
the stopping probability of a geometric approxi-
mation increases. The result is that the “lack-of-
memory” necessary for a Poisson analysis fails.
Thus, such equations work best when a large
number of islands is expected and an approxima-
tion of island length is independent.

Probability of an Island Greater Than a Critical
Length

Care must be used when considering more than
one island from a given project, as their lengths
are not independent. For example, if there are
two islands in a project, it might be that either
one is greater than half the length of the target,
but it is certain that both of them are not (barring
undetected overlap). Now, the probability that a
project contains at least i islands of length
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greater than a certain critical length, C, may be
considered. Such a probability finds importance
in evaluating performance of fragment assembly
algorithms or in planning projects with limited
goals.

Let Ny, be the number of long spacings
Dy>L-T. Let g, be the number of short spac-
ings contained between adjacent long spacings.
Now [,,=L + E(D)g,,. Thus,

P, P [ c-L
(Un>C)=Plg,.> ED) J

The number of short spacings preceding the first
long spacing is g,; the number following the last
long spacing is gw,_- Because either Dq or D, may
be long, N, may be up to two greater than N,,,.
Neaps is nevertheless a good approximation to
Nione- This is true at low redundancies where Nyyps
>> 2. At high redundancies n >> Ny, so it is
unlikely that either D, or D, is long. If greater
accuracy is desired, an appropriate summation
can be made. Because the distribution of long
spacings is uniform among the set of all spacings,
the distribution of g is defined on the simplex

SotS1t82t... +8N
(n+ 1- ‘\"Iung)

=1
with all points of the simplex equiprobable. Let R
be the number of islands exceeding length C, let

__c-L
CCED+1- Niony)

and let k be the greatest integer less than 1/c.
Then, directly from Stevens (1939) one has

P(R > i|N,,,,) =

k .
Sy Namr oo
-~ (Ngups + L =G - Dli = 1)t i

(14)

In particular, the probability of having a contig
in 2 project greater than half the length of the
target can be approximated (i.e., ¢ = 1/2) as fol-
lows:

. G
P( one contig > -2—) =

”
G
> PNy, = v)P(one contig > 5| Nygps = v) (15)
val

v+ 1

-gl (n: 1) a-£5)"[1 -(1 _fc)ﬂln-l-v?

RANDOM SUBCLONING

At moderate to high redundancies, only the first
few terms of this last sum are necessary.

Circular Targets

In the foregoing, considerations of a linear target
forced somewhat awkward equations or mild ap-
proximations to obtain simpler equations. With
circular targets, many of these considerations are
unnecessary. [n particular, G, = G. Modifications
to equations 1 and 3 result in

x\2
fD.(x)=(n—l)(1—5) a9
P(Npgp, = X)
= P(Nistunas = X)

n 1 4 =X
= (;) psup (1- pxup)
32

Other results follow appropriately. Note that
these equations are not significantly different
from those for a linear target. The literature pro-
vides an exact formula for the expected number
of fragments needed for closure of a circular tar-
get (Flatto and Konheim, 1962). Begging “edge
effects,” this equation can also be applied to the
line. It is, as T approaches zero, and where B is the
greatest integer smaller than G/L.

E(n needed for closure) =

[_ k~1
. (1-kk
1-3 D (16)
km]

L \k~t
()

Also, some results are available for the case of a
varying parameter L - T, where its distribution is
known (Siegel and Holst 1982). These results in-
clude the distribution for the number of gaps and
its corollary, the probability of project closure.
These results may be applied also as approxima-
tions to the linear case. Conversely, the linear
results may also be applied as approximations to
the circular case. :

Simulations and Experimental Data

A large number of Monte Carlo simulations of
projects can be generated quickly with a com-
puter. They provide a useful comparison with the
mathematical models (Fig. 3) and demonstrate
the accuracy of the present model. Agreement
with experimental data, where available, is good
also. There are few compilations of robust statis-
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Figure 3 (A) Expected island length modeled as a
function of redundancy for a typical cosmid se-
quencing project. Project parameters are G, 40,000;
L, 500; T, 20. Data points are the average of 1000
independent Monte Carlo simulations (). The
Lander and Waterman model (1988) is shown as a
reference. (B) The expected number of islands mod-
eled with the same parameters.

tical data taken during intermediate project as-
sembly points, particularly because compiling a
statistically significant set of such data is burden-
some. Nevertheless, the experience in our labo-
ratory is that cosmid sequencing projects require
redundancies around sevenfold for closure (Ro-
wen and Koop 1994). Results from other labora-
tories support this view (Davison 1991; Bodente-
ich et al. 1994; Martin-Gallardo et al. 1994).

DISCUSSION

The major utility of the mathematical approach
presented here stems from an initial determina-

470 & GENOME RESEARCH

tion of the distribution of the spacings between
adjacent fragment start sites and the subsequent
use of geometric probability. This general ap-
proach to modeling finite genomes may be useful
for other mapping and sequencing strategies,
such as those based on random transposon inser-
tion. Such strategies represent a genomics imple-
mentation of the well-established ‘““coverage pro-
cess” theory. Hall provides a nice entry into some
of the relevant mathematics literature (1988).

“The equations derived here have many appli-
cations. To begin with, a strategist is interested in
the amount of work necessary to complete a
project. This can be expressed as the probability
of project completion at a given redundancy,
where project completion is defined as having
closed all gaps. This is given by equation 4 and is
graphed in Figure 4. These results are consistent
with the expected redundancy needed for closure
(equation 16), which is also indicated in Figure 4.
Not surprisingly, longer targets have a higher cost
in redundancy to close. Alsc, in general, fewer
longer sequences are more desirable than a pro-
portionally greater number of shorter sequences
(or their mapping equivalent).

The cost of directed sequencing is roughly
constant per gap, no matter how long the gap is.
However, there is an exponentially increasing
cost in redundancy to close gaps as shotgun
projects proceed. Therefore, choosing whether
and at which point to stop shotgunning and be-
gin directed sequencing is a fundamental eco-
nomic question. For this purpose it is useful to
calculate the incremental redundancy cost of
shotgun projects per gap expected to be closed
(Fig. 5). This cost can be compared with the cost
of directed sequencing to determine if and when
directed methodology is appropriate for a
project.

Several simplifying assumptions were em-
ployed in the present work. In particular, uni-
form distribution of fragment start sites may not
be the case for some shotgun projects (see Dein-
inger 1983). However, when variations in unifor-
mity are local, the uniform distribution is an ex-
cellent approximation. This is valid for most
projects, particularly with modern DNA shearing
techniques. Larger variations in uniformity tend
to be target idiosyncratic and difficult to model.
Such variation may result from target regions
that are genetically unstable and thus absent
from the subcione library. This points out one
particular utility of mathematical models: Unex-
pected deviations from predicted values serve as
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vided for coverage of a circle and also
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applies to the infinite line. Variation
of the expected number of gapson a
finite line caused by variation of
fragment length thus is expected
only because of edge effects and is
predicted to be small. Computer sim-
ulations confirm this prediction
(data not shown). Although the ex-
pected number of gaps remains con-

L stant with varying fragment lengths,
the distribution of island sizes will

Probabiity of Closure
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change. The probability of project
closure will also be affected. In prac-
tice, these effects are likely to be
small because L does not vary
greatly, particularly in sequencing
projects. Additionally, in most cases
T << L and can be approximated as 0.

Computer simulations were em-
ployed in the present work to verify
that the approximations reported in
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10 12 this paper were useful for modeling
genomic projects. [n general, be-
cause of the complexities involved

Figure 4 The probability of project completion graphed vs. redun-
dancy, caiculated using the exact equation of Stevens (1939). This
equation is approximated in the text by equation 4. Four parameter-
izations are shown. The vertical lines intersect the expected redun-
dancy necessary for closure, calculated using the exact equation of

with modeling even the simplest
random sequencing strategies, com-
puter simulations should be consid-

Flatto and Konheim (1962), with a = (L - T)/G.

an indication of subcloning problems. Then,
such problems can be addressed and corrected.
Although held constant in the present
model, both fragment length (L) and necessary
overlap (7) may vary in practice. Additionally,
overlap may be expressed as a probability, not a
certainty, and this ‘“probability of overlap” is af-
fected further when more than two fragments
overlap at the same position. Repeated sequence
elements in the target tend to decrease the prob-
ability of certain overlaps. Such considerations
can be incorporated at the price of complexity
into the present model by employing distribu-
tions for the values L and T, which can be com-
bined into a distribution for L', where L’=L - T.
However, variations in fragment length should
not cause much concern for the average genom-
icist. Siegel and Holst (1982) provide a proof that
the expected number of gaps is dependent only
on the expected fragment length, conditioning
on the number of fragments. This proof is pro-

1504
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incrementsi Cost in Sequence Reads to
Obiain & Project with One Less Expected Gep
8

. s ‘ 3 2 1

of Gaps C. in Project
Figure 5 Theincremental cost of closing one gap.
This is calculated from the number of expected gaps
in a project with no knowledge of a prior state of
that project (see equation 5). Note that it is impos-
sible to plan a project with zero expected gaps, be-
cause gaps always remain a small but finite possibil-
ity. G, 40,000; L, 500; T, 20.
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ered as an essential adjuvant to planning any
large-scale project. Directed aspects of a project,
variations in parameters, and boundary condi-
tions are easily included in such simulations.
Simplifying assumptions can be avoided. The
value of simulations cannot be overemphasized.
Mathematical models such as the one presented
here are useful in conjunction with such simuia-
tions.

In summary, the mode! presented here
should have utility for planning both sequencing
and mapping projects, as well as for choosing re-
alistic endpoints for such projects. In particular,
the model may provide useful benchmarks for
evaluating the progress of large-scale genomic
projects, such as those contemplated for the hu-
man genome.
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APPENDIX A: TRUNCATED SPACING
DISTRIBUTION

Spacings greater than L - T form gaps, and so are
not included in the subset of spacings that may
be included in the length of an island. To pro-
ceed, these spacings must be eliminated from the
distribution of D, (equation 1) by truncating and
normalizing. The expected value of this trun-
cated distribution is (note the change of variable
y=x/G,):
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This value should be used in place of E(D,) in
equation 12.

