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University of Washington
Abstract
Global positioning system (GPS) tracking to characterize children’s exposure to
pesticides
Kai Elgethun
Chairperson of the Supervisory Committee:
Professor Richard A. Fenske

Environmental and Occupational Health Sciences, School of Public Health and
Community Medicine

This dissertation documents the dynamic interaction between moving human
receptors (children) and transient peaks in drifted pesticides proximal to treated fields.
Validation of a novel dGPS instrument (the GPS Personal Acquisition Logger or GPS-
PAL) to attain high-resolution time-location data required four tests: amenability,
reception, resolution, and interference. Children were amenable to the GPS-PAL worn in
a vest. Lack of reception limited the GPS-PAL inside concrete and metal framed
buildings, though time of entry and exit are known. Resolution was 3.2 m RMS.
Interferences were ‘opaque’ buildings constructed of concrete and steel, and high
electromagnetic frequency emitters.

The GPS-PAL afforded greater resolution than an existing method, the National
Human Exposure Assessment Study (NHEXAS) diary timeline, and showed in which
categories subjects were likely to err. Low literacy (both English and Spanish) obstructed
completion of the diary, but did not affect GPS-PAL compliance. GPS eliminates the

need to categorize time-location data.



GPS data were collected for 8 children during and after aerial spraying of
methamidophos on potato fields surrounding their community in Eastern Washington
State. Children were active (from velocity data) and outside both days. Drift of most
pesticide mass was short-range. Morning deposition was highest. Evening air
concentration was highest, suggesting contribution of volatilization. Temperatures
exceeded 40C in late afternoon. No deposited methamidophos was found indoors.
Indoor air concentrations were not significantly different from baseline. Children’s
handwipe residues were detectable but low.

Models were calibrated from environmental samples. By combining model and
GPS data, attributable fraction of dermal and inhalation routes was characterized. Using
a transfer factor of 400 cm2/hr, dermal exposure was predicted much higher than
inhalation. However, methamidophos absorbs almost completely in lungs, while ~ 5%
absorbs from skin. Ingestion exposure was not measured. The GPS+Model method
predicted mean inhaled exposure 3.5 times higher and mean dermal exposure 181 times
higher than a ‘standard’ method. The utility of GPS tracking and modeling for capturing
transience of drift in relation to hyperkinetic movement of moving children was well
demonstrated. The potential of GPS tracking for exposure assessment is documented by

this dissertation.
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Chapter 1

Introduction

Fundamental Principle

Replacing assumptions and qualitative analyses with quantitative data is imperative for
the advancement of exposure science. Human time-location and activity level data is
important for a credible exposure assessment (Appendix 1A). A refined quantitative
measure of time-location is important because contaminant releases are often transient,
and people are moving receptors (Appendix 1B). A refined quantitative measure of
activity level is similarly important because the amount of human exertion affects how

much contaminant a person may breathe in at a given time-location (Appendix 1C).

Specific Aims

The broad goals of this research are to compare a global positioning systems (GPS)
time-location method to the time-location diary timeline method prevalently used in
exposure analysis, and to characterize time- and location- specific pesticide exposures
among agricultural children. To reach these goals, a novel GPS instrument (the GPS-
PAL) will be validated as a means of obtaining a time-location history. The
development and reliability testing of this instrument has been conducted, and it must
now be further validated in the field with larger numbers of children. Also, activity
level will be evaluated using horizontal linear velocity calculated from GPS

measurements to refine our estimates of exposure.



Two general hypotheses will be tested:

Hypothesis 1: Parent-reported child time-location diary data is not a good predictor of
actual of child time-location.

A diary timeline will be compared to GPS time-location measurement. An assumption
is made here that GPS-PAL data is a suitable surrogate for true ‘actual’ child time-
location. The purpose of this study will be to compare child time-location reported by
parents in the NHEXAS diary timeline to child time-location logged by GPS-PAL unit.
This will allow us to evaluate the validity of this existing diary technique for time-
location data collection. Thirty-five children between the ages of 3-5 years will be

compared to evaluate this hypothesis.

Hypothesis 2: Children living proximal to agricultural fields receive measurable
exposure to OP pesticides during spray events, and receive variable exposure
depending on where they go and how active they are during this period.

Several factors are thought to increase a child’s risk of exposure to pesticides following
a spray event. The purpose of this study will be to test previous theories about the role
of house proximity to treated land in the overall exposure pathway. Data suggest that
proximity is an important predictor of exposure. The purpose will also be to determine
which locations near the home pose the greatest exposure risks, and how children’s
activity levels at specific locations may increase exposure. Location and activity will
be measured by GPS. Baseline measurements, followed by an exposure time-location

profile of a 48-hour period before, during, and following a spray event will be logged



for each of 8 children. Key to this analysis is finding evidence specific to spray drift
exposure and not influenced by other pathways. Comparison of the GPS time-location
method to a method that does not quantify variable movements of children will be

necessary to determine if exposure estimates differ with and without the GPS data.

Children’s exposure to organophosphorus (OP) pesticides: exposure pathways

Children are a susceptible population

Evaluation of children’s exposure to environmental health hazards is essential
for both epidemiology and risk assessment, and has become a recent focus of national
concern (Olden and Guthrie 2000). OP pesticides are a health hazard, given their
inherent human toxicity and children’s increased susceptibility to toxic effects.
Children’s organ systems are not yet fully developed, and cannot metabolize and
detoxify acetylcholinesterase-inhibiting compounds such as OP pesticides as rapidly as
adults. Recent evidence has suggested that the OP pesticide chlorpyrifos may delay
neurodevelopment in fetal and juvenile rats, causing persistent cholinergic presynaptic
deficits after neonatal chlorpyrifos exposure (Slotkin et al. 2001). Also, chlorpyrifos
and its metabolite TCP caused inhibition of neurite growth in the absence of
cholinesterase inhibition in cell lines, suggesting an alternate mechanism may induce
this growth inhibition (Das and Barone 1999). This evidence suggests this mechanism
could also occur in children. Children are more likely than adults to come in contact
with surfaces treated with pesticides, often have greater duration of contact, have
greater skin surface area in contact with surfaces, and ingest dirt and dust via hand-to-

mouth behavior (Zartarian et al. 1997; Reed et al. 1999). Thus, children are likely to



receive more dermal and oral exposure to pesticides than adults in similar
surroundings. Children may also be more exposed than adults via inhalation because
children tend to be more active and thus have a higher respiratory rate. Children also
spend more time outside than most adults, particularly in the spring and summer, which
are peak spray seasons.
Exposure source. Diet

A recent study by our group at the UW suggests that diet is a major contributor
to OP metabolite levels in children (Curl et al, 2003). Dietary intake of OP pesticides
and/or their metabolites leads to a background level of OP metabolites in the urine of
urban children who do not have any ties to agriculture. Urines of children who ate a
mostly organic diet and a separate group of children who ate a conventional diet were
analyzed for OP metabolites. Mean metabolite concentration was significantly higher
in children who ate a conventional diet. These data suggest that a background level of
OP metabolites exists in children consuming conventional diets (which it can be
assumed is the majority of US children). In the proposed study, background level of
pesticide attributable to diet is expected to be measurable from urinary metabolite of
the compound during the time of year when that compound is never used. It is known
that parents of these children do not ever use this compound occupationally, since it is
not listed for use on crops the parents work (Hinman et al. 2001).
Exposure source: Parent take-home

Homes of families who work in agriculture were found to contain higher OP
pesticide levels in dust and soil than the homes of non-agricultural worker families in

an agricultural area (Simcox et al. 1995). Similarly, children of agricultural workers



5
are more exposed to OP pesticides than children who live in agricultural communities

whose parents do not work in agriculture (Loewenherz et al. 1997). This suggests that
some amount of pesticide is tracked into the household by agricultural worker parents.
Methods for collection of soil and dust are well-developed (Lu et al. 2000, Kedan
1999).
Exposure source: Spray drift

In the past decade, ‘precision agriculture’ techniques have become the norm in
the production of crops. New chemical application practices deliver more product on
target and less environmental contamination and human exposure occurs as a result
(Bode 1990). In particular, the use of center-pivot irrigation to apply pesticides has
reduced drift from fields that were once sprayed by tractor boom sprayers or aerial crop
dusters (Byers et al., 1993, 2000). Despite advances, some amount of drift is inevitable.
Crops such as tree fruits are still sprayed with air blast sprayers pulled behind tractors.
This method can produce significant drift, comparable to that from aerial application
(Salyani and Cromwell 1991). Despite conditions considered acceptable by the US
EPA label instructions, drift was observed up to 195m away from the orchard boundary
in this study. Pesticides are ideally sprayed under conditions of low temperature, high
humidity, and low wind (<5m/s) and are sprayed as large droplets to minimize drift
(Clark et al. 1991). Methods for collection of deposited drift droplets are well
developed (Salyani and Cromwell 1991). The crop of most concern in this study,
processing potatoes, are sprayed with OP pesticides via aerial (‘crop-duster’)

application twice per year, on average, in the Columbia Basin of Washington State
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(Hinman et al. 2001). This method is known to produce significant drift (Salyani and

Cromwell 1991).
Proximity to treated land

Many children of agricultural workers live in close proximity to treated
farmland. Gladen et al. (1998), in a study of agricultural families in Iowa and N.
Carolina, reported that approximately 50% of homes were within 100 yards of the
nearest field or orchard where pesticides are applied. Approximately 20% of these
same homes were within 50 yards of areas where pesticides are mixed. Mixing can
also be viewed as a source of drift, particularly if chemicals used are in powder form.
The first data correlating children’s urinary biomarkers of organophosphorous (OP)
pesticide exposure to home proximity have recently been reported (Koch et al., 2002).
These data suggest that close proximity is a risk factor for higher OP exposure.
Identifying the Most Exposed Children

Exposed children have been identified in past studies of agricultural children.
Within each study a sub-population of agricultural children have been more exposed
than children of non-agricultural workers and urban children (Fenske et al. 2001). A
recent review of all data from our lab has revealed that children of pesticide applicators
are likely the most exposed sub-population (Fenske et al. 2001). Upon analysis of
these data all together, it appears that approximately 98% of agricultural children
whose parents are not applicators have urinary OP metabolite levels that are no higher
than those of urban children who eat a conventional diet. This is not to imply that
these 2% of agricultural children are not important, as exposure was extremely high for

a few. Rather, it suggests that we have located a few high exposures, and directs us to



locate and study these most exposed children. There is evidence that only small
numbers of the most exposed children have been identified in previous studies. It is
logical to hone in on the children who we believe are the most exposed as the subject
of future study. It is also logical to time our exposure analysis to coincide with
pesticide spray events. This timing has not been coordinated or achieved in previous
studies.

Exposure depends on child activity type, activity level and child location

Quantifying child activity type and activity levels
To receive exposure to OP pesticides, a child must inhale, contact, or ingest the
pesticide. A child’s type of activity affects exposure via each of these routes.
Inhalation is also affected by a child’s activity level.
¢ Inhalation: outdoor pesticide spray may more likely be inhaled during outdoor
activities. Also, a more active child will have a higher respiration rate than and
inactive child, increasing the volume of contaminated air that is inhaled.
e Contact: a child who exhibits more active play patterns may have increased contact
time with contaminated surfaces, or contaminated dust or soil.
e Ingestion (non-food): a child who exhibits hand-to-mouth behavior may be more
likely to ingest pesticides.
Inhalation exposure assessment can be more refined if ventilation rate can be
estimated. Ventilation rate has been shown to be adequately predicted using heart rate,
which is much easier to measure (Samet et al. 1993; Shamoo et al. 1991). Evidence

suggests that using an activity diary method to predict ventilation rate is not reliable



(Terblanche et al. 1991). While heart rate monitoring shows promise, it is one more
burden that must be placed on a child. Another problem is the potential for radio
frequency (RF) interference between the heart rate monitor and the GPS receiver.
Because heart rate monitoring is problematic, other alternatives for assessing activity
level have been used with children. Most popular has been the use of accelerometry-
based instruments, usually worn on the wrist or ankle. (Miller and Kraft 1994). These
instruments were considered for field studies in this dissertation, but were too cost-
prohibitive. Also, such a watch is one more piece of equipment with which to
encumber a small child and perhaps decrease compliance. Given the practical and
financial limitations of accelerometer watches, it was decided that the GPS itself would
be used to indirectly assess activity level by calculating linear horizontal velocity from
GPS positional measurements.

GPS used in tandem for time-location and for velocity-based assessment of
energy expenditure among athletes and other volunteers has been demonstrated (Schutz
and Chambz, 1997; Larsson and Henriksson-Larsen 2000). The average walking
velocity of children has been well characterized in the transportation safety field
(Knoblauch et al. 1996), providing a reference value to weight energy expenditures
based on pedal velocity. Distributions of child breathing rate by age and basal
metabolic rate (BMR) are well characterized (USEPA 2002; Layton 1993), and can be
applied to weighting generated by velocity ratios.

Documenting child behaviors that cause exposure via contact and ingestion
from non-food sources is best done with detailed videotaping analysis (Zartarian et

al.1995, 1997 ; Reed et al. 1999; Quackenboss et al. 2000). Freeman et al. (2001)



showed that responses to the National Human Exposure Assessment Survey
(NHEXAS) time-activity diary were concordant between 19 children whose activities
were videotaped and 83 children who were not videotaped. Assumptions were then
made for all 102 children based on the videotaped data. The videotaping approach has
many limitations, however: review of tapes is extremely time-intensive, and subjects
must be shadowed. In lieu of videotaping, parent-reported activity diaries (such as the
NHEXAS instrument) have been utilized to report behaviors contributing to contact
and ingestion exposure, as well as types of activity that contribute to inhalation
exposure (Quackenboss et al. 2000; Freeman et al. 2001). For contact exposure, it is
extremely important that the time-dependence of pesticide absorption across skin be
considered (Kissel and Fenske, 2000). Thus the amount of time between when a
child’s skin contacts pesticide and the time the skin is washed must be carefully
documented by the parent.
Quantifying Location of the Exposure

Exposure can occur inside the home as well as outside, even if no pesticide was
sprayed indoors. Given the evidence that drift is inevitable and that closer proximity
predicts higher exposure, it is important to examine where exposure is occurring.
Simcox et al. (1995) and Bradman et al. (1997) found higher levels of OP pesticides in
dust from agricultural households than dust from non-agricultural households. Simcox
et al. also found a similar trend in soils around these houses. Subsequent studies by this
group (Fenske et al.) have determined that dust in vehicles also contained OP

pesticides.
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With the data confirming the presence of pesticides in and around agricultural

households and confirming exposure by biomonitoring, it would be easy to overlook
one missing variable: we do not know where all the exposure is occurring. Current
EPA models of exposure within and around the home rely on estimations that are not
based on coincident child location and child exposure data. Previous work by Fenske
et al. in agricultural communities has suggested that where young children spend their
time can play a critical role in how, and to what extent, they are subjected to pesticide
exposure (Lu et al. 2000).
To address this issue, we must attempt to quantify child time-location during the
period(s) in which we believe children are most exposed.

Time-location analysis can provide information about ‘microenvironments’ that
a child encounters throughout the course of a day. The EPA Guidelines for Exposure
Assessment (1992) defines a microenvironment as a spatial region that can be treated
as homogeneous (or well characterized) with respect to the concentrations of concern.
Microenvironments can be delineated by walls within a home, for example, if
contaminant concentrations differ between two rooms. Microenvironments can
foreseeably have different boundaries with respect to the medium (and, thus, exposure
route) of concern. For example, the air concentration of OP pesticide may be
equivalent indoors in two rooms after a spray drift event, but the deposited
concentrations in the two rooms may differ due to track-in of pesticides from outside
on shoes. Another way to look at this, as noted by Georgopoulos et al. (1997), is that
the various media within a microenvironment can be thought of as compartments that

are related but not necessarily directly correlated with one another.



Validation of Current Time-Location Methods

An essential component of exposure assessment is knowledge of where individuals
spend their time. Such time-location information can be linked with pollutant
concentration data to produce exposure estimates for well-defined environments, often
called microenvironments (Ott 1985). Conventional time-location analysis has relied
on interviews or diaries (Wallace et al. 1987, 1993; Freeman et al. 1993; 1999). Such
diaries are validated by several techniques. Freeman et al. (1999) define the objective
of validation to be to “make sure that diary produces little systematic bias and random
error in responses”. These authors consider reliability as a separate issue, one of
consistency.

There are two types of validation for an instrument, such as a diary, that is used in
exposure measurement: tests that measure reproducibility of responses over repeated
tests (within and between populations), and tests that measure the accuracy of that
which is quantified (Armstrong et al. 1992). The first type of validation is standard
protocol when a new instrument is developed. Both within and between group
variability are measured. Within group methods include testing over several sampling
cycles and comparing responses, as was performed in the evaluation of the NHEXAS
time-activity diary in Maryland (Echols et al. 1999). Between groups (such as
residents of different counties, or between people of different socioeconomic status
(SES) within a region), variability is often tested to ensure that questions asked are
equally valid for two or more groups. Such evaluation was performed in the
development of the National Human Exposure Assessment Survey (NHEXAS)

(Whitmore et al. 1999).



The second type of validation requires a ‘gold standard’ that measures the
accuracy and precision of diary responses. This type of validation is rarely performed
because no ‘gold standard’ is available. In place of a gold standard, internal checks
within a survey instrument are often used, as reported in the responses to the NHEXAS
time-activity diary in EPA Region 5 (Freeman et al. 1999). The timeline section of the
NHEXAS diary is shown on the next page. Accuracy has only been measured by
checking that all time, in hours and minutes, adds up to 24 hours. The NHEXAS
timeline is limited by its hour unit of resolution. The NHEXAS timeline is also limited
because it defines only 7 location categories. The number of categories possible is
limited by subject’s recall when completing the timeline. An evaluation of the timeline
validity should address both of these time and space resolution issues. Being able to
track and measure a subject’s movement over time would allow more complete
validation of the widely used NHEXAS timeline diary instrument.

Intuitively, one might think that a ‘higher resolution’ timeline with more
categories and smaller time increments could work. Recall and poor compliance are
serious problems, however. Efforts have been made to improve time-activity diaries,
including ‘shadowing’ subjects with an observer and using a beeper to prompt self-
reporting of time-location throughout a day (Robinson and Godbey 1999; Robinson
and Silvers 2000). Other methods and technologies have been explored, but have not
proven practical for human exposure studies (Moschandreas and Relwani 1991;
Waldman et al. 1993). Evaluation of children’s micro-activities (e.g., hand-to-mouth

behavior) has used videotaping at single locations (Zartarian et al. 1995; Reed et al.
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1999), but this approach cannot be applied realistically to track children’s locations

throughout the day.

The location of young children (<8 years old) has most often been documented
through parental interviews and diaries (Simcox et al. 1995; Loewenherz et al. 1997,
Cohen Hubal et al. 2000) since these children cannot be expected to reliably report on
their whereabouts. While it has been asserted that diaries are adequate for gross
location analysis (home/not home) (Robinson and Godbey, 1997), diaries appear to
lack resolution needed for more detailed characterizations (time indoors or outdoors at
home or daycare, time in vehicle, etc.). Recent aggregate exposure analyses have
demonstrated refinement in sampling and sample analysis, but have diluted the impact
of their findings by using a timeline to define time spent in microenvironments. For
example, a study of persistent organic pollutants among nine preschool children used
parent and teacher reporting for time-location measurement (Wilson et al. 2003). This
study would have clearly benefited from a better time-location method, since many
microenvironments were sampled for pollutants.

It is proposed that global positioning system (GPS) instruments could be utilized
to validate existing time-activity diaries (such as the NHEXAS diary) and could
eliminate the inherent categorization of time-location studies. Instead of categories,
actual distance and direction of movement could be quantified. In the short term, GPS
can validate new diaries as they are being designed. As the technology becomes more
available and cheaper, GPS could potentially replace time-activity diaries as the

instrument of choice in a prospective exposure assessment study.



Global Positioning System (GPS) and Geographic Information Systems (GIS)

Technology
GPS Background

The essential aspects of GPS technology have been described in a report by the
U.S. Environmental Protection Agency (US EPA 1992). A summary of how GPS units
collect temporal and locational data is provided here. GPS satellites orbit the earth
twice every 24 hours transmitting a 50-watt signal at 1575.42 MHz (the civilian
frequency). GPS receivers on earth can detect this signal, which contains information
necessary to establish coordinates for location. The GPS signal contains three
components: a ‘pseudo-random code’, ephemeris data, and almanac data. The first
identifies which satellites are ‘seen’ by the receiver. The second contains current time
and date information. The third tells the GPS receiver where each GPS satellite should
be at any time throughout the day. To determine location the GPS receiver compares
the time a signal was transmitted by satellite with the time it was received on earth.
The receiver calculates how far away that particular satellite is based on this time
difference. When signals from three or more satellites are received simultaneously, the
receiver is able to calculate a coordinate position on earth. With four or more satellites
in view, a receiver can also provide altitude information.

The US Geodetic Survey manages a network of beacons that transmit
differential GPS corrections from beacons across the country. The correction data are
available as public domain information on the Internet from many sources that

maintain continuously operating reference stations such as the US Forest Service, the
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US Coast Guard, and the National Oceanic and Atmospheric Administration

(NOAA). Data for this study was obtained from the closest station in Seattle, operated
by NOAA.

On May 1, 2000, the United States stopped the intentional degradation, known
as Selective Availability, of GPS signals available to the public (Ineragency GPS
Executive Board 2000). This change allowed civilian GPS users to receive location
information that is many times more accurate than was previously possible.
Differential correction is essential for improved resolution when Selective Availability
is in effect. When Selective Availability is not in effect it provides a less dramatic, but
still important improvement in resolution. Renewal of Selective Availability remains
an option for the U.S. government based on security concerns.

GPS signals can be received in all weather conditions and in almost all
environments. Signal reception is impossible or limited inside most buildings.
Reception is generally unaffected as long as there is some line of sight between
receiver and satellite. Satellite relative geometry can affect GPS accuracy, a problem
called positional dilution of precision (PDOP). Other errors can occur due to signal
deflection between the satellite and the receiver, and by extremes in upper atmospheric
conditions (US EPA 1992).

Applications of GPS Technology

Global positioning system (GPS) technology is now in widespread use for
business and leisure activities. It is used to monitor tractors as they plant fields and
apply pesticides to crops (Holton 2000), to measure short-term velocity of athletes

(Schutz and Chambaz 1997), and has been employed to gather time-location data on
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hunters by the US Forest Service (Lyon and Burcham 1998). GPS and geographic

information systems (GIS) have been used in tandem to address the problem of child
exposure to agricultural pesticides, but not as a human tracking method, rather as a way
to mark static distances between residences and fields (Royster et al. 2002, Himes
2003). Commercial GPS units were employed recently in an attempt to validate 24-
hour time-activity diaries in the Oklahoma Urban Air Toxics Study (Phillips 2001).
Poor GPS instrument performance prevented collection of sufficient data to realize this
goal, but the investigators concluded that GPS technology showed promise as a method
for tracking research subjects in community-based exposure studies. No studies to date
have employed GPS technology with children.

Geographic Information Systems (GIS)

Data generated from GPS units can be effectively displayed with a geographic
information system (GIS), a database system that contains coordinate-correct maps and
locations. For example, GIS has been used to map data recorded by GPS receivers in
precision agriculture to optimize fertilizer and pesticide application (Holton 2000).

GIS has also been used to predict historical exposures to agricultural chemicals in a
retrospective cohort study of cancers among rural Nebraskans (Ward et al. 2000). Use
of GIS and GPS technologies in tandem holds potential for new insights in the field of
human exposure assessment.

GIS has been utilized extensively for human risk assessment and risk
management. Nyerges et al. (1997) outline 4 types of risk analyses incorporating a
GIS: vulnerability analysis, screening analysis, refined analysis, and detailed analysis.

For each type of analysis, the authors identify several published studies. Prospective



exposure analysis falls under the umbrella of either a refined risk analysis or a

detailed risk analysis. Georgopoulos et al. (1997) propose the integration of GIS for
managing, analyzing and visualizing data from microenvironmental and
pharmacokinetic models. Van Braun (1993) utilized a GIS for assessing exposure to
lead using actual environmental contaminant data and biomonitoring data in a study of
people living within and around the Superfund site near Kellogg, Idaho. Moore (1995)
utilized a GIS for the preparation of multipathway air toxics health risk assessment.
This risk assessment informed the California Air Toxics “Hot Spots™ Information and
Assessment Act. The child exposure assessment study outlined in this proposal
similarly seeks to identify ‘hot spots’ using a GIS. ‘Hot spot’ identification is an

important aspect of this dissertation.

Needs assessment for a children’s time-location instrument

The use of GPS technology to evaluate children’s locations throughout the day
requires equipment that differs substantially from that available from commercial
vendors (GPS World 2001, 2002, 2003). No commercial GPS units meet all of these
criteria at present, although it is recognized that technological advances are occurring
rapidly in this area. Thus, a pilot study was conducted to develop and test a novel GPS
unit suitable for studies of children’s exposure to environmental contaminants,
particularly OP pesticides. Experiments fbcused on spatial resolution, reception
efficiency in several environments, and major sources of signal interference. We then

employed the GPS units in a field study to determine the feasibility of using GPS



technology to track the movements of young children over the course of a day

(Elgethun et al. 2003).

Summary

It is clear that a more refined time-location and activity level analysis could
improve the estimation of children’s exposures to pesticides. Technology (GPS and
GIS) exists to accurately quantify and map children’s time-location. Technology also
exists to quantify linear velocity from time-location, which can then be used to
estimate ventilation rate. The next step is to validate the technology against the current
standard method (time-activity diary timeline), and to utilize the GPS in conjunction
with proven exposure assessment strategies to answer questions that have arisen from
previous studies of children’s exposure to pesticides in agricultural communities. With
the integration of GPS/GIS monitoring into a sampling plan, it is hoped we can
discover the role of pesticide spray drift as an exposure pathway and elucidate which
routes of exposure contribute most to exposure from drift. It is also hoped that
pesticide ‘hot-spots’ following a spray event in this community will be identified so

that subsequent risk communication can prevent future exposures.

Organization of the Dissertation

Each of the next 4 chapters (Chapters 2-5) of this dissertation are designed to be
1) an individual scientific publication or 2) contains all or portions of previously

published or submitted work. Where necessary, appendices that will not be submitted



“to the journal have been included for each chapter at the end of the dissertation to
show preliminary analyses and improve continuity between chapters. Chapter 2 was
published as: Elgethun K, Fenske RA, Yost MG, Palcisko GJ. Time-location analysis
Jfor exposure assessment studies of children using a novel global positioning system
instrument. Environ Health Perspect 111: 115-122 (2003). Chapters 3 and 5 have not
yet been submitted for publication and will be stand-alone papers with myself as first
author. Chapters 5 incorporates analyses from two submitted papers on which I have
authorship:1) Ramaprasad J, Tsai MY, Elgethun K, Yost MG and RA Fenske. The
Washington aerial spray-drift study: Assessment of the atmospheric loading of
pesticides via surface volatilization. Atmos Environ (accepted 5/04). 2) Tsai MY,
Elgethun K, Ramaprasad J, Yost MG, Fenske RF, Felsot A and V Hebert. The
Washington aerial spray-drift study: Modeling pesticide spray drift deposition from an
aerial application. Atmos Environ (in progress 2004).

Chapter 4 includes analyses, figures and tables I co-authored for a submitted
paper: Weppner S, Elgethun K, Galvin K, Lu C, Hebert V and RA Fenske.
Methamidophos residues on residential surfaces, in air, and on children’s hands
following aerial application in Central Washington State. J Expo Anal Environ
Epidemiol (submitted 8/2003). The text of Chapter 4 is my own, and Chapter 4 will
not be submitted as a new paper. Chapter 4 was accepted in 2004, and corrections to

this chapter are currently in progress.

Chapter 6 is a summary and conclusions chapter that will not be published as a

separate paper.
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Note to Readers

The original copies of this dissertation contain color figures. For many of the
maps, color is required to see contrast between the aerial photograph and the GPS path.

An original copy of this dissertation containing color figures is available on loan from

the University of Washington libraries.
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Chapter 2
Time-Location Analysis for Exposure Assessment Studies of Children

Using a Novel Global Positioning System Instrument

Introduction

This chapter was published under the same title: Environmental Health
Perspectives 111: 115-122 (2003). Evaluation of children’s exposure to environmental
health hazards is essential for both epidemiology and risk assessment, and has become
a recent focus of national concern (Olden et al. 2000). An essential component of
exposure assessment is knowledge of where individuals spend their time. Such time-
location information can be linked with pollutant concentration data to produce
exposure estimates for well-defined environments, often called microenvironments (Ott
1985). Conventional ‘time-location analysis has relied on interviews or diaries
(Wallace et al. 1987, 1991; Freeman et al. 1993, 1999). Efforts have been made
recently to improve the validity of these methods, including the ‘shadowing’ of
subjects with an observer, and use of a beeper to prompt subjects to record time-
location data (Robinson and Godbey 1999; Robinson and Silvers 2000). Other methods
and technologies have been explored, but have not proven practical for human
exposure studies (Moschandreas and Relwani 1991; Waldman et al. 1993). The
purpose of the study reported in this paper was to identify and test a new method for

tracking pre-school children throughout the course of a day.
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The location of children has most often been documented through parental
interviews and diaries (Simcox et al. 1995; Loewenherz et al. 1997; Cohen Hubal et al.
2000). While probably adequate for gross location analysis (home/not home), they are
not considered reliable for more detailed characterizations (time indoors or outdoors at
home or daycare, time in vehicle). Evaluation of children’s micro-activities (e.g.,
hand-to-mouth behavior) has used videotaping at single locations (Zartarian et al.
1995; Reed et al. 1999), but this approach cannot be applied realistically to track
children’s locations throughout the day.