APPENDIX B: TARGET COVERAGE

The nondegenerate fraction of the target f
represented in fragments is

f=1-¢® (18)

This is a characteristic equation for the coverage
derived from a random cloning strategy, and in
genomics literature is attributed to Clarke and
Carbon (1976). A similar derivation is presented
below, with comments to extend its applicability,
particularly to pairwise projects where both ends
of a fragment, but not the center, are character-
ized (see Roach et al. 1995).

Let a shotgun strategy be executed such that
p. is the probability of coverage of base pair x by
any given fragment. The probability that the base
pair is covered by at least one fragment is thus
I~(I-p,)". The expected value and higher mo-
ments of f follow from the results of Robbins
(1944), with

1 G
E(f):azl [1-(1-py” (19

When p, = L/G for all x, this expected value is
approximated by equation 18. Note that for pair-
wise projects L is replaced by the characterized
length of each fragment. For linear targets p, is
not constant, and falls off near the edges. Despite
this, unless L is a significant fraction of G equa-
tion 18 remains an adequate approximation to
equation 19.

Using the approach of the present paper, f
may be obtained also by subtracting the sum of
the gap lengths from the total target length. This
may be employed as an alternative approach to
calculating expected island length. Note that an
excess of negative gap lengths will result in clonal
coverage in apparent excess of the total target
length. This is most apparent when T is large. If
the actual coverage is desited, the length of a gap
should be calculated as D~ L for D> L.

RANDOM SUBCLONING
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Strategies for large-scale genomic DNA sequencing
currently require physical mapping, followed by de-
tailed mapping, and finally sequencing. The level of
mapping detail determines the amount of effort, or se-
quence redundancy, required to finish a project. Cur-
rent strategies attempt to find a balance between map-
ping and sequencing efforts. One such approach is to
employ strategies that use sequence data to build
pbysical maps. Such maps.alleviate the need for prior
mapping and reduce the final required sequence re-
dundancy. To this end, the utility of correlating pairs
of sequence data derived from both ends of subcloned
templates is well recognized. However, optimal strate-
gies employing such pairwise data have not been es-
tablished. In the present work, we simulate and ana-
lyze the parameters of pairwise sequencing projects
including template length, sequence read length, and
total sequence redundancy. One pairwise strategy
based on sequencing both ends of plasmid subclones
is recommended and illustrated with raw data simula-
tions. We find that pairwise strategies are effective
with both small (cosmid) and large (megaYAC) targets
and produce ordered sequence data with a high level
of mapping completeness. They are ideal for fine-
scale mapping and gene finding and as initial steps
for either a high- or a low-redundancy sequencing ef-
fort. Such strategies are highly automatable. c ims
Academic Press. nc.

INTRODUCTION

The maturing science of genomics is developing an
armamentarium of techniques and strategies both to
map and to sequence genomes (Evans, 1991; Buriand
et al., 1993; Li and Tucker, 1993; Kasai et al., 1992;
Siemieniak et al., 1991). Large-scale genomic sequenc-
ing projects are typically divided into two phases: map-
ping followed by sequencing. Some strategies iterate
this process with interwoven mapping and sequencing

'To whom ndence should be addressed. Telephone: (206)
685-7367. Fax: (206) 685-7301. E-mail: roach@u.washington.edu.
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phases. A common strategy is to produce a rough map
of approximately 40-kb completeness (terminology of
Olson and Green, 1993), which is the level of cosmids.
Cosmids provided by such a mapping effort can then
be employed in sequencing strategies, often using a
random shotgun approach, which employs random
start locations for sequence reads. Alternatively, a di-
rected strategy may be used to provide a map of ex-
tremely fine detail—with markers spaced less than a
sequence read length apart—followed by “one-pass” se-
quencing.

To a large extent, directed strategies exist to over-
come the major drawback of the shotgun strategy, the
need for overdetermination of target sequence to max-
imize gap closure and minimize errors. As shotgun
projects progress, due to their random nature, it be-
comes exponentially more difficuit to generate novel
data and to close gaps in the target sequence. Directed
strategies bridge this problem by deriving fine-scale
maps before sequencing, but at a cost of time and effort.
Most sequencing projects seek a balance between di-
rected and random approaches. A review of this dichot-
omy is provided by Chen et al. (1993).

Here we seek a complete integration of mapping and
sequencing, with a fine-scale map arising automati-
cally from sequence data as a project proceeds. The
strategy that we describe retains the simplicity of ran-
dom shotgun approaches, but, due to the fine-scale map
produced, eliminates the need for more than minimal
overdetermination of target sequence. Its primary pro-
cess of “scaffold-building,” described below, is highly
automatable and requires neither iterative steps nor
intervention from highly trained individuals. We note
that this strategy requires low sequence redundancy
to achieve target-spanning maps. However, since se-
quence accuracy is largely a furiction of its redundancy,

-we also discuss methods for improving local coverage

and thus global accuracy. Nevertheless, we emphasize
the utility of a “low-pass” approach.

FORMULATION

A sequencing project begins with a target, denoted
G, often cosmid-sized, but conceivably much larger. The

0888-7543/95 $6.00
Copyright © 1998 by Academic Press, Inc.
All rights of reproduction in any form reserved.
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FIG.1. A model “double-barrel shotgun” assembly. A 2.25 sequence redundancy produces 18 contigs that span 30% of an original target
cosmid at 99.9% accuracy. Contig orientation and order are determined as shown. All but one gap are less than 400 bp; the remaining is
751 bp. More statistics are presented in Table 1.

strategy presented here envisions fragmenting multi-
ple independent copies of this target into many small
subcloned inserts, sequencing both ends of these in-
serts, and building “scaffolds” from analyzed sequence
data (Fig. 1). In this paper we simulate insert sizes
ranging from 1 to 10 kb. Our computer simulations,
except where indicated, assume a constant insert
length, 1. All possible subcloned fragments are consid-
ered equiprobable.

Sequence read length, denoted L, can vary from 350
bp to over 800 bp, depending on sequencing protocols
and instrumentation. For computer simulations we as-
sume L to be a constant 400 bp. The number of inserts
successfully sequenced in a project is denoted . Since
inserts are sequenced at both ends, the total number of
sequences will be 27, and the total amount of sequence
determined will be 2aL. The redundancy of sequence
data, denoted R,, is defined to be 2nL/G. Most of our
results depend primarily on redundancy and only sec-
ondarily on sequence read length or quantity. Thus,
many short sequence reads are roughly equivalent to
proportionally fewer long reads, and our choice of 400
bp for L is not critical. We also note that in mapping
projects redundancy is usually defined as the total
length of all subcloned inserts analyzed. In the formu-
lation presented here this quantity is denoted R, and
defined to be nl/G. The use of R, permits comparison
of our mapping results with other mapping techniques,
such as restriction mapping.

After all insert end sequences have been determined,
data can be analyzed and sequences can be assembled
into islands and contigs (terminology of Staden, 1980).
An island is a set of overlapping sequences such that
a path can be traced between any two members of the
set; a contig is an island consisting of at least two se-
quences. With a pairwise sequencing strategy, assem-
bly of contigs is facilitated by knowledge of the pairwise
orientation of sequences derived from the same insert.
Such knowledge was first used extensively during the
sequencing of the HPRT locus (Edwards et al., 1990).

Pairwise knowledge also permits discrete islands to be
ordered and oriented with respect to each other. This
ordering and orienting creates a map with sequence
islands as landmarks and permits mapping to be inte-
grated into the sequencing phase of a project. Such
landmarks have been referred to as “mapped and se-
quenced tags,” or MASTSs (Smith et al., 1994). The size
of the gaps between islands determines the complete-
ness of the map (Olson and Green, 1993).

At low redundancies, it will not necessarily be possi-
ble to determine a single nondegenerate map for a proj-
ect, as there may be sequence islands for which order or
orientation is not determined. For a map to be finished,
there must exist a path of bridging inserts between
any two sequence islands, either directly or indirectly
through other islands. Until enough redundancy is
present to overcome this potential problem, there may
be multiple coexisting and possibly overlapping maps.
To address and discuss this issue, we define an ordered
and oriented list of sequence islands to be a “scaffold.”
Since a scaffold consists of one or more overlapping
subcloned inserts, it could also be legitimately called
anisland, and would be if our discussion centered solely
on mapping issues. Here, we reserve the term “island”
to denote a set of overlapping sequences.

Beyond a certain point, as redundancy increases, the
number of both islands and scaffolds will decrease, ulti-
mately resulting in a single scaffold. Such scaffolds
usually contain the entire target and as such are
termed “complete.” A complete scaffold usually con-
tains vector sequence as well, but for statistical pur-
poses is considered to be equal to the length of the
target. The longest scaffold resulting from a project is
termed the “maximum” scaffold. Gaps in sequence
data internal to a scaffold have previously been termed
“sequence-mapped gaps,” or SMGs® (Edwards and
Caskey, 1991).

2 Abbreviations used: YAC, yeast artificial chromosome; BAC, bac-
terial artificial chromosome; PCR, polymerase chain reaction; SMG,
sequence-mapped gap; STS, sequence-tagged site.
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For our computer simulations, we assume that a mu-
tual overlap of length T is necessary and sufficient to
detect overlap between two sequence reads. This over-
lap T was set at 30 bp, but we note that the effects of
varying T are slight, particularly because 7' < L. In
particular, assigning T any value between 1 and 50
does not noticeably aiter our resuits (data not shown).