Global Positioning System (GPS) Technology. The essential aspects of GPS

technology have been described in a report by the U.S. Environmental Protection
Agency (US EPA 1992). A summary of how GPS units collect temporal and locational
data is provided here. GPS satellites orbit the earth twice every 24 hours transmitting a
50-watt signal at 1575.42 MHz (the civilian frequency). GPS receivers on earth can
detect this signal, which contains information necessary to establish coordinates for
location. The GPS signal contains three components: a ‘pseudo-random code’,
ephemeris data, and almanac data. The first identifies which satellites are ‘seen’ by the
receiver. The second contains current time and date information. The third tells the
GPS receiver where each GPS satellite should be at any time throughout the day. To
determine location the GPS receiver compares the time a signal was transmitted by
satellite with the time it was received on earth. The receiver calculates how far away
that particular satellite is based on this time difference. When signals from three or

more satellites are received simultaneously, the receiver is able to calculate a
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coordinate position on earth. With four or more satellites in view, a receiver can also
provide altitude information.

The US Geodetic Survey manages a network of beacons that transmit
differential GPS corrections from beacons across the country. The correction data are
available as public domain information on the Internet from many sources that
maintain continuously operating reference stations such .as the US Forest Service, the
US Coast Guard, and the National Oceanic and Atmospheric Administration (NOAA).
Data for this study was obtained from the closest station in Seattle, operated by NOAA.

On May 1, 2000, the United States stopped the intentional degradation, known
as Selective Availability, of GPS signals available to the public (Interagency GPS
Executive Board 2000). This change allowed civilian GPS users to receive location
information that is many times more accurate than was previously possible.
Differential correction is essential for improved resolution when Selective Availability
is in effect. When Selective Availability is not in effect it provides a less dramatic, but
still important improvement in resolution. Renewal of Selective Availability remains
an option for the U.S. government based on security concerns.

GPS signals can be received in all weather conditions and in almost all
environments. Signal reception is impossible or limited inside most buildings.
Reception is generally unaffected as long as there is some line of sight between
receiver and satellite. Satellite relative geometry can affect GPS accuracy, a problem

called positional dilution of precision (PDOP). Other errors can occur due to signal
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deflection between the satellite and the receiver, and by extremes in upper atmospheric
conditions (US EPA 1992).

Applications of GPS Technology. Global positioning system (GPS) technology

is now in widespread use for business and leisure activities. It is used to monitor
tractors as they plant fields and apply pesticides to crops (Holton 2000), to measure
short-term velocity of athletes (Schutz and Chambaz 1997), and has been employed to
gather time-location data on hunters by the US Forest Service (Lyon and Burcham
1998). Commercial GPS units were employed recently in an attempt to validate 24-
hour time-activity diaries in the Oklahoma Urban Air Toxics Study (Phillips et al.
2001). Poor GPS instrument performance prevented collection of sufficient data to
realize this goal, but the investigators concluded that GPS technology showed promise
as a method for tracking research subjects in community-based exposure studies. No
studies to date have employed GPS technology with children.

Data generated from GPS units can be effectively displayed with a geographic
information system (GIS), a database system that contains coordinate-correct maps and
locations. For example, GIS has been used to map data recorded by GPS receivers in
precision agriculture to optimize fertilizer and pesticide application (Holton 2000).
GIS has also been used to predict historical exposures to agricultural chemicals in a
retrospective cohort study of cancers among rural Nebraskans (Ward et al. 2000). Use
of GIS and GPS technologies in tandem holds potential for new insights in the field of
human exposure assessment. The use of GPS technology to evaluate children’s

locations throughout the day requires equipment that differs substantially from that
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available from commercial vendors (GPS World 2001). No commercial GPS units
meet all of these criteria at present, although it is recognized that technological
advances are occurring rapidly in this area.

The purpose of this study was to develop and pilot test a novel GPS unit
suitable for studies of children’s exposure to environmental contaminants, and
particularly to pesticides. Our previous work in agricultural communities has
suggested that where young children spend their time can play a critical role in how,
and to what extent, they are subject to pesticide exposure (Lu et al. 2000). Time-
location is not used as a proxy of exposure, rather as a way to map exposures at the
intersections between humans and contaminated microenvironments. The GPS
experiments reported here focused on spatial resolution, reception efficiency in several
environments, and major sources of signal interference. We then employed the GPS
units in a field study to determine the feasibility of using GPS technology to track the

movements of young children over the course of a day.

Methods

Criteria for children’s GPS unit. The following 10 features were deemed essential for

an instrument to be used with young children: 1) ability to log path data; 2) ability to
store raw pseudorandom satellite code required to post-process differential corrections;
3) ability to import data into GIS software; 4) memory and battery life capable of
recording at least 24 hours of data at a frequent sampling rate (at least once every 30

seconds); 5) external antenna that can be positioned to optimize signal reception; 6)
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ability to be worn in way that is acceptable to both the child and parent; 7) light-weight
(<300 grams or <0.75 pounds); 8) durable; 9) tamper-proof; 10) simple to operate. The
following 2 performance characteristics were also considered essential to define
location with sufficient accuracy and precision: 1) resolution of 3-5 meters; 2)
reception under a wide range of field conditions.

GPS Instrument. Our group worked with Enertech Consultants (Campbell, CA)

to design a GPS “personal acquisition logger”, or GPS-PAL. The GPS-PAL unit
consists of a battery pack, a central electronic unit, and an antenna (Figure 1). The cost
of each unit, including software for downloading and post-processing data, is estimated
at one-thousand US dollars. All components, including batteries, weigh 280 g.
Separation of the antenna from the central unit allows flexibility in antenna positioning.
The unit was designed for use by a layperson with no supervision required, and is
operated by one small ‘on/off” switch. The GPS-PAL has enbugh memory to store 30
hours of data when set to datalog every 5 seconds. Battery life at the 5-second
sampling rate is 25 hours using 4 ‘AAA’ alkaline batteries. The GPS-PAL is not an
‘off-the-shelf” tool, but a standard operating procedure (SOP) was developed during
the course of this pilot study to expedite these functions. Downloading, post-
processing, and mapping of data can be accomplished by a user with basic Windows

software competency when using the SOP.

Operating Procedures. Two GPS-PAL units were tested and used in feasibility
studies. The units were allowed to prime for approximately 5 minutes when first

switched on until a signal was received (indicated by a flashing light on the unit). The
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units were set to record time and location (latitude/longitude) data every 5 seconds.
The time-location data that is logged delineates the path traveled. The GPS-PAL
automatically deletes position data that are the result of poor satellite geometry to
prevent spurious points from being included in the path. At the end of each data
collection period, the units were connected to a desktop computer with a
communications cable, and the GPS-PAL software was used to download data. GPS-
PAL software uses modules licensed by Trimble Navigation Ltd. (Sunnyvale, CA).
Once downloaded, data were post-processed to correct for errors usihg differential
signal data obtained from the Seattle, Washington NOAA Continuously Operating
Reference Station (CORS) found on the CORS Internet site operated by the National
Geodetic Survey (NGS). The GPS-PAL software automatically links to this site,
instructs the user how to download the required differential correction data from the
nearest CORS site, and post-processes the GPS path data using the appropriate
corrections.

After post-processing, the coordinate information was exported into ArcView
Geographic Information Systems (GIS) software that included the Spatial Analyst
extension and the COS.Point Distance and Nearest Features scripts (version 3.2; ESRI,
Redlands, CA). ArcView allows the user to highlight points on a map by simply
selecting points in the data table, and vice-versa. A GIS of Seattle area aerial
photographic maps was utilized to visualize GPS-PAL data points and to analyze both
reception and resolution. Maps used were United States Geological Survey (USGS)

Digital Orthophoto Quarter Quadrangles (DOQQs) licensed by the City of Seattle to
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the University of Washington. They are orthorectified to attain the geometric
properties of a map. The resolution of these maps is + 1m. Registration errors of these
DOQQs are not expected to exceed 0.1 m, and were thus not included in our analysis.

Field Studies. Adult subjects and older children wore GPS-PALSs integrated
into nylon vests (Figure 2). Young children (<4 years) wore GPS-PALs integrated into
cotton bib overalls, which are more durable and more difficult to remove. Both types
of clothing allowed for proper horizontal positioning of the antenna, and both allowed
for secure attachment of the antenna cable inside the garment. The battery and GPS
unit were concealed in closed pockets on the front of the garments. Positioning of
battery and GPS unit was chosen to minimally encumber normal range of motion. The
antenna was placed on the top of the shoulder to optimize signal reception. This design
allowed research staff to simply hand the clothing to the parent or child, and prevented
tampering or instrument removal.

Resolution Experiments. In the first experiment GPS-PAL units were left in a

stationary position for 12 hours in two urban locations, outdoors in the open, and inside
a single story wood-frame house. The resulting coordinate information was analyzed
in ArcView to determine what percentage of points were recorded within 2m, 3.5m and
5m of the true position of the unit. Lines were plotted from each measured point to the
true position on the ortho-photo map in ArcView. The true position was the center
point of a 1m” landmark visible on the ortho-photo map. True position coordinates
were determined in ArcView using the ‘Latitude and Longitude’ locator function. The

number of points logged by time and the resolution by time was analyzed to investigate
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the existence of a relationship between bias and time. The root mean square (RMS)
error distance, equal to the root of the sum of the squares of all individual errors, was
computed for these data. RMS is a standard expression of location error for Gi’S
receivers (US EPA 1992)

In a second experiment, GPS-PAL units were carried by two pedestrians
walking the same 4km path on a city sidewalk. A line drawn down the center of the
sidewalk was considered the true path. True path coordinates were determined in
ArcView using the ‘Line Theme’ function. Coordinates were analyzed to determine
what percentage of points were recorded within 2m, 3.5m and 5m of the true path
walked. Parallel lines of these distances on either side, known as line buffers, were
drawn around the true path on the ortho-photo map in ArcView. The variable width of
the sidewalk was accounted for when determining the centerline.

Reception Experiments. The GPS-PAL units were left stationary inside a wood

frame house and inside a concrete school building for 30 minutes, and were then worn
by moving individuals inside these two structures for 30 minutes. GPS-PALSs were also
worn by moving individuals walking within 1-2 m of the perimeter of these buildings
directly adjacent to the outside walls. The number of points logged in each situation
was compared to 30-minute control data logged outside in an open area. Stationary test
data were compared to stationary control data; mobile test data were compared to
mobile control data.

Interference Experiments. Several known sources of GPS signal interference

(Johnnessen 1997) were evaluated to test their effect on reception. Sources were
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evaluated on two separate days. One ten-minute period was measured when the
interference source was proximal to the subject wearing a GPS-PAL unit. Disruption
of reception was quantified by dividing number of points received by the number of
points expected during 10 minutes when no interference is present. Interferences were
evaluated separately. The following personal interference items were tested outdoors:
a wool sweater and a nylon raincoat worn over the vest containing the unit; a 900 watt
Amana microwave oven operating on the ‘high’ setting; a Motorola Fr60 Talkabout
465 MHz two-way radio; an Ericsson T19LX digital cellular phone receiving full
signal at 1850-1990 MHz; and a V-Tech 900 MHz analog cordless telephone 5 m away
from its base. Electronic devices were operated normally, as specified in Table 4, for
10 minutes.

Feasibility Study. This study was designed to evaluate child compliance and

GPS-PAL functionality over the course of a day. Procedures were approved by the
University of Washington Human Subjects Division. Eleven children (6 female, 5
male) in the Seattle area ages 2-8 years old (mean = 5.5) wore GPS-PAL units for
approximately 7-11 hours. All parents involved in the study were faculty, staff or
students in the Department of Environmental Health at the University of Washington.
Recruited families responded to an announcement sent via departmental electronic mail
listserver. Children selected were required to be potty trained. Written consent was
obtained from parents, and verbal assent was obtained from children. Three of the
children wore units to school on a weekday; the other eight wore units on a weekend

day. Parents were allowed to select their child’s monitoring period. Parents were
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asked to record if children complained about the weight or fit of the GPS-PAL
garments. Parents were asked to switch the unit on when their child got dressed in the
morning, and to turn the unit off at bedtime. Parents also provided home addresses for
verifying location on the orthophoto maps. Data from the child study were grouped by
the following five location categories: in vehicle, inside house, inside school, inside
business, and outside. Time spent in each location and percent reception in each

location were computed for each child.

Results

Resolution Experiments. Table 1 shows the number of points logged by stationary

GPS-PAL units over 12 hours and the RMS distance of the points from the true
location of each unit. The units had RMS errors of 3 and 3.4 m outdoors, and 5.7 and
5.9 m inside the wood-frame house. Analysis of resolution by time showed a few short
periods (<1 min) when the distance from true location sharply increased (data not
shown). Table 2 shows the number of points logged and the resolution of points
logged by GPS-PAL units carried by two pedestrians during a 50 minute, 4 km walk on
city sidewalks. Figure 3 shows a close-up of the true path walked, the points logged,
and the line-buffers that were used to determine mobile resolution. Resolution was
measured by percentage of points lying within 2m, 3.5m and 5m of the true path.
About 96% of all points were logged within +/- Sm of the true path, 90% were logged

within +/- 3.5 m, and 79% were logged within +/- 2m.
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Reception Experiments. GPS-PAL reception data for a subject outdoors, inside

two types of buildings, and proximal to two types of buildings are shown in Table 3.
Data shown are for 30 minutes of operation. Better reception was attained next to a
concrete/steel building than a wood frame building for one unit, while the opposite was
true for the other unit. No points were logged inside the concrete/steel frame building.
Reception inside the wood frame building was reduced almost twofold by moving
around inside the house compared to remaining in one location.

Interference Experiments. Reception interference experiment results are shown

in Table 4. Walking within 20m of power substation transformers caused a complete
blockage of signal reception. Standing in front of an operating microwave oven caused
a significant (38%) reduction in reception. Talking on a 2.7 kHz cordless phone
reduced reception by 7%. Other potential interference sources had no effect or
minimal effect on signal reception.

The performance of the GPS-PAL units in regard to resolution, reception and
interference are illustrated in Figure 4. In this figure the upper panel is an orthophoto
image with GPS-PAL data logged inside and proximal to a wood frame house (points
shown in green). The lower panel is a 3:1 scale drawing of this house showing the
same points. A 2m square grid is superimposed on this drawing. Based on data in
Table 2, this grid approximates an 80" percentile level of resolution for the GPS-PAL.
Figure 4 illustrates that locations within and around a house can be defined so as to

differentiate by rooms or other microenvironments in and around a residence.
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Feasibility Study. Data were obtained for 8 of the 11 study children. The first

three subjects had no data or minimal data logged due to failure of wiring or connectors
leading from the battery pack. This problem was resolved and no further wiring
problems were encountered. One parent noted that the receiver was accidentally turned
off, then switched back on later, yielding only 3 hours of data. This subject was
excluded from further analysis. Data from another subject were recorded without
incident, but post-processing of the coordinates was not feasible due to base file
differential signal errors recorded by the CORS station. The unprocessed data were not
comparable to the post-processed data and were excluded from further analysis. The
eleven parents all responded that their children did not complain about the weight or
restrictiveness of the GPS inside the custom clothes. Two 2-year old children
complained that they did not like the color and style of the bib overalls.

Table 5 shows the efficiency of reception by location for each child. Only two
children spent appreciable time outdoors, where reception was high (79%). Reception
inside homes was greater than reception inside vehicles (20% vs. 12%), and was lowest
for inside schools and businesses (6% and 9%, respectively).

The fraction of time monitored for each child by location is presented in Table
6. A total of 2,964 minutes (49.4 hr) of data were collected for the six children, with
monitoring times ranging from 387-700 minutes.

Figure 5 shows the path traveled by one child (Child 1) during the hours of a
normal school day. Points on the street correspond to the child walking from the

school bus to the school grounds. Points on the field in the upper half of the picture
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correspond to two distinct recess breaks. Points near the school’s entrance at the center
of the picture were logged before classes started in the morning and after classes were
over in the afternoon. Points logged inside the school building, in the lower half of the
picture, are sporadic due to the multilevel construction of the building. Figure 6 is a
timeline illustrating the progression of location by time for each child throughout the
day. Among the two children monitored on a weekday, Child 2 spent all of her time at
school indoors, while Child 1 went outside three times for recess. Among the four
children monitored on a weekend day, distribution of time in each location varied
greatly, except for Child 4 and Child 5. These two were together for most of the day

they were monitored.

Discussion

Once initial wiring problems were corrected, time-location data were collected
successfully for the remaining 8study participants. Data adequate for ‘all-day’ analysis
of time-location patterns were obtained from 7 of these 8 children. Accidental receiver
shut-off, which caused the collection only three hours of data from one child, was
prevented in subsequent trials by covering the ‘on/off” switch. The CORS base file
errors that obstructed post processing of one child’s data are not preventable. The raw
data are still readable, but are lower resolution when not post processed (approximately
15% greater RMS error). It would be possible to obtain base files from a private
source if higher resolution data were deemed critical in future studies. Future GPS-

PAL studies with greater numbers of subjects will incorporate solutions to data loss
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discovered in this pilot study. Randomization of children to either weekday or
weekend sampling groups would also strengthen future studies and provide more
insight into the utility of the GPS-PAL. Overall, it appears that the GPS-PAL isa
practical tool for collection of children’s time-location data, and that the technical
criteria for this instrument described earlier have been met. The performance criteria
of resolution and reception are addressed below.

Resolution. A critical factor for any device intended for time-location analysis
is an assessment of the instrument position accuracy. Position accuracy depends on
many factors, including the satellite constellation geometry (geometric dilution of
precision or GDOP) and on biases or errors in the GPS signal components or receiver
(e.g. clock errors, ephemeris, and propagation errors) (US EP 1992). Although uniform
position accuracy under all conditions is desirable, varying accuracy over time and
space is unavoidable due to GDOP and loss of satellite data from interference. Often
the accuracy characteristic is summarized by the range error relative to a known fixed
location. Since RMS error describes the magnitude of all errors without regard to
direction, and since typically it is much greater than the mean error for a stationary
instrument, this provides a more conservative estimate of the expected position
accuracy of a GPS receiver.

An alternative measure of position accuracy is the proportion of readings that
fall within a fixed range of a known location. This measure of position accuracy, as we
have shown (Figure 3), can be applied to either stationary or moving subjects along a

defined path. This metric is potentially more useful for time-location studies, since it
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also can describe the ability of the instrument to correctly classify a location within a
spatial boundary, such as a schoolyard, or a room in a home (Figures 4 and 5).

Position accuracy is unit-specific for each GPS-PAL probably due to random
clock errors in the receiver. The mean of the RMS errors for the two GPS-PAL units
was 3.2 m outdoors and 5.8 m indoors, compared to a typical outdoor RMS error for
most portable GPS units of 5-10 m (GPS World 2001). Published indoor RMS values
were not found. Usually only large survey-quality GPS receivers are capable of
attaining a lower RMS error than the GPS-PAL. The error of the map being used also
must be considered as an independent factor. Thus, when GPS-PAL data is overlaid on
USGS DOQQ Maps (nominal 1m resolution), overall RMS error is about 3.4m
outdoors / 5.9m indoors, and the maximum error is 3.2m + 1.0m = 4.2m outdoors,
5.8m + 1.0m = 6.8m indoors. Analysis of resolution data by time (Table 1) showed a
few short (<1 min) periods where resolution waned. The existence of a relationship
between bias and time can be explained by temporary loss of satellite signal or
transient shifts in high atmospheric conditions (US EPA 1992).

These data demonstrate that the position accuracy achieved by the GPS-PAL
instrument under realistic conditions is sufficient for human time-location analysis.
Note in Table 2 and Figure 3 that most points over the 4 km, 50 minute test were
within 2-3m of the true path line. The 2m grid in Figure 4 illustrates that location in
and around a house can be delineated at least 80% of the time within a 2 square meter
area. At this scale, data based on position and photo maps would allow classification

of activities such as entering a retail store, walking on a sidewalk, traveling by car or
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bus, playing on a schoolyard, or playing in and around a house. This suggests that the
GPS-PAL units are capable of locating subjects with sufficient position accuracy to
correctly classify a large variety of human activities.

Reception and Interference. lIdeally, a GPS device for time-location studies

would provide uninterrupted position data, regardless of the subject’s location or
activities. Clearly buildings and other objects can compromise GPS signal reception,
so tracking subjects in and around structures is constrained by the limitations of current
receiver (and antenna) technology. The inconsistency of reception for different
children in similar locations can be explained by the high number of variables
involved, including: building materials; location of a child within a building; type of
vehicle and location of vehicle; and proximity of a child to windows and other signal-
permeable materials. This is a limitation for being able to consistently locate an
individual in a specific microenvironment in exposure analysis studies. While
consistent time-location may not be feasible with GPS, the percent reception in most
locations was sufficient to define a child’s time-location. The following examples
using data shown in Table 3 and Figures 4 and 5 illustrate this point. In Figure 5,
signal is poorly received inside the school building; however, the time and location at
which this child entered and exited the building was precisely recorded, producing a
clear time-activity map. Reception within wood-frame buildings and next to both wood
frame and concrete/steel buildings was adequate to characterize an individual’s
position in these locations (Table 3 and Figure 4). For example, since 31.4% of points

were logged when the subject was moving inside the house (Figure 4), and the
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sampling rate was 5 seconds, a location was logged about once every 16 seconds. This
is sufficient to detect movement between interior rooms, assuming that temporal
distribution in reception for a given microenvironment is approximately uniform.

Further improvements can be gained by careful review of the logged points to
account for the logical consistency of events in certain microenvironments. When data
points fell close to the walls of a building (Figure 4), it was possible to differentiate
indoor from outdoor environments and eliminate ambiguous data by examining the
time sequence of points, and the location of exterior doors. It is unlikely that a single
point will fall outside a house if points logged 16 seconds before and 16 seconds after
are logged indoors, unless an exterior door is immediately adjacent to the area.

Interference experiments examined a variety of potential sources, representing

devices that have become ubiquitous in our daily environments operating at many
frequencies. The results suggest that electrical power distribution equipment, or the
associated electric or magnetic fields from transformers or power lines, cause a greater
decrease in reception than radio frequency (RF) equipment. The lack of interference
from clothing is especially important, as this allows for total concealment of the unit
within garments worn by subjects.

Future Applications. The GPS-PAL could be used in many settings to

contribute to a refined exposure analysis of individuals. One target group for
application of this technology is children living in rural agricultural communities.
These subjects represent a potential high exposure group for spatial analysis, because

pesticides are used routinely in crop production and may be dispersed over wide areas.
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Children may come into contact with pesticides through various scenarios, such as
playing in and around treated farmland, accompanying their parents into the fields, and
by contact with pesticide residues brought into the home by their parents (Simcox et al.
1995; Loewenherz et al. 1997; Lu et al. 2000). We have also learned from more recent
work that children in these communities exhibit peak exposures coincident with
agricultural pesticide applications (Koch et al. 2002), but we do not know the pathways
by which these spraying events produce elevated body burdens. GPS time-location
analysis could allow us to characterize activities among these children so that we may

better understand pesticide exposure pathways.

Conclusions

The GPS-PAL instrument combines high spatial resolution capabilities, a
remote antenna, and data logging capability into a compact size suitable for monitoring
adults or children. Spatial resolution is adequate to locate people within distinct sub-
environments and to distinguish a variety of human activities. Reception is adequate
for position determination outside, proximal to buildings, and inside certain buildings.
A subject’s position can be narrowed to a single room in a home, a specific area of a
playground, or one side or another of a fence line. This provides a new level of
accuracy for defining time-location in relation to exposure, and eliminates recall bias
and reporting errors inherent with written subject-reported logs of time-location.
Signal interference from common sources did not appear to limit the utility of the GPS

devices in most environments. Data are readily transferred into GIS software for map
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overlays, allowing for linked visual and tabular analysis. Compliance was good
among children age 2-8 years old wearing the GPS-PAL incorporated into their
clothing. The GPS-PAL is a promising new instrument for quantification of time-
location activity patterns in exposure assessment studies. The application of GPS and
GIS technologies is the logical next step in the characterization of human time-location

patterns.
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Table 2.1. Measurement error of two stationary GPS-PAL units over 12 hours

Points Distance from true position (m)"

Logged® Mean Median Stdev RMS*®
Outdoors
GPS-PAL #1 6796 2.5 2.2 1.6 3.0
GPS-PAL #2 8514 2.8 2.5 1.9 34
Indoors®
GPS-PAL #1 3920 4.8 4.0 3.2 5.7
GPS-PAL #2 4812 4.9 4.1 3.3 5.9

WUnits log data every 5 seconds for a maximum of 8640 data points in 12 hours.
True position defined by locating the coordinates of the units on the orthophotomap using GIS software.

“RMS=root mean square. Calculated by squaring each individual error, then taking the square root of the mean of
these numbers.
4Indoors=inside a single story wood-frame building, away from windows.
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Table 2.2. Resolution of GPS-PAL units on a 4km, 50 minute walk in the city

Points Fraction of points within each buffer (%)

Logged® +5m #3.5m +2 m
GPS-PAL #1 540 96.2 89.9 78.6
GPS-PAL #2 575 96.3 90.7 79.1

Units log data every 5 seconds for a maximum of 600 data points in 50 minutes.



Table 2.3. Reception of GPS-PAL units over 30 minutes under stationary and

mobile conditions: outdoors, indoors and proximal to two types of building

43

Unit #1 Reception

Unit #2 Reception

Test Points % of Points % of
Conditions  Location Logged® Max Logged® Max
Outdoors
Stationary In the open 360 100.0 360 100.0
Mobile In the open 358 99.4 360 100.0
Mobile Proximal to CSF buildin,%b 110 30.6 127 353
Mobile Proximal to WF building 76 21.1 170 47.2
Indoors
Stationary WF building 190 52.8 192 533
Stationary CSF building 0 0.0 0 0.0
Mobile WF building 113 314 85 23.6

Units log data every 5 seconds for a maximum of 360 data points in 30 minutes.

bProximal = within 1-2m of the outside wall of the building. CSF = concrete/steel frame, WF = wood frame.



Table 2.4. Interference to GPS-PAL unit reception
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Reception

Type of interference Notes (% of Max)*
None

Outdoor, in the open >5m from any building 100
Spatial

Power substation <20m from transformers 0

High-tension power lines 30m overhead 98

Large metal reflective surface against galvanized steel 99
Personal

Clothing covering antenna wool sweater and nylon raincoat 100

Microwave oven® 0.5m from oven on ‘high’ 68

2-way radio® held to ear, transmit and receive 100

Digital cell phone® held to ear while talking 100

Cordless phone* held to ear while talking 93

a

bAmana 900 watt.

“Motorola Fr60 Talkabout 465 MHz.
dEricsson T19LX 1850-1990 MHz.
V-Tech analog 900 MHz.

Units log data every 5 seconds for a maximum of 120 data points in 10 minutes.
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Figure 2.1. GPS-PAL antenna, electronics and battery pack (I-r)
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Figure 2.2. Child wearing GPS-PAL in a vest
Dashed lines indicate location of components inside the vest
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Figure 2,4. Representation of GPS-PAL capability to differentiate between
distinct areas inside and outside a house

Aerial photo of house (above) and 1:3 scale drawing of house floorplan (below)
overlaid on 2m square grid. GPS-PAL logged locations are shown by green
circles on both photo and floorplan. Approximately 80% of points logged by
GPS-PAL fall within 2 square meters. Thus it is possible to differentiate a
person’s location in distinct areas of a house and surrounding yard.
Discriminating between indoors and outdoors for points close to exterior walls is

accomplished by comparing the time-sequence of points to the location of exterior
doors.
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Figure 2.5. Path traveled by one child on a weekday during school hours

The playing field is located in the upper half of the picture. The school building is
located in the lower half of the picture. The main entrance is located at the center. There
is a street along the right side of the school grounds.
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Chapter 3

Comparison of GPS Tracking to the NHEXAS Diary Timeline for

Time-Location Measurement of Children

Introduction

Quantification of children’s time-location, in conjunction with children’s
activity patterns, is essential for predicting exposure in microenvironments (Cohen-
Hubal 2000). When dealing with transient peaks of environmental contaminants,
knowing whether or not a person is in a particular microenvironment is the first step in
determining whether exposure may occur (Klepeis et al. 2001; McCurdy and Graham
2003). Time-location has been measured using self-report diary instruments for many
years (Robinson 1988; Wallace et al. 1987, 1991; Freeman et al.1993, 1999). The most
widely used diary for human exposure assessment in the US was that used for the
NHEXAS (National Human Exposure Assessment Survey). Approximately 600
people in four EPA regions participated in the survey between 1994 and 1999
(Freeman et al., 1999; Whitmore et al., 1999; Robertson et al., 1999; O’Rourke et al.,
1999; Echols et al., 1999; Quackenboss et al., 2000; Freeman et al., 2001). The
NHEXAS sought to characterize exposures to a wide range of pollutants from multiple
sources and media using available methodologies (Sexton et al., 1995). The diary
timeline was one component of the larger survey. The diary timeline was designed to
provide data whose resolution was comparable to the temporal resolution of the

environmental and human samples collected during the study (Freeman et al., 1999).
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Time-location of children has been measured by parental-report using the same

type of diary timeline (Dorre 1997; Freeman et al. 2001; Pellizzari et al. 2003). Dorre
(1997) investigated a group of 52 children aged 2-3 years and found that 66.2% of time
was spent at home, 20.4% was spent in nursery school, 1% indoors elsewhere, 11.2%
outdoors and 1.2% in transit over the course of one week. The Minnesota Children’s
Pesticide Exposure Study utilized the NHEXAS diary to assess, among other things,
children’s time-location over one week (Freeman et al. 2001; Pellizzari et al. 2003).
Parents completed the diary for children between 3-4 years old, and parents aided
completion of the diary for children ages 5-9. All children between 3-9 years old
reported spending about 16 hours inside the home and 1-1.5 hours outside each day.
Neither study reported problems with completion of diaries. The demographics of the
study populations (including literacy level) were not reported. Validity and reliability
of responses was not tested in the Minnesota study.

The validity and reliability testing of the NHEXAS time/activity diary was
published prior to the studies discussed above (Freeman et al., 1999). Validity was
checked by comparison with questions outside of the diary or other external tests, and
by comparing responses to related questions. Reliability was checked by looking for
consistency of responses. Consistency in the NHEXAS timeline was checked by
having a duplicate question on both a questionnaire and the timeline asking about time
in a particular location (time in transit). The responses were compared, and reported
times were highly correlated between a questionnaire and the timeline (0.811 to 0.922,
p<0.001). Accuracy of the timeline was not tested, however. Accuracy requires an

outside standard for means of comparison. The accuracy of any time/activity diary,
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including the timeline in the NHEXAS diary, is much more difficult to test. Diary

timeline accuracy would be best tested by using a ‘gold standard’ that measures the
accuracy of reported time-location. However, no true ‘gold standard’ is available.
While not tested for accuracy, validity of the NHEXAS timeline was measured by
checking that all time, in hours and minutes, adds up to 24 hours.

The NHEXAS diary timeline instructions instruct participants to estimate
partial-hour fractions for location categories, but does not provide any requirement or
structure to do so. Thus the resolution of a person’s true time-location is likely low.
The NHEXAS diary timeline is also low resolution because it defines only 7 location
categories. The diary was designed this way “to facilitate participant responses’ and to
correspond with ‘compartments’ the questionnaire addresses in terms of exposures
(Freeman et al. 1999). The accuracy of a diary timeline may also be limited by recall
bias, though this has not been documented for the NHEXAS diary. It is very difficult
to recall exact location throughout the course of one hour, even if subjects are faithfully
recording once per hour (Moschandreas and Relwani 1991). Some type of measure
independent from the diary is needed to illuminate recall bias, such as the ‘shadow
sensor’ prototype developed by Moschandreas and Relwani (1991) that distinguished
between indoors and outdoors.

Global positioning systems (GPS) tracking devices are fast becoming a part of
everyday life. Low-resolution GPS watches are used by athletes to track velocity and
position (Suunto, Vantaa, Finland; Timex, Middlebury, CT; Casio, Tokyo, Japan), and
by parents to protect children in case of abduction or getting lost (Wherify, Redwood

Shores, CA). Higher resolution GPS tracking telephones are used to enhance the safety
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of workers in remote locations (Benfon, Salo, Finland). The highest resolution GPS

instruments use a process called differential correction to improve accuracy. The
advantages of a differential-corrected global positioning systems (dGPS) method for
logging time-location are that resolution is high and bias is minimal. GPS has been
used for several studies involving human time-location measurements (Elgethun et al.
2003; Phillips et al., 2001; Larsson et al., 2001; Lyon et al., 1998).

Time can be logged every second, and space can be determined within 5 meters
or less of true location. The GPS personal \activity logger (GPS-PAL) instrument
validated by University of Washington researchers achieved a resolution of 3.2 meters
root mean square (RMS) while logging every 5 seconds (Elgethun et al., 2003). The
overall resolution in this study can be considered <4.2 meters after accounting for
orthophoto map error. Validity and reliability are simply a function of temporal;spatial
resolution. Bias is minimized by requiring no input from the user. The only necessary
question asked of participants is whether the GPS-PAL was kept on their person the
whole duration of the study period. Provided the GPS-PAL is kept on the person,
failure occurs just if participants forget to turn on the device. The GPS-PAL unit was
designed to be small, lightweight, and amenable to children when worn in a vest.
Compliance with keeping the vest on has been good in recent studies (Elgethun et al.
2003).

The problems of self-report diaries are evident when parents complete a diary to
document the activities of their children. It is difficult for parents to remember where
they themselves went throughout a day, and more difficult to see and then recall where

their child went. Younger children, particularly pre-school and elementary school
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children, are very active and move rapidly between time-location categories defined by

a diary. Temporal resolution of quarter or half-hours (which is about the limit of a
diary) cannot capture these transient stays in a time-location category.

The purpose of this paper threefold: 1) to compare the GPS-PAL dGPS method
to the parent-reported NHEXAS time-location diary; 2) to illuminate which child and
household factors might affect accuracy of reporting in specific time-location
categories; and 3) to demonstrate a new approach for exposure assessment, as dGPS

allows for the replacement of categorized data with continuous positional data.

Methods
Study Populations

All human subjects protocols were approved by the University of Washington
Human Subjects Review Board. The study was conducted in the late spring and early
summer since children in northern climes are likely to go outside during this season
and have frequent movement between indoors and outdoors. This variation was
desirable for testing the two methods. Thirty-five families living in the city limits of
Seattle were recruited from Early Head Start Programs in the spring of 2003. A letter
was sent home to parents (in Spanish, Vietnamese and English) from four Early Head
Start centers, and researchers attended evening meetings at centers to explain the study
to parents. Early Head Start was chosen to afford access to lower-income (150%
poverty level and below) and minority population in the region. Fifteen enrolled
families spoke Spanish only or Spanish primarily, and all materials and interviews

were given in Spanish to these families. No Vietnamese speaking families enrolled in
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the study. The racial profile of the children in this study (35 total) was: 17 Hispanic, 7

African American, 1 Pacific Islander, 1 Native American, 9 Caucasian. Early Head
Start also afforded access to a specific age group, 3-5 years old. One child per family
was enrolled. The division of subjects by gender was approximately equal (17 male,
18 female).

Parents filled out the NHEXAS diary timeline to document the time-location of
each child. The NHEXAS time-location diary and the protocol for training
interviewers and administering the diary were obtained from one of the diary’s authors
(N. Freeman, EOHSI, Rutgers University, Piscataway, NJ). The materials were printed
in both Spanish and English. The original diary has 7 time-location categories. In this
study, two categories, ‘Inside Work or School” and ‘Outside Work or School” were
eliminated because the subjects were 3-5 year old children who participated on a non-
school weekend day. The remaining five categories were: ‘Inside at Home’
(INHOME), ‘Inside at Other’ (INOTHER), ‘Outside at Home’ (OUTHOME), ‘Outside
at Other’ (OUTOTHER), and ‘In Transit’ (TRANSIT). In addition to the time-
location diary, University of Washington researchers administered a questionnaire to
collect information about the child and about housing characteristics, family
demographics, and income to determine if these factors influence either responses to
the diary or compliance with the GPS protocol. Lightweight portable GPS-PAL
dataloggers (Elgethun et al. 2003) were worn by children in vests. The vest allows for
placement of an antenna on the horizontal shoulder surface. GPS-PALs were set to

record data once every 5 seconds.
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Researchers went to homes of enrolled families. On the first visit, researchers

spent approximately 45 minutes explaining the purpose of the study, how to fill out the
diary, how and when to turn on the GPS-PAL, and administering the questionnaire.
Researchers had parents fill out a practice diary and corrected errors in notation, per
NHEXAS guidelines. The practice diary and notes were kept by the parents as a guide
for filling out the diary on the study day. Parents were asked to record time location as
frequently as every 15 minutes, if possible. Families participated on weekends only to
maximize the number of hours of parental supervision. The period of participation was
24 hours. The GPS-PAL was worn for all waking hours. Parents turned the GPS-PAL
on and put the vest on when the child awoke in the morning. On the second visit,
usually the day after participation, researchers returned to the home. Researchers
reviewed the diary with the parents and had them make appropriate corrections if the
total time did not add up to 24 hours. Researchers asked parents to verify the time the
GPS-PAL vest was put on the child, the time the GPS-PAL vest was taken off, and to
tell if the child ever left the house without the GPS-PAL vest on. Leaving the house
without the vest on (or forgetting to turn on the GPS-PAL) would exclude the child
from the analysis. Participating on a weekday instead of a weekend would also
exclude the child from the analysis. Families were compensated regardless of
compliance. Families were compensated $40 for their participation.

The completed diaries were totaled according to NHEXAS protocol. Time
marked for each category, at specific time of day, was entered into a database. GPS-
PAL data was likewise binned into these categories. This was accomplished by first

drawing a buffer around each residence, as well as any other buildings into which the
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child entered. Points inside the buffers were coded as ‘Inside at Home’ or ‘Inside at

Other’. Similarly, a buffer was drawn around each child’s yard. If there was no yard, a
patio or shared outdoor space belonging to an apartment building, such as a courtyard,
was considered the same as a yard. These points were coded ‘Outside at Home’. ‘In
Transit’ was coded by examining the path to see if the child was traveling from one
place to another. Remaining points were coded ‘Outside at Other’. To demonstrate the
ability of the GPS-PAL to record continuous data, the dataset was also kept in its
original format. These data were plotted as an hourly average of distance and direction
from a ‘tether’ location. In this case, the tether was an air monitoring station in Seattle
proximal to the children’s homes.

GPS data was first processed using differential correction measurements
obtained from the US Coast Guard/National Geodetic Survey CORS program to
improve accuracy. The processed paths were mapped onto City of Seattle orthophoto
maps using GIS software (ArcGIS v.8.3, ESRI, Redlands, CA), then location by time
was recorded. Recording involved magnifying the map many times to determine the
outline of the homes, then drawing a buffer around each home so that points inside
were differentiated from points outside. The same procedure was used for buildings
other than the home into which the child entered. Being in transit was determined by
the child’s GPS path velocity. Elapsed time of movement at a velocity above that
possible on foot was coded in transit. Only the hours between 9 am and 9 pm were
included in analyses. Some morning periods shortly after 9am and evening periods
shortly before 9pm had no GPS data, either due to reception, early bed time, or

sleeping in. Since the child did not wear the vest while sleeping, it was sometimes
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necessary to insert proxy GPS data for early evening and morning hours if the child

went to bed early or slept in. For all children, it was verified that the child did not
leave the home without the vest on, and that the GPS-PAL was turned on before
leaving the home. These missing time periods were coded as ‘Inside at Home’ unless
the first logged point was far away from the home.

A key assumption made in this study is that the GPS-PAL method is what will
be defined here as a ‘best practical standard’. ‘Best practical standard’ in this case
means the GPS-PAL affords good resolution and reception while still being completely
portable and wearable for children. Based on a previous validation study (Elgethun et
al. 2003), this is defensible provided the child keeps the vest on, and that parents are
compliant with the protocol. Comparisons between the two methods were made by
time-location category and by subject.

Criteria for Inclusion

Subjects were included in analyses if their GPS logged more than 6 hours
during the 12 hour period from 9am to 9pm on the day of participation. 31 subjects
met these criteria and were included in the analyses. This criteria excluded participants
who did not follow directions (i.e. did not put the GPS on in the morning), or who
stayed inside a building that blocked GPS reception for most of the day.

Statistical Analysis

Kappa measurements along with z test for significance were performed to
compare the two methods. Kappa itself is a measurement and not a statistic. Kappa is
based on 2 proportions: proportion of concordance expected if methods are completely

unrelated, and proportion of concordance observed between the two methods. A
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misclassification matrix is constructed such that the five time location categories by

each method are listed perpendicular to one another, creating a 25 square grid (Tables
3.4 and 3.5). This matrix allow for a frequency of agreement to be calculated for each
possible combination of reporting by the two methods. Cells that fall along the
diagonal from upper left to lower right are in concordance (both methods rated the
same). These determine the proportion of concordance observed (P,).

The formula for the Kappa measurement is:
Kappa = (Bo-Pe)
(1-P)
where P, is the proportion of observed agreement, and P, is the proportion of
agreement expected.

The influence of differences in gender, age, first language spoken, housing
factors, family demographics, and income on reporting concordance was tested for two
types of data. The first type of data was sequential scoring concordance (Kappa or
proportion measures). This was tested by linear regression two ways: by using
frequency of reporting correctly in each time location category as the dependent
variable, and by using overall Kappa value as the dependent variable. The second type

of data was overall time (sum) in each category. This was tested using Spearman rank

correlation.

Results
Demographics
Two children and their families (English-speaking) were excluded from data

analysis. One family participated on a weekday instead of a weekend, the other forgot
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to turn on the GPS. All parents reported that children kept the GPS vest on for the

duration of the study day. Children’s mothers completed the diary for all but one
family. Demographics of the 33 children included are shown in Table 3.1. Several
families earned above 150% poverty level because their household income had risen
since the time of child’s enrollment in Head Start. Table 3.2 shows where children
spent their time during the 24 hour weekend period, by both methods. This is also
shown in Figure 3.1. The NHEXAS diary responses under reported time spent inside
at home, and over reported time spent in other places when compared to the dGPS
measurement. There was a wide distribution in the range of time spent in each location
by children. Two of the 33 children and their families (one English-speaking, one
Spanish-speaking) were excluded from statistical analyses (Tables 3.3-3.7) since they
did not meet the criteria for minimum number of GPS-logged hours between 9 am and
9 pm.

Sequential Reporting Concordance (Kappa Results)

Table 3.4 contains data for 31 included subjects analyzed by 15 minute time
interval. Table 3.5 contains data for 31 included subjects analyzed by 1 hour time
interval. The numbers logged in the matrix are counts: the number of times the 31
subjects classified time-location into a certain category by diary and the number of
times they were classified by GPS (Table 3.4 and Table 3.5). Next to each counts
value, in parentheses, is the proportion of the total number of counts. The test for
significance is a one-sided z test with the null hypothesis Kappa = 0, and the alternative
hypothesis Kappa > 0. (Negative values for kappa have no significance). Guidelines

for the evaluation of Kappa (Rosner 2000) are:
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k>.75 excellent reproducibility

4<k<.75 good

0<k>.4 marginal

The p value for a z test of the kappa measurement can be significant whether or not the
kappa value denotes appreciable reproducibility.

For both 1 hour and 15 minute data the Inside at Home time was the largest
proportional to the total sampling time period (12 hours). Consequently, Inside at
Home had the greatest impact on Kappa. The greatest proportion of overall counts fell
in the INHOME/INHOME cell. Since this was one of the concordance cells, it
influenced the overall kappa value more than any other cell. This was also seen to be
true in 2x2 tables analyzed for each subject (Table 3.6).

While significance (p less than .000001) of the z test was observed for both Thr
and 15 minute data, the kappa values were .35 and .33, respectively. According to
Rosner (1995), this implies marginal reproducibility. Notably the kappa was almost
the same regardless of the time interval resolution. This was likely due to the fact that
there is sufficient lack of concordance regardless of time subdivision, or to a lesser
extent due to the fact that few subjects logged time-location in the diary at sub-hour
intervals

Table 3.6 shows the kappa values generated by a simplified 2 x 2 matrix, where
each location is compared to the aggregate of the other 4 categories. Inside at Home
has the highest Kappa value of .443, considered ‘good’ reproducibility. Outside at
Home has the lowest Kappa value of .160. As stated above, it follows that Inside at

Home has the greatest positive influence on the overall Kappa, particularly since the
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most time was spent overall in this category. Outside at Home has less influence on

overall Kappa in the negative direction since little time was spent on average in this
category.
Results by Individual Child and Household Factors: Sequential Reporting
Concordance, Linear Regression

Very few demographic variables were found to be predictors of concordance
when tested using a linear regression model (Table 3.7). Mothers who stayed at home
or worked an unskilled labor job had higher concordance between methods when
Kappa was tested as the dependent variable. Access to a car was also a predictor of
higher Kappa. Fathers who stayed at home were not a predictor of higher overall
Kappa, but did influence reporting concordance in the Inside at Home category based
on regression analysis of the Inside at Home frequency of concordance (proportion of
agreement). A child with siblings was predictive of higher overall concordance in the
Outside at Home category based on regression analysis of the Outside at Home

frequency of concordance.

Results by Individual Child and Household Factors: Total Time, Rank Correlation
Table 3.4 shows the correlation between methods for total time spent in time-
location category by child and household factors (Spearman rank sum). Note that the
rank correlation only measures difference in total time in category, and is not a
measure of sequential concordance of responses. Spearman rank sum correlation was
performed because it is a non-parametric, distribution-independent metric of

correlation. Non-parametric analysis was indicated due to the small sample size used
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in comparisons performed here. An asterisk indicates significance of correlation

(p<0.05).

Given the assumption that the GPS method is testing the NHEXAS diary
timeline, it can be said that subjects with the factors listed below reported roral time in
location for the whole day more accurately than other subjects. This does not directly
relate to concordance of sequentially correct answers. The following is a summary of
the child and household factors that showed the highest number of significantly
correlated time-location categories: English speaking household, 3 categories; Male
child, 2 categories; Child with siblings, 4 categories; Not in daycare on weekdays, 3
categories; Home with fenced outdoor area, 3 categories; Parent owns or uses a car, 4
categories; Mother’s occupation unskilled labor, 3 categories; Father’s occupation
unskilled labor, 2 categories; Household income >$4000/mo (highest bracket), 2
categories.

English speakers reported total time in home, out at other, and especially total
time in transit more accurately than Spanish speakers. Parents reported boys’ total
time more accurately outside at home, and inside at other places. Parents reported
girls’ total time in transit more accurately. Parents with more than one child
consistently reported total time in location more accurately. Even though this study
took place on a weekend, parents of children who were in weekday daycare reported
total time more accurately in three of five categories, versus one of five for parents of
children in weekday daycare. Parents reported total time spent outside at home more
accurately if they had a fenced area, while parents without a fenced outside area

reported total time spent inside the home more accurately. Parents who did not own or
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use a car reported total time spent in transit more accurately, but less accurately in

every other time-location category. For both mothers and fathers, parents who worked.
unskilled labor jobs were most likely to report total time accurately. This was less
unique for fathers, since two of the other occupation categories also had one significant
correlation each. Parents in the highest iﬁcome category reported total time by location
accurately more often than other parents, but significant correlations were also found in
two other income categories.
Demonstration of Continuous GPS-PAL Data

Results thus far have been based on categorical analysis. However, it is not
necessary to reduce GPS-PAL data into categories. Greater temporal-spatial resolution
can be achieved if continuous distance and direction from a point of interest (such as a
contaminant source or a monitoring station) are recorded, as shown in Figure 3.3. 25
of the 31 subjects were outdoors during the hour between 2-3 pm, and their 1-hr
averaged distance and direction from an air monitoring station in Seattle are
represented by one line for each child for this time period. The air monitoring station
used here was Beacon Hill. Based on data from the Puget Sound Clean Air Agency
(PSCAA), this time of day on weekends during the study months of April and May
2003 had the highest 2.5 um particulate matter (PM2.5). The 6 subjects who were
indoors the entire hour are not recorded on this figure, as exposure to ambient PM2.5

only is measured by the Beacon Hill station, and no measure of indoor contaminants
was made. Using the continuous GPS data, it is possible to decide how representative
the air data is for each child. The further away a child is, the less representative the

Beacon Hill station data would be for estimating exposure. Similarly, distance from a
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source can be observed in Figure 3.3. Interstate 5 runs North-South less than 0.5 km

West of the air station and is the major source of PM2.5 measured at the Beacon Hill
station. Children closer to this line source or more directly downwind from it may be
expected to receive greater PM2.5 exposure than children further away or upwind.
Continuous GPS data provides the distance and direction information needed to make

such estimates of exposure.

Discussion

The population studied here was chosen for three reasons: first, to consist both
economically and culturally of a lower income demographic; second, to reflect a
socioeconomic profile likely to have greater risk of exposure to pesticides; and third, to
include Spanish-speaking families, since much of our research involves Hispanic
families. Other studies by our group, such as the aerial spray drift study included in
Chapters 4 and 5, have focused on similar income groups who live in agricultural
communities. The per capita diversity of this study was limited by the under-
representation of Asian families. Recruitment fliers were distributed in Vietnamese, as
advised by the Early Head Start officials, but no Vietnamese subjects signed up. The
theory that a lower income population might be expected to have lower compliance
with a diary was marginally supported. Families in the highest income bracket
(>$4000 per month) had the highest rank correlation for total time. This was not true
for sequential reporting, however, as income was not a predictor of kappa or frequency

of concordance by regression analysis. .
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Compliance is a problem with all time-location data collection methods. The

problem with a diary method is that the subject’s parent may forget to fill in the diary
as instructed, and may later fill in the time-location as an estimate or ‘best-guess’.
Even if the parent fills in the diary as instructed, recall of specific time-location may be
challenging. Parents can have difficulty if the child is extremely active and goes
between many locations or spends very short time periods in each location. This is not
unusual behavior, especially in the 3-5 year old age group studied here (Zartarian et al.
1997). llliteracy also confounds the successful completion of a diary, even when the
researchers thoroughly rehearse the procedure with parents, as was the case in this
study. Compliance with the GPS-PAL method is simply limited by parents
remembering to turn on the unit, and by children continuing to wear the unit while it is
turned on. The former is obvious, since the GPS time-stamps the turn-on time. The
latter is less obvious, but can be checked by asking parents to report if this happened,
as was done in this study. This still introduces a potential recall problem, a problem
that could be overcome in future studies by wiring a simple switch that trips if the vest
is removed. On the whole, the GPS-PAL method is not limited so inherently by recall
bias, nor is it limited by illiteracy or by other language barriers.

Overall, children spent a large portion of their weekend day inside the home.
The NHEXAS diary responses under-reported time spent inside at home, and over-
reported time spent in other places when compared to the dGPS measurement (Table
3.2, Figure 3.1). An integral part of this over reporting is the default length of the diary
time-location category. A child may only be in the car for 5 minutes, but the parent

either consciously or unknowingly rounds up to 15 minutes when reporting on the
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diary. Parents were encouraged to record every 15 minutes, but the format of the

NHEXAS diary does not promote such vigilant recording. The numbers listed on the
diary timeline are whole hours, even though the last column has a designation for hours
and minutes. The wide range of times spent in each location for all children (for both
methods) emphasizes the problem with using proxy time-location distributions such as
the US EPA Consolidated Human Activity Database (CHAD) (McCurdy and Graham
2003). It should be noted that for the aims of NHEXAS, higher time resolution was
possibly not necessary.

While it is interesting to examine correspondence by total time (since time is
often summed over a day when day-weighted environmental readings are available) as
was performed here using the Spearman Rank test, this does not test correspondence of
the sequential recording of category. The Kappa measures (Tables 3.4, 3.5 and 3.6)
show that overall agreement of methods can be considered marginal, and that time
spent inside the home has the greatest influence on the overall Kappa for two reasons.
First, the most time during the day is spent inside the home. Second, some of the time
recorded as inside at home by GPS method is in fact proxy, since reception was often
blocked until the subject left the home. These are both notable limitations of the GPS-
PAL. The need for proxy data could be overcome by having the GPS time stamp when
it is turned on, regardless of reception. A switch could also be wired such that the GPS
would time stamp when the vest is zipped shut and zipped open so that removal of the
vest would be logged by the GPS.

Compared to the Spearman rank data, few demographic variables were found to

influence concordance measured by Kappa or by frequency of concordance within
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individual category. This is likely because concordance is already sufficiently low that

few if any variables will change it significantly. Sample size is also a limiting factor.
It follows that having one or the other parent staying at home full time increases
concordance, since these parents could be more accustomed to watching their child. It
is not clear why access to a car improved Kappa. Access to a car was not related to
income, as income had no effect on Kappa by itself or when combined with the car
variable. Having siblings was predictive of improved concordance for outside at home
reporting, perhaps because the parent relies on a sibling to help remember where the
subject was, or because multi-child parents have more experience monitoring their
children.

Timelines such as the NHEXAS diary timeline still have utility for time-
location data collection. One point of this study was to show that GPS can be used to
illuminate for which people the diary works least well. This is important because GPS
is not yet affordable enough to use in large-scale exposure assessments. For example,
in this study, ‘Outside at Home’ had the lowest Kappa, and ‘Inside at Other’ was found
to be least well correlated with the GPS for total rank sum of time. Perhaps parents
could be coached to set a timer during the times the child goes out the back door, or
when they go into stores. It should be noted that while not affordable now, GPS will
likely be affordable enough for large-scale studies in the future. Thus, evaluating
diaries with GPS is a practical stopgap measure until technology catches up and
becomes more affordable. At the moment, diaries also have the advantage over GPS of

being less time-consuming to process.
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Other weaknesses in the diary timeline were found when child and household

factors were examined for comparisons of total time in location (Spearman rank
correlation, Table 3.3). Spanish speaking households were less likely than English
speaking households to reply accurately, perhaps due to cultural differences. The fact
that male children’s time-location was reported more accurately at home suggests
parents in this cohort paid more attention to male children. On the other hand, parents
were maybe more cautious for female children when outside away from the house.
Parents of only children reported less accurately than parents with more than one child.
Apparently having more than one child improved a parent’s awareness of child time-
location, or made the parent more accustomed to keeping an eye on children.
Similarly, a parent who did not put her child in daycare during the week was found to
be better at reporting her child’s time-location on the weekend. As expected, having a
fenced outdoor space at the home improved parent’s reporting accuracy for the
‘Outside at Home’ category, given the defined boundary within which to watch the
child. Parents who never had access to a car and thus primarily used public
transportation were very accurate in their reporting of time spent in transit, likely
because their travel was dictated by bus schedules. These same parents reported less
accurately in every other category, however, but this result is confounded by the
association between higher income and access to a car. It is not clear why both parents
being unskilled laborers improved reporting accuracy. In terms of improving the
reporting accuracy of the NHEXAS time/activity diary, all of these problems could
possibly be addressed by changing the way the question is asked, changing how the

researcher rehearses and trains the parent to fill out the diary, or providing some
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adjunct aid such as a timer to help the parent report accurately. Some combination of

these three methods might be feasible.

Figure 3.2 shows GPS data averaged to represent time and location for one
hour, but with GPS it is not necessary to average (as done here) or to categorize time
location. Instead, GPS allows for delineation of hundreds or thousands of very small
exposure environments and exposure intervals of only a few seconds. This means that
peak, transient exposures can be recorded by specific time and location rather than
being absorbed into a time-weighted average. While a diary could record time spent
outside for the day for relating to the Beacon Hill PM2.5 data, the diary could not have
captured the children’s proximity to the monitoring station. Contaminant concentration
is not uniform in all distances and directions from a monitoring station. With GPS, two
advancements have been made. First, inherent problems with human-reported data are
minimized, yielding higher resolution data. Second, proximity of the moving human
receptor to contaminants can be measured. With the automated collection of near-
continuous (once every 5 second) dGPS data, researchers can now pinpoint where
subjects are in relation to contaminants. This is particularly important in the case of a
transient, spike release such as a pesticide spray event. Continuous sampling (once
every second) is in fact possible with the GPS-PAL and other dGPS instruments if it is
required for a specific application. The only limitation on sampling interval is memory
(byte) space. As personal logging dosimeters for air toxics improve in resolution and
decrease in size and weight, it is logical to expect that tandem time-synched
contaminant monitoring and dGPS positional monitoring will become standard

procedure.
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Conclusions

This study has been a comprehensive comparison of the dGPS GPS-PAL
instrument to the NHEXAS diary timeline. Clearly, differing results are generated by
the two methods. Overall, the timeline misclassified child time-location approximately
48% of the time in comparison to the GPS-PAL. This study has demonstrated that
dGPS can be used to evaluate a diary timeline such as that used in the NHEXAS
studies, and to illuminate which categories fail to elicit accurate responses or which
people are most likely to have trouble reporting using a diary. The most important
finding of this study is that concordance between GPS-PAL and NHEXAS diary
timeline was poor. dGPS testing could be invaluable for researchers pilot-testing a
time/activity diary. In the future, a larger study is recommended to provide more
statistical power and thus better dissect which types of subjects fail to respond
accurately to particular diary questions. Most exciting is the ability of dGPS tracking
to collect continuous rather than categorical data by way of automated rather than
human reporting. With the elimination of categories and the automation of data
collection, the resolution of time-location data dramatically improves. This represents
a major shift in the collection of time-location data.

It can be concluded that though concordance between methods was poor, it
was demonstrated that dGPS affords a tool for illuminating weaknesses in a diary and
thus could be used to focus improvements on specific categories and specific people.
dGPS testing of time-location diaries can aid researchers for the next several years until

the technology evolves further. Diaries continue to be more cost-effective and time-
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efficient than GPS-GIS methods. However, current trends suggest that GPS will be

affordable enough within the next five to ten years to be used in studies with thousands
of subjects. Similarly, data processing will likely become more efficient, broadening

the appeal of GPS methods.



Table 3.1. Demographics of participating families

Household Language
English  58%
Spanish  42%

Participating Child
Female 52%
Male 48%

Only Child 21%
Median # of Siblings 1
Median Age 4 years

Median Income per Mo $1,100

Mother's Occupation
Stay at Home  40%
Unskilled Labor  42%
Trade Labor 9%
White Collar 9%

Father's Occupation
No Father in Home  30%
Stay at Home 11%
Unskilled Labor  33%
Trade Labor 11%
White Collar  15%

n=33 families
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Table 3.2. Time (minutes) spent in each location category by dGPS and NHEXAS
diary methods for one 24 hour weekend period

INHOME INOTHER  OUTHOME OUTOTHER TRANSIT
dGPS
Mean 1108 131 51 81 69
Range 642-1397 0-690 0-442 0-301 0-186
NHEXAS Diary
Mean 922 172 89 182 75
Range 420-1260 0-600 0-420 0-840 0-180
Difference 186 -41 -38 -101 -6
% Difference 17 -24 -43 -55 -8

n=33 children
Age 3-5 years
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Table 3.3. Spearman rank correlation between methods for total time in time-
location category by child and household factors (n=31)

INHOME INOTHER OUTHOME OUTOTHER TRANSIT
Household Language
English 0.448* 0.305 0.415 0.532* 0.692*
Spanish 0.365 0.240 0.127 0.404 -0.034
Child’s Gender
Female 0.223 -0.040 0.215 0.425 0.581*
Male 0.450 0.530* 0.519* 0.467 0.292
Age
3 0.277 -0.235 0.604 0.368 0427
4 0.363 0.354 0.218 0.268 0.589
5 0.700 0.872 0.783 0.667 0.205
Siblings
No 0.720 0.071 -0.490 0.536 -0.255
Yes 0.496* 0.319 0.469* 0.462* 0.514*
In Daycare, Weekdays
No 0.421* 0.300 0.345 0.480* 0.465*
Yes 0.543 -0.203 0.893* 0.232 0.618
Home w/ Fenced Area
No 0.648* 0.110 -0.045 0.519 0.184
Yes 0.363 0.328 0.507* 0.460* 0.516*
Parent Uses a Car
No 0.174 -0.369 0.679 0.589 0.955*
Yes 0.482% 0.477* 0.436* 0.603* 0.338
Mother's Occupation
Stay at Home 0.180 0.154 0.049 0.239 0.315
Unskilled Labor 0.695* 0.595% 0.592* 0.460 0.055
Trade Labor id id id id id
White Collar id id id id id
Father's Occupation
No Father 0.036 -0.283 0.129 0.556 0.845*
Stay at Home -0.500 ~1.000 id -0.500 0.866
Unskilled Labor 0.440 0.734* 0.176 0.644* 0.086
Trade Labor 0.500 -0.866 0.866 0.500 0.866
White Collar 0.051 0.700 0.800 -0.100 0.975*
Income per Mo
<$1000 0.344 0.306 0.067 0.497 0.842*
$1000-$2000 0.529 -0.050 0.477 0.428 0.196
$2000-$3000 -0.500 0.500 0.866* id -1.000
>$4000 0.949* 0.800 0.632 0.775 0.949*

id=insufficient data
*Values are significantly correlated at p<0.05
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Table 3.6. Trends determined by 2x2 kappa matrix analysis of 15 minute data

KAPPA *Proportion of Concordance
INHOME 443 574
INOTHER 342 466
OUTHOME 160 352
OUTOTHER 318 | .642
TRANSIT .199 237

Overall Kappa = .334 (Table 3.4)
Total number of counts in all categories = 1488.
Number of subjects = 31.