For most projects, a target sequence will have been
fragmented along with its vector (i.e., YAC, BAC, cos-
mid, phage). To minimize the sequencing of vector, usu-
ally one employs either target sequence as a probe to
pick positive inserts or vector sequence as a probe to
screen out vector. We present here only simulations of
the first strategy, which we also find to be representa-
tive of other strategies (data not shown). To this end,
we assume that any insert that contains at least 40 bp
of target sequence is a candidate for inclusion in a proj-
ect. One advantage of this “positive screening” ap-
proach is that a few inserts will overlap vector sequence
and can be used to anchor the ends of some scaffolds
to the vector. However, this effect is slight, especially
with longer target lengths.

Our analysis centers on two target lengths: 35 and
200 kb. We chose 35 kb as a representative length for
coasmids, which currently form the majority of our tar-
gets. We chose 200 kb as a representative length for a
BAC or YAC, to demonstrate the feasibility of using
pairwise data to facilitate shotgun sequencing targets
of that size or larger. All computer simulation data
represent the average of 100 determinations.

COMPUTER SIMULATIONS

We find that complete scaffolds are an ideal project
endpoint and thus have sought to determine optimal
methods for their derivation. We have also character-
ized expected values for certain parameters, including
average SMG size and total scaffold length. To these
ends, we employed computer simulations that we in
turn supplemented with a raw data simulation based
on a highly redundant random shotgun project.

The results of our computer simulations are pre-
sented for cosmid- (Fig. 2) and BAC-sized (Fig. 3) tar-
gets. In general, the number of scaffolds rises sharply
at low redundancies and then declines at higher redun-
dancies. The sharp rise occurs since each insert se-
quence data pair added to a project at low redundancy
has a high probability of forming a new scaffold. At
higher redundancies, inserts begin to merge scaffolds
and their number drops. For most projects, single scaf-
folds formed at a sequence redundancy between twofold
and threefold. Slightly greater sequence redundancies
were necessary to achieve single scaffolds from 200-kb
targets than from 35-kb targets. Nonetheless, when
10-kb inserts were used, a single scaffold was always
obtained at a redundancy less than twofold. In general,
fewer scaffolds resulted when longer insert lengths
were used. This is a result of longer inserts having a
higher probability of spanning greater distances be-
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tween sequence islands and emphasizes the value of
uging as long an insert length as possible, which maxi-
mizes R,,.

At high redundancies complete scaffolds are always
obtained, as seen from our graphs of average maximum
scaffold length (Figs. 2 and 3). For example, when 1.2-
kb inserts are used for a 200-kb target, complete scaf-
folds are obtained around sevenfold redundancy. How-
ever, to obtain an improvement over traditional ran-
dom shotgun sequencing strategies, complete scaffolds
should be obtained at lower redundancies. This was
clearly possible when longer insert lengths were em-
ployed. For example, redundancies of twofold were suf-
ficient to ensure complete scaffolds when 10-kb inserts
were simulated. When a project resuited in a single
scaffold, this scaffold was also complete, or nearly so
(data not shown).

We did not notice significant differences in redundan-
cies necessary to achieve analogous results for 35-kb
(Fig. 2), 200-kb (Fig. 3), or even 1-Mb targets (data
not shown). This suggests that sequencing effort scales
roughly linearly to results, and not exponentially, even
with relatively large targets. This rough linearity
stems from the use of pairwise data and indirectly from
the high mapping redundancy R.

The number of SMGs in maximum scaffolds in-
creases, then decreases, as sequence redundancy in-
creases. The initial increase is due both to the increas-
ing length of the maximum scaffold, enabling it to con-
tain more gaps, and to the division of large gaps into
smaller gaps as sequence islands bisect them. The sub-
sequent decrease in SMGs is due to additional sequence
data closing gaps. Roughly speaking, the largest num-
ber of SMGs tends to occur in complete scaffolds that
have been obtained with a minimum of sequence re-
dundancy. Thus, at redundancies between twofold and
fourfold, which we envision as reasonable for pairwise
projects, a significant number of SMGs are likely to
result.

For many projects a complete target sequence is de-
sired, with no gaps fragmenting continuity. For other
projects, such as gene finding, complete sequence is not
a priority, but gap characterization may be of interest.
In general, project design should aim for gaps no longer
than a single sequence read, or at most two reads. Our
simulations (Figs. 2 and 3) demonstrate that large gaps
occur as expected at very low redundancies, but at re-
dundancies above 1.5 average gap length tends to be
less than a single sequence read length. Also, for all
projects with sequence redundancies above twofold, the
maximum observed gap length tended to be less than
800 bp, requiring at most two sequence read lengths
to close. Occasionally longer gaps occur. For example,
at a redundancy of 2.5 with a 35-kb target, 100 simula-
tions of a project employing 2-kb inserts contained one
gap greater than 800 bp in 17 cases, and two such gaps
in a single case. Above twofold redundancies, there
were no significant differences in SMG length resulting
from alternative choices of insert size.
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FIG. 2. Parameters from a 35-kb pairwise project evaluated as a function of sequence redundancy.

Long insert lengths are not always convenient se-
quencing templates. For this reason, we sought a strat-
egy that minimized the need for longer inserts and
explored strategies that employed mixtures of insert
sizes. In general, we found that benefits derived from
large inserts could be obtained even when they repre-
sented a small fraction of the total number of inserts
sequenced. In particular, we simulated strategies that
employed a mixture of 2000- and 10,000-bp inserts (Fig.
4). For these simulations we held redundancy constant
at 2.25 and assumed a 200-kb target. We found no
significant differences between projects utilizing en-
tirely 10,000-bp inserts and those that used only 15%
10,000-bp inserts.

We also envisioned strategies that mix pairwise data
with data derived from a single strand only, such as
might be obtained with M13 templates. A relatively
small fraction of pairwise data suffices for the forma-
tion of complete scaffolds that are composed largely of
single-strand data (Fig. 5). With a mixture of 60% sin-
gle-strand data, 30% 2000-bp pairwise insert data, and
10% 10,000-bp pairwise insert data, a maximum scaf-
fold was reached before threefold redundancy for a 35-
kb target. This simulation addresses a practical ques-
tion, for sequencing reactions will occasionally fail,
which implies that most pairwise projects will be sup-
plemented with a cohort of widowed sequences.

For random subcloning projects, the fraction of the
target present in subclones is approximated by the
equation 1 - e~® (Roach, submitted). Our simulations
met this prediction (data not shown). At any given re-
dundancy R,, target coverage will be the same for either
a traditional shotgun or a pairwise sequencing strat-
egy. We emphasize that increased target coverage is
not an advantage of pairwise strategies. At the redun-
dancies of about 2.5 necessary to build complete scaf-
folds, target coverage will be about 92%.

RAW DATA SIMULATION

We wished to verify that results from our computer
simulations accurately modeled real projects. Such
projects utilize raw sequence data and might employ
templates with significant repeat elements. In addi-
tion, we were interested in determining the ease of
assembling scaffolds by hand. To our knowledge, no
computer programs are yet available for this purpose.
To this end, we designed a simulation built around a
cosmid from the human T-cell receptor § locus se-
quenced in our lab.

The cosmid Al-4 has been sequenced using a random
shotgun strategy to a final redundancy of 8.4 (Koop et
al., 1993). This cosmid consists of a 35,343-bp target
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FIG. 4. Pairwise strategies employing a mix of insert sizes were simulated. Here, a mix of 2000- and 10,000-bp inserts was simulated
at a constant sequence redundancy (2.25). As seen, a small proportion of larger inserts produces results comparable to those achieved when

only large inserts are used. At 2.25 redundancy, complete scaffolds can be obtained with only a 15% mix of longer insert lengths. A 200-
kb target was assumed.
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FIG. 5. A hybrid strategy employing a combination of single-strand and pairwise data was simulated. A mix of 60% single strand, 30%
2000 bp, and 10% 10,000 bp data was employed. With this approach a complete scaffold can be obtained at less than threefold redundancy.

A 35-kb target was assumed.

cloned into an 8213-bp vector. The target is notable in
that it contains several repeats, including two 8.4-kb
homologous elements. Their similarity ranges from
85% to over 99% when 400-bp sliding windows are used
for analysis. For this reason, the cosmid Al-4 was
judged to represent a significant challenge for assembly
(Lee Rowen, Seattle, pers. comm., 1994). The sequences
used for the original assembly of Al-4 were derived
primarily from single-stranded M13 templates and
were sequenced with either Sequenase or Tag cycle
sequencing protocols.

For our pairwise assembly simulation we chose a
subset of these 678 sequences that might represent
typical data from a pairwise project. To this end we
planned for a 2.25 final redundancy R,. We wished to
pursue a strategy that employed a mix of long and short
templates, so we simulated 88 2500-bp fragments and
22 7000-bp fragments. We determined the start loca-
tions of these fragments with a random number genera-
tor. The length of the fragments was modified randomly
with a squarewave to simulate uncertainty in fragment
length, as might occur if such fragments were size se-
lected by banding on an agarose gel. Sequence reads of
the proper orientation were then chosen from the
Al-4 data set to represent the pairwise end sequences
of our hypothetical fragments. The closest raw se-
quences to our randomly generated fragment endpoints
were used, although no sequence was used twice. The
final range of short fragment lengths was 1738—3418
bp (2375 = 287 SD), while the range of long fragments
was 5312-8245 bp (6819 = 781 SD). For our initial
assembly, all sequences longer than 400 bp were
clipped to 400 bp to demonstrate that long sequence
reads are not necessary for the success of pairwise as-
semblies. In addition, a few sequences were shorter,

although no sequence was less than 250 bp. Our final
redundancy R, was thus slightly less than 2.25. We
judged our protocol for sequence selection to be a rea-
sonable approximation of what might be likely to result
from an actual pairwise project.

One of us (J.C.R.) then assembled these pairwise se-
quences into a single scaffold. Before and during this
assembly he was blind to the nature of the repeats in
Al-4 other than that it was a “difficult” cosmid. Addi-
tionally he was blind to the exact length of the frag-
ments, other than that they were either “long” or
“short.” Sequence contigs were assembled with the soft-
ware package DNA* (Madison, WI). Scaffolds were as-
sembled by sliding pieces of paper on a large table and
were ultimately merged into a single scaffold (Fig. 1).
This assembly took about a day, illustrating that it
would be a task suitable for software. Following the
generation of this scaffold, each sequence contig was
edited by hand for maximum accuracy. At this point,
for editing purposes, the ends of sequences extending
beyond 400 bp were used. Some of these sequences,
although often low accuracy, served to verify the order-
ing and orienting of the contigs within the scaffold.
Additionally, they helped improve the overall accuracy
of the sequence data.

The results of this raw data simulation compared
favorably with the averages predicted by our computer
simulations (Table 1). Eighty-nine percent of the target
sequence was represented in this scaffold. The re-
maining unknown sequence was contained in 17 SMGs.
Sequence accuracy was 99.9%. All but one of the 44
errors were present in regions covered by only a single
strand. This suggests that double strand coverage is
capable of obtaining extremely high accuracy, which
could be obtained for these regions by sequencing oppo-
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TABLE 1

Results from a Raw Data Simulation of a Pairwise
Strategy Compared with Values from a Computer
Simulation

Computer Raw data
simulation simulation
Number of scaffolds 1.02 1
Scaffold length (bp) 35,267 35.343
Number of SMGs 21 17
Average SMG length (bp) 168 223
% target covered 90.1 89.2

Note. Results from a raw data simulation of a pairwise strategy
employed on a 35,343-bp cosmid that had previously been shotgun
sequenced to ninefold redundancy. For this simulation. 2.25 sequence
redundancy was derived from the end sequences of a mixture of
hypothetical subclone inserts, 20% approximately 7000 bp in length
and 80% approximately 2500 bp in length. These resuits agree with
results from our computer simulations and suggest the practicality
of obtaining complete scaffolds in the range of twofold redundancy.
The computer simulation column depicts average values from 100
independent determinations.

site strands. The exact lengths of the 17 SMGs were
unknown, but could be estimated. Ten of these SMGs
were spanned by the low-quality ends of sequence
reads present in our data set. These data were insuffi-
cient for base calling, but allowed the estimation of gap
lengths to within a few basepairs. The lengths of the
remaining SMGs could be estimated based on the
lengths of the fragments that spanned them. As subse-
quently verified, all 17 SMGs were less than 800 bp,
and all but two were less than 300 bp.

DISCUSSION

We have simulated a variety of approaches to se-
quencing large targets. Our simulations revolve around
the utility of pairs of sequence data derived from oppo-
site ends of subclones. We refer to strategies employing
such data as pairwise end-sequencing, or more colloqui-
ally, “double-barrel shotgun” strategies. We were pri-
marily interested in determining the minimum amount
of sequence redundancy necessary to reach satisfactory
project endpoints. We were also interested in determin-
ing the optimum fragment size to sequence.

We defined a “scaffold” to be an ordered and oriented
list of sequence islands. SMGs between such islands
are determined in such a manner that their length is
approximately known. We feel that production of a scaf-
fold that equals or exceeds target length is an ideal
endpoint for a random strategy. Strategies based on
our simulations achieve such scaffolds at sequence re-
dundancies around twofold.

A key factor in producing scaffolds at twofold redun-
dancy is the choice of insert lengths. We found that the
longer an insert is, the more useful it is. This is in
considerable contrast with a common misconception
that the ideal insert length is three times the sequence
read length. Nevertheless, there is a practical upper
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limit to useful insert size. This limit depends on three
factors. First, it is difficult to clone large fragments
routinely. Second, longer inserts have correspondingly
more sequence complexity, which tends to degrade the
quality of the raw data. Third, assembly becomes more
difficult with longer fragments, as the absolute uncer-
tainty of the length hetween pairwise ends tends to
increase. These limitations vary in stringency de-
pending on available technology and resources. Thus,
the optimal choice of fragment size may vary from one
laboratory to another. However, given the option, frag-
ment sizes should be chosen as large as possible. It
should be noted that in addition to their advantages in
scaffold-building, large fragments are also extremely
useful in detecting and resolving repetitive elements
in target sequence.

The use of a mixture of small and large inserts gains
most of the advantages that would occur with the sole
use of large inserts (Figs. 4 and 5). This is true even
when the large inserts represent a relatively small frac-
tion of the total. Generally speaking, the total length
of all of the inserts should be chosen to maximize the
mapping redundancy R, If for technical reascns an
insert library is constructed of a single intermediate
size, a slightly higher sequence redundancy can be used
to ensure completeness (Figs. 2 and 3). The exact bal-
ance between redundancy and insert lengths will de-
pend on the laboratory and should be determined on a
case-by-case basis with the aid of computer simuia-
tions. )

We find that “double-barrel” shotgun sequencing has
many advantages over traditional “singie-barrel” shot-
gun sequencing. Notably the mapping redundancy R,,
for single-barrel sequencing is 2nL = R,. The mapping
redundancy for double-barrel sequencing is nl, which
should be several times greater than R,. This creates
a high-redundancy mapping situation, which permits
efficient low-redundancy sequencing. This sequencing
builds complete scaffolds for which the location and
lengths of all gaps are determined. Pairwise strategies
are not confined to low-pass sequencing and are equally
valuable at high redundancies, particularly for se-
quence assembly. For these reasons, we feel that all
random strategies should employ pairwise data, at
least with the goal of generating complete scaffolds as
a basis for further sequencing. Such sequencing can
either continue to be random or switch to directed ap-
proaches.

We expect that most projects will move to directed
sequencing after a complete scaffold is obtained. This
“gap closure” will entail obtaining sequence for SMGs
as well as reverse sequence from regions of single-
strand coverage. The templates localized during scaf-
fold construction are ideal substrates for such directed
sequencing. One gap closure methodology is to se-
quence a PCR product spanning the gap, which should
be capable of closing any of the gaps present in com-
plete scaffolds. If the entire target sequence is not
needed, only gaps of interest need be filled. This might
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be the case for a gene finding effort, or across an ele-
ment such as an Alu repeat.

For any reasonably large project, computational tools
will be necessary to assemble and analyze scaffolds.
We expect that such software will evolve in the near
future. A simple assembly algorithm is to first assemble
individual sequences into islands, blind to their pair-
wise nature. Second, order the resuiting sequence is-
lands by linking together sequences with their mates
from opposite ends of the inserts. Third, check for in-
consistencies, remove suspect pairs of sequences, and
iterate the process. Finally, make rough estimates of
gap distances based on insert lengths and on low-qual-
ity sequence read end data. This algorithm was suc-
cessfully employed to assemble the cosmid A1-4, which
we believe to have been a robust test of its efficiency.

Algorithms employing pairwise assembly data are
more robust and accurate than traditional assembly
algorithms. Each sequence offers a positional check on
its mate, allowing a majority of misplaced sequences to
be located immediately following an assembly. Without
this check, we would indeed have misplaced several
sequences during our raw data simulation of the
Al-4 assembly, particularly within one of the 8.4-kb
homologous repeats. In general, repeats pose little
problem for these algorithms. The key limit for repeat
detection with any sequencing strategy is the length of
the longest effective subclone. For pairwise sequencing
this limit is the insert length, which can be an order
of magnitude greater than that of traditional shotgun
sequencing.

One aspect of potential concern to pairwise sequenc-
ing is uncertainty in the exact lengths of pairwise in-
serts. Such uncertainty will arise if fragments are band
purified on an agarose gel and not subsequently charac-
terized. In extreme cases, particularly at low redundan-
cies, such uncertainty might result in indeterminate
island order within a scaffold. However, in our raw
data simulation of cosmid Al-4, we found that a redun-
dancy R, of 2.25 was more than enough to avoid any
such problems. Thus, a knowledge of exact insert
lengths would have contributed little to our project.

The computer simulations presented in this paper
hold both sequence read length L and insert lengths /
constant. In actual projects, such as that represented
by our raw data simulation, these parameters are ex-
pected to vary. We have incorporated these considera-
tions into several additional computer simulations
(data not shown), particularly by allowing [ to vary as
a squarewave centered on a target value. No significant
differences in predicted results were noticed when I
was allowed to vary. Variations in L also have no sig-
nificant effect, as long as redundancy remains constant
(data not shown).

Another assumption of our computer simulations
was that all target fragments are equiprobable. The
accuracy of this approximation is dependent on the
fragmentation method (see, for example, Deininger,
1983). For most cases this approximation is quite valid,
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because the regions of fluctuation in fragmentation
probability tend to be smaller than the length of the
inserts. Such deviations are easily modeled in com-
puter simulations, but due to their idiosyncratic nature
are not explicitly presented here.

We believe that there are many reasonable imple-
mentations of the pairwise strategy, which was origi-
nally proposed by Edwards and Caskey (1991). One
example known as “ordered shotgun sequencing,” or
0SS, has been suggested by Chen et al. (1993). OSS is
characterized by a low-redundancy pairwise approach
that produces multiple unlinked scaffolds that form the
basis for further directed sequencing. Further simula-
tions and a review of pairwise strategies have been
provided by Richards et al. (1994). In the present paper
we present pairwise strategies in their most general
form, accompanied by computer simulations that pro-
vide previously unavailable information, allowing the
pursuit of optimal strategies. Obviously, such strate-
gies should be adapted to individual projects, tech-
niques, and laboratories. However, projects should be
designed in accord with the general principles eluci-
dated in this paper. In particular, an effort should be
made to maximize insert lengths. Also, we see no ad-
vantage in sequencing one insert end initially and sub-
sequently a subset of the pairwise ends. We believe it
is more efficient to sequence all ends simuitaneously.
Additionally, we see no particular advantage in halt-
ing pairwise projects before complete scaffolds are
achieved. The extra sequence redundancy necessary to
achieve complete scaffolds is relatively small compared
with the labor that otherwise would be necessary to
assemble several unlinked scaffolds into a map. An ex-
treme example of this last option is presented by Smith
et al. (1994), in which cosmid clones are entirely
mapped before their ends are sequenced

In particular, we find a PCR-based implementation
of the double-barrel strategy attractive (K. Wang, L.
Gan, C. Boysen, and L. Hoed, submitted). In this imple-
mentation we use colony PCR to recover plasmid in-
serts. The PCR products are sequenced with forward
and reverse primers. A 96-well format is used from
start to finish, and ABI 373 gels are used to generate
sequence data. A complete scaffold is generated quickly
and efficiently. Low-redundancy pairwise strategies
such as this are particularly useful for gene finding, as
they provide most of the sequence data from a target
region, which can then be utilized in similarity or fea-
ture identification searches. Regions of interest can be
singled out for special attention facilitated by the struc-
tured nature of the scaffold.