For all Kappa measures, p <0.00001 (Z test).

*Proportion of Concordance = number of counts coded the same for both methods
divided by the number of counts total by GPS-PAL (see Table 3.4).
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Table 3.7. Trends determined by regression analysis of 15 minute data
Both frequency of concordance in each time-location category and Kappa used as
dependent variables. All demographic factors tested as independent variables (listed in
Table 3.4). All significant variables listed such that they have positive effect on beta
(increase beta value).

Significant
Independent
Variable Dependent Variable Sig  Slope term
Mother’s Occupation

Stay at Home or Unskilled Labor Kappa 02 -.468
Access to a Car

Yes Kappa 05 386
Father’s Occupation Freq. Of Concordance

Stay at Home InHome .03 416
Siblings Freq. Of Concordance

Yes OutHome .05 523




dGPS

OUTOTHER, 81 TRANSIT, 69
OUTHOME, 51
INOTHER, 131

INHOME, 1108
NHEXAS
diary TRANSIT, 75
OUTOTHER, 182
OUTHOME, 89
INOTHER, 172

INHOME, 922

Figure 3.1: Time spent outside by dGPS and NHEXAS diary method
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Chapter 4

The Washington Aerial Spray Drift Study: Descriptive Data and

Summary

Introduction

This chapter in its entirety will not be submitted as a publication. This chapter
incorporates GPS tracking data and data from a submitted paper (Weppner et al. 2003).

Potatoes are one of the most important cash crops in Washington State.
Washington is the second largest producer of domestic potatoes, and Washington
farmers harvest the world’s highest yield per acre (Washington State Potato
Commission, 1998). Pesticides are applied to potatoes to increase per acre production.
Insecticides in particular are necessary to control aphids and beetles that attack
potatoes, and several hundred thousand dollars are spent each year in the state on
chemical control of pests (Hinman et al. 2001). Pesticides are present in air during
and after aerial and ground applications, sometimes resulting in off-target pesticide
movement and potential exposure to workers and individuals near sprayed fields (Clark
et al., 1991; Richter et al., 1992). A recent study demonstrated off-site drift as far as
500 meters downwind (Woods et al. 2001). Distance from source, wind direction, and
wind speed are primarily responsible for off-target movement (Richards et al. 2001
and Barnes et al. 1987). Ground cover, including human-made structures, also affects
drift (Riley et al. 1989).

Studies have identified an association between proximity to sprayed fields and

elevated pesticide residues in nearby residences. Simcox et al. (1995), Lu et al. (2000)
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and Koch et al. (2002) found decreasing levels of organophosphate (OP) pesticide

residues in housedust and yard soil with increasing distance from treated fields. Higher
levels of OP pesticide metabolites also were found in urine of young children living in
close proximity to orchards where OP pesticides had been applied (Loewenherz et al.,
1997, Koch et al., 2002).

Pesticide drift studies have characterized the movement of the pesticide spray
using a variety of techniques, including tracer dyes, deposition and air sampling, foliar
residues and modeling techniques (Draper et al. 1981; Barnes et al. 1987; Gilbert and
Bell 1988; Riley et al., 1989; Clark et al. 1991; Salyani and Cromwell 1992; Woodrow
et al., 1997; Garcia et al. 2000; Richards et al. 2001; Woods et al., 2001). Symptoms
and health effects attributable to pesticide drift most often have been gathered through
questionnaires after an exposure event (Goldman et al., 1987; Ames et al., 1993). Few
studies have examined human exposures and environmental sampling when assessing
children’s potential for exposure to pesticide drift. One factor that has been difficult to
measure in the past has been children’s time-location and activity level in relation to
pesticide drift. One approach that can address this difficulty is tracking children using
differentially-corrected global positioning systems (dGPS) technology, a method
refined by our group (Elgethun et al. 2003). In this study, children wore a tracking
device during waking hours of the entire study, and both time-location and velocity
were measured for each child. Velocity can later be normalized and used as a metric of
children’s relative activity level to modify breathing rate in exposure calculations.

The current study investigated the role of off-target drift as a pathway for

human exposure in a nearby community. This study design combined drift
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characterization with environmental and biological sampling and child time-location

and activity data. This study is too complex to be presented in a single paper, and will
instead be presented as several related papers. This dissertation chapter focuses on
descriptive data for the following: children’s time-location and velocity measured by
dGPS, oft-site deposition patterns, residues on indoor and outdoor residential surfaces,
residues on children’s hands, and ambient air concentration patterns. This dissertation
chapter combines the data presented in a submitted paper (Weppner et al., submitted
2003) with data on children’s time location and velocity and with additional

appendices and figures as appropriate.

Methods

Site Description and Study Population

The field site was a farm community of approximately 100 residents in east
central Washington (Figure 4.1). The terrain is mostly flat surrounding the community
for approximately 5 km in all directions. All participating families lived in farm
housing surrounded by potato, corn and wheat fields (crops rotated yearly).
Participating households were within 800 meters of each other and were within 15 to
200 meters of the nearest treated field.

Location of houses, coordinates of the edges of the sprayed fields, and location of

deposition and air samplers were measured using GPS. These GPS coordinates were

then mapped and used to inform drift modeling and exposure estimations.
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Spray Synopsis

Cultivated potato fields adjacent to the residences were scheduled for aerial
application of methamidophos (O, S-dimethyl phosphoramidothioate) at an unspecified
date in late July to control green peach aphids. The structure of methamidophos is
shown in Appendix 4A. A picture of the potato fields is shown in Appendix 4B. The
timing of the pesticide application was dependent upon the aphid pressure and
therefore field staff and study participants were informed of the spray day only 24
hours prior to application. According to the farm operator, methamidophos was not
applied to neighboring potato crops earlier in the growing season. A single 1340S2R
Thrush aircraft with a 400-gallon tank flying at approximately 180 km/hr (110 mph)
and a maximum 3 meters (10 feet) above the crop canopy sprayed 5 fields for a total of
700 acres. The aircraft was equipped with 60 ASAE medium-sized whirl jet nozzles
(20-22 psi) oriented 180 degrees from direction of flight and 2-3 feet below the wing.
The spray boom was located forward of wing and was 75% of the aircraft’s wingspan.
Swath width was approximately 45 feet. Methamidophos in liquid formulation (40% O,
S- dimethyl phosphoramidothioate, 60% inert ingredients, trade name ‘Monitor®”),
was applied at a rate of 0.45 kilogram (1 1b) active ingredient per acre beginning at
5:00 am on the day of application. The spraying pattern is illustrated in Figure 2
(adapted from Tsai et al., submitted 2004). Four fields located to the north, southwest,
west and east of the community were sprayed from 5 am to 9:30 am. Spray was
suspended due to wind speeds greater than 8 km/hr (5 mph) at 9:30 am. The wind

abated and spraying recommenced in the afternoon at which time the south field was
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treated. The second spray began at 2:00 pm on the day of application and continued

until 3:00 pm.

Fields located to the north, west and east of the community were sprayed while
the prevailing wind blew from the south-southwest and fields to the south were sprayed
while winds blew from the north-northwest, effectively carrying the primary drift away

from the community.

Recruitment of study population

In May, every family in the community was invited to attend an informational
meeting/picnic to be held in the playground. A poster and flyer advertising the meeting
was posted and put in residents’ mailboxes (Appendix 4C). Bilingual staft and
researchers were present to explain the study purpose and to answer questions.

Following the community meeting, six families were recruited in to participate
in the study. To be eligible for the study, participating families were required to reside
in the study community, to stay near or within the community during sampling periods
and to have at least one child between 2 and 12 years old living at home. Participating
children had to be toilet-trained. Ten children (5 female / 5 male) aged 2-12 years were
enrolled. Two participating children dropped out after baseline samples had been
collected. Both children did not participate in sample collection during the spray
application because they were out of town for the duration of the sample collection

period.
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Sampling Plan

Sampling was designed to capture potential exposures from a series of aerial
applications. The timeframe for sampling and the types of samples collected are
presented in Table 4.1. Baseline spot urine samples, housedust samples, and hand and
surface wipe samples were collected at the end of May approximately six weeks prior
to the first seasonal application of methamidophos. Baseline indoor and outdoor air
samples, playground equipment, toy and apple wipes were collected in July, two days
prior to the spray.

Indoor and outdoor residential air samples and outdoor community air samples
were collected during and following the spray. Outdoor air samplers were set up in the
yard of each participant as well as five sites in the community, including one site
upwind from sprayed fields. Silica gel chromatography deposition plates were set up
throughout the community. Two days after the spray event house dust samples were
collected from carpeted living rooms.

Spot urine samples were collected the evening immediately preceding the
spray. Complete 24-hour urine voids were collected starting the morning of the spray
and three spot urine samples were collected the day following the spray.

Hand wipe samples were collected three to four times a day, at meals and
bedtime on the day of and the day following the spray. Playground equipment wipes
were collected the evening prior to the spray and twice during the day of the spray. The
same playground equipment surfaces and surface areas were wiped each time. Clean
plastic balls, 20 cm in diameter, were placed in the yard of each participating

household two evenings prior to the spray and were wiped on the day of aerial
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application following the spray. Apples purchased from local stores were placed in the

kitchen of each participating household two evenings before the actual spray event in
order to assess the contribution of spray deposition to ingestible food residue.

Interview questions were asked of parents in Spanish or English as appropriate.
Parents were asked about home and occupational pesticide use, particularly
methamidophos and acephate since acephate degrades in the environment and
metabolize in the body to methamidophos. Parents were asked to report their child’s
hand-to-mouth behavior including eating with hands and the frequency of hand
washing.

Each child wore a small geographical positioning system personal acquisition
logger (Entertech GPS-PAL) in a vest or pair of overalls during hours they were awake
on the day of and the day following aerial application in order to record the time-
location paths of participating children. Table 4.1 summarizes the time-location (GPS)
and environmental (deposition, air and wipe) sample collection plan for the entire

study.

Meteorological Data Collection

Wind speed and direction data were drawn from the Washington State
Untversity Public Agricultural Weather System. This system has a measurement
station ~2 kilometers south of the study site, and provides data as 15-minute averages.
The terrain in this part of the state is flat, and the station’s reports were considered a
good representation of wind conditions at the study site. Appendix 4D is a photograph

of the community playground looking south toward the weather station.
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Differential Corrected Global Positioning Systems (dGPS) Instrument: GPS-PAL

One purpose of this study was to use the novel GPS-PAL dGPS instrument to
track children’s time-location during a pesticide spray event. Our previous work in
agricultural communities has suggested that where young children spend their time can
play a critical role in how, and to what extent, they are subject to pesticide exposure
(Lu et al. 2000). Time-location is not used as a proxy of exposure, rather as a way to
map exposures at the intersections between humans and contaminated
microenvironments.

Children wore GPS-PALs integrated into nylon vests (see Chapter 2, Figure
2.2). The clothing allowed for proper horizontal positioning of the antenna, and both
allowed for secure attachment of the antenna cable inside the garment. The battery and
GPS unit were concealed in closed pockets on the front of the garments. Positioning of
battery and GPS unit was chosen to minimally encumber normal range of motion. A
new design for the GPS-PAL was introduced by the manufacturer right before the start
of the spray drift study. The new design was lighter weight due to a plastic rather than
metal case, and incorporated the batteries inside the same case as the electronics. Both
new and old design GPS-PAL units were used in this field study. For both, the antenna
was placed on the top of the shoulder to optimize signal reception. This design
allowed research staff to simply hand the clothing to the parent or child, and prevented
tampering or instrument removal.

Each child wore a small geographical positioning system personal acquisition
logger (Entertech GPS-PAL) in a vest or pair of overalls during hours they were awake

on the day of and the day following aerial application in order to record the time-
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location paths of participating children. Our group has pioneered the use of this

technology for monitoring time-activity patterns of children (Elgethun et al. 2003). Of
the eleven children originally recruited, eight participated throughout the duration of
the spray study. The GPS-PAL was used to record time-location for 3 days: pre-,
during, and post-spray. Analysis by GIS (ArcView v.3.2 / ArcGIS v. software) was
used to visualize GPS paths and quantify time-location (discussed in Analytical
Methods).

The use of the GPS-PAL represents an advance in studying the time-location
patterns and activities of children. The GPS-PAL provides high temporal (~5 sec) and
spatial (2 m) resolution for continuously recording time-location data of mobile
subjects, and has sufficient resolution to distinguish movement between indoor and
outdoor environments, or to locate subjects within rooms of a residence. This device
offers the advantage that no input or recall on the part of the participant or the parents
is required to record activities. In contrast, activity diaries which have been widely
used, require high compliance by participants and may not accurately reflect actual

activity patterns.

Personal (human) sample collection

Hand wipes

Pre-cleaned gauze pads were wetted to near saturation with 10% pesticide grade
isopropanol from a spray bottle. One gauze pad was used to thoroughly wipe the palm

of each hand and a second pad was used to wipe the palm side of the fingers, so that
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the entire palm side of the hand was wiped. Both hands were wiped and a total of four
gauze pads were used and placed in a prelabeled jar and treated as one sample. If the
child was unreceptive to collection of the handwipe procedures, hand wipe samples
were not taken at that time. In one case, a parent collected a handwipe sample from his

child while researchers observed.

Environmental sample collection

Deposition Samples

Location of deposition plates is shown in Figure 4.6. Silica gel
chromatography deposition plates (20 cm x 20 cm) were mounted on stands 25 cm
above the ground. Deposition plates were set up along a transect starting near the edges
of two potato fields and spaced approximately 15 meters (50 feet) apart. Deposition
plates also were set up on a transect along the length of the community soccer field and
in participants’ yards nearest to one of the sprayed field. Two sets of deposition
samples were collected. The first set of plates were set up prior to the application on
the north, west, east and southwest fields. The second set of plates was set up prior to
application in the south field. Following collection, deposition plates were immediately
wrapped in tin foil, placed in ziploc bags and put on ice until transport to the WSU-

FEQL.
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Playground Equipment wipes

All the gauze pads were purchased from the University of Washington stores (Johnson
& Johnson, 3” x 3” 100% cotton) and were precleaned by Soxhlet extraction before

field use.

Playground equipment wipes were collected from surfaces on the playground
equipment where children are most likely to put their hands. These areas included
monkey bar cross bars and side bars, a tire swing, a baby swing, and swing chains. In
order to standardize the sampling method, the entire surface area of the equipment
(such as the entire surface area of two cross bars on the north side of monkey bar set)
was sampled. See Table 4.2 for descriptions and surface area estimations of equipment
sampled. Playground equipment wipes were collected from the same surface once prior
to and twice following the start of the spray event; approximately 6 hours and 11 hours
after aerial application began. Two cotton pads wetted to near saturation with 10%

isopropanol were used for to wipe each area.

Community Air Sampling
Five medium and high volume samplers were distributed across the community.

Samplers required electricity and were very noisy. This somewhat limited where they
could be positioned. Pump numbers 9 and 10 were Staplex medium flow samplers
equipped with two polyurethane foam (PUF) cartridges in tandem (split sample)
(Figures 4.7 and 4.10). Pump numbers 7 and 8 were Anderson high flow samplers

with one PUF cartridge. Pump number 6 was an oil dampened vacuum pump that was
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positioned upwind approximately 1km from the nearest field (off the map on Figure
4.7). A pre-spray background sample was collected on both 7-10 and 7-11, since the
spray was originally scheduled for 7-11. Two spray day samples were collected to
prevent breakthrough. As it happened, two distinct spray periods occurred due to
changing wind conditions. Thus each of these spray samples were collected during and
after the separate spray events. One more post spray sample was collected from the
evening of the spray (7-12) to the morning of 7-13. One more sample should have
been collected on 7-13, but PUF were expended due to the extra day of background
pre-spray on 7-11.

The sampling train for Staplex and vacuum pumps consisted of simple Tygon
tubing supported by a metal ring stand, leading to the glass cartridge holding the PUF
media. Glass remained with the PUF as a single unit (glass was not reused). Anderson
samplers do not require a sampling train. The glass and PUF are enclosed inside a
metal housing. Pumps were flow checked at the beginning and end of each sampling
period, and mean flow rate was used to adjust sample concentrations. Anderson
samplers were calibrated in the field using the attached calibrator, and flows were
measured in the field using a magnehelic gauge. Liter per minute (Ipm) flow rates
were calculated later using atmospheric pressure adjustments as necessary.

PUF cartridges were always handled with new, clean latex gloves. PUF
cartridges were sealed in glass jars, and kept in the refrigerator of the mobile lab (RV)
at approximately 1C until transport on ice to FEQL in Richland. Samples were not

kept at 1C longer than four hours. Samples were extracted upon arrival to the lab, and
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the extracts frozen at —80C until analysis. See Appendices for further details on the lab

procedures.

Residential sample collection

Toy and Apple wipes

Wipes samples were collected from pre-cleaned balls (855 cm?) and pre-
cleaned apples (195 cm?) prior to and following pesticide spray application in order to
measure surface contamination of toys, foods and non-flat surfaces due to pesticide
drift. Balls and apples were cleaned in warm soapy water, rinsed with distilled water
and allowed to air dry in the laboratory prior to transport to the study site. Two days
prior to the spray event, all balls and apples were wiped using two clean gauze pads
wetted to near saturation with 10% pesticide grade isopropanol, placed into a plastic
bag and stored in a cooler with ice until use.

Two nights before the actual spray evenf, a clean ball was placed in each
participant’s yard in an area where their child most often stored or played with his/her
toys. One ball was placed in a central located soccer field near the community
playground. Participating children were asked not to play with or take the ball inside.
Toy wipe samples were collected six hours after the spray had begun.

A clean apple was placed on the top of each participant’s refrigerator and a
small flag was inserted in the apple for identification. It was explained to the
participants that the apple would be wiped later to determine if any pesticides had
settled on it due to drift from sprayed fields and all participants were asked to avoid

touching, playing with or eating the apple. Wipes were collected from the apple
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surfaces approximately 36 hours after the spray had begun. Toy and apple wipe

samples were collected in the same manner as those collected prior to the spray event.

Indoor Residential Surface wipes
Surface wipes were collected from kitchen tables and counters. A 10 cm by 10

cm plastic template was placed on the surface and the outside corners were taped down
with masking tape. Two clean gauze pads wetted to near saturation with 10%
isopropanol were used to wipe the entire area inside the template. Surface wipes were
collected the evening following the spray, 15 hours after the spray began, and the day
following the spray, approximately 36 hours after the spray began. Shortly after
sampling, wipe samples were brought to the Washington State University Food and
Environmental Quality Laboratory (FEQL) in Richland, WA where samples were
stored at -15 to -20°C until residue analysis for methamidophos.
Indoor Residence Air Sampling

SKC medium flow pumps equipped with a sampling train identical to that
described above were used. Pumps were placed outside the kitchen window of
residences, and the Tygon tubing was run through the window, with the PUF cartridge
supported on the window sill. Windows were sealed with duct tape around the tubing
to prevent outdoor air from entering the houses. Pumps were kept outside to minimize
noise pollution for the families. Only one spray sample was collected, since
breakthrough was not a concern indoors. PUF were handled and processed as

described above.
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Outdoor Residence Yard Air Sampling

SKC pumps were used, as described above These are labeled 1-5 in figure
4.10. Pump and sampling train were placed in the participating families’ yards in an
area where children were known to play. PUF cartridges were 1m from ground level to
approximate child breathing space. PUF were handled and processed as described

above.

Analytical Methods

GPS download and post-processing

Methods were the same as described in Chapter 2 (2.2), except that the
differential correction data were collected from a different CORS station that was
closer to the spray drift field site. This station was located in Appleton, WA,
approximately 100 km from the field site. Ideally a closer station is desirable, but this

is the closest station for that particular section of Washington State.

Geographic Information System(s)-GIS construction and analysis

A new GIS was constructed for the drift field study. ArcView v.3.2 and
ArcMap / ArcGIS v.8.3 were used to integrate data and map layers. USGS Digital
Ortho Quarter Quads (DOQQs) were obtained as .bil files on CD-ROM from USGS.
Resolution of these maps is given as 1 meter. Ortho Quad maps of a more regional
scale were also obtained from Microsoft Terraserver website in .jpg format

(www terraserver.microsoft.com) for comparison purposes. Terraserver maps were
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used to obtain an overview of the region, and were not used in any final maps or
analyses.
Laboratory analysis: deposition, wipe and air samples

Development of analytical methods and laboratory analysis of samples
were performed by the Food and Environmental Quality Lab, with assistance from the
author, at Washington State University, Tri-Cities in Richland, WA.

All samples were transported to the Washington State University Food and
Environmental Quality Laboratory in Richland, WA, and stored at -15 to -20°C until
residue analysis for methamidophos. All the gauze pads (Johnson & Johnson, 37x 3”
100% cotton) were pre-cleaned by Soxhlet extraction with acetyl acetate before field
use. Each wipe sample (consisting of 2 to 4 gauze pads) or deposition plate was
submerged in ethyl acetate and sonicated. Two sequential ethyl acetate extractions of
the gauze pads were performed followed by suction filtration. The two suction-filtered
solvent extracts were combined. The total solvent extract volume was reduced to just
dryness by rotary-evaporation under reduced pressure at 40°C. The sample extract was
re-dissolved in ethyl acetate and quantitatively transferred to a pre-conditioned 500-mg
carbograph SPE column. The sample extract was eluted using ethyl acetate under slight
negative pressure. The sample eluent volume was reduced under nitrogen at 35°C to a
desired final volume for residue determination.

Extracted samples were analyzed by gas chromatography employing a Varian
Star 3400CX with 8200CX Auto Liquid Sampler using pulsed flame photometric

detection (PFPD) in phosphorus mode. A fused silica megabore EC-1 (100% methyl
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silicone phase), 15 m x 0.53mm i.d.x 1.20 pm film thickness column was used with a
flow rate of 10-13.5 mL/min. The PFPD detector temperature was set at 310°C.
Injector port temperature was programmed from 200°C to 250°C at 250°C per minute.
Oven temperature was programmed to increase from 80°C to 270°C at 20°C per
minute and hold at a final temperature for five minutes. Injection volume was 2 pl.

Data was considered to be acceptable if variation between bracketed single
point calibration standards was < 15% (averaged during run) and linearity as measured
by the regression r* was > 0.995. A limit of quantitation (LOQ) for wipes and
deposition plates was established based on the lowest reproducible level of
quantification to be 0.1 ug per sample with an estimated limit of detection (LOD) of
0.02 ug per sample (~4X of the background chromatographic signal). The limit of
quantification for air samples (PUF) was 0.10ug per PUF, and the limit of detection
was 0.02 ug per PUF.

Recoveries of methamidophos from gauze pads, deposition plates and PUF
were determined by fortifying the sample media with a known amount of
methamidophos. Analytical sets usually consisted of 6 to 8 wipe samples followed by 2
quality control (QC) samples and 4 to 6 deposition or PUF samples followed by 2 QC
samples. Blanks (pre-cleaned gauze and non-fortified deposition plates and PUF) were
also extracted and analyzed per analytical set to serve as background controls.

Gauze wipes were routinely fortified with 0.1 to 20 pg of methamidophos
during residue analyses. Average fortified percent recovery for wipes was 101 + 13%.

Average fortified percent recovery for silica gel deposition plates was 81 + 8 %.
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Average fortified percent recovery for PUF was 91 + 8 %. No detectable residues were
recovered from blank samples. Residues detected above the LOD but less than the

LOQ are reported but are not quantified.

Statistical Analysis

Parametric and non-parametric tests were performed to determine if post-spray
environmental, house, and indoor samples were significantly different from baseline
values. Mann Whitney U tests were used to compare intraindividual hand wipe values
and urine values (for each child). Mann Whitney U test were also used to compare air
samples by individual pump, which is the same as individual residence for residential
samples. Wilcoxson Rank Sum tests were used to compareb playground deposition
values on the same surfaces before, during, and after the spray event and to compare air

concentration values before, during, and after the spray event.

Results
GPS/GIS Time-location

See Figure 4.1 for a detailed map of the community and surrounding fields. All
data presented here are for the spray day and the day after. Children’s total time spent
outside, by child, is shown in Table 4.4. Children’s linear velocity (a metric of activity
level) is summarized in Tables 4.3 and 4.4. Children spent an average of 22 minutes
longer (14 % more time) outside on the day after the spray compared to the spray day.

However, some individual children spent more time outside on the spray day than on
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the day after (Tables 4.3 and 4.4). On the day after the spray, GPS paths of 6 of the 8
children showed they congregated in one location in a field on the southeast side of the
community (>150 m from the nearest upwind sprayed field) for about 1.5 hours,
possibly for a picnic or birthday party.

Children’s linear velocity, as measured by GPS, was slightly higher on the
spray day than on the day after the spray. Differences by day were not statistically
significant. From this information, activity level of children can be determined. This
will be discussed and applied in Chapter 5. Data was collected for two children
traveling in a car on the spray day. These children were taken by a parent to a
neighboring community for several hours while the spray was occurring. Three other
children were seen to travel several miles away from the community, but their paths
were not logged during transit. GPS reception is often blocked in vehicles due to the
shielding properties of metal (the Farraday Cage effect). Logically, children must have
been transported via a vehicle. The GPS time log backs this assertion. There was
approximately 15 minutes between the last logged GPS point in the community, and
the next logged GPS point in the other community. This trip is approximately 12
miles. An approximate velocity for this vehicle trip is thus 48 miles per hour.

Detailed maps showing children’s paths overlaid on orthophoto maps are
shown in Appendices 4F through 4BB. Each individual dot represents a sampled time-
location. The dots are color-ramped to show the gradient of time of samples
throughout the day. Large regional maps are shown for children who left the

community, in addition to community area maps. The first set of maps shows time-
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location throughout the day. The second set of maps has color-ramped dots that show
the linear velocity of each child throughout the day. Time spent on bicycles, for those

children who rode bicycles, is separated from time on foot.

Wind Data

Figure 4.2 (adapted from Tsai et al., submitted 2004) is a scale diagram of the
community and surrounding fields showing the order and direction the spray was
applied by the crop duster. Also shown is the prevailing wind direction during the time
each field was sprayed. Figure 4.3 (adapter from Weppner et al., submitted 2003)
illustrates wind direction, magnitude and frequency with a wind stick graph during and
after application. Figure 4.4 illustrates the same winds with a wind rose plot. During
the morning spray period winds were generally from the south-southwest. Wind
direction shifted between 9:00 and 10:00 am, and winds were from the north-northwest
for the rest of the day. Fields located to the north, west and east of the community were
sprayed while the prevailing wind blew from the south-southwest, and fields to the
south were sprayed while winds blew from the north-northwest, effectively carrying
the primary drift away from the community in each case. Figure 4.5 shows winds on
the day after the spray (7-13-02). Overall trends are similar, though the wind blew
more toward the community from the direction of the southern treated field on this day.
Deposition Samples

The locations of deposition plates are plotted on an aerial photo (Figure 4.6,

adapted from Weppner et al., submitted 2003), and methamidophos residues found on
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deposition plates are summarized in Table 4.6. Plates 1-10 were placed along the edge
of the community’s park, 68-75 meters from the North field, and 217-325 meters from
the South field. Plate 11 was placed one meter inside the North field. Plates 12-22
were placed in a line extending from several of the homes to the edge of the East field,
with Plate 22 placed one meter inside the East field. Morning deposition plates were
set up at 5:30 am and were in the field for approximately 6 hours. Afternoon plates
were set up between 12:00 and 1:00 pm and remained in the field approximately 5
hours.

Mean plate loading following morning application of methamidophos on fields
north, west and east of the community was 12.8 ng/cm? for plates 1-10 and 24.4 ng/cm2
for plates 12-21. Plates 11 and 22, in contrast, had substantially higher deposition
levels (7990 and 20400 ng/cm?, respectively). Mean plate loading after the afternoon
application on the field south of the community was 10.3 ng/cm? for plates 1-10 and
1.47 ng/cm? for plates 12-21. Residue level on Plate 11 was substantially higher (77.9
ng/cm?) than levels on Plates 1-10. Residues on Plate 22 were also higher (5.3 ng/cm?)

than levels on Plates 12-21.

Playground Equipment wipes

All pre-spray playground equipment wipes had low but measurable
methamidophos residues (Table 4.2). Median playground equipment concentrations at
baseline, and 6 and 11 hrs following the start of application were 0.04, 0.57 and 1.04

ng/cm?, respectively.
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Methamidophos residues on playground equipment were significantly higher
than pre-spray levels at both 6 hours and 11 hours after aerial application began
(p=0.04 in each case, Wilcoxon Signed Rank test). No significant difference was found

between playground equipment samples at 6 hrs and 11 hrs.