We believe that pairwise strategies can effectively
handle megabase targets. Our simulations demon-
strate that sequence redundancies between two- and
threefold are more than adequate to span such targets
with complete scaffolds (data not shown). By permit-
ting direct shotgun sequencing, double-barrel strate-
gies eliminate the need to use intermediate subclones
of large mapping vectors such as BACs or YACs. This
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elimination of cosmid subcloning and mapping can rep-
resent a significant increase in the efficiency of genomic
sequencing efforts. We would particularly like to rec-
ommend double-barrel shotgun sequencing for small
bacterial and viral genomes.

In summary, pairwise end sequencing can be charac-
terized as mapping at high redundancy, but sequencing
at low redundancy. It generates complete scaffolds
more economically and more quickly than traditional
shotgun sequencing. The advantages of this strategy
include its simplicity and the absence of any need for
clone mapping other than that which results as an inci-
dental by-product of sequencing. It is capable of han-
dling relatively large repeats or complex templates. Its
utility includes STS generation, gene finding, low- and
high-pass sequencing, and ultra-fine-scale mapping.
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Abstract. We expand the already large number of
known trypsinogen nucleotide and amino acid sequences
by presenting additional trypsinogen sequences from the
tunicate (Boltenia villosa). the lamprey (Petromyzon
marinus). the pufferfish (Fugu rubripes). and the frog
{Xenopus laevis). The current array of known trypsino-
gen sequences now spans the entire vertebrate phylog-
eny. Phvlogenetic analysis is made difficult by the pres-
ence of multiple isozymes within species and rates of
evolution that vary highly between both species and iso-
zymes. We nevertheless present a Fitch-Margoliash phy-
logeny constructed from pairwise distances. We employ
this phylogeny as a vehicle for speculation on the evo-
lution of the trypsinogen gene family as well as the gen-
eral modes of evolution of multigene families. Unique
attributes of the lamprey and tunicate trypsinogens are

noted.

Key words: Trypsinogens — Vertebrate — Molecular
evolution

Introduction

Trypsin is one of the most well studied enzymes. Its
ready availability in robust quantities from the lumen of
the ventebrate gut makes it particularly amenable to labo-
ratory study (Walsh and Wilcox 1970). The trypsin and
trypsinogen structures were early conquests of X-ray

® Present address: Darwin Molecular Corporation, 1631 220th St. SE.
Bothell. Washington. 98021. USA
Correspondence to: 1.C. Roach: e-mail roach@u.washington.edu

crystallography (Sweet et al. 1974: Kossiakoff et al.
1977). Trypsinogen amino acid sequences were early tar-
gets of protein sequencing. For these reasons. the birth
and development of the field of molecular evolution was
fueled. in part. by trypsinogen sequence data.
Trypsinogen genes have received renewed attention
recently. following the serendipitous discovery of tryp-
sinogen genes within the human T-cell receptor (TCR) 8

- locus. This genomic localization of trypsinogen genes

has also been observed in mice and chickens (Lee Ro-
wen. personal communication: Kai Wang. unpublished
observation). Intrigued by these observations. we sought
1o expand our knowledge of trypsinogen gene sequences
and their modes of evolution. Over the past few decades.
1 large number of protein and gene sequences have been
determined for either trypsin or trypsinogen trom a va-
riety of vertebrate species. [n an effort to acquire mo-
lecular data from all vertebrate classes and to increase
representation from within some classes. we obtained
additional cDNA and/or genomic trypsinogen sequences
from the lamprey Petromyzon marinus. the pufferfish
Fugu rubripes. and the frog Xenopus laevis. In addition.
in order to examine a phylogenetic outgroup. we se-
quenced a trypsinogen cDNA from a urochordate. the

tunicate Boltenia villosa.

Materiails and Methods

Boltenia villosa. Poly(A) mRNA was prepared from the dissected gut
of a specimen of Bolrema vitlosa 1a gift of William Moody. University
of Washingion. WA). mRNA was reversed transcribed ind cloned
as cDNA into the A-ZAP directional cloning vector (Stratagene:.
Additionally. RT-PCR was performed on the poly(A) mRNA with
degenerate pnimers designed to amplify serine proteases: H S -
CTSWCWGCWGCYCAYTG and S §°-YMSWGGKCCNC-



CRGARTC. These two pnmers correspond to conserved sequences of
the senne protease acuve site. Simtlar pnmers are descnbed by Kang
et al. (1992) and Wiegand et al. (1993). A resulung PCR product of
approximately 350 bp was agarose gel isolated and used as a probe to
screen the cDNA library. This band failed (0 sequence due to poly-
clonality and was judged (o be a diverse mixture of senne protease-
Jdenved products. Twenty-three positive plaques were picked and se-
quenced. The cDNAs identified by §° end sequencing as rypsinogen
were completely sequenced by primer walking on both strands with the
following primers: TUN2Fl S -TGGAACACGTGGAAAA-
TAGTTCTC. TUN2RI §-CGAGAACTATTTTCCACGTGTTCC.
TUN2FY §'-CAAGCAGCGGAGGAACTATCTCCG. TUN2IR2
5. TCCACTAACAGTACACGCGGTGTC. TUNI9F! 5°-GGT-
GTATACACCCGTGTTGCAGTG. TUNI9RI 5-ACACTGCAA-
CACGGGTGTATACAC. and TUN2R3 5 -TTTGGATGATTAAG-

GATTTITATTG.

Petromyvzon mannus. Poly(A) mRNA was prepared from the dis-
sected gut of a Petromyzon marinus ammocoete (a gift of James Seeley.
Hammond Bay Biological Station. MI). nRNA was reverse transcnibed
and cloned as cDNA into the A-ZAP directional cloning vector (Strata-
gene). Additionally. RT-PCR was performed on the poiy(A) mRNA
with the trypsin-specific pnmers TRYF 5°-CTGGATCCGTGAGAC-
TGGGAGAGCAC and TRYR 5°-CTGGATCCGAATCCTTGCCTC-
CCTC. The sequence of the 387-bp product was consistent with rypsin
and was used 1o probe the cDNA library. Thirty-one positive plagues
were sequenced at their S° ends with the m13 reverse pnmer. Seven
cDNAs 1denufied by 5° end sequencing as trypsinogen were com-
pletely sequenced by pnmer walking on both strands with the foilow-
ing primers: LT2 5°-AGCCAGTGGGTCCTGTCTG. LT3R
§"-TCACGAAGATGTTGTGCTC. LT3 5'-TCATGCTCATCAAGC-
TGTCCTC. LT4R 5°-ACGCACATGAGGACGTCGGGAC.LTSR 5°-
AAGAGTAGTGTGTTAGATCCAC. XTAS §°-CCGGTGGCC-
CCGTGGTGTG. and TRYR.

Sequence Analvsis. Previously published trypsin and aypsinogen
sequences were culled from Genbank using a vanety of text- and ho-
mology-based searches.’ A table of previously published sequences
with onginal references can be found in Rypmewski et al. (1994).
Additional published sequences not otherwise cited 1 the text are
found in Titamu et al. (1975). Gudmundsdotr et af. (1993). Genicot et
al. (1996). and Pancer et al. (1996). Unknown sequences were analyzed
with BLASTN and BLASTX searches against Genbank reiease 96.0
(Gish and States [1993: Altschul et al. 1990). Addiuonally. BEAUTY
was employed as a search tool (Worley et al. 1995). Muluple sequence

alignments were performed manually. The Takifugu (TRU25747) and .

Xenopus (XLU27330) sequences were isolated and sequenced as de-
scribed previously (Wang et al. 1995).

Phylogenetic Analvsis. Phylogenetic trees were estimated with
FITCH. an eiement of the PHYLIP package (Felsenstein 1993). Protein
distances were calculated with 2 special metric to take advantage of the
large number of known biciogical constraints affecting trypsin resi-
dues. Most current distance metrics treat all sites equivalently. [deally.
we would construct a separate distance matrix for each trypsin residue
site. Reliable construction of such a matnx would require more se-
quences than we have at present. but may eventually be possible. We
thus employed a simple method that we suspect provides a reasonable
approximation to what might be obtained with more data. We anucipate
future computatonal advances that will permit a combination of site~

' Nucleic acid sequences described for the first time in this report have
accession numbers TRU25747. XLU27330. AFO11352, AFO11897-

901. AF028829. and AA618632-S8.
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spectfic data and maximum likelihood methodology to surpass our
current approach.

We assume that we have a large enough collection of sequences 0
have observed all possible permitted residues at each site. This assump-
tion 1s more vahd for sites with few observed residues. These sites are
the most significant contnbutors to distance calculauons. making this
assumpuon reasonable. Let the number of permutied residues at site ¢ be
N, Ignore sites where N, = |. Calculate the probabiiity of a residue
remaining unchanged at site ¢ after T ume penods as:

p N-l(l Nmyt o1
=3 i e

where R 1s the number of possible residues (R = 201. and m 1s the
probability of a residue mutating per ume penod. This equation rep-
resents a Jukes-Cantor model with R states tJukes and Cantor 1969).
However. 1t assumes that mutations 10 a nonpermitted residue are se-
lected against and thus are observed as no mutational event. This model
treats residues. rather than nucieotides. as mutable elements. The man
incentive 10 use this model is to account for 2 slower rate of change at
sites that. due to functional constraints. have few permitted residues.
Our distances are calculated as the vaiue of 7 that gives the maximum
likelihood of the observed differences between two sequences. For the
present paper. the rate m 15 arbitranly set 10 0.01. Were 3 molecular
clock hypothesis to hold. m could be set empincally. Small alterations
1n e affect the scale of a denved phylogeneuc tree. but not its topology

or proporuons.
Results

Tunicate Trypsinogen
We screened a tunicate (Bolterna villosa) imestine cDNA
library with a degenerate serine protease PCR probe. We
sequenced 23 positive plaques. including several false
positives that were not serine proteases. Of these 23 se-
quences. seven were the trypsinogen sequence reported
"here (Fig. 1). Five were chymotrypsinogen. two were
ribosomal proteins. one was actin. one was glutathione
S-transferase. one was from the mitochondrial 16S RNA.
and six were not positively identified. The chymotryp-
sinogen sequences were identified based on the presence
of a methionine at the position that is 192 according to
the bovine chvmotrvpsinogen numbering system (Zwil-
lig and Neurath 1981). as well as overall similarity.
The tunicate trypsinogen cDNA we present here was
identified based on its sequence and its presence in a
gut-derived cDNA library. All seven of the cDNAs we
sequenced appeared to represent the same allele. as we
could distinguish no sequence variation between them.
The tunicate trypsinogen cDNA contains all of the im-
portant sequence features of a trypsinogen and possesses
overwhelming similarity to the known trypsinogens. [t
contains the six absolutely conserved cysteine residues
necessary to build the three cystine bridges observed in
all vertebrate trypsins (see below). It contains the four
key pocket specificity residues: aspartate. glutamine.
glycine. and glycine at chymotrypsinogen positions 189,
192, 217. and 227. It contains the three key catalytic
residues: histidine. aspartate. and serine, all in the correct
sequence contexts and positions. It contains signal and
activation peptides (discussed further below). The pre-
dicted active trypsin sequence begins with the isoleu-
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We generated an RT-PCR product from famprey (Petro-
mycon marinus) gut mRNA with trypsinogen-specific

premers. The sequence of this product (Fig. 2) had strong

Lamprey Trypsinogen
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Fig. 2. Transtauon of a urypsin-like PCR product from the famprey
Petromvzon mannus.

levels. It is likely that this probe. as an uncloned PCR
product. was heterogeneous. but with one species dom-
inant enough to produce a clear signal when sequenced.
This suggests that extreme care must be taken when
evaluating PCR sequences derived from multigene fami-
lies. particularly for phylogenetic purposes (see.also
Cilia et al. 1996).

We sequenced 31 cDNA plaques positive for this
probe. a few of which were false positives. Of these 31
plagues. 17 were trypsinogen. four were chymotrypsino-
gen. one was similar to the chitotriosidase precursor
cDNA. one was similar to the oligosaccharyl transferase
STT3 subunit. and the other eight cDNAs were not posi-
tively identified. Of the [7 trypsinogen cDNAs. seven
were completely sequenced by primer walking. Based on
contig assemblies. the 17 cDNAs fell into at least five
clusters. indicating the presence of at least five different
expressed lamprey trypsinogen isozyme genes (or al-
leles). These sequences were identified as trypsinogen
based on the same criteria as the tunicate trypsinogen
(see above).

We designated the five lamprey trypsinogen clusters:
Al. with nine cDNAs (two completely sequenced): A2,
with three cDNAs (one completely sequenced): A3. with
one completely sequenced cDNA: B1l. with three cDNAs
(two completely sequenced): and B2. with one com-
pletely sequenced cDNA. The untranslated 3° tails of the
three A cluster trvpsinogens are 92.0-96.0% identical.
The untranslated 3° tails of Bl and B2 are 85.9% iden-
tical. The A and B cluster 1ails could not be aligned with
each other. The coding regions of the A cluster se-
quences are 98.9-99.7% identical. The coding regions of
Bl and B2 are 97.7% identical. The identity between the
coding sequences of the A and B clusters is 92.5-93.2%.
Because of the possibility of confounding sequencing
errors with allelic or isozymic variation. we cannot rule
out the possibility of more than tive clusters. We are
confident of these five clusters however, as we estimate
our error rate to be less than I in 5.000. Additionaily. we
specifically confirmed discrepancies between clusters.

Different lamprey trypsinogen genes (or alleles) can
clearly be over 99% identical similar across regions
longer than a single sequence read. This high similarity
of multiple trypsinogen genes is observed in other spe-
cies (Wang et al. 1995). The lamprey trypsinogen genes
are probably coded for by highly similar tandem repeats.
as is the case in humans. mice. and chickens. Two of the
lamprey B cluster trypsinogens have been observed to be
linked in tandem following double barrel shotgun se-
quencing of a genomic cosmid clone (data not shown).
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Double barrel shotgun sequencing is a low-redundancy
methodology for establishing ordered and oriented se-
quence contigs across a large target sequence (Roach et
al. 1995). Genomic Southem blots suggest a large num-
ber of lamprey trypsinogen genes (data not shown).

Insertions and Deletions

The serine protease gene family possesses a number of
features that make it particularly amenable to multipie
sequence alignment. These include a cleavage site fol-
lowing an activation peptide. six cysteine residues nec-
essary to form the three absolutely conserved cystine
bridges. four active site pocket specificity residues em-
bedded in conserved sequences. three catalytic residues
embedded in conserved sequences. and several other
highly conserved sequences. These conserved sequences
are spread throughout the length of the protein. allowing
members of the gene family to be easily aligned. as re-
gions of low similarity are inevitably flanked by con-
served residues. Variations in sequence length between
two conserved residues can be recognized as insertions
or deletions. Evolutionarily conserved insertions and de-
letions are expected to be rare events and thus serve as
zood markers for tracking gene family phylogenies over
large time scales.

The tunicate shares a single residue insertion at posi-
tion 21 in common with rat trypsin [V (X15679). This
event is most likely a coincidence. as it is found in no
other vertebrates. A second tunicate insertion occurs near
residues 45-51. This coincides precisely with the bound-
ary between exons 2 and 3. The crayfish shares this
insertion (Titani et al. 1983). Of the vertebrates. only the
lampreys have an insertion at this site. but the lamprey
insertion consists of only two residues. This is consistent
with a progressive loss of residues at this site during
early vertebrate evolution. with five lost prior to the Ag-
nathan divergence and another two lost prior to the elas-
mobranch divergence. Molecular models predict that
these residues are extensions (0 a surface loop (Michael
Levitt. personal communication). They are thus unlikely
to have much functional significance. other than possibly
a role in determining substrate specificity. A third tuni-
cate insertion of five residues occurs near positions 115~
119. The tunicate also has a deletion of three residues
around position 223. Neither of these events is observed
in any other trypsin. consistent with the 600-700-
million-vear period of independent evolution since the
urochordate/vertebrate split.

The tnicate. lamprey. dogfish. and all but one of the
Osteicthyes trypsins lack a residue at position 130 that is
found in all other vertebrate trypsinogens. A residue is
present at this position in salmon trypsin [II. Therefore.
most likely. there were at least two trypsinogen isozymes
present in the common Osteicthyes/tetrapod ancestor.
one of which gained a residue at position 130. Both
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Table 1. Cysune bndges ot the chordate trypsinogens: idenuticauon ot the bndges uses the bovine chymotrypsinogen numbenng system (Zwitlig
and Neurath 1980)
Cysuine bndges*

22-157 32-58 127-232 136-201 168-182 191-220
Bactena X" X" X"
Craytish X X X
Tunicate X X X X
Lamprey X X X X X X
Nunhuman Gnathostomata X® X" b X® X" X
“Cationtc”™ Human t¢T3) X X X X X X
“*Anionic”” Human (except T8) X X X X X
Anonic”” Human (T8) X X X X

* A cross 1X) indicates the predicted presence of a bndge
® Experimentally determined
* Pseudogene missing one of two cysteine codonrs

variations were maintained by the Osteicthyes. but the
insertion became the exclusive variant for the tetrapods.
perhaps due to coincidental evolution and/or gene copy
number contraction and expansion (Hood et al. 1975).
Note that the rat trypsin V lacks a residue near position
130. This most likely represents an independent deletion
event. especially considering that this gene appears to
have undergone rapid evolution in recent times (see be-
low). The codon for this residue lies directly on the in-
tron/exon boundary between exons 2 and 3. so insertions
and deletions here are likely to be much more frequent
than elsewhere.

Cystine Bridges

Acquisition and loss of cystine bridges is a rare evolu-
tionary event and thus a useful phylogenetic marker. A
backbone phylogeny of the serine proteases can be de-
veloped by considering the parsimonious addition and
loss of cystine bridges (De Haén et al. 1975). The as-
signment of cystine bridges can be made from consider-
ations of the homology of cysteine residues. There are
six cystine bridges in most vertebrate trypsinogens. Of
these. three are absolutely conserved in all serine prote-
ases. The bacterial and crayfish trypsins lack all three of
the “"optional™ verebrate bridges (Titani et al.. [983:
Kim et al. 1991). The tunicate trypsin gains one bridge
(between residues 136 and 201: Table I). The lamprey
trypsin gains another two bridges (22/157 and 127/232).
to reach the vertebrate standard. Curiously. all human
rypsins have lost the 127/232 bridge. Furthermore. hu-
man trypsin [ has also lost the 136/201 bridge. Thus. a
progressive increase of cystine bridges is seen during the
course of vertebrate trypsin evolution. The human lin-
eage shows a subsequent decrease.