Toy, Apple and Indoor Surface Wipe Samples

No detectable methamidophos residues were found on pre-spray toy samples
(Table 4.6). Three of the six post-spray toy wipe samples had measurable
methamidophos, with one sample at detectable residues below the LOQ.
Concentrations ranged from 0 to 0.37 ng/em? with a median concentration of 0.14
ng/cm’. One toy that was found inside the home was reported by parents to have been
inside the home for the duration of the spray, and so was not included in the data set.
There were no detectable residues in any of the apple wipe samples, or in any of the

indoor residential surface wipe samples.

Child hand wipe samples

Participating residences are shown in Figure 4.7. Occupants of residence 2 left
town for vacation midway through the study, and these data were not included in
analyses. None of the pre-spray hand wipes contained detectable methamidophos,
except for one sample in which the level was above the LOD but below the LOQ
(Table 4.7). Sixty-two percent of the hand wipe samples collected after baseline had

measurable methamidophos residues; approximately 44% these were below the LOQ
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but above the LOD. One hand wipe sample contained methamidophos levels 10 times
higher than the median of the hand wipe samples, and was considered an outlier. This
sample was collected by a parent in privacy at their child’s request. It was not possible
to determine if this sample had been handled properly, so it was excluded from
statistical analysis.

Table 4.7 summarizes methamidophos residues from children’s hand wipes
both by sampling time and as daily sums for each child. We attempted to collect a total
of seven hand wipe samples from each child during the field study. Three children
were absent during one sampling event, and one of the three children declined two
sampling events by research staff. Differences in total samples collected per child
should be taken into consideration when comparing cumulative hand residues. The
median value for each sampling event was either between the limit of detection and the
limit of quantitation, or was non-detectable. Hand wipe levels were plotted by
collection time to illustrate change over the two sample days (Figures 4.8 and 4.9).
Figure 4.8 illustrates the assumption made that residues were completely removed from
hands at each hand wipe event. It was also assumed that collection on hands was
linear, and that no other washing events occurred in between samples. The sum of
methamidophos residue removed from children’s hands are presented on the right side
of Table 4.8. The maximum cumulative methamidophos residue found on a child’s
hands on the day of the spray was 0.49 pug (n=3). The same child had the maximum
cumulative post-spray residue of 0.30 pg (n=3). A total of seven hand wipe samples

were attempted during the field study.
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Samples collected at 4 pm and 8 pm on the spray day, and at 1 pm on the post-
spray day were significantly higher than baseline samples (p=0.006, p=0.026 and
p=0.017, respectively; Mann-Whitney test). The median values for all hand wipe
samples collected on the spray day and on the post-spray day were 0.06 and 0.04
ug/sample, respectively. These levels were significantly higher than baseline levels
(p=0.008 and p=0.031 respectively, Mann-Whitney tests), but were not significantly

different from each other.

Air Samples

Arrangement of community and residential air samplers is shown in Figure
4.10. Samplers 1-5 were in the yards of participating residences. Samplers 6-10 were
in public places. Data from air sampling conducted in and near the community are
shown in Tables 4.8 and 4.9 and in Figures 4.11 and 4.12. Two residential yard air
samples and 2-3 community air samples were collected on the spray day to prevent
overloading and subsequent breakthrough of the sampling media (PUF). Several of the
residential samplers were closer to the treated fields than the community samplers. The
range of spray day pesticide concentration was notably higher for the residential
samplers. Several of the residence yards were very close to the nearest upwind treated
field (NUTF), within 10-20m. The NUTF was the field labeled ‘North field’ in Figures
4.6,4.7 and 4.10. Nearest upwind treated field (NUTF) comparisons are made from

the location of the child, object or residence to the nearest edge of the circular field.
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Two of the community samplers consisted of one pump with two separate PUF
cartridges in tandem (Table 4.9). These ‘split samples’ allowed for internal
comparison of sampling consistency at a single location. In Figure 4.11, community
Prel and Pre2 samples were combined into one category. Likewise community Postl
and Post2 samples were combined into one category. This allows for comparison over
comparable time periods between the community and residential yard outdoor air
samples.

The highest residential yard air sample was 0.984 ug/m3 at residence #4 during
the Spray 2 period. The lowest non-baseline residential yard air sample was 0.062
ug/m3 at residence #5 during the Post spray period. The highest community air sample
was 0.678 ug/m3 at pump #10 during the Spray 2 period. The lowest non-baseline
community air sample was 0.002 ug/m3 at pump #6 during the Post spray period.

For all outdoor air samplers, air concentration followed the trend of increasing
from baseline on the spray day, then decreasing during the evening, night and morning
following the spray. All spray and post-spray samples were higher than baseline. For
the community values, these differences were statistically significant (Wilcoxon signed
rank, p< 0.05). The residential samplers captured the trend of higher concentration in
the afternoon and early evening compared to the morning of the spray day. The
community sampler furthest from the NUTF (#6, 1.5 km upwind) had the lowest
concentration during and post spray. Spray and post-spray concentrations from
community air samplers close to residences (samplers #7-10) were all significantly

higher than the upwind sampler (#6) (Mann Whitney U, p<0.05). The community air
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sampler (#10 ) closest to the NUTF had the highest concentration during and post
spray. The other samplers had concentrations proportional to their proximity to the
NUTF except #9. . There were no trees or houses between this sampler and the
NUTF to block drift. A proximity trend was also evident in the residential yard
samples. Residence 4 was closest to the NUTF (less than 10 m away) and had the
highest air concentration during and after the spray (Figure 4.12, Table 4.8). There
were no trees or fence between this yard and the NUTF.

Residence 3 (the second highest yard concentration) was within 20 m of the
edge of the NUTF, but was shielded by dense trees. Residences 1 and 5 were duplexes
on the other side of the community at a distance of approximately 300 m from the edge
of the NUTF.

Indoor air concentration ranged from non-quantifiable to above the LOQ by a
factor of 1-2 (Table 4.10). Thirty percent of samples were non-quantifiable. During
and post spray samples were not significantly different from baseline (Wilcoxon signed
rank, p>0.05), and indoor air samples were at concentrations of 1 x 10’ or more lower

than any outdoor samples during the spray and post spray periods.

Discussion
Rationale for farmer interest in the study

Despite assurance of anonymity, farmers would likely be wary of participating
in such a study. It is clear that pesticide drift onto human living areas carries a certain

liability that farmers would not find desirable. However, in 2001, EPA proposed new
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label statements that could essentially ban any and all drift, a requirement known by
agriculturalists to be essentially impossible. Appendix 4E contains a summary of the
document “Draft Guidance for Pesticide Registrants on New Labeling Statements for
Spray and Dust Drift Mitigation” (EPA, 2001). Researchers in this study were able to
go to a large commercial farm corporation and offer them the opportunity to help
generate and share data that would show realistically what drift occurs from a
conscientious aerial spray. The farm corporation agronomist and the field manager
both agreed that such a demonstration could show EPA that a requirement of no drift
was unrealistic and unfair. The comment period for this legislation generated such a
maelstrom of controversy that the no drift regulation was abandoned in favor of the
less restrictive ‘minimize drift to sensitive areas’ shortly after this study was

conducted.

dGPS (GPS-PAL) Sampler Data

Time spent outside and activity measured by velocity are shown in Tables 4.3
and 4.4. Children spent varying amounts of time outside on both days. Some children
spent more time outside on the spray day than the day after, which was surprising
(Child 1, 2, 4 and 6). In particular, Child 2 and Child 4 spent proportionally more time
outside on the spray day than on the day after the spray. Children 7 and 8 (who are
siblings) had parents at home that advised them not to go outside (as they told us),
because they said they knew the spray could be harmful. When asked if they were

behaving differently because researchers were present, these parents said no. Children
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who went outside on the spray day may have been told to stay inside, but were not
supervised. Not all parents were home during the spray.

Children also varied in their activity level, as measured by linear velocity from
the GPS. Older children were active outside for longer periods of time, while younger
children had shorter bursts of speed. The two children who rode bicycles were seen
riding, thus we knew to account for this. However, it was apparent from the map of the
GPS path that the velocity was consistently too fast for foot travel, so a researcher need
not know this a priori.

Deposition

Methamidophos residues found on deposition plates, playground equipment,
toys, and children’s hands confirmed that drift occurred in this community following
aerial application. The most strikiné finding from these samples, however, was the
disparity between residue levels on samples placed just within the boundaries of the
treated fields compared to levels on adjacent samples outside the treated areas. The
residue level from the North field sample was nearly three orders of magnitude higher
than levels on deposition plates approximately 70 meters from the field (7990 vs. 12.8
ng/cm?). Similarly, the residue level measured in the East field was more than a
thousand times higher than the level measured 15 meters from the field boundary
(20400 vs. 20.3 ng/cm?). These data indicate that the aerial application was very well
controlled, and that nearly all of the material applied reached the targeted fields, at
least along those boundaries where measurements were taken. It is not clear whether

the presence of our field investigation team had an influence on the data collected.
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However according to the farm operator, the pilot scheduled for the aerial application
observed our field sampling apparatus from the air and chose to return to base. The
application did not commence until the next day.

Hand Wipes.

The source of methamidophos found on participants’ hands is not known, but
the absence of methamidophos on indoor surfaces suggests that exposure occurred
outdoors. The increase in methamidophos residues on playground equipment following
the spray suggests greater opportunity for children to come in contact with pesticides
when playing outdoors within 12 hours of an application. Detectable residues found on
three of six toys placed outside during the spray also suggests an increased opportunity
for children living near treated fields to come in contact with applied pesticides
following a spray event.

The data reported — surface residue and hand exposure levels — do not represent
a complete picture of the exposure opportunity for the study children, and are
insufficient to estimate risk. Chapter 5 reports a more holistic dermal exposure
assessment using modeled deposition values (calibrated from data shown here) coupled
with the GPS time-location and activity data presented here. While not much more can
be said about hand loading in Chapter 4, in Chapter 5, hand loading values play in
important role because they are used to calculate a surface-to-dermal transfer rate for

this cohort.
Several studies have indicated that exposure to contaminants can occur from

ingestion of foods that have come into contact with indoor surfaces (Akland et al.
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2000; Cohen-Hubal et al. 2000; Melnyk et al. 2000.) Although we did not find
methamidophos residues on surfaces inside homes, one recent study of propanil drift
from rice fields to homes less 150 meters away found detectable levels of propanil on
sampling surfaces within 3 of 4 houses where the prevailing wind direction was toward
the home (Richards et al. 2001). The investigators noted differences in home integrity
(i.e., open windows, drafts through the walls) and travel in and out of the houses that
may have allowed residues to enter the home. In the current study, participants in all
six homes kept their doors and windows closed and had air conditioners operating
throughout the spray and post-spray day due to extreme temperatures (average
afternoon temperatures during the spray day and post-spray day were 102.5°F and
101°F). It was also observed that the children in the study spent most of their time
indoors on these days.
Air Samples

The NUTF was the field labeled ‘North field’ in Figures 4.6, 4.7 and 4.10.
NUTF is used as a proximity reference for two reasons. First, it is much closer to
residences and areas where children played than any other field (within 5-10m of some
homes versus 150-200m for the other two fields). Second, winds blew more frequently
toward the community from this field than from any other direction during and post-
spray on 7-12-02 and 7-13-02 (Figures 4.3-4.5). Outdoor air sample concentration
was clearly affected by two factors: proximity and land cover. Areas in which no trees,
buildings, fence or other structures existed between the air sampler and the NUTF are

expected to receive more drift. Land cover often influenced magnitude of
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concentration, but not rank of samplers, except in one case. Community sampler #9,
which had downwind line-of-sight to the NUTF, had a slightly higher spray and post-
spray concentration than samplers #7 and #8 which were about 80m closer to the
NUTF but protected by trailer homes, trees, and a storage shed (Figure 4.10).
Proximity alone determined rank for the remaining community and residential yard
samplers. Residence #3 was most proximal and most exposed (least landcover), and
had the highest air concentration during and post spray. Residence #5 was the furthest
away from the NUTF, and had the lowest air concentration during and post spray.

As expected, concentration incréased from baseline and peaked on the day of
the spray, then declined during the evening, night, and early morning post-spray
period. It is known from modeling of volatilization that the air concentration would
have increased again during the daylight hours on the following day (Ramaprasad et
al., submitted 2004). Air temperatures were in excess of 30 C for all days sampled.
Methamidophos becomes highly volatile at such temperatures, with a vapor pressure of
3x10™ mm Hg (Extoxnet 2004). Between 30 and 40 C, methamidophos vapor pressure
increases approximately 300 fold. Temperatures approached 40 C for several hours on
both the day of the spray and the day after. Regrettably, no sampling was possible on
this day since sampling media were expended on the day when the spray was supposed
to occur but did not.

Indoor air concentrations were remarkably low throughout the study period.
Residents of the community kept their houses closed up during the spray day because

they knew the spray was going to happen, and because of the extreme heat in the
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afternoon on both days. Air conditioner units were running on high in all houses

observed; this re-circulates the indoor air and does not draw any fresh air from outside.

Conclusions

Results from this field study demonstrate that children were outside and active
at the time and location where pesticide was present near the community, and results
show that off-target pesticide drift did occur during application. It is apparent that the
application was well executed as demonstrated by the large difference between in-field
deposition and deposition as sites approximately 70 meters from the edge of the fields.
This spray could serve the participating farm company as a realistic example of what
drift will occur from such an application should they want to provide the data to EPA.
The ‘no drift’ label statement was overruled in 2002 not long after the sampling took
place.

This study is pioneering for two reasons. It is the first spray drift study to
perform a rigorous exposure assessment of people in a community with high potential
for drift. It is also the first exposure study to successfully apply dGPS tracking to
generate high resolution time-location and velocity measurements of children.

The source of dislodgeable methamidophos residue was determined to be an
outdoor source since all detectable residues were found on outdoor surfaces and none
were found on indoor surfaces. This finding suggests that the opportunity for pesticide
ingestion would likely be greatest when children are playing, handling food or eating

outdoors.
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Cumulative methamidophos residues found on children’s’ hands do not suggest
an acute health hazard. However these residues are only a portion of potential exposure
since 24 hour hand wipe sample collection was not feasible and should be viewed as
such.

Methamidophos concentrations in outdoor air were influenced by proximity to
nearest upwind treated field, and by land cover (i.e. the presence of buildings, fences,
and trees). Methamidophos in outdoor air increased during the spray day, and
decreased during the evening, night and early morning following the spray. Outdoor
air concentrations were highest in the heat of the afternoon, suggesting the contribution
of volatilization to measured concentration. Methamidophos is relatively volatile
(~0.009 mm Hg) at temperatures observed during the afternoon hours, and can leave
the target crop and be blown into a community many hours after application.

Very little methamidophos was found in indoor air, and none was found on
indoor surfaces. It appears that keeping homes closed up and running the air
conditioning on a re-circulate setting is an effective barrier against drift entering the

home.
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Table 4.3. Activity level measured as linear velocity of children (m/sec) and total

time spent outside (min)

Spray Day Day After Spray
Velocity Time Qutside Velocity Time Qutside
Child 1 On Foot
(5yoF) Mean 0.34 199 0.20 173
Range 0-4.82 0-5.00
Child 2 On Foot
(SyoM) Mean 0.18 251 0.10 76
Range 0-3.53 0-1.69
Child 3 On Foot
(8 yo M) Mean 0.40 148 0.25 223
Range 0-4.83 0-4.52
Child 4 On Foot
(2yo M) Mean 0.44 84 0.53 45
Range 0-4.84 0-4.99
Child 5 On Foot
(11 yo M) Mean 0.71 169 0.56 224
Range 0-6.91 0-5.01
On Bicycle
Mean 2.34 1.85
Range 0-9.57 0-9.76
In Car
Mean 17.75 nd
Range 0-27.93 nd
Child 6 On Foot
(I0yo F) Mean 0.50 207 0.37 181
Range 0-5.63 0-4.97
On Bicycle
Mean 1.72 2.03
Range 0-5.78 0-5.52
In Car
Mean 18.52 nd
Range 0-30.69 nd
Child 7 On Foot
4 yoF) Mean 0.31 19 0.22% 179*
Range 0-3.66 0-5.02*
Child 8 On Foot
(7Tyo F) Mean 2.18 28 0.22 179
Range 0-4.50 0-5.02

*Child 7 uses Child 8 (sister) data as surrogate for day after spray. Child 7 data incomplete due to GPS
malfunction. Sisters spent majority of time together on this day.
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Table 4.4. Activity level (by mode of locomotion) measured as linear velocity of
all children (m/sec) and total time spent outside (min)

Spray Day Day After Spray
Foot + Bicycle Foot + Bicycle
Velocity Time Outside Velocity Time Qutside
On Foot
Mean 0.68 138 0.32 160
Range 0-4.95 0-4.46
On Bicycle*
Mean 2.03 1.94
Range 0-7.68 0-7.64
In Car*
Mean 18.14 nd
Range 0-29.31 nd
N=8

*GPS measurement for 2 children only

Mean total time outside for all children NOT significantly different by day (p<0.05)
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Table 4.5. Deposition target loading and distance from nearest sprayed field

MORNING SAMPLES*  AFTERNOON SAMPLES*

Location  Distance to Loading Distance to Loading
the nearest (ng/cmz) the nearest (ng/cmz)
sprayed field sprayed field
(m) (m)
1 77°% 12.6 217°¢ 6.80
2 76° 8.50 229°¢ 16.0
3 7438 12.5 241°¢ 8.30
4 722 13.4 253°¢ 8.60
5 702 3.40 265° 11.3
6 68° 15.4 276° 10.1
7 68° 15.6 288° 12.2
8 708 16.8 300° 12.1
9 702 14.1 312°¢ 9.50
10 738 15.4 325°¢ 7.60
11 0° 7990 372°¢ 77.9
12 179° 25.5 374°¢ 2.50
13 134° 10.7 381°¢ 1.50
14 131° 8.10 401° 1.60
15 107° 9.90 412° 1.30
16 91° 14.0 429° 1.30
17 76° 115 445° 1.30
18 61° 11.3 462° 1.10
19 46° 12.5 479°¢ 1.90
20 30° 16.7 495°¢ 1.10
21 15° 20.3 512°¢ 1.10
22 0° 20400 529°¢ 5.30

*Morning samples were in the field for average duration of 6 hours 45 min. Afternoon

samples were in the field for an average duration of 5 hours.
Distance measured from *North field, "East field, and “South field using GPS coordinates. Deposition
plates #11 and #22 were placed 1 meter inside the sprayed field. LOD=0.05 ng/cm?, LOQ=0.25 ng/cm’



Table 4.6. Toy ball samples: location and methamidophos loading
(adapted from Weppner et al., submitted 2003).

LOCATION LOADING (ng/cm”)
Where placed Where found Baseline Post spray
Front yard Inside home nd nd
Side yard Side yard, in nd 0.11%*
sprinkler
Back yard Backyard nd 0.37
Side yard Side yard nd 0.19
Side yard Side yard nd nd
Playground Playground nd 0.14
Median Concentration**
nd 0.14

*This value was above the LOD and below the LOQ and therefore considered non-quantifiable.
**Median is based on n=5, the toy ball that was found indoors was not used in median calculation
LOD = 0.02 ng/cm’, LOQ = 0.12 ng/cm?; Nondetectable residue (nd) < LOD

Toy ball surface area = 855 cm’
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Table 4.8. Residential yard air sample concentrations (ug/m3)

131

Residence Elaspsed Time Mass  Concentration
# Child(ren) Period Stop Time (min) (ug) (ug/m3)
1 1 pre 17:20 450 1.31 0.121

sprayl 10:45 325 0.63 0.076
spray2 17:20 395 2.37 0.240
post 21:55 275 0.27 0.041
3 2,3  pre 16:50 525 0.32 0.025
sprayl 11:00 350 1.67 0.183
spray2 17:10 370 4.57 0.475
post 21:40 270 1.56 0.241
4 4,56 pre 16:55 425 0.27 0.030
sprayl 10:52 337 3.20 0.442
spray2 17:15 383 7.16 0.984
post 21:50 275 1.26 0.191
5 7.8  pre 17:25 455 0.30 0.026
sprayl 10:40 315 0.83 0.110
spray2 17:25 405 1.52 0.156
post 22:02 277 0.41 0.062

LOQ =0.10 ug/PUF
LOD = 0.02 ug/PUF
Limits are per sample
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Table 4.9. Community air sample concentrations (ug/m3)

Elaspsed Time  Mass

Concentration
Sampler # Period Stop Time (min) (ug) (ug/m3)

6 pre2 21:05 645 0.14 0.006
sprayl 09:55 325 0.30 0.026
spray2 17:55 480 nq nq
post 07:00 785 nq nq

7 prel 04:30 303 5.60 0.070
pre2 16:30 400 5.20 0.049
spray| 10:28 298 5.53 0.070
spray?2 16:10 332 3095 0.364
postl 21:20 308 8.34 0.111
post2 09:00 700 13.29  0.075

8 prel 04:30 305 2.49 0.036
pre2 16:30 400 5.22 0.058
spray|l 10:25 295 5.68 0.085
spray2 16:05 330 4297 0.584
postl 21:15 308 10.54  0.153
post2 09:00 705 15.56  0.100

9 pre(A) 16:30 395 0.33 0.032
pre(B) 16:30 395 0.40 0.044
sprayl(A) 10:20 300 0.94 0.139
sprayl(B) 10:20 300 1.00 0.148
spray2(A) 16:15 345 2.82 0.341
spray2(B) 16:15 345 3.30 0.399
post(A) 09:00 1000 1.23 0.056
post(B) 09:00 1000 3.46 0.157

10 pre(A) 16:30 405 0.45 0.043
pre(B) 16:30 405 0.55 0.062
spray1(A) 10:10 280 2.03 0.269
spray 1(B) 10:10 280 2.15 0.301
spray2(A) 16:00 300 5.29 0.678
spray2(B) 16:00 300 5.22 0.621
post(A) 09:10 1000 2.46 0.089
post(B) 09:10 1000 1.50 0.057

Samplers 9 and 10 utilized tandem split sampling technique. ‘A’ & ‘B’ indicate tandem samples taken at
the same time using the same pump.

LOQ = 0.10 ug/PUF
LOD = 0.02 ug/PUF
Limits are per sample

All spray and post samples are significantly different from pre samples (Wilcoxon signed rank, p<0.05)
Sampler 7, 8, 9 and 10 (in community, near fields) are significantly different from sampler 6 (upwind
from fields) (Mann Whitney U, p<0.05)



Table 4.10. Indoor air concentrations (ug/m3)

Elaspsed Time Mass

Concentration
Residence # Child(ren) Period Stop Time (min) (ug)  (ug/m3)
1 1 prel 5:24 719 020 1.63x10-8
pre2 17:22 657 nq nq
spray 21:55 995 nq nq
post 8:30 635 0.14 8.65x10-9
3 23 prel 5:30 740 044 3.13x10-8
pre2 16:53 620 0.12 9.44x10-9
spray 21:40 990 0.39 2.13x10-8
post 9:00 680 0.14 1.18x10-8
4 4,5,6 prel 5:28 748 0.28 1.53x10-8
pre2 16:45 605 0.15 9.54x10-9
spray 21:50 995 045 1.77x10-8
post 8:40 650 0.30 1.68x10-8
5 7.8 prel 5:28 530 0.12 9.24x10-9
pre2 17:05 640 0.12  7.75x10-9
spray 22:02 997 nq nq
post 8:30 628 nq nq

LOQ =0.10 ug/PUF
LOD = 0.02 ug/PUF
Note that these are per sample

Spray and post samples are not significantly different from prel or pre2 samples

(Wilcoxon signed rank, p>0.05)
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Figure 4.11: Outdoor air samples by time period; community samples
(upper) and residential yard samples (lower)

Community samples at spray and post-spray times were significantly different
from pre-spray concentrations (Wilcoxon signed rank, p<0.05).
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Figure 4.12: Outdoor air samples by location; community samples (upper)
and residential yard samples (lower)

Residential sampler number corresponds to residence number. Locations are
arranged on the plots by increasing proximity to nearest upwind treated field

(NUTF) from left to right. A proximity effect is evident for all but one sample, at
location #9.

Community samples in the community (7-10) were significantly different from
#6, which was located 1.5 km upwind from the NUTF.

Figure 4.10 shows the location of samplers in the community.
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Chapter 5

The Washington Aerial Spray Drift Study: dGPS-aided Exposure Assessment of

Children During and After a Spray Event

Introduction

Pesticide spray drift is a concern for rural-agricultural communities, both for
residents who live near fields, and for farmers who must meet US EPA label guidelines
for drift. Farmers who participated in the current study were particularly concerned
about a proposed label statement that would have effectively banned any and all drift
(US EPA 2001). Most studies of spray drift look at where drift occurs and in what
concentration without focusing on the human contact component (Byer and Shepp,
1979; Byers et al. 1993, 2000; Clark et al. 1991). At the same time, most human
exposure assessment studies focus on post-spray monitoring of pesticide levels in back
yards, inside houses and in human subjects (biomonitoring) rather than during the
spray, and without modeling the spray event of concern (Ames et al. 1993; Barnes et
al. 1987; Draper et al. 1981; Garcia et al. 2000). Both approaches have yielded insight
into the extent and characteristics of off-target drift and the levels of pesticide residues
that can be found in and around rural agricultural residences. In this study, an
organophosphate (OP) insecticide application and a cohort of children were
concurrently monitored before, during and after the spray. Children’s homes are
surrounded by potato fields that were treated with the insecticide Monitor®
(methamidophos) applied aerially. Models calibrated from measured deposition and

air concentration were generated. In this study, drift modeling was combined with a
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new approach to exposure assessment: the use of Global Positioning Systems (GPS)

tracking of human subjects (Elgethun et al. 2003). This method will be referred to as
‘GPS+Model’ in this chapter. This combination allowed for more refined and
complete assessment of the potential exposures associated with pesticide spray drift in
rural agricultural communities. Ideally, personal air monitoring also would be used
with GPS, but no methods exist for OPs. Thus, modeling calibrated from ambient
environmental monitoring was the best available solution.

Pesticide drift modeling is important for determining outdoor exposure to
pesticides due to the variable spatial distribution of residences in relation to treated
fields within a farming area. Traditional air and deposition sampling of such a large
area would be prohibitively expensive. Furthermore, such methods often do not
provide finely time-resolved data but are instead present an average over a relatively
long sampling period. The long sampling period (2-12 hours for many methods), in
relation to the relatively short spray event (an hour for an 85 acre, 34.4 hectare crop
circle) does not allow the investigator to understand the evolution of any spray event.
Therefore, modeling is essential to gain a high-resolution picture of the spray drift
process over time.

In most spray drift studies, air and deposition samples are recorded at fixed
latitude-longitude coordinates (Byers et al 1993, 2000). Such anaiysis is limited in that
one must have many samplers in a small area to obtain a pesticide gradient
measurement. The logical solution is for researchers to use air and deposition samples
to calibrate models and thus obtain a spatially-referenced pesticide gradient of high

resolution. The first model used was a Gaussian dispersion model (Fugitive Dust
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Model (FDM)) to characterize deposition and droplet (non-gaseous) drift (detailed

in Tsai et al., submitted 2004). Because the potential for multi-pathway exposure is
high, particularly for children, it is important to consider deposition, air, and also
volatilization to obtain a complete exposure picture. Most of the droplet fraction is
deposited within a short time after a spray, but gas phase emission can continue from
treated fields for several days.

The second model used was the US EPA volatilization Emission Factor Model
(VEFM). Evaporation from wetted surfaces during the post-application period can
lead to gas-phase releases, especially during hot and dry ambient conditions (detailed
in Ramaprasad et al., accepted 2004). . Once in the atmosphere, the volatilized gases
can be transported over fairly long distances. This process can contribute to
atmospheric loading of the pesticide. Volatilization can potentially play a significant
role when assessing risk factors associated with atmospheric exposure to pesticides.
Lee et al. (2002) found that the pesticide’s vapor pressure (VP) was the best predictor
of the child chronic risk ranking for a pesticide and was a better predictor of lifetime
cancer risk ranking than the cancer potency factor. Among the 15 pesticides evaluated
in their study, vapor pressure was highly correlated with geometric mean air
concentrations in rural communities. Woodrow et al. (1997) also found high
correlations between vapor pressure of a pesticide and its downwind concentration. The
active ingredients in most synthetic pesticide applications are volatile to a certain
degree. Ignoring the effects of volatilization could significantly underestimate the

ambient concentrations and risk associated with the inhaled exposure.
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A key component of this study is the integration of novel spatial

measurement and analysis techniques for assessing exposure. High-resolution model
data becomes more useful if human time-location data are of equal (or better)
resolution. In this study, children were monitored with GPS, and temporal-spatial
relationships between drifted pesticides and people were analyzed using matrix
analysis and GIS software. The current study is the first to combine high-resolution
model data and high resolution GPS human tracking for the assessment of pesticide
exposure. Rudimentary GPS time-location monitoring was first presented as part of
the Oklahoma Urban Air Toxics Study (Phillips et al., 2001) where consumer-grade
GPS were used, and many equipment failures occurred. Also, these researchers
measured ordinal (categorical) locations rather than continuous (actual coordinate)
data. The utility of using actual coordinate data to reference both pesticide model data
and human movement data is that there is no dilution of precision or accuracy. In
previous exposure assessment studies, human time-location and pesticide concentration
in the environment have been compartmentalized into discrete groups by generalized
location. For example, in the National Human Exposure Assessment Survey
(NHEXAS), human time-location was grouped into one of seven categories based on
responses to a diary. Chapter 3 (Elgethun et al. 2004) demonstrates the shortcomings
of such diaries. By replacing ordinal time-location data with continuous
measurements, this study demonstrates a new refinement in exposure analysis.

An obvious question arises: why bother with such refined GPS-modeling
exposure analysis when children can be monitored for pesticide metabolites in their

urine? (Fenske et al. 2000; Lu et al. 2000). Urine biomonitoring is a direct measure of
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exposure, but does not give evidence of where a person was exposed, or the

attributable fraction of exposure routes. Urine biomonitoring is invasive, messy, and
inconvenient for subjects. Compliance can be a problem, particularly with younger
children. It is not practical to employ biomonitoring in a study with many subjects, nor
in a study in a remote location that does not have lab facilities nearby. Limit of
quantification for urine metabolite analysis can also limit the sensitivity of this
surveillance method (Tomazekewska and Hebert, 2003).