The human T3 trypsinogen pseudogene 5’ to the
TCRP locus possesses 11 of the 12 cysteine residues
necessary to make the six cystine bridges labeled in
Table 1. Thus. the functionai precursor to this pseudo-
gene had all six bridges. in contrast to all functional

human trypsins. The loss of the cvstine bridges from the
human trypsins is therefore recent. as it occurred after the
mammalian divergence. and in oniy one of the two major
branches of the trypsinogen phylogeny.

Intron/Exon Boundaries

[ntron/exon boundaries. where known. are shown in the
multiple alignments as vertical lines (Fig. | and Table 2).
Some genomic sequences for the trypsinogens are avail-
able from human. mouse. chicken. and lamprey. Addi-
tionally. intron/exon boundaries are available for some
other serine proteases. Of note is the absoiutely con-
served location of the boundary between exons 4 and §
which occurs near the active site senne. The 1/2.and 3/4
exon boundaries are also highly conserved. Shifting of
intron/exon boundaries does not appear to have been 2
major mode of evolution for the trypsinogens. or even
serine proteases in general. The possible exception is the
273 exon boundary. which occurs immediately adjacent
to a position of inserted residues in lampreys and tuni-
cates (see above).

Signal Sequences

An alignment of chordate trypsinogen signal sequences
and activation peptides is shown in Table 2. These se-
quences are highly conserved and conform to the general
rules for eukaryotic signal sequences (von Heijne 1986).
Most vertebrate trypsinogen signal sequences are 5 resi-
dues in length. Notably. the tunicate and some of the
Osteicthyes signals are two to three residues shorter. One
of the chicken signals is 16 residues long.

Activation Peptides

The activation peptides of the chordate trypsinogens are
shown in Table 2. The key feature of trypsinogen acti-
vation peptides is-a cluster of at least three anionic resi-
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Table 2. Signal peptides and activation peptides of the chordate rypsinogens®
Signal Activauon Mature
Human { (T4 MNPLLILTFVAAAILA APFDDDDK VGG
Human T6 MNPLLILAFVGAAIVA VPFDDDDK IVGG
Human (1 (TS MNLLLILTFVAAAIVA APFDDDDK IVGG
Human (1 (T9) MNPFLILAFVGAALIVA VPFDDDDK IVGG
Human 5" ¢ (T3) HEDLHLPALLGAAIAT FPTDDDDK IVGG
Bovine A MHPLLILAFVGAAAA FPSDDDDK IVGG
BovineC = meeere-c-c-c----o-o- --VDDDDK IVGG
Dog A MNPLLILAFLGAAVA® TPTDDDDK IVGG
Dog C MLTFIFLALLGATVA" FPIDDDDK IVGG
Mouse | MSALLILALVGAAVA FPVDDDDK IVGG
Pg = eeeemmee—------- FPTDDDDK . IVGG
Rat [ MSALLILALVGAAVA FPLEDDDK IVGG
Rat li MRALLILALVGAAVA FPVDDDDK IVGG
RaC MLALIFLAFLGAAVA LPLDDDDDK INGG
Rat iv MLISIFFAFLGAAVA LPVNDDDK IVGG
Rat vV MKICIFFTLLGTVAA FPTEDNDDR IVGG
Chicken P1 MLFLVLVAFVGVTIVA FPISDEDDDK IVGG
Chicken P29 MLFLFLILSCLGAAIVA FPGGADDDK IVGG
Xeaopus | MLFLLLCVLLGAAVA FDDDK IVGG
Xesopus i MKFLVILVLLGAAVA FEDDDK IVGG
Cod MLSLIFVLLGAV FAEEDK IVGG
P. magellanica MRSLVFVLLIGAA FATEEDK IVGG
Pufferfish === 00 e -e---- LIAJAA YAAPIDEDDK IVGG
Salmon § MISLVFVLLIGAA FATEDDK IVGG
Samon il @ =00 ce-meme--—--- FAVA FAAPIDDEDDK VGG
Doghsh @ = 0 ~--mmme-e-——--—- APDDDDK VGG
Lamprey Al MHGLILALLVGVAAA APYMYEDH IVGG
Lamprey A2 MHGLILALLVGVAAA APYMYEDH IVGG
Lamprey Bi --=-LIFALLVGTIAAA APYMYEDH IVGG
Lamprey 82 -=-GLIFALLVGTiAAA APYMYEDH IVGG
Tusicate MKIVILLLLGLA AVNADK IVGG

* The signal pepudase cleavage site 1s the predicted site (von Heijne 19%6): only wn the case of the canine tmarked with ®). have the sites been
determined expenmentally (Came and Scheele 1982). A dashed line (——+ represents undetermined sequences. Intron/exon boundanes. where

kmown. are indicated by a bar ¢y

dues preceding a lvsine or arginine. However. the lam-
peey activation peptide has only two penultimate anionic
residues. whiie the tunicate has just one tbut comple-
memed by an asparagine preceding an alanine). Many of
the Osteicthyes trypsinogens and one of the Xenopus
trypsinogens have three anionic residues. while the
higher vertebrates tend to have four or more such resi-
dues, suggesting a progressive increase in selective pres-
sare for such residues during the course of venebrate
evolution.

Strikingly. none of the activation peptides for the lam-
prey trypsinogens end in a lysine or arginine residue. All
lammprey trvpsinogen activation peptides end in a histi-
dine. Thus it seems uniikely that lamprey trypsin is ca-
pable of autocatalyzing its own activation. as trypsin is
mot capable of cleaving after a histidine residue. This
suggests that lampreys rely exclusively on enterokinase
far wrypsinogen activation. The life cycle of the lamprey
may explain selective pressure for greater control of di-
gestive enzyme activation. For example. adult lampreys
will go months to vears without eating. The lamprey
chymmotrypsinogen activation peptide ends in an arginine
and so could be activated by trypsin. This would allow

lamprey enterokinase to be a master control switch for
digestion. allowing for little or no basal digestive enzyme
activation.

Sequence Distances and Derived Phylogenies

We have generated phylogenies for trypsin using a num-
ber of different methodologies. All of these methodolo-
gies give results that are qualitatively and quantitatively
very similar. Because we do not have complete trypsino-
gen sequences in all cases. we have limited our formal
analysis to multiple alignments of portions of the se-
quences coding for the mature trypsin peptide. Adding
the signal and activation peptide data to our phylogenies
does not significantly affect the results (data not shown).
We obtain similar phylogenies using either nucleotide or
amino acid sequence data. Note that we do not have
nucleotide sequence data for all of the trypsinogens. as
several were determined by protein sequencing. We pre-
sent a trypsin phylogeny in Fig. 3.

This phylogeny is striking in two major respects.
First. it fails to support a molecular clock hypothesis.
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This is most stnking for several of the rodent trypsins
(Rat V. Rat V. and Rat C). Mice possess nearly identical
homologs to all the known rat trypsinogens. indicating
that these rate vaniations occurred before the mouse/rat
divergence (Lee Rowen. personal communication).
Therefore. since the mammaiian radiation. rates of evo-
lution have differed by as much as an order of magnitude
between different isozyme foci within a species. This is
consistent with “"bursts of sudden evolution™ at particu-
lar loci. perhaps due to gene conversion events. Molecu-
lar traces of such events. if present. have been largely
obliterated by subsequent mutation. The presence of both
coincidental evolution and vastly differing evolutionary
rates therefore precludes the construction of any trypsin
phylogeny with high contidence.

Secondly. the phylogeny in Fig. 3 fails to reproduce
the topology of trypsinogen cvolution. Note that if oniy
one representative of each vertebrate class is considered.
the resulting phylogeny is more consistent with a star
than a tree. A likely explanation for this is that these
trypsins have reached an equilibrium distance from each
other. where converging mutations are as common as
diverging mutations. Chaotic fluctuations away from
equilibrium would be expected in this case. producing
deviations from a perfect star phylogeny. notably small
topological deviations in early branchings. Within verte-
brate classes. our phylogeny successfully reproduces
known phylogenetic relationships, suggesting that mo-

Clucken 38
Xenopus &

Fig. 3. A phylogeay of the verte-
brate typsins denved from dustance
matnx data.

lecular trypsin data may have some utility for analysis of
recent evolutionary events. A further topological devia-
tion results from the coincidental evolution of the two
groups of trvpsinogen genes within the class Mammalia
(see Discussion). [t is likely that similar deviations will
also be noted in other classes as more sequences are
obtained.

Because of the impossibility of building a trvpsin phy-
logeny with high confidence. we sought another infor-
mative method to display trypsin sequence distance data.
To this end. we represented the sequences as points on a
two-dimensional plot. minimizing the least-squares error
in the plotted distances with respect to the calculated
distances (Michael Levitt. personal communication).
This plot is free of assumptions about phylogenetic re-
lationships (Fig. 4). For this plot only. we calculated
distance as the number of amino acid residue differences
between two sequences. This metric emphasizes struc-
tural distance over evolutionary distance.

We feel that this diagram provides a better picture of
trypsinogen evolution than a phylogenetic tree does.
largely because it frees the observer of dependency upon
incorrect underlying assumptions. In particular. we noted
that the anionic and cationic trypsins group together. sug-
gesting that they fall naturally into structurally related
clusters. Coincidental selective constraints such as gene
conversion may tend to keep these functional forms clus-

tered.
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Fig. 4. A least-squares global mimmi-
zanon of protein-protein pamary struc-
tural distances tor the vertebrate trypsins.
The arbitrary dashed line 15 1ntended t0
suggest a possible natural grouping of se-
quences.
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Discussion

Cationic and Anionic Trypsins

It has been known for some time that veriebrate tryp-
sinogens occur in at least two different isoforms, termed
**cationic’” and ‘"anionic’" (discussed by Le Huerou et
al. 1990). Most species appear (o possess one or more
representatives of each of these isoforms. However. this
is not universally the case. For example. humans possess
no functional *‘cationic™" trypsins. Additionally. it is un-
likely that the lamprey or dogfish trypsins belong to ei-
ther of these groups. No difference in function has been
demonstrated between the “‘cationic™” and “anionic™
. trypsinogens. although a possible difference in substrate
specificity has been proposed (Fletcher et al. 1987).