The purpose of this study was to combine the best spatial measurement and
analysis techniques available with environmental sampling to generate exposure
profiles for children, and to compare these estimates to those produced using a
‘standard’ estimation method. The ‘standard’ method is akin to what is conventionally
used in exposure assessment (i.e. diary time-location estimates instead of GPS, sampler
data instead of model data). The outcome of this study will be evaluation of GPS
tracking and integration with modeling for human exposure assessment, advisement of
growers about the accuracy of their applications, and advisement of people in the study
community and in other agricultural communities about pesticide spray drift. Spray
drift data can help growers choose when and how they apply pesticides to maximize
on-target coverage, can inform about compliance with EPA regulations, and can be
used to demonstrate that proposed zero tolerance drift regulations were unrealistic.
Spray drift data can inform residents of agricultural communities how to minimize
their risk of exposure. ‘Hot spots’ in the community (places with high deposited or
airborne pesticide) can be identified and displayed on a map. Researchers can make

recommendations (i.e. Leaving town or staying indoors for a certain time period,
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prohibiting children from playing in certain areas until pesticide has degraded).

Residents can then make informed choices about how to eliminate or reduce exposures

during spray season.

Methods
Overview

This study was conducted in a rural agricultural area in Southeastern
Washington State. Five potato crop circles were aerially sprayed with Monitor®
containing the active ingredient methamidophos (O,S-Dimethyl phosphoramidothioate)
on July 12th, 2002. Methamidophos is an organophosphate pesticide used to protect the
crop against a variety of potato pests including aphids, thrips, beetles, and worms. The
five crop circles surrounded a community which housed many of the farm workers and
their families.

Figure 5.1 (adapted from Tsai et al., submitted 2004) shows the order in which
fields were sprayed and the dominant wind direction during the time each circle was
sprayed. Patches A through P were sprayed in the morning and are part of the AM-
spray event. Patches Q through T were sprayed in the afternoon and are part of the PM-
spray event. The application was observed to have been particularly carefully
executed. A 1340 S2R Thrush flying at 110 mph (175 kph) at about 10 feet (3 m)
above the canopy was used. The boom of the craft was 3/4 of the wing span (38 feet)
with 60 nozzles delivering 7.7 gallons of pesticide mixture per acre over a 45 foot

effective ground swath. Nozzles were Whirljets(ASAE Medium, size 12) oriented180
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degrees from direction of flight and located 2-3 feet below the wing. The capacity

of the tank was 400 gallons delivering the spray at 20-22 psi.

All the residences were located within 800 meters of each other and each
residence was located within 10 to 200 meters of the nearest sprayed field (Weppner et
al., submitted 2003). To conduct the exposure assessment, researchers collected a
variety of data. Sample collection information is shown in Table 5.1. A unique aspect
this study was the use of GPS systems to track the location of the eight children
enrolled in the study over the course of the day (Elgethun et al. 2003; Weppner et al.,
submitted 2003). The environmental sampling (air, deposition) for this study is

detailed in Weppner et al. (submitted 2003).

Modeling of deposition, air and volatilization concentration

Modeling was necessary for several reasons, notably the limited number of
actual samplers, the lack of time resolution in actual sampling methods, and multiple
exposure pathways. As can be imagined, the positions of the children far exceed the
number of samplers that can be set out; furthermore, the samplers used to collect
pesticide concentrations sample over long periods of time, thereby providing little if
any time resolution. Drift models, after calibration with existing sampling data,
allowed the prediction of concentrations in locations where no sampling data were
available. The models provide time-resolved concentration data according to the
resolution of the available meteorological data. Time- and location- resolved pesticide

concentrations were then matched to time-location data (GPS) for each child. By
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modeling both deposition and air concentration and incorporating these results in

the exposure assessment, the contribution of each exposure pathway can be
ascertained.
Air and Deposition Modeling

Modeling of deposition loadings and air concentrations is presented in Tsai et
al. (submitted 2004). In this study, modeling is particularly important for determining
the exposure of each enrolled child. The Fugitive Dust Model (FDM) uses
meteorological data (temperature, wind speed, wind direction, stability), a particle size
distribution and source emissions as input (USEPA 1993).

The output of FDM is defined by receptor locations. The receptor grid
consisted of 1024 points defining the corners of 15 square meter squares. The patches
represented in Figure 5.1 were sprayed in sequence from A-T, with each patch
corresponding to approximately a 15 minute time interval.

Volatilization Modeling.

. Modeling of volatilization is presented in Ramaprasad et al. (accepted 2004).
Although the FDM is applied for aerosol transport it was adapted here to model gas
transport by choosing a mono-dispersed particle size distribution that has a negligible
deposition rate. Since very small particles follow airflow like gases, it is possible to
simulate gas transport by choosing sufficiently small particle sizes. A mean size of .3
pum was used here to represent gas transport in the model. Initially an aerosol release
was modeled to determine deposition. Fields were considered area sources. Emission

rate was calculated from the knowledge that 7.7 gallons per acre are applied over a
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field of known size in a known amount of time. Emission rate was calculated to be

0.00199 g/m 2-s. To interpret the model output in terms of just the active ingredient, it
is known that a gallon of unit density liquid weighs 8.32 lbs, and the active ingredient
of the pesticide mixture is 1.56%. This number thus allows an estimate of the
component of active ingredient in the model output. Volatilization is estimated to start
after the first patch is sprayed. This patch continues to volatilize through the day while
emissions from other patches are added sequentially as spraying progresses through the
day. As each consecutive patch is sprayed, this new wetted area contributes to the
source term for the volatilized component of the Al. Updated surface concentrations
for methamidophos are calculated every fifteen minutes based on a half life of 3 days.
These fluxes are used as source terms in the FDM to calculate downwind
concentrations near where the air sampler data was located.

Three factors found to have the greatest influence in the volatilization of
pesticides are: 1) the physical properties of the Al (e.g. vapor pressure and Henry’s
Law constant), 2) meteorological conditions (e.g. vapor pressure has a positive
correlation with temperature and wind speeds/turbulence) and 3) environmental
mobility (which is affected by parameters such as soil adsorption. A model, the US
EPA volatilization Emission Factor Model (VEFM), was used to estimate the emission
factor (US EPA 1994). For this study the VEFM was used to calculate only the
volatilization from the wetted surfaces after the application event and not the
volatilization of the particles during the spray event. The VEFM estimates an
emission factor over a 30-day period. The 30 day emission factor is used to calculate a

volatilization decay constant for a preferred unit of time, in this case every 15 minutes.
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On the day of the spray the temperatures rose as high as 42°C (Figure 5.2)

and at this temperature the VP of methamidophos is significantly higher than at 25°C.
The VP of methamidophos was calculated as it varied with temperature through the
day, and this was used to calculate the Emission Factor as a function of temperature
(Figure 2, adapted from Ramaprasad et al., accepted 2004). When the temperature
exceeded about 24° C the vapor pressure of methamidophos was over the threshold
limit of 10* mmHg in VEFM, resulting in a step increase of the emission factor from
350 kg/Megagram to 580 kg/Megagram.
Meteorology.

The meteorological inputs were obtained from Washington State University’s
Public Agricultural Weather System (WSU PAWS) meteorological station. This
station was located 2km directly south of the field site over flat land. Among the many
measurements available, wind speed, wind direction and temperature were used. The
finest data resolution available was 15-minute intervals. Other necessary
meteorological inputs such as stability class and mixing height were estimated using

Turner’s method and from the literature, respectively.

GPS Child Time-location and breathing rate estimates

Each child wore a small geographical positioning system personal acquisition
logger (Enertech GPS-PAL) in a vest during hours they were awake on the day of and
the day following aerial application. The sampling rate was 5 seconds. This
technology has been demonstrated for monitoring time-activity patterns of children

(Elgethun et al. 2003). Of the eleven children originally recruited, eight participated
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throughout the duration of the spray study. The GPS-PAL was used to record time-

location for 3 days: pre-, during, and post-spray. Analysis by GIS (ArcView v.3.2/
ArcGIS v.8.3 software, ESRI, Redlands, CA) was used to visualize GPS paths and
quantify time-location.

Methods were the same as described in Elgethun et al. 2003 / Chapter 2, except
that the differential correction data were collected from a different CORS station that
was closer to the field site (Appendix B). This station was located in Appleton, WA,
approximately 100 km from the field site. This is the closest station for SE
Washington State. A new GIS was constructed for the drift field study. ArcView v.3.2
and ArcGIS v.8.3 were used to integrate data and map layers. USGS Digital Ortho
Quarter Quads (DOQQs) obtained as .bil files on CD-ROM from USGS were used as
base maps. Resolution of these maps is given as 1 meter. Unlike the Seattle study
described in Chapter 3, time-location was not grouped into categories. Instead,
horizontal linear distance (in meters) and compass direction (0°-360°) from the center
of each child’s home was measured for each logged point (approximately 15-20 points
logged per minute, depending on reception).

The maps of GPS points were reviewed to determine the following:

1. Whether the child was inside or outside;

2. Whether the child was in the community or out of the community;

3. Whether the child was on foot, on a bicycle, or in a vehicle.

This information informed the exposure estimates. If the GPS logged one point several
minutes after the previous point, the points following were scrutinized to determine if

the child was inside a building, or whether the child was still outside during this time.
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Periodic interference to reception is possible such that a child may be outside but

the GPS may not record points. The GPS can record inside some buildings but not
others (Elgethun et al. 2003). Thus it is critical to determine inside from outside by
visual examination of the map, since indoor exposure is generally different from
outdoor exposure.

Linear velocity for each child was calculated from dGPS data. Velocity
measurements are described in Chapter 4. It was possible to determine that a child was
on foot, on a bicycle, or in a vehicle by reviewing the mean velocity recorded. This
was also visible when paths were mapped; faster travel is indicated by dots spaced
further apart, as evident in Figure 5.3. Data points were thus grouped into foot,
bicycle, or vehicle categories. Mean normal velocities for foot and bicycle were used
to generate weighting factors from velocity. These velocities are 1.22 m/s for foot
travel, 2.44 m/s for bicycle travel (Knoblach et al. 1996) Thus the formula for
weighting was [1+ (V / V},))], where V is the child’s velocity and V,, is the mean normal
velocity from Knoblach et al. (1996). A weight of ‘1” was applied to riding in a
vehicle, since this is not expected to alter breathing rate.

Activity weights were used to multiply baseline sedentary breathing rate
(BSBR) for each child (sedentary = awake, standing in place). BSBR was determined
from age-specific distributions (Adams et al. 1993; US EPA 2002). The complete

formula for calculating weighted breathing rate is shown in Appendix 5C, and below:
Weighted Breathing Rate = (1+ V) *Ry)
Vi

V = velocity (m/s)
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Vy = baseline velocity (m/s)
Ry, = age specific breathing rate (m3/hr)

Modeled air concentration correction

It was determined that air estimates from the model needed to be corrected post
hoc to account for differences between the model and measured air concentrations.
While correlation between the modeled and measured values was good by individual
day (spray period up to 16:30, spray day 16:30 through day after spray), correlation
was poor for both days combined. This occurred because the slope of the regression
between model and measured values changed from day to day. Slope of the line from
the plot of these data was determined to use as a correction factor from data shown by
Ramaprasad et al. (2004). Air concentration model output prior to 16:30 on 7-12-02
was multiplied by a factor of 4.3. Air concentration model output for the remainder of

time was divided by 1.4.

Time-location-load and concentration Interpolation

Children’s dGPS datasets were independently analyzed. Five-second sampling
interval time-location data for each child and spatially-referenced pesticide air
concentration (15 minute, 15 m resolution) data were combined using matrix analysis
software (MATLAB Release 12, The MathWorks, Natick, MA). Depending on
reception, dGPS time intervals varied between 5 seconds and a few minutes. A flow-
chart describing the process of data combination and interpolation is shown in
Appendix 5 A. In brief, time and space was matched between the datasets by a linear

interpolation method. Time was interpolated from 15 minutes to actual time points
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logged by GPS for the deposition, air and volatilization data using a spline function.

Space was similarly interpolated from 15 m grid to actual location for each child using
a linear interpolation method. It was determined, for every GPS time point, the
specific pesticide load or concentration encountered at a particular location. Exposures
were treated as independent events of x seconds each, where x = time outside elapsed
between GPS time points (Appendices 5D & F). Deposition was considered
cumulative from the rates generated by the FDM model. Air concentration was not

cumulative.

Exposure estimates for GPS+Model Method

GPS time intervals and model data synchronization

Elapsed time recorded by GPS was multiplied by the model air concentration or
model ground load that was determined at the beginning of the respective time interval.
Inhalation

A time-weighted average encountered air concentration was calculated from
dGPS and model predictions according to the following equations (Appendices 5 D &
E):
1. If Within the Community Model Output Grid
Ce =2 [(Cae + Coe ) ¥1] /21

Cg = Encountered Air Concentration (ng/m3)

C,e = Concentration Output from Aerosol Model for that Time and Location

(ng/m3)

C.=Concentration Output from Gas & Vapor Phase Volatility Model for that

Time and Location (ng/m3)
t = interval time (sec)
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X't = sum of time over all intervals (sec)

2. If Outside the Community Model Output Grid
Encountered Air Concentration = Cyf
Cyr = Upwind pump fixed location concentration for that time period (ng/m3)
The total encountered air concentration is expressed as a mean. The total
inhaled mass is a summation of inhaled mass estimates over all GPS time intervals.
Methamidophos is very water soluble but has a relatively moderate vapor pressure (US
EPA 1998). Due to these properties, no losses are expected to occur once inhaled into
the lungs (Appendix 5F). The calculation for total inhaled mass employed the
weighted breathing rate data described above (Appendices 5 D & E) according to the
following formulae::

Mi= 2 [Co*Rpmy ¥ _Lhr *t]
3600 sec

Mi = Inhaled mass (ng)
C.i = Encountered Interval Air Concentration (ng/m3 per interval duration)

Rpry = Weighted Breathing Rate (m3/hr)
t = Interval Time in seconds (sec)

Skin
A time-weighted average encountered ground load was calculated from dGPS

and model prediction deposition rate data according to the following equation
(Appendices 5 F & G):

Le=2 [My*t]/ 3t

L = Encountered ground load (ng/cm2)
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M.y = Deposition Cumulative mass per area output from model for location
during that time interval (ng/cmZ2 per interval duration)
t = interval time (sec)
2t = sum of time over all intervals (sec)

Total dermal exposure was calculated using an assumed standard transfer factor
(Appendices 5 F & G) as follows:

Ms=2 [Ry*F, *1 hr *t]
3600 sec

Ms = mass on skin (ng)

R4 = Deposition Cumulative rate output from model for location during that

time interval (ng/cm2 per interval duration)

F, = Transfer Factor (cm2/hr)

t = Interval Time in seconds (sec)
Transfer factor calculation

Children spent a substantial amount of time outdoors on turf (Elgethun,
personal observation). This was also evident from examining vegetation differences on
the orthophoto map of the community in relation to children’s paths. Based on a
review of the literature for residue transfer from turf (Vacarro 1996, Bernard et al.
2001, USEPA 2001, Williams et al. 2003) it was decided that existing transfer factors
were not applicable to this study. Studies that have generated F; have had scripted 20
minute activities (Jazzercize®) from which some assumption about what this activity
means have been made. EPA considers this 20 minutes to represent 1 hour of likely
turf contact, while others have considered it to represent a full 24 hour day contact. For

this study, since the purpose was to compare to dermal exposure estimates, it was

desirable to not make any assumptions and take the 20 minutes as a direct metric of
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exposure. This is a conservative approach that most likely leads to relatively high

exposure estimates. Another problem with using existing transfer factors was they use
dislodgeable foliar residue (DFR) as an estimate for how much pesticide is available on
the turf for uptake. The current study used silica gel deposition plates to measure load,
which are assumed to capture 100% of the deposited pesticide, generally more than a
DFR. In light of these factors, a new estimation was made using the most recent
published dataset on organophosphate pesticide exposure from treated turf (Bernard et
al. 2001). The formula used for transfer factor (F;), expressed as cm2/hr, was as
follows:
F,= E/ * 1* 60min

20 min D, 1 hr

E;= dermal exposure (from Bernard et al 2001, 1600 ug)

D, = application rate (measured on deposition coupons) (from Bernard et al.

2001, 12 ug/cm?2)
The application rate as measured on deposition coupons was selected for use in the
denominator because both deposition coupons and silica deposition plates are assumed
to capture 100% of the deposited pesticide. The transfer factor (F;) was estimated from
these calculations to be 400 cm2/hr.

The strength of this new transfer coefficient is that both time and ground load
are treated at face value. Since no data were collected in the current study for DFR, it

is difficult to rationalize using a transfer coefficient that is based on DFR. 400 cm2/hr



167
is lower than the transfer factor used for EPA risk assessments (US EPA 2001) but

higher than the value suggested by Bernard et al. (2001) and Williams et al. (2003).

Exposure estimates for ‘Standard’ Method

Time-location estimation

A standard method would likely use a categorical diary to record time-location.
However, a diary was not administered during the study period. A diary proxy was
considered to be the categorization of the GPS data into 1-hour categories. Time-
location was coded into four categories: inside in the community, outside in the
community, inside out of town and outside out of town. Coding was based on a
‘majority vote’, such that the location where the child spent the most cumulative time
in that hour received the vote. This is in keeping with how subjects are asked to
complete the NHEXAS time-location diary.
Inhalation

Encountered air concentration was constrained by the resolution of the air
sampling, which ranged from 7-17 hours. Co-located samples from the same pump
were averaged and considered as a single value. The upwind pump outside the
community was excluded for within community analyses. For the final sampling
period (9:30-18:30 on 7-13-02), mean air concentration was predicted by linear
regression from preceding data since no measurements were taken then. This was
necessary for comparison because the model predicts air concentration through this
time period. For each air sampling period, air concentration from all pumps in the

community was averaged (arithmetic mean), and this average was multiplied times an
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age/gender specific breathing rate taken from the EPA Child Exposure Factors

Handbook and by the duration of the sampling period (Appendices S D & E) as
follows:

1. If Within the Community Model Output Grid

Fixed Air Concentration = C¢r

Cy = Mean community concentration at fixed locations for all pumps for that
time period (ng/m3)

2. If Outside the Community Model Output Grid
Fixed Air Concentration = Cys

Cyr = Upwind pump fixed location concentration for that time period (ng/m3)

Inhaled mass was then calculated as follows:

Mi=C*BR*T

Mi = Inhaled mass (ng)

Cy = Fixed Air Concentration (ng/m3)

BR = Breathing Rate (m3/hr)

T = Time Outside in hours (hr)
Skin

Encountered ground load was considered to be the mean fixed location
concentration for all deposition plates in the community for a given time period. Two
deposition plates in the first row of treated crop (not in the community) were excluded
from this mean. For each period, mean deposition load was multiplied by the transfer

factor (400 cm2/hr, see explanation above) and by the duration of the time period

(Appendices 5 F & G) as follows:
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Fixed Ground Load = Dy

Dyr = Mean deposition plate fixed location load for all deposition plates in the
community for that time period (ng/cm2

Ms=Dg *F, *T
Ms = mass on skin (ng)
Dgr = Mean deposition plate fixed location load for all deposition plates in the
community for that time period (ng/cm2)
Fy, = Transfer Factor (cm2/hr)
T = Time period in hours (hr)
. For the final sampling period (9:30-18:30 on 7-13-02), mean air concentration was
predicted by linear regression from preceding data since no measurements were taken

then. This was necessary for comparison because the model predicts air concentration

through this time period.

Statistical Analyses

Comparisons both between and within methods were made. Comparisons were
made using a 2-tailed paired samples t-test. For within method comparison, exposure
estimates for each child were compared such that n=8 children in each analysis. For
between method comparison, exposure estimates for each child for each day (spray day

and day after spray) were compared such that n=16 child-days for each comparison.

Results

GPS+Model Results
Comparison between days

The following are differences by day for each child determined using the

GPS+Model method (Tables 5.2, 5,7, 5.10).
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Child 1: Child 1 spent 13% more time outside on the spray day. 63% more mass

was predicted inhaled on the spray day. 61% more mass on skin was predicted on the
spray day.

Child 2: Child 2 spent 70% more time outside on the spray day. 97% more mass was
predicted inhaled on the spray day. 98% more mass on skin was predicted on the spray
day.

Child 3: Child 3 spent 34% more time outside on the day after the spray. However,
91% more mass was predicted inhaled on the spray day. 38% more mass on skin was
predicted on the day after the spray.

Child 4: Child 4 spent 46% more time outside on the spray day. 78% more mass was
predicted inhaled on the spray day. However, 71% more mass on skin was predicted
on the day after the spray.

Child 5: Child 5 spent 25% more time outside on the day affer the spray. However,
81% more mass was predicted inhaled on the spray day. 50% more mass on skin was
predicted on the day after the spray. Child 5 had the highest total mass on skin
estimate.

Child 6: Child 6 spent 13% more time outside on the spray day. 90 % more mass was
predicted inhaled on the spray day. However, 54% more mass on skin was predicted on
the day after the spray. Child 6 had the highest total inhaled mass estimate.

Child 7: Child 7 spent 89% more time outside on the day afier the spray. 94% more
mass was predicted inhaled on the day after the spray. 99% more mass on skin was
predicted on the day after the spray. Child 7 had the lowest exposure estimates by both

pathways.
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Child 8: Child 8 spent 84% more time outside on the day after the spray. 57%

more mass was predicted inhaled on the day after the spray. 97% more mass on skin
was predicted on the day after the spray.

Table 5.2 shows time spent outside for each child. Child 2 (5 yo M) spent the
most time outside on the spray day (251 minutes), while child 3 (8 yo M) and child 5
(11 yo M) spent the most time outside on the day after the spray (223 and 224 minutes,
respectively). Mean time spent outside for all children was approximately 14% greater
on the day after the spray. Comparison of greater amount of time spent outside, by
day, showed an even split between children. Child 1, 2, 4, and 6 spent more time
outside on the spray day. Child 3, 5, 7, and 8 spent more time outside on the day after
the spray.

Mean encountered air concentration by GPS+Model method by time period for
the four sampling time periods ranged from 0-3523 ng/m3 (Table 5.4). Total inhaled
mass ranged from 0-3039 ng. Total inhaled mass (Table 5.7) for all children was
significantly greater on the spray day compared to the day after (n=8 children, paired
samples t-test, p=0.04). Mean total GPS+Model inhaled mass for all children was
approximately 76% higher on the spray day (1570 ng versus 214 ng) (Table 5.7).
Child 7 and child 8 did not follow this trend, however. These two girls, who are
siblings, scarcely left the house on the spray day, but were outside a considerable
amount on the day after the spray. Both children had higher inhalation exposure on the
second day. Even though child 2 spent the most time outside on the spray day (Table
5.2), his inhaled exposure was much lower than that of child 5 and child 6 (Table 5.7).

Child 2 had a much lower activity level and breathing rate than child 5 and child 6
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(Table 5.3). Child 5 and child 6 also live closer to the NUTF, have no trees or fence

between their home and the NUTF, and consistently went closer to the treated fields
than did child 2 or the other children. Figure 5.7 (a) illustrates how much time child 6
spent in proximity to the fields.

GPS+Model estimates for mean ground load and total mass on skin, by
sampling time period, for each child are shown in Table 5.8. Total estimates, by day,
are shown in Table 5.10. Mean ground load encountered ranged from 0.00- 16.8
ug/cm? by individual time period. The highest ground load was encountered during
period 2 on the spray day. Total daily mass on skin ranged from 0 ug to 17400 ug, or
approximately 17.4 mg (child 5, 11 yo M) (Table 5.10). Child 5 and child 6 had the
highest mass on skin, both on the day after the spray. Mean mass on skin for all
children was approximately 30% higher on the day after the spray compared to the
spray day. As stated for the air data above, Child 5 and child 6 also live in the home
closest to the NUTF, have no trees or fence between their home and the NUTF, and
consistently went closer to the treated fields than did the other children. Figure 5.7 (a)
illustrates how much time child 6 spent in proximity to the fields. Mean mass on skin
for all children over both days was 3990 ug or approximately 4 mg, but this number
difficult to interpret, since there was somewhat of a bimodal distribution of exposures.
Child 1, 4, 7 and 8 had relatively low dermal exposures on both days compared to child
2,3,5and 6. Child 1, 7 and 8 live in a different area of the community from the rest
of the children. They live in the homes visible on the right side of the map in Figure

5.3, whereas the rest of the children live in the homes on the left side of the map. The
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NUTEF is located directly adjacent to the homes on the left side of the map. The

NUTEF is labeled as field ‘N’ (north) in Figure 5.1.

Mean mass on skin (Table 5.10) was not significantly different by day (paired
samples t-test, p=0.47), but was approximately 30% higher on the day after the spray
despite being statistically not significantly higher. The mean mass on skin estimated
by GPS+Model method was approximately 4000 times higher than the mean inhaled

mass over both days (Table 5.7 and Table 5.10).

Influence of breathing rate on mass inhaled

Weight factors from dGPS linear velocity and corresponding breathing rates for
GPS+Model estimates are shown in Table 5.3. Weights ranged from 1-6.65 (no units).
Breathing rates ranged from 0.43 to 2.15 m3/hr. Child 8 (7 yo female) had the highest
mean breathing rate (1.31 m3/hr, on foot). Note that although means are shown, actual
breathing rates used in calculations were specific to GPS time-location intervals. Table
5.5 compares GPS+Model method estimates when breathing rate is weighted and when
it is unweighted and assumed to be constant. The same baseline age-specific sedentary
breathing rates were used for both calculations and were taken from the Child
Exposure Factors Handbook (US EPA 2002). (Note that the weighted value was used
in all further results and discussion.) Inhaled mass calculated with and without the
activity-weighted breathing rate were significantly different over both days (n=16
child-days, paired samples t-test, p=0.05, t=2.08). The mean weighted inhaled mass

over both days was 914 ng when the weighted breathing rate was applied, versus 626
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ng when the constant baseline rate was applied. The greatest difference was seen

for those children with the greatest activity-based weight factors, specifically child 5,

child 6 and child 8.

Comparison of GPS+Model Estimates to ‘Standard’ Method Estimates

A ‘Standard’ exposure estimation method was employed to generate a
benchmark to which the GPS+Model method estimates could be compared. The
Standard method uses all data available from air and deposition samplers located in the
community. The mean of these samplers was used to yield constant concentration and
load values for each time period. No weighting was applied to the breathing rates, but
age-specific ‘moderate’ activity level breathing rates were used throughout (US EPA
2002). As with the GPS+Model method, the transfer factor of 400cm2/hr was used to
estimate skin loading. For each child, the map of GPS time-location was reviewed to
assess whether difference in time, difference in environmental concentration, or both
were the main contributor(s) to the difference in concentration and load estimates
between methods. The following are differences by method (GPS+Model versus
Standard) for each child (Tables 5.2, 5,7, 5.10).

Child 1: GPS measured 79 more minutes outside on the spray day and 7 minutes less
outside on the day after the spray compared to the Standard estimate. 23% more mass
inhaled (mean, both days) was estimated by the GPS+Model method compared to the
Standard method. 74% more mass on skin (mean, both days) was estimated by the
GPS+Model method compared to the Standard method. The difference in exposure

estimates is mostly due to the difference in time.
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Child 2: GPS measured 11 more minutes outside on the spray day and 44 fewer

minutes outside on the day after the spray compared to the Standard estimate. 53%
more mass inhaled (mean, both days) was estimated by the GPS+Model method
compared to the Standard method. 99% more mass on skin (mean, both days) was
estimated by the GPS+Model method compared to the Standard method. The
difference in exposure estimates is mostly due to the difference in concentration and
load estimates between methods.

Child 3: GPS measured 28 more minutes outside on the spray day and 43 more minutes
outside on the day after the spray compared to the Standard estimate. 84% more mass
inhaled (mean, both days) was estimated by the GPS+Model method compared to the
Standard method. 99% more mass on skin (mean, both days) was estimated by the
GPS+Model method compared to the Standard method. The difference in exposure
estimates is due to both the difference in time and the difference in concentration and
load estimates between methods.

Child 4: GPS measured 24 more minutes outside on the spray day and 15 fewer
minutes outside on the day after the spray compared to the Standard estimate. 96%
more mass inhaled (mean, both days) was estimated by the GPS+Model method
compared to the Standard method. 98% more mass on skin (mean, both days) was
estimated by the GPS+Model method compared to the Standard method. The
difference in exposure estimates is mostly due to the difference in concentration and
load estimates between methods.

Child 5: GPS measured 11 fewer minutes outside on the spray day and 16 fewer

minutes outside on the day after the spray compared to the Standard estimate. 76%
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more mass inhaled (mean, both days) was estimated by the GPS+Model method

compared to the Standard method. 99% more mass on skin (mean, both days) was
estimated by the GPS+Model method compared to the Standard method. The
difference in exposure estimates is mostly due to the difference in concentration and
load estimates between methods.

Child 6: GPS measured 33 fewer minutes outside on the spray day and 1 more minute
outside on the day after the spray compared to the Standard estimate. 80% more mass
inhaled (mean, both days) was estimated by the GPS+Model method compared to the
Standard method. 99% more mass on skin (mean, both days) was estimated by the
GPS+Model method compared to the Standard method. The difference in exposure
estimates is mostly due to the difference in concentration and load estimates between
methods. It is evident in Figure 5.7 (a) that child 6 was close to the NUTF, which is an
area that the model predicts concentration and load to be much higher than the mean air
and deposition sampler values. Figure 5.3 illustrates high predicted model deposition
near the NUTF (upper left circle).

Child 7: GPS measured 19 more minutes outside on the spray day and 1 minute less
outside on the day after the spray compared to the Standard estimate. 28% more mass
inhaled (mean, both days) was estimated by the GPS+Model method compared to the
Standard method. 80% more mass on skin (mean, both days) was estimated by the
GPS+Model method compared to the Standard method. The difference in exposure
estimates is mostly due to the difference in time on the spray day, while it is mostly

due to difference in load estimates between methods on the day after the spray.
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Child 8: GPS measured 28 more minutes outside on the spray day and 1 minute less

outside on the day after the spray compared to the Standard estimate. 55% more mass
inhaled (mean, both days) was estimated by the GPS+Model method compared to the
Standard method. 80% more mass on skin (mean, both days) was estimated by the
GPS+Model method compared to the Standard method. The difference in exposure
estimates is mostly due to the difference in time on the spray day, while it is mostly
due to difference in load estimates between methods on the day after the spray.

Table 5.2 compares time spent outside measured by GPS versus time spent
outside estimated for the Standard method. For all children, mean time outside was 18
minutes more on the spray day and 5 minutes less on the day after the spray by GPS
compared to the Standard estimate. The mean difference in time outside, by day, was
approximately 14% by GPS, and 27% by Standard estimate. Table 5.7 compares
estimates for inhalation exposure. Mean total inhaled mass estimates were
significantly different when generated by these two methods (n=16 child-days, paired
samples t-test, p=0.03). GPS+Model total inhaled mass for all children was
approximately 4 times higher than the standard method estimate. This translates into
approximately 76% more mean total inhaled mass estimated by GPS+Model than by
Standard method. Table 5.10 compares estimates for dermal exposure. Mean total
mass on skin was markedly different between methods (n=16 child-days, paired
samples t-test, p=0.01). The GPS+Model skin load estimate is over 2 orders of
magnitude (181 times) higher than the standard method estimate. This translates into
approximately 99% more mean total mass on skin by GPS+Model than by Standard

method.
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Figure 5.10 shows data from the two estimation methods plotted against

each other. The better correlation between methods was found for the prediction of
total mass in air (r2=0.83). Correlation was much lower for total mass on skin

(r2=0.33).

Discussion

The novel facet of this study is the dGPS tracking of children using the GPS-
PAL instrument. The GPS+Model method is essentially a surrogate for personal
dosimetry using traditional portable air samplers, since no personal sampling methods
exist for organophosphate pesticides. The GPS and model provide time- and space-
resolved exposure estimates that are greater (higher exposures) than those predicted
using the Standard method. The Standard method relies on self-report time-location
and sampler values that are fixed in time and space. Using GPS also affords something
that cannot be measured using a personal air sampler alone: the ability to attribute
exposures to specific locations. A personal air sampler can record time-specific
exposure peaks, but it cannot place the peaks on a spatial map. As such, this is the first
pesticide exposure study to capture the influence that subtle differences in time-
location make in people’s exposure.

The GPS resolution, at approximately +3 m resolution and 5 second sampling
interval, allows for delineation of very small ‘micro-environments’. Traditionally a
microenvironment has been defined by physical boundaries such as a room or the front
yard of a home. GPS allows for what can be called ‘nano-environments’ to be defined.

A GPS-PAL nano-environment is a circle of radius 3m (actual position plus resolution
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error). While nano-environments were not measured continuously in this study,

once per 5 seconds is fairly close to continuous data collection, and the GPS-PAL can
be set to record every second if needed. While nano-environments are discrete, they
are small and there are hundreds to thousands that a person encounters throughout the
course of a day. Data is no longer categorized into 5 or 10 categories as it was with
studies such as NHEXAS. Figures 5.4 and 5.5 illustrate the use of continuous rather
than categorical data for children’s time-location. Knowing distance and direction
from a source (such as a treated field) at a given time is much more powerful than a
one hour recall estimate of categorized location.

The limiting factor of this study was not the time-location but the model
resolution, which was restricted to 15 m and 15 minutes. The 15 m output grid was
selected since this was the approximate distance between sets of air and deposition
samplers. Placing the samplers closer together would have allowed the grid points to
be closer together. The 15 minute time interval was delineated by the meteorological
data from the nearby PAWS weather station. Collecting on-site higher time-resolution
meteorological data would have allowed the time interval to be shorter. Interpolation
using matrix analysis allowed for the combining of the GPS and model datasets.
However, interpolation is not based on actual data points, thus introducing uncertainty
into the estimate. Another source of uncertainty was the correspondence between
model output values and sampler values. Correlation was good for deposition (Tsai et
al. 2004) but not as good for the air and volatilization outputs. For both outputs, the
discordance was adjusted by using the slope of the correlation line as a correction

factor. This correction was applied before the values were used in the exposure
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estimates. In a future paper, error analysis of both time and space will be performed

to determine the magnitude of uncertainty introduced by the model and the GPS.

The benefit of using the GPS+Model in this study was that certain nano-
environments were identified as ‘hot spots’ in which children were exposed to a very
large fraction of their overall daily pesticide mass in a small area. Often time spent in
these areas was short but was sufficient to elevate total exposure well beyond what was
predicted by the Standard method. In particular, the area between the deposition
samplers and the nearest upwind treated field NUTF) (Figure 5.3, upper left)
contained several ‘hot spots’. Five of the 8 children lived in homes in this area. The
deposition samplers were on the opposite side of these homes from the NUTF, and
these sampler values were used in the Standard method exposure calculations. Thus
encountered deposition estimates were far lower for the Standard method than for the
GPS+Model method since deposition closer to the NUTF is not factored in the
Standard method. The Standard method misses the ‘hot spots’ entirely. As shown in
Figure 5.3, the deposited pesticide mass decreases sharply as one moves away from the
edge of the NUTF. Several children played right next to the NUTF along the road that
runs between the field and the homes. Reviewing the exposure profiles when children
were in this area, it is evident that, for children who played along the road next to the
NUTF, the majority of their exposure occurred there. For children living close to the
NUTF (child 2, 3, 4, 5, 6), the yard or and areas close to the house were also ‘hot
spots’, though much less so than the road behind the homes. Child 2 (5 year old male)
and child 4 (2 year old male) both spent a majority of their time outside but near the

home. Child 2 spent the most time outside of all children. The majority of this time
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was spent on the front porch or in the front yard within 5 m of the front door. Child

4,5, and 6 are siblings and all had relatively high exposures compared to their peers
who live further from this field. These children’s yard is less than 10 m from the
upwind treated field.

Children as a group spent significantly more time outside on the day after the
spray. However, child 3 and 4 actually spent proportionally much more time outside
on the spray day. Some parents were observed to be very strict about keeping their
kids inside on the spray day. Most parents prohibited their children to go outside while
the crop dusters were overhead, but then allowed them out shortly thereafter. As
expected, exposures were higher on the spray day for inhalation. Child 7 and 8 were an
exception, since they spent a great deal of time outside on the day after the spray.
Dermal exposure occurred on both days, but was mostly higher on the day after the
spray due to children spending more time outside on the day after the spray.

The dermal exposure estimates presented here were influenced by the transfer
factor , and are in need of further refinement. However, use of a common transfer
factor for the two methods did allow a direct comparison, which was the primary
purpose of this analysis. There is debate about what value(s) are legitimate for transfer
factors. The transfer factor of 400 cm2/hr generated for this study from existing data
(Bernard et al. 2001) was lower than the EPA policy 12 numbers (9412 ¢cm2/hr) (US
EPA 2001) but higher than other published estimates (500 cm2 per day) (Bernard et al.
2001, Williams et al. 2003). It was observed that outdoor contact with turf was
common (Elgethun, personal observation), and this observation is supported by

knowledge of vegetation on orthophoto maps of the community. The fact that the
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GPS+Model estimate for mass on skin was 181 times higher than the standard

estimate was at first suspicious. Careful review of the data revealed this is attributable
to the higher resolution of the GPS+Model method on all three scales: time, space, and
ground load.

The difference between GPS+Model estimates and Standard estimates is a
striking finding of this study. As shown in the Results, differences in some children’s
exposure estimates appear to be more influenced by differences in time, while others
appear to be more influenced by differences in concentration or load between the two
methods. Difference in time was most influential for the three children who lived in
homes farther from the NUTF (child 1, 7, 8), since they generally went to areas where
the model output was close to the mean sampler values. The difference and variability
in outside time measured by GPS versus measured by the 1-hour proxy diary data used
in the Standard method is evident in the Chapter 5 tables. For example, child 1 during
period 3 logged 47 more minutes outside by GPS than by 1-hr categorical classification
(Tables 5.4, 5.6, 5.8, 5.9). Intuitively this seems like an error, since the 1-hr data was
derived from the GPS. However, the 1-hr data was coded in the same manner that a
diary is coded. By this protocol, the location in which the child spent the most time in
a given hour is designated as the correct location for the child. The ‘missing’ 47
minutes were absorbed by times when the child was inside longer than outside, but was
nonetheless outside. This is particularly striking if a child enters and exits a building
frequently, and spends only short periods of time in either place. Hypothetically, a
child could be outside for 29 minutes in a given hour but not be counted as being

outside. The greatest challenge of the GPS method is correctly coding inside versus
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outside. This process is time consuming and would be difficult to perform

accurately without visiting the field site in person.

Differences in concentration or load between the two methods was most
influential on differences in exposure estimates for children who lived closer to the
NUTF (child 2, 3, 4, 5, 6). The Standard method did not capture location-specific peak
ground loading in areas close to fields since no deposition samplers were placed there,
nor did it capture the exact elapsed time a child spends in each ‘hot spot’. The model
predicts very high deposition in areas that are closer to treated fields compared to the
mean deposition plate values in the community. The Standard method only uses data
from the plates that were not as proximal and/or downwind of treated areas. While
these children were characterized as spending roughly the same time outside using the
GPS data as the 1-hour categorical data, short forays into and out of ‘hot spots’ are not
captured by the categorical time-location data.

GPS+Model mean mass on skin estimates were approximately 4000 times
greater than GPS+Model inhalation estimates, but it must be noted again that these
dermal exposure estimates are strongly influenced by the choice of a transfer factor. A
more refined analysis of these data will need to be conducted before a final estimate of
dose attributable to these two routes can be ascertained. Mass on skin confers
approximately 0.5% absorption per hour (Sartorelli et al. 1998). In contrast, essentially
all methamidophos is expected to absorb in the lungs and airways. If removal from
abrasion and washing of skin are also considered, it reasonable to assert that 1-2% of
predicted mass on skin might be absorbed. This reduces the difference between dermal

and inhalation to 40-80 times different, and underscores the importance of the
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inhalation route. While evidence of contact with surfaces is needed to definitively

say dermal exposure has occurred, only evidence of being outside is needed to
definitively say inhalation exposure has occurred. In this study, time outside was
quantified at high resolution, but no data were collected to quantify ground contact

A surprise in this study (based on GPS+Model data) was the lingering influx of
volatilizing methamidophos in the community. This is consistent with the finding that
volatility of methamidophos, as demonstrated with the volatilization emission factor
model (VEFM), greatly increased during times when children were likely to be outside,
and that the wetted fields acted as source from which methamidophos could re-enter
the air space on days following the spray. Recommendations for avoiding exposure to
treated fields should take this finding into account. Exposures to volatilized fractions
has been somewhat overlooked for most pesticides. One notable exception is the risk
estimation paper published by authors at California Department of Health Services
(Lee et al.2002) that ranked the relative hazard of various pesticides by considering
their tendency to volatilize. To the best knowledge, the current study is the first field
study to quantify a spray in close proximity to people and highlight the contribution of
volatilization. While OP insecticides are not highly volatile at springtime temperatures
(when crops such as apples are sprayed), vapor pressure increases 300-400 fold
between 30C° and 42C° (the maximum temperature on both the spray day and the day
after) (Ramaprasad et al. 2004). High temperatures of 40C°+ are not uncommon in
areas such as Eastern Washington and Central California during the time that tuber and

vegetable crops are treated with OP insecticides.
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This spray event appeared to be a good scenario in terms of drift abatement.

Figure 5.1 shows that the wind was blowing drift away from the community during the
time that each field was sprayed. This was a remarkable coincidence, and prevented
appreciable drift of larger size fractions anywhere in the community. The crop duster
pilot appeared to be very careful during this spray compared to a spray later the same
year when scientists were not measuring drift (Elgethun, personal observation). During
the later season spray, the pilot was observed to fly higher from the crop and not turn
the nozzles off immediately upon finishing the application. During the study period,
spraying was halted in the morning when winds reached greater than 10 miles per hour.
Spraying resumed only when winds subsided a few hours later. Winds did shift
direction toward the community from the NUTF during non-spray time periods on both
days (as detailed in Chapter 4). This was reflected by relative marked increases in air
concentration. Air concentration in the community appears to have peaked in the early
evening hours on the spray day. Very low levels of methamidophos were recorded in
indoor air samples in only a few houses, and concentrations were not significantly
different from baseline. Levels were mostly below LOQ, and detects were
approximately 107 times lower than any outdoor levels. Thus time spent indoors was
not considered in exposure estimates. No methamidophos was detected on indoor
surfaces.

The use of velocity as a metric of activity was a novel and logical use of the
dGPS data, and the analysis is quite straightforward. The breathing rates generated
using the velocity-weighting factor technique were within a realistic range for children

this age (US EPA 2002). From the analysis in Table 5.5, it is clear that activity level



186
impacts inhalation exposure, as exposure estimates using unweighted breathing

rates were significantly different from those using weighted breathing rates.
Recommendations for reducing exposure should be followed. Two important
protective factors were documented in this study. First, staying inside and keeping the
air conditioner on recirculate appeared to completely or very nearly completely exclude
methamidophos from indoor air. Staying inside eliminated dermal exposure as well.
Second, for residences very close to treated fields, reducing or eliminating time spent
near the field (i.e. in the yard or on the road next to the NUTF) reduced exposure.
Children 4, 5 and 6 who lived in the residence closest to the field all had lower

exposures in other parts of the community than in their own yard.

Conclusions

This was an aerial application conducted under favorable conditions Rich Fenske
for drift prevention, with the exception of the high heat and subsequent volatilization.
Favorable winds that blow drift away from people cannot always be expected, though
they occurred during the application events shown here. Risk reduction measures such
as staying inside a closed house and keeping air conditioning on recirculate (if needed)
should be emphasized for people living in communities proximal to sprayed fields.
Prolongation of pesticide in air should be anticipated from volatilization in hot weather,
and people should consider staying inside an extra day after a spray event or leaving
town for a few days. Play outside should be minimized during and several days after a
spray event. Play near fields should be prevented for at least several pesticide half-

lives (foliar half-life of methamidophos = 3 days). Proposed US EPA pesticide label
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statements mandating zero threshold for drift were revised in 2002 to state that drift

should not contact people, animals and sensitive sites. It is not clear how these label
statements will be enforced.

The GPS+Model prediction method generated exposure estimates that were
significantly higher than those predicted by the Standard method. This underscores the
importance of characterizing elapsed time in specific higher exposure areas (using
GPS), and characterizing areas of peak exposure risk (using modeling). Short,
intermittent periods where children go outside are captured by GPS, but are not
captured by a lower resolution instrument such as a diary with 1-hr time intervals.
Concentration and load in areas close to fields where no sampler data are available can
be generated using modeling. The greatest challenge of the GPS method is correctly
coding inside versus outside. This process is time consuming and would be difficult to
perform accurately without visiting the field site in person.

The utility and resolution of dGPS tracking of human subjects was well
demonstrated by this study. Nano-environments as small as 3 m in radius can be
characterized using GPS and thus small pesticide ‘hot-spots’ can be located. The
transience of drift and the hyper kinetic movement of children were both documented
at high resolution. The intersection of the moving receptors (children) with the moving
area-source contaminant was nicely characterized. Categorical time-location data can
now be replaced with continuous high-resolution data, making dynamic

microenvironment monitoring possible.
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Table 5.1. Sample collection schedule

SAMPLE TYPE JULY APPLICATION
Pre-application Application day Post-application
day

GPS tracking Evening hours All waking hours All waking hours
Surface wipes 1 per home
Apple wipes 1 per home 1 per home
Indoor air samples 2 per home 1 per home 1 per home
Deposition 5 targets 2 sets of 22 targets (AM and
samples PM)
Residential yard 1 per home 2 per home 1 per home
air samples
Community air I or 2 per location 2 per location 1 or two per

samples location
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Table 5.2. Total time spent outside (min) measured by dGPS and by 1hr
categorization of dGPS data for ‘standard method’

Spray Day 7.12 Day After Spray 7.13
GPS+MODEL STANDARD GPS+MODEL STANDARD
*% difference
GPS STD
Child 1 199 120 173 180 -13.1 4334
Child 2 251 240 76 120 -69.7 -50.0
Child 3 148 120 223 180 +33.6 +334
Child 4 84 60 45 60 -46.4 0
Child 5 169 180 224 240 +24.6 +25.0
Child 6 207 240 181 180 -12.6 -25.0
Child 7 19 0 179 180 +89.4 +100.0
Child 8 28 0 179 180 +84.4 +100.0
Mean 138 120 160 165 +13.8 +27.3

*% difference in time spent outside, by day, for each method, calculated by the formula:

%difference by day = 100 (tgss—teq)

tsq

taas = time outside on day after spray
ta = time outside on spray day
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Table 5.3. Weight factors (unitless) from linear velocity of children and
corresponding breathing rates (m3/hr)

Spray Day Day After Spray
+Weight Factor_“Breathing Rate {Weight Factor "Breathing
Rate
Child 1 On Foot
(5yo F) Mean 1.28 0.510 1.16 0.460
Range 1-4.95 0.400-1.98 1-5.10 0.400-2.04
Child 2 On Foot
(5 yoM) Mean 1.15 0.460 1.08 0.430
Range 1-3.89 0.400-1.56 1-2.39 0.400-0.960
Child 3 On Foot
B8yoM) Mean 1.33 0.630 1.20 0.560
Range 1-4.96 0.470-2.33 1-4.70 0.470-2.20
Child 4 On Foot
(2 yo M) Mean 1.36 0.48 1.43 0.50
Range 1-4.97 0.35-1.74 1-5.09 0.35-1.78
Child 5 On Foot
(11 yo M) Mean 1.58 0.740 1.46 0.690
Range 1-6.65 0.470-3.13 1-5.11 0.470-2.40
On Bicycle
Mean 1.96 0.920 1.76 0.830
Range 1-4.92 0.470-2.31 1-5.00 0.470-2.35
Child 6 On Foot
(10yo F) Mean 1.41 0.660 1.30 0.610
Range 1-5.61 0.470-2.64 1-5.07 0.470-2.38
On Bicycle
Mean 1.70 0.800 1.83 0.860
Range 1-3.36 0.470-1.58 1-3.26 0.470-1.53
Child 7* On Foot
4 yoF) Mean 1.25 0.500 1.18 0.470
Range 1-4.00 0.400-1.60 1-5.11 0.470-2.04
Child 8 On Foot
(7yo F) Mean 2.79 1.31 1.18 0.550
Range 1-4.69 0.470-2.20 1-5.11 0.470-2.40

*Child 7 uses Child 8 (sister) data as surrogate for day after spray. Child 7 data incomplete due to GPS malfunction.
Sisters spent majority of time together on this day.
tMean Standard Velocities used in Calculations: On Foot =1.22 m/s, On Bicycle = 2.44 m/s. Velocity in Car does
not influence breathing rate, weight = 1 (Knoblauch et al. 1996).
Weight factor is calculated from velocity by the following formula:

1 + (measured velocity / mean standard velocity)
~Baseline Sedentary Breathing Rate: Children 2yo = 0.35 m3/hr, Children 3-5.9 yo = 0.40 m3/hr, Children 6-12 yo
=0.47 m3/hr (Adams et al. 1993; US EPA 2002). Means shown. Breathing rates used in exposure calculations
were specific to each time-location / time-velocity measurement registered by dGPS.
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Table 5.4. ‘GPS+Model’ method predicted air exposure (encountered air
concentration) and mass inhaled, by time period

* Mean Mean ~Time (min) Total
# Age Sex ODate/Time Concentration Inhalation Rate Outside  Mass Inhaled
(ng/m3) (m3/hr) In Town Out Town (ng)
1 5 F 7-12 5:30-10:30 0.00 .010 3 0 0
7-12 10:30-16:30 0.00 .780 29 0 0
7-12,7-13 16:30-9:30 182 500 167 0 236
7-13  9:30-18:30 68.8 460 173 0 87.0
2 5 M 7-12 5:30-10:30 2060 440 11 0 153
7-12 10:30-16:30 2060 470 76 0 1140
7-12,7-13  16:30-9:30 48.4 460 164 0 65.3
7-13 9:30-18:30 71.0 430 76 0 38.8
3 8 M 7-12  5:30-10:30 1610 520 22 0 285
7-12 10:30-16:30 2680 .660 97 0 2620
7-12,7-13 16:30-9:30 1260 .600 29 0 370
7-13  9:30-18:30 144 .570 223 0 300
4 2 M 7-12 5:30-10:30 2030 440 19 0 280
7-12 10:30-16:30 0.00 *¥ 0 0 0
7-12,7-13 16:30-9:30 208 .600 16 49 112
7-13  9:30-18:30 245 .580 45 0 86.8
511 M 7-12  5:30-10:30 1900 .500 5 0 78.3
7-12 10:30-16:30 3520 .860 49 0 2560
7-12,7-13 16:30-9:30 337 .780 62 53 504
7-13  9:30-18:30 214 720 224 0 586
6 10 F 7-12  5:30-10:30 2020 490 22 0 361
7-12 10:30-16:30 3280 .810 68 0 3040
7-12,7-13 16:30-9:30 473 670 59 58 694
7-13 9:30-18:30 210 670 181 0 423
7 4 F 7-12  5:30-10:30 0.00 ** 0 0 0
7-12 10:30-16:30 245 .680 1 0 1.79
7-12,7-13 16:30-9:30 29.4 400 2 16 3.45
7-13 9:30-18:30 67.2 470 179 0 86.9
8§ 7 F 7-12  5:30-10:30 453 570 12 0 384
7-12 10:30-16:30 244 .680 1 0 2.26
7-12,7-13 16:30-9:30 34.4 400 2 13 341
7-13 9:30-18:30 67.2 .560 179 0 102

OFirst two and beginning of third time period = spray day 7.12; end of third and fourth time period = day
after spray 7.13

*Mean concentration is the mean of all concentrations ‘encountered’ during that period. Out of town air
concentration is included in the mean where relevant.

**Child inside, inhalation not calculated

"Time outdoors used in GPS+Model calculations measured by GPS with sampling rate of 5 seconds.
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Table 5.5. Comparison of ‘GPS+Model’ method predicted mass inhaled (ng) with
and without activity-weighted breathing rate

Spray Day 7.12 Day After Spray 7.13 MEAN Both Days
Weighted Unweighted Weighted Unweighted Weighted Unweighted
Child
#
1 236 203 87.0 79.5 162 141
2 1350 1240 38.8 36.2 696 638
3 3270 2590 300 252 1790 1420
4 392 348 86.8 73.5 239 211
5 3150 1790 586 375 1970 1080
6 4090 2480 423 336 2340 1410
7 5.24 4.54 86.9 80.2 46.1 42.4
8 44.1 414 102 94.1 73.0 67.8
Mean 1570 1090 214 166 *914 *626.

*Inhaled mass with and without inhalation weight factor significantly different, p=0.05 (paired samples
t-test, t = 2.08). N=16 child-days.
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Table 5.6. ‘Standard’ method predicted air exposure (fixed air concentration)
and mass inhaled, by time period

*Fixed FInh. Total
# Age Sex ODate/Time Conc (ng/m3) ~Time (min) Rate Mass Inhaled
In Town Qut Town _In Town Out Town (m3/hr) (ng)
1 5 F 7-12  5:30-10:30 142 .026 0 0 0.90 0.00
7-12 10:30-16:30 415 .005 0 0 0.90 0.00
7-12,7-13 16:30-9:30 102 .002 120 0 0.90 183
7-13  9:30-18:30 24.0 .001 180 0O 0.90 66.0
2 5 M 7-12  5:30-10:30 142 .026 0 0 0.96 0.00
7-12 10:30-16:30 415  .005 60 0 0.96 399
7-12,7-13 16:30-9:30 102 .002 180 0 0.96 292
7-13 9:30-18:30 24.0 .001 120 0 0.96 46.9
38 M 7-12  5:30-10:30 142 026 0 0 0.96 0.00
7-12 10:30-16:30 415 .005 60 0 0.96 399
7-12,7-13 16:30-9:30 102 .002 60 0 0.96 97.4
7-13 9:30-18:30 24.0 .001 180 0 0.96 70.4
4 2 M 7-12  5:30-10:30 142 .026 0 0 0.78 0.00
7-12 10:30-16:30 415 .005 0 0 0.78 0.00
7-12,7-13 16:30-9:30 102 .002 0 60 0.78 1.65
7-13  9:30-18:30 24.0 .001 60 0 0.78 19.1
5 11 M 7-12  5:30-10:30 142 .026 0 0 1.50 0.00
7-12 10:30-16:30 415 .005 60 0 1.50 624
7-12,7-13 16:30-9:30 102 .002 60 60 1.50 155
7-13  9:30-18:30 24.0 .001 240 0 1.50 147
6 10 F 7-12 5:30-10:30 142 .026 60 0 1.26 179
7-12 10:30-16:30 415  .005 60 0 1.26 524
7-12,7-13 16:30-9:30 102 .002 60 60 1.26 131
7-13  9:30-18:30 24.0 .001 180 0 1.26 92.4
7 4 F 7-12  5:30-10:30 142 .026 0 0 0.90 0.00
7-12 10:30-16:30 415  .005 0 0 0.90 0.00
7-12,7-13 16:30-9:30 102 .002 0 0 0.90 0.00
7-13 9:30-18:30 24.0 .001 180 0 0.90 66.0
8§ 7 F 7-12  5:30-10:30 142 .026 0 0 0.90 0.00
7-12 10:30-16:30 415 .005 0 0 0.90 0.00
7-12,7-13 16:30-9:30 102 .002 0 0 0.90 0.00
7-13  9:30-18:30 24.0 001 180 0 0.90 66.0

OFirst two and beginning of third time period = spray day 7.12; end of third and fourth time period = day
after spray 7.13

*“In town’ fixed concentration is the arithmetic mean of measured values from all 9 air samplers within
the community for a given time period. ‘Out town’ fixed concentration is a value from a single air
sampler upwind of the treated fields for a given time period.

~Time is measured by categorical grouping of GPS time-location data using 1 hour time blocks.
‘+Inhalation rates are age and gender specific estimates for ‘moderate’ exertion given in the US EPA
Child Exposure Factors Handbook (USEPA 2002).
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Spray Day 7.12

Day After Spray 7.13

MEAN BOTH DAYS

GPS+MODEL _ STD GPS+MODEL STD GPS+

Child MODEL STD

# *%odiff
1 236 183 87.0 66.0 162 124 -23.0
2 1350 692 38.8 46.9 696 369 -53.0
3 3270 497 300 70.4 1790 284 -84.1
4 392 1.65 86.8 19.1 239 10.4 -95.7
5 3150 779 586 147 1970 463 -76.5
6 4090 834 423 924 2340 463 -80.2
7 5.24 0 86.9 66.0 46.1 33.0 -28.3
8 44.1 0 102.0 66.0 73.0 33.0 -54.8
Mean 15707 373~ 2147 717~ 914+  222% =75.7

*%difference by method = 100 (myq— m,p,)

Mg

Mgq = mass by standard method

My, = mass by GPS+Model method

~ ~ Inhaled mass for all children (within method) significantly different on spray day compared to the
day after the spray (paired samples t-test; GPS+Model p =0.04; Std p=0.04). N=8 children.

FTotal inhaled mass for all children (between methods) significantly different (paired samples t-test, p=
0.03, t=2.46). N=16 child-days.

Lung absorption of methamidophos is likely complete (100%)

(at 32C, Water solubility >200g/l, VP = 0.0075 torr)
No losses or saturation is expected to occur.
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Table 5.8. ‘GPS+Model’ method predicted deposition exposure (encountered
ground load) and mass on skin, by time period

*Mean “Transfer + Time (min) Total
# Age Sex ODate/Time Ground Load  Coefficient Outside Mass on Skin
In Town (ug/em2)  (cm2/hr) In Town (ug)
1 5 F 7-12  5:30-10:30 .005 400 3 110
7-12 10:30-16:30 .070 400 29 12.7
7-12, 7-13 16:30-9:30 110 400 167 126
7-13 9:30-18:30 .050 400 173 54.0
2 5 M 7-12 5:30-10:30 4.19 400 11 284
7-12 10:30-16:30 1.19 400 76 603
7-12,7-13 16:30-9:30 6.39 400 164 6990
7-13 9:30-18:30 300 400 76 151
38 M 7-12 5:30-10:30 190 400 22 26.8
7-12 10:30-16:30 2.59 400 97 1670
7-12,7-13 16:30-9:30 7.39 400 29 1440
7-13 9:30-18:30 3.37 400 223 5020
4 2 M 7-12  5:30-10:30 520 400 19 65.5
7-12 10:30-16:30 0.00 400 0 0
7-12,7-13 16:30-9:30 270 400 16 30.5
7-13  9:30-18:30 1.11 400 45 332
S 11 M 7-12  5:30-10:30 130 400 5 4.10
7-12 10:30-16:30 16.8 400 49 5470
7-12,7-13 16:30-9:30 7.64 400 62 3140
7-13 9:30-18:30 11.7 400 224 17400
6 10 F 7-12 5:30-10:30 770 400 22 113
7-12 10:30-16:30 6.44 400 68 2820
7-12,7-13 16:30-9:30 9.49 400 59 3650
7-13 9:30-18:30 11.8 400 181 14200
7 4 F 7-12  5:30-10:30 0.00 400 0 0
7-12 10:30-16:30 250 400 1 1.09
7-12,7-13 16:30-9:30 .060 400 2 .760
7-13 9:30-18:30 120 400 179 147
8 7 F 7-12  5:30-10:30 .040 400 12 2.87
7-12 10:30-16:30 240 400 1 1.30
7-12,7-13 16:30-9:30 .060 400 2 670
7-13 9:30-18:30 120 400 179 147

OFirst two and beginning of third time period = spray day 7.12; end of third and fourth time period = day after spray
7.13

*Mean ground load is the mean of ground load that was ‘encountered’ for all GPS time intervals during that period.
No out of town ground load is expected.