A table of predicted and experimental isoelectric
points for the chordate trypsins is presented in Table 3.
Several discrepancies between this biochemical data and
phylogenetic expectations can be noted. Rat trypsins IV
and V. which phylogenetically should be ““cationic.™
have predicted anionic charges. Human trypsin I. which
phylogenetically should be ““anionic.”” has a cationic
charge. We are thus unsure of the utility of designating
urypsins as ""cationic’’ or "“anionic™ and suggest a re-
evaluation of the nomenclature. It may be that both iso-
forms have a functional niche. and higher vertebrates
require both. [n this scenario. the biochemicaily cationic
but phylogenetically “anionic™> human trypsin [ fills a
crossover role by filling a niche vacated by the missing
phylogeneticaily ““cationic’* trypsinogens. Also since.
rat trypsin C is cationic. in this scenario there would be

little selective pressure on rat trypsins [V and V (o re-~
main cationic. and their charge could have ““drifted.”

However. we find the above scenario unlikely. As far
as we were able (o ascertain. lampreys and tunicates
possess only biochemically anionic trypsins. suggesting
that a vertebrate has no absolute need for trypsins of two
different charges. Furthermore. there are no residues at
specific sites that are characteristic of either the *“cat-
jonic™* or “anionic™" trypsins. Rather. the net charge of
trypsin is governed by highly variable surface residues.
Consistent with this. the predicted isoelectric points of
the vertebrate trypsins do not fall into two groups but
span the pl spectrum continuously. from 4.4 10 8.3.

If there were two groups of trypsinogen isozymes at
separate genomic locations. ¢ach coded for by tandem
repeats. there might be significant genetic exchange or
gene conversion within a group. but not between groups.
Coupled with an underlying mutation rate providing di-
versity within members of a group. this could account for
the maintenance of general biochemical features within a
group in the absence of absolutely conserved character-
istic residues. The evolutionary remnants of phylogeneti-
cally “*cationic’" trypsins are present in humans as re-
peated elements at a distinct location from the tandemly
repeated ‘“anionic™" trypsinogens (Rowen et al. 1996).
Chickens and mice also maintain a genomic separation
of their ““amionic’> and ““cationic™” trypsinogens (Kai
Wang. unpublished observation: Lee Rowen. personal
communication). so this last scenario is possible. This
mechanism can also account for similarities in signal
sequences between members of a phylogenetic group
(Table 2). Nevertheless. we cannot rule out the possibil-
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Table 3. Predicted weiecine paints and charges of the chordate
trypsinn”
Iwelectne Charge at

Group point pH 70
Tumcate 39 -1318
Lamprey Al 5.2 <502
Lampres 81 5.8 -3.62
Dogfish meh 49 -10.11
Cud | I 6.316.6: .79
Cod X I 58155 ~395
P. magellamica I 5.8 -5.28
Puffertish i 6.2 =261
Salmon [ f 5.9 -3.62
Saimon {l I 55 - -462
Salmon il i 8.1 321
Chicken P! 1 8.2 5.03
Chicken P29 { 16 -9.78
Xenopus | I 6.7 -0.19
Xenopus il 1¢ 1.7 121
Dog A I 19 -594
Dog C 1 83 : 6.04
Pig il 79(10.8) 121
Bovine A I 438 -762
Bovine C I 8.3¢10.1) 6.03
Human T:4D I 15 1.28
Human T6 [ 6.9 .39
Human TS (1D I 50 ~6.65
Human T9 I { 6.8 055
Mouse | { 14 975
Ratl § 49(4.4) -6.62
Rat fl i 48143 -6.78
RaC [t $.1® 420
Rat [V 1] 6.916.2) -0.29
Ra v 1] 5.1 9.1

* Each Ohtescthyes or tetrapod Uy psin ts assigned to esther group § or ([
based on phylog considerauons 1s¢e text). Expenmental values
(1n parentheses) tor 1soelectne posnts are from Walsh t 1970). Litcke er
al. (1989), and Asgetrsson er al. (1989)

ity of functional differences between trypsinogen groups
or of a small selective advantage of having multiple tryp-
sins of different isoelectric points. Also. the role and
importance of calcium binding in trypsin function remain
unclear (Le Huerou et al. 1990).

Modes of Trypsinogen Evolution

It is clear that trypsinogen does not evolve as a classical
single locus gene with a constant rate. Vertebrate tryp-
sinogen evolution has been dynamic and multimodal.
The most significant event of this evolution was the
gross duplication ot a whole or part of the trypsinogen
locus shortly after the elasmobranch divergence. or close
to that time. This gave rise to two groups of trypsinogen
genes that were maintained in all Osteichthyes and tet-
rapods. We designate trypsinogens phylogenetically re-
sembling classically ““anionic’" trypsinogens as group [
and those resembling "“cationic™” trypsinogens as group
[I. Following the divergence of the two groups of tryp-
sinogens. they tended not to exchange genetic informa-
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tion with each other and acted largely as separately
evolving gene tamilies. Thus a particular group [ tryp-
sinogen 1s likely to be more similar 1o a group [ tryp-
sinogen from another species than to a group 1l trypsino-
gen trom the same species.

The class Mammalia provides an exception to this
general rule. All of the mammalian trypsinogens are
more closely related to each other than to trvpsinogens of
other classes (Figs. 3 and 4). This is a clear result of
coincidental evolution (Hood et al. 1975). Similar selec-
tive pressures on nucleotide and codon usage and on
protein structure and function within the mammalian en-
vironment will cause sequence distances to converge.
Additionally. transfer of genetic information by gene
conversion or recombination may be an infrequent event
that over the time scale of vertebrate class evolution may
also tend to converge sequence distances. [t is likely that
these effects will be more readily observed in other ver-
tebrate classes as more sequences are obtained.

Within a group. several modalities of evolution are
likely to operate. Since trypsinogen gene loci tend to
have repeat structures. one can expect both expaasion
and contraction of these repeats. The repeat structure of
the loci provides for the maintenance of a large pseudo-
gene reservoir. For example. there are tive known human
trypsinogen pseudogenes (Rowen et al. 1996). These
pseudogenes can evolve rapidly. free of evolutionary
constraint. as digestive tunction is provided by the many
functional members of a locus. It is conceivable that
rarely these pseudogenes will back mutate to functional-
ity. perhaps jump started by a gene conversion event.
Perhaps more importantly. they also provide a genetic
reservoir of material for recombination events with func-
tional trypsinogens. The proximity of trypsinogen to the
TCR B locus in chickens has been noted (Wang et al.
1995). In chickens. gene conversion of a functional TCR
B gene with a V pseudogene segment is common. One
may thus hypothesize that periodically during vertebrate
evolution. the immune receptor loci may have been par-
ticularly susceptible to recombinogenic events. This sus-
ceptibility might extend to the trypsinogen loci. For ex-
ample. during T-cell development. TCR B locus
episomes will contain several copies of group [ trypsino-
gen genes. If such an episome somehow formed in or
recombined with germline DNA. there could be a strik-
ing and sudden change in. transposition of. or even novel
generation of a trypsinogen locus.

These kinds of gross and evolutionarily sudden events
can cause the apparent rate of evolution of trypsinogen to
vary highly between species and even between loci
within a species. Such events are complemented by a
background of intron/exon boundary shifting. as well as
nucleotide transitions. transversions. insertions. and de-
letions. Taken together. these modes of evolution will
significantly confound efforts to build reliable trypsino-
gen phylogenies over large time scales. such as those



separating classes. Phylogenies spanning more than one
phylum are particularly probiematic. and for these rea-
sons we have excluded nonvenebrate rypsinogens from
most of our analyses.

Determination of species relationships from phylog- .

enies based on multigene family data is difficult (Cilia et
al. 1996: Hollingshead et al. 1994). During the evolution
of Animalia. trypsinogen genes are likely 10 have been
consistently present in genomes as one or more multi-
gene loci. For example. several insect species are known
to have multiple trypsinogens (Davis et al. 1985). The
principles of popuiation genetics may well be better
suited for studying such muitigene families than tradi-
tiomal molecular evolution models (e.g.. Dickerson
1971). We recommend great care in applying traditional
analyses to the evolution of genes not definitely known
to be singie-copy.

Funcrion of Trypsin

The only known function of trvpsin involves the diges-
tion of food. either directly. or by the activation of zy-
mogens. The presence of multiple trypsin isozymes
within an organism raises the possibility that they may
perform different functions. The tight linkage of the tryp-
sims to the TCR B locus suggests an immunological role.
Thedr deletion from a functional TCR B locus seems
inoonsistent with a role for trypsinogea in mature T cells
but does not rule out other immunoiogical funcrions.
Mamy serine proteases are known to play roles in im-
mune defense (see. for example. Miiller et al. 1994). so
such 2 role is not out of the question for one of the
trypsinogen isozymes. However. in the absence of con-
crete evidence to the contrary. we feel that the null hy-
poshesis for trypsinogen is that it performs no function
other than alimentary digestion. Large quantities of tryp-
sim are needed on short notice for digestion. and one facet
of gene regulation for such a protein could involve high
geme dosage. An afimentary selective pressure for high
geme dosage may be sufficient to expiain the mainte-
namce of muitiple trypsinogen genes in a genome.

It remains possible that group I trvpsins play a non-
alimentary role in venebrates other than humans. This
putative role would either not be necessary in humans or,
mowe tikely. be subsumed by a novel serine protease.

To summarize. the venebrate trypsinogens provide a
fascinating example of a dyvnamic muitigene family. The
imerest and value of studying muitigene family evolution
is likely to grow as more sequences become available.
Studyimg such families will reveal much about the dy-
namics and mechanisms of evolution.
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