~A turf transfer factor of 400 cm2/hr was determined for all dermal calculations (from data by Bernard et al. 2001).
+Time outdoors used in GPS+Model calculations measured by GPS with sampling rate of 5 seconds.
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Table 5.9. ‘Standard’ method predicted deposition exposure (fixed ground load)
and mass on skin, by time period

* Fixed Ground “Total TTransfer
# Age Sex ODate/Time Load (ug/cm2) Time (min) Coeff Mass on Skin
In Town In Town (cm2/hr) (ug)
1 5 F 7-12 5:30-10:30 019 0 400 0.00
7-12 10:30-16:30 .025 0 400 0.00
7-12,7-13 16:30-9:30 .025 120 400 20.0
7-13 9:30-18:30 .025 180 400 30.0
2 5 M 7-12 5:30-10:30 .019 0 400 0.00
7-12 10:30-16:30 .025 60 400 10.0
7-12,7-13 16:30-9:30 025 180 400 30.0
7-13 9:30-18:30 .025 120 400 20.0
38 M 7-12 5:30-10:30 .019 0 400 0.00
7-12 10:30-16:30 .025 60 400 10.0
7-12,7-13 16:30-9:30 .025 60 400 10.0
7-13 9:30-18:30 .025 180 400 30.0
4 2 M 7-12 5:30-10:30 .019 0 400 0.0
7-12 10:30-16:30 025 0 400 0.0
7-12,7-13 16:30-9:30 025 0 400 0.0
7-13 9:30-18:30 025 60 400 10.0
5 11 M 7-12 5:30-10:30 019 0 400 0.00
7-12 10:30-16:30 .025 60 400 10.0
7-12, 7-13 16:30-9:30 .025 60 400 10.0
7-13 9:30-18:30 .025 240 400 40.0
6 10 F 7-12 5:30-10:30 019 60 400 7.60
7-12 10:30-16:30 .025 60 400 10.0
7-12, 7-13 16:30-9:30 .025 60 400 10.0
7-13 9:30-18:30 .025 180 400 30.0
7 4 F 7-12 5:30-10:30 .019 0 400 0.00
7-12 10:30-16:30 .025 0 400 0.00
7-12,7-13 16:30-9:30 .025 0 400 0.00
7-13 9:30-18:30 025 180 400 30.0
8 7 F 7-12 5:30-10:30 .019 0 400 0.00
7-12 10:30-16:30 025 0 400 0.00
7-12,7-13 16:30-9:30 025 0 400 0.00
7-13 9:30-18:30 .025 180 400 30.0

OFirst two and beginning of third time period = spray day 7.12; end of third and fourth time period = day after spray
7.13

*Fixed concentration is the arithmetic mean of measured values from alf 18 deposition plates within the community
for a given time period.

~Time is measured by categorical grouping of GPS time-location data using 1 hour time blocks.

+A turf transfer factor of 400 cm2/hr was determined for all dermal calculations (from data by Bernard et al. 2001).
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Table 5.10. Comparison of skin load (mass on skin) by two methods (ug)

Spray Day 7.12 Day After Spray 7.13 MEAN BOTH DAYS
GPS+MODEL _ STD GPS+MODEL STD GPS+
MODEL __ STD

Child # *% diff
1 139 20.0 54.3 30.0 96.4 25.0 -74.1
2 7880 40.0 151 20.0 4010 30.0 -99.2
3 3140 20.0 5020 30.0 4080 25.0 -99.4
4 96.0 0.00 332 10.0 214 5.00 -97.7
5 8620 20.0 17400 40.0 13000  30.0 -99.8
6 6580 28.0 14200 30.0 10400  29.0 -99.7
7 1.85 0.00 147 30.0 74.4 15.0 -79.8
8 4.84 0.00 147 30.0 75.9 15.0 -80.2
Mean 3310 15.9 4680 275 3990+ 22% -99.4

*%difference by method = 100 (myg— Mypy)
My

Mgy = mass by standard method
my, = mass by GPS+Model method

Total mass on skin for all children (within method) NOT significantly different on spray day compared
to the day after the spray (paired samples t-test; GPS+Model, p=0.47; Std, p=0.09). N= 8 children.

tTotal mass on skin for all children (between methods) significantly different (paired samples t-test,
p=0.01, t=2.86). N= 16 child-days.
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Figure 5.2: Variation in temperature and vapor pressure on the day of the spray
(adapted from Ramaprasad et al., submitted 2003).
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Figure 5.3. Spray day deposition contour map with pull-out detail of child’s one-
hour outdoor path immediately following last spray

Path traveled by child 6 (10 yo female) who spent the most total time outside;

7/12/02, immediately following 2nd spray. (Shown: 46 minutes outside between 3-4pm).
Child’s residence is circled.
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Figure 5.4: Distance and direction from the center of the home for 8 children
at 3 time points on day of pesticide spray event (7-12-2002)
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Figure 5.5: Distance and direction from the center of the home for 8 children
at 3 time points on day after pesticide spray event (7-13-2002)
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Figure 5.7. dGPS time-location (a) and velocity (b, ¢) for one child (child 6,
10 yo F) on the spray day

Velocity on foot (b) is separated from velocity on bicycle (c) because breathing
rate is weighted differently for each activity. Child’s residence is circled in (a).
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Figure 5.8. Log-scale inhalation exposure profiles for one child (child 6, 10
yo F) on the spray day and the day after spray.

Scale is 0.000001-1000 ng. Inhaled mass is greater on the spray day than on the
day after.
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Figure 5.9. Log-scale dermal exposure profiles for one child (child 6, 10 yo
F) on the spray day and the day after spray.

Scale is 0.000001 — 1,000 ug. . Skin loading is higher on the day after spray day
than on the spray day.
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Figure 5.10: Comparison of inhaled mass and skin load by two estimation methods
(‘GPS+Model’ method vs. ‘Standard’ method)
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Chapter 6

Summary & Conclusions

Children in agricultural communities can potentially be exposed to
organophosphates and other pesticides by a number of pathways. This body of work
focused on the drift pathway. Drift has been well characterized before, but this
dissertation is unique in its calculation of the dynamic interaction between moving
receptors (children) and the transient peaks in pesticides in areas proximal to treated
fields. Characterization of this interaction would have been impossible without high-
resolution time-location data. The novel component of this dissertation was the
development, validation and use of a dGPS instrument (the GPS-PAL) to attain high-
resolution, low subject burden time-location data. dGPS may very well revolutionize
exposure assessment by providing continuous data in place of customary categorical
data for people’s time-location. GIS has already revolutionized the spatial
understanding of injury and disease determinants, and is an integral part of visualizing
and analyzing the dGPS data. dGPS and GIS are important facets of human spatial
analysis. Epidemiology, medical geography, and environmental health will continue to
benefit and progress from these technologies.

Chapter 1 provided a needs assessment and rationale for: 1) studying children’s
exposure to pesticides, and the drift pathway in particular; and 2) a dGPS datalogging
instrument to gather high-resolution human time-location data. Children are a

susceptible population in regard to toxins such as organophosphates (OPs). Children’s
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organs are not fully developed and cannot detoxify OPs as well as adults. Children

have a greater body surface area to mass ratio and a higher breathing rate to mass ratio
than adults and thus can receive relatively larger doses. Children consume much more
fresh fruit and juices that are more likely to consume OPs than do adults. Children
have behaviors that predispose them to greater exposure, including playing on the
ground and generally being more active than adults. Children also are at greater
potential risk due to their continuing neural development. Evidence in animal models
has suggested inhibition of neurite growth resulting from chronic exposure to OPs,
which are nerve toxins of questionable toxic threshold (Dap and Barrone 1999; Slotkin
et al. 2001).

In regards to the drift pathway, some drift away from fields is inevitable given
the physical properties of OPs and the physics of droplets produced from spray
nozzles. An important finding of this dissertation (as informed by the work of Tsai and
Ramaprasad) was the relative contribution of volatilized pesticide to human exposure
when OPs are sprayed in hot summer weather. OPs being moderately volatile at lower
temperatures, this exposure route had not been well considered before. Proximity has
been shown in past retrospective (conducted sometime after sprays occur) studies to be
a factor that influences children’s exposure to pesticides. For this prospective study,
proximity was seen as a major factor for drift exposure during and immediately after a
spray. Especially when the winds are light or blowing away from residences, the
pesticide concentration gradient is steep with increasing distance from treated field. By

utilizing dGPS tracking, proximity was not confined to residence-to-field measurement



214
but was extended to child’s kinetic movement relative to fields. The children studied

in the dissertation drift study lived and played so close to treated fields (5-20m away)
that proximity was very important for the drift pathway.

Chapter 1 introduced the idea that dGPS can provide not only time-location but
also time-activity in the form of linear velocity. Velocity can then be normalized and
used to adjust breathing rates. This novel approach had not been explored previously
in the exposure assessment field. Velocity weighting did prove to be feasible, as
shown in Chapters 4 and 5, and made a significant difference in exposure estimates.
Unfortunately, no simple inference between velocity and behavior affecting dermal
loading can be made. A shortcoming of the dissertation’s studies was the inability to
quantify in situ activity. Datalogging accelerometers are commercially available and
can quantify this, but they were cost-prohibitive for this study. The concluding
message is that technology (dGPS, GIS and accelerometry) exists to replace
assumptions about time location and activity with quantifiable measures. It is logical
to use and improve upon existing technology for furthering exposure assessment.

Chapter 2 contains the paper published in Environmental Health Perspectives
in 2003. This paper validated the GPS-PAL instrument and documented the abilities
and limitations of using dGPS for tracking human subjects. This paper prompted an
invitation to participate in the US EPA National Children’s Study planning workshop
in May 2003. It is inevitable that exposure assessment will move forward with new
technologies such as GPS. In summary, Chapter 2 covers three important parameters:

reception, resolution, and interference. Lack of reception limits the utility of GPS
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inside concrete and metal framed buildings, though the time of entry and exit into the

building (an important bit of data) are known. The GPS-PAL can be set to record as
often as every second, which generally helps overcome limitations of moderate or
spotty reception, since the mean sampling rate is still several times per minute, because
many buildings allow moderate reception. Reception inside vehicles is both moderate
and spotty due to metal shielding. RF interferences also can cause episodic poor
reception. Total interferences other than buildings are rare, and were determined to be
from powerful EMF and RF emitters. Chapter 2 was somewhat limited by its small
study population.

To that end, the field studies described in Chapter 3 involved 5 times more
subjects than the initial pilot in Chapter 2. 35 children participated in the Seattle study.
Time-location data has typically been collected using self-report diaries, as covered in
the literature review in Chapter 1. For studies of young children, a parent will fill out a
diary for the child. Diaries suffer two obvious shortcomings: recall is difficult, and
resolution (number of categories, length of each time interval recorded) is limited. As
shown in Chapter 2, dGPS tracking of people is now feasible, and may be used as a
tool to evaluate and improve time-location diaries. The concordance between the GPS-
PAL and the widely-used NHEXAS diary timeline was poor. The GPS-PAL was
shown to be a useful tool for illuminating where (in which categories) subjects were
most likely to make reporting errors in the diary. Another finding in the Seattle study
was that low literacy (both English and Spanish) was a major obstacle to the successful

completion of a diary for some parents. In contrast, compliance with the GPS-PAL
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protocol was not affected by literacy. An important outcome of the Chapter 3 field

studies was evidence that dGPS presents a new approach for time-location analysis by
eliminating the need to categorize data. A person’s exact position (distance and
direction) relative to landmarks and contaminant sources is recorded. dGPS can be
used by itself for small studies now (such as the Washington Aerial Spray Drift Study
covered in Chapters 4 and 5), and could potentially improve diaries for large studies.
Based on current trends in consumer and commercial GPS hardware, dGPS should be
cost-permissive for large studies in the near future.

Chapter 4 presented dGPS data for 8 children in context of the aerial pesticide
spraying of the potato fields surrounding their community in SE Washington State.
Children and their environment were monitored intensively while methamidophos was
applied to the fields. Based on GPS data, most children were noted to be active (from
velocity data) and outside both days, spending slightly more time outside on the day
after the spray. Potato farmers were amenable to participating in the study because
they were concerned about an EPA docket (OPP-00730) entitled “Draft Guidance for
Pesticide Registrants on New Labeling Statements for Spray and Dust Drift Label
Statements for Pesticide Products (Appendix 4E). The proposed label statement would
have imposed a ‘no drift whatsoever’ sanction for methamidophos, a rule thought to be
unfair and unrealistic by farmers. The spray monitored for this study was executed
conscientiously and under ideal weather conditions. Appreciable drift of pesticide
droplets onto non-crop areas was confined to an area very close to the field, with

deposition 20 m into the community 10’ lower than deposition on the edge of the
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treated field. Deposition was highest in the morning, while air concentration was

highest in the late afternoon and evening, 4-6 hours after the end of the initial drift
period, suggesting the importance of volatilization for air exposure. The temperature
exceeded 40C on the spray day and the day after, causing a higher volatilization rate
than expected. Deposition was found on playground equipment and outdoor toys as
well as on deposition targets, but no pesticide was found on indoor surfaces, and indoor
air concentrations were not significantly different from baseline and were >10" lower
than any detect outside. Based on personal observation, it is believed this was due to
residents’ vigilance at keeping houses closed up, and due to recirculating air
conditioners. Handwipes showed detectable but relatively low skin loading on
children’s hands, but this was confounded by lack of information about other washing
and bathing events. This appeared to be a good spray in terms of drift abatement.
Winds were uncannily cooperative for the spray pilots, allowing them to spray at the.
exact time when wind direction blew away from the community.

A few common sense behaviors were observed that appeared to be protective.
Keeping houses closed and air conditioners on recirculate appears to have been
effective at blocking drift into homes. Staying at a distance greater than 50 m from the
nearest upwind treated field also kept children isolated from the highest residues and
air concentrations. Based on dGPS data, it was discovered that two children went to
stay with relatives in the next community (about 10 km away) where there was no
spraying during part of the spray day, a behavior that is advisable for children living

within very close proximity to the fields. Contact with outdoor surfaces should also be
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minimized in the period following the spray. Leaving for the day greatly reduces

inhalation exposure, but avoiding dermal exposure requires avoidance of drifted areas
for at least several days. The Washington Aerial Spray Drift Study was successful at
pointing out these simple behavioral changes, was successful at demonstrating the
contribution of volatilization to airborne pesticide, and successful at generating
exposure profiles unique to each child. Chapter 5 focused on the process and outcome
of generating these profiles.

In Chapter 5, environmental samples were used to calibrate high-resolution
deposition and air models. This modeling was submitted in two publications separate
from the dissertation (Tsai et al. 2004 and Ramaprasad et al. 2004). dGPS and model
data were combined to generate longitudinal exposure profiles, and to compute
exposure attributable to dermal and inhalation routes. The models predicted that low
levels of methamidophos continued to volatilize from the treated crop for many hours
after the application. Deposition ended quickly following the last application. Using a
transfer factor of 400 cm2/hr calculated from recent turf transferable residue data
(Bernard et al. 2001), the dermal route was predicted to be a more major exposure
route than inhalation by several orders of magnitude. However, given that inhaled
pesticide mass is expected to absorb completely, while less than 5% might absorb from
skin contact, the attributable dose from dermal contact is considerably less than the
skin load. Arguably, more confidence can be placed in the inhalation estimate than the

dermal estimate, since frequency and duration of contact with ground was not
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measured in this study. It is not certain what fraction ingestion (diet or non-dietary)

might contribute to the overall methamidophos exposure.

GPS+Model estimates were 3.5 times higher for inhaled mass and 181 times
higher for dermal mass than Standard method estimates. For some children, the
difference in time-location recorded for each method was the main contributor to the
difference in exposure estimates. For other children, particularly those living closest to
the nearest upwind treated field, the difference in air concentration and ground load
predicted by the model was the main contributor to differences in exposure estimates.
This was because the standard method relied on sampler data, and no samplers were
placed right next to the fields. These children played within 5 m of the nearest upwind
treated field, slightly closer to the treated area than the nearest air sampler and much
closer than the nearest deposition sampler. The findings underscore the importance of
characterizing elapsed time in specific higher exposure areas (using GPS), and
characterizing areas of peak exposure risk (using modeling). Short, intermittent
periods where children go outside are captured by GPS, but are not captured by a lower
resolution instrument such as a diary with 1-hr time intervals. Concentration and load
in areas close to fields where no sampler data are available can be generated using
modeling. ‘Nano-environments’ of approximately 3 m radius can be sampled as often
as every second using the GPS+Model method. The greatest challenge of the GPS
method is correctly coding inside versus outside. This process is time consuming and

would be difficult to perform accurately without visiting the field site in person.
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Uncertainty introduced by the model is also a shortcoming of this method. The model

is limited by the temporal and spatial resolution of the available input data.

Parents were generally wise about keeping children indoors during the time
crop dusters were overhead, and the winds were protective for most of the spray day.
Also, crop duster pilots knew we were watching them, so the halo effect cannot be
underestimated. In reality, normal drift from routine spraying of these fields might be
appreciably higher, and thus deposition and air concentration would be higher.
However, that is not to say that exposure is imminent. Exposure can be minimized if
parents follow the recommendations noted above. Leaving the community for the day
is an easy solution to avoiding the majority of the air concentration. Guiding children
to play in areas sufficiently far (>100m) from the nearest upwind treated fields also
makes good sense. Play near fields should be prevented for at least several pesticide
half-lives (foliar half-life of methamidophos = 3 days).

This study did show that the US EPA zero tolerance for drift proposed label
statement was unrealistic, and that children’s exposures can be minimized by a
conscientiously-applied spray. The issue of risk from this exposure level is debatable.
The best policy is to do everything possible to minimize exposure regardless of
projected dose. The label statement for methamidophos, as it reads right now, is still
somewhat unrealistic and should be revisited. The current statement calls for no drift
onto inhabited buildings, people, or sensitive areas. Inhabited buildings would have to
be removed from this statement to make most farmers in compliance. Millions of

arable acres would be lost, or people would need to be relocated. This is a serious
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dilemma if US EPA is earnest about imposing the letter of the law. Since enforcement

is limited in some states, the best tact as environmental health scientists is to advise
behaviors that will minimize or eliminate exposure. Since methamidophos is only
sprayed on these fields 3-4 times every 3 years (crops are rotated and cover crops are
not sprayed), risk communication and intervention campaigns would not be as time-
intensive, and could realistically work. It was inspirational that both community
members and farmers were so cooperative, and a great gratitude is owed to these
stakeholders.

The importance of GPS tracking and modeling for capturing the transience of
drift in relation to the hyperkinetic movement of moving receptors (children) was well
demonstrated by this study. GPS, GIS and other spatial technology may become
requisite tools for the environmental health scientist. The location and sequential
patterns of exposure clearly matter in the overall exposure picture. The visualization of
these patterns yields insight that has been lacking from the field of exposure
assessment. Spatial data will likely become increasingly important for informing

effective exposure prevention strategies.
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The role of time-location and activity level analysis in exposure assessment
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Appendix 1 B

Framework:
Why is a refined time-location measure important to exposure assessment?

Microenvironment Microenvironment 3
N
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- - k¥
weeks \\ /.// weeks
\_\\
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-~
Non-stationary™a el . S
distributions. Stationary distribution.
Time-location Time-location contributes nothing
Conc. r‘nptnrpc > more to €xXposure picture.

exposure

Moving receptor with transient contaminant release

Here a person can be considered the receptor. To capture a person’s exposure to a ‘spike’
release such as a pesticide spray event requires high-resolution time-location
measurement. In other words, a detailed account of where a person goes over a short
time scale is needed to tell us his time spent in each microenvironment.
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Framework:
Why is a refined activity level measure important to exposure assessment?
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Microenvironment 1 Microenvironment 3
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ME3: Default assumption

Moving, variably-active receptor with transient contaminant release

Here a person can be considered the receptor. To capture a person’s exposure to a ‘spike’
release such as a pesticide spray event requires high-resolution time-location
measurement AND activity level measurement to determine variation in breathing rate.
In other words, a detailed account of breathing rate within microenvironments is needed
to assess how much contaminant was inhaled.
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Appendix 4D.County plagroud, looking south toward the PAWS weather
station.
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ENVIRONMENTAL PROTECTION AGENCY
“Draft Guidance for Pesticide Registrants on New Labeling Statements for Spray
and Dust Drift Mitigation”

Summary of the Agency's Position on Drift

The Agency has the responsibility to ensure that the use of
pesticides will not cause unreasonable adverse effects to human health
and the environment. Those involved in pesticide application decisions
have an important responsibility to protect people, domestic animals,
wildlife, and the environment from pesticide exposures and potential
harm from drift. States, tribes, and EPA have responsibilities to carry
out enforcement to ensure compliance with pesticide use requirements.

EPA's position on pesticide drift is that applicators must not
allow spray or dust drift to contact people, animals, and certain
sensitive sites, including structures people occupy at any time, and
the associated property, parks and recreation areas, nontarget crops,
aquatic, wetland areas, woodlands, pastures, and rangelands. The Agency
believes this is prudent public policy. It sets high but appropriate
standards for applicators to protect people and the environment.
Applicators must consider and use necessary application practices and
measures required by states or tribes in addition to mandatory drift
control measures that are stated on product labels.

EPA realizes this position sets high but appropriate standards for
applicators to protect people and the environment. However, the Agency
believes that this policy will not have an undue impact on agriculture
or other uses of pesticildes. Rather, this policy

[[Page 44143]]

and new labeling will clarify expectations of applicators and set
definitive standards for application practices. The Agency also
believes that in addition to improved labeling a very important
component for controlling drift is training and education of
applicators and others involved in pesticide application decisions
about the causes and consequences of drift, control methods, and legal
requirements.

D. Other Options EPA Considered for Labeling

EPA considered a variety of other options for label statements for
spray drift mitigation, some of which were offered by stakeholders.
These other labeling options and the Agency's reactions are discussed
below. The Agency welcomes comment on these other options.

Label Statement Option-""Do not Allow Spray Drift''

This option, which EPA has required on some product labels,
oversimplifies and conflicts with the Agency's conclusions of the
supporting scientific data that some de minimus degree of drift will
occur as part of nearly all pesticide applications. Nevertheless,
recognizing the inadequacies of this statement and its appearance on
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numerous product labels for many years, we believe that it has been

effectively and practically enforced by EPA, states, and tribes.
Enforcement authorities have used their discretion to pursue violations
based on their evaluation of those cases where there may have existed
the potential for an effect or concern for exposures and risks to off-
target people, animals, plants, and the environment.

Label Statement Option-""Do not Allow Drift to Cause Adverse Effects''

EPA believes this statement is problematic from an enforcement
perspective because the burden of proof must be shifted from the simple
fact of drift to the "~ “effect'' of drift, which is less compatible with
the nature of evidence gathered in field investigations. This would
require the determination of the definition of ~“adverse effects''
under numerous circumstances on a case-by-case basis.

An additional problem with this label statement is it suggests to
applicators that drift is acceptable unless someone recognizes and
reports effects and appropriate authorities rule the effects are
‘adverse. '’

Label Statement Option-" "Minimize Drift to Sensitive Areas. If Drift
Occurs and Causes Environmental and Economic Effects, Enforcement
Action May be Taken''

""Minimize drift'' suggests the Agency finds certain levels of off-
target drift acceptable, contrary to EPA's policy as discussed above.
Further, Agency enforcement authorities believe this statement
compromises their responsibilities by jeopardizing their ability to
take enforcement action when necessary. The second proposed statement
also causes concern. Under this label statement EPA, states, and tribes
would have to prove drift as well as both environmental and economic
effects before taking further action.

Since there is no label minimization standard, this statement
essentially provides tacit permission to allow drift to occur at
certain levels, presumably at levels up to those that do not cause
“environmental and economic effects.'' If certain levels of drift are
permissible, a statement that off-target drift may result in
enforcement action is nonsensical.
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Child # 1-1
7/12/02

Appendix 4 F: Child 1 Time location on spray day



Child # 1-1
7/13/02

Appendix 4 G: Child 1 time location on day after spray



Time
10:08 am

11:00 am

12:00 pm

3 Child # 3-1 |8
712102 |

Appendix 4 H: Child 2 time location on spray day
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N chid#3-1 [
713102

Appendix 4 I: Child 2 time location on day after spray
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Appendix 4 J: Child 3 time location on spray day
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Time
11:18 am
12:.00 pm

1:00 pm

2:00 pm

Child # 3-2
| 7/13/02

o

Appendix 4 K: Child 3 time location on day after spray
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Time
10:09 am

Chiid # 4-1
7/12/02

Appendix 4 L: Child 4 time location on spray day
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Appendix 4 M: Child 4 time location on day after spray



| Child # 4-2 |
7/12/02

Appendix 4 N: Child 5 time location on spray day
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Time
11.32 am

Child # 4-2
7/13/02

Appendix 4 O: Child 5 time location on day after spray



Child # 4-3
7112102 B2

Appendix 4 P: Child 6 time location on spray day
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Time
11:30 am

Child # 4-3
N 7/13/02

Appendix 4 Q: Child 6 time location on day after spray
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Child # 5-1
7/12/02

Appendix 4 R: Child 7 time location on spray day
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~ Time
1130 am -
' 12:00 pm

12:30.pm

Child # 5-1
7/13/02

Appendix 4 S: Child 7 time location on day after spray
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Appendix 4 T: Child 8 time location on spray day
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Appendix 4 U: Child time location on day after spray
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VELOCITY (m/sec)
0.00 - 0.06
0.07 -0.10
0.11-0.17

018-035 Child #1-1 |8
0.36-4.82 712002 §

Appendix 4 AA: Child 1 velocity (on foot) on spray day
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VELOCITY (m/sec)
@® 0.00-0.03
0.04 - 0.06
0.07 - 0.09

0.10-0.20 BN Child #1-1
0.21-5.00 : 7113102

Appendix 4 BB: Child 1 velocity (on foot) on day after spray



271

VELOCITY (m/sec) |
0.00 - 0.05
0.06 - 0.09
0.10-0.14
0.15-0.24
0.25-3.53

Appendix 4 CC: Child 2 velocity (on foot) on spray day
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[

il VELOCITY (misec)
@ 000-0.03
0.04 -0.06
0.07 - 0.09
0.10-0.14
0.15-1.69

Appendix 4 DD: Child 2 velocity (on foot) on day after spray
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VELOCITY {m/sec)
@ 0.00-0.07
0.08-0.13
0.14-0.25
0.26 - 0.64
0.65-4.83

Appendix 4 EE: Child 3 velocity (on foot) on spray day
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8 VELOCITY (m/sec)
® 0.00-005
0.06 - 0.08
0.10-0.14 ; S
0.15-0.26 ‘ » I Child # 3-2
0.27-4.52 B R o 7/13/03

Appendix 4 FF: Child 3 velocity (on foot) on day after spray
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VELOCITY (m/sec)
® 000-0.05

0.06 - 0.08 .
0.09-0.13 ) :

0.14-0.32 Y 8 Child #4-1
0.33- 4.84 . a3 BiAR  7/12/02

Appendix 4 GG: Child 4 velocity (on foot) on spray day



VELOCITY (m/sec)
@ 0.00-0.13
0.14-0.23
0.24-0.36
0.37-0.66
0.67 - 4.99

Appendix 4 HH: Child 4 velocity (on foot) on day after spray



§ VELOCITY (m/sec)
® 0.00-0.08
0.09-0.19 , :
0.20-0.63 . Child #4-2
0.64-1.27 - A On Foot
1.28-5.00 . WS 7112102

Appendix 4 II: Child S velocity (on foot) on spray day



VELOCITY (m/sec)

® 0.07-1.08
1.08-1.86 S e
1.87-2.59 Lt o [ Child #4-2
2.60-3.49 Vel e : B On Bike
3.50 - 5.00 ST . ' 7112102

Appendix 4 JJ: Child 5 velocity (on bicycle) on spray day
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VELOCITY (m/sec)
® (00-0.08

0.09-0.19
0.20-0.62 : 3

0.63-1.26 . . ) B On Foot
1.27 - 5.00 ; j 7/13/02

Appendix 4 KK: Child 5 velocity (on foot) on day after spray



i VELOCITY (m/sec)
® 0.03-0.93

0.94 - 1.54

o , A e :

o 1.55-230 R ' ' Child #4-2
® 231-305 Cont T . On Bike
[

3.06 - 5.00 S . O 7/13/02

Appendix 4 LL: Child 5 velocity (on bicycle) on day after spray



d VELOCITY (m/sec)

| e 0.00-007
0.08-0.16 . :
0.17 - 0.43 i ) B Child #4-3
0.44-0.92 ' p : On Foot
0.93-5.00 ' TR 7112/02

Appendix 4 MM: Child 6 velocity (on foot) on spray day



VELOCITY (m/sec)
0.01-0.74

0.75 - 1.24 : , ‘ .

1.25 - 1.60 e Sl C L . : B Child #4-3
1.61-295 : o T _ - On Bike
2.96 - 5.00 R e 7/12/02

Appendix 4 NN: Child 6 velocity (on bicycle) on spray day



VELOCITY (m/sec)
® 0.00-046
0.47 -0.84
0.85-1.41

142-2.27
2.28~-3.53

Appendix 4 OO: Child 6 velocity (on foot) on day after spray
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| VELOCITY (m/sec
® 000-0.78
0.79 - 1.49 :
1.50-2.39 : Tl sl WA , AR Child #4-3
2.40-3.07 DEpp RS A : On Bike
3.08-5.00 e T e ey 7/13/02

P e

Appendix 4 PP: Child 6 velocity (on bicycle) on day after spray
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VELOCITY (m/sec)
® -0.06-048
0.49-1.32

1.33-2.99 " N
3.00-3.73 Child # 5-1

3.74-4.50 o A 7/12/02

Appendix 4 QQ: Child 7 velocity (on foot) on spray day
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| VELOCITY (misec) |
® 0.00-0.04
0.05-0.07

0.08 - 0.11 B
0.12-0.20 ‘ B Child # 5-1
0.21-5.02 i 7/13/02

Appendix 4 RR: Child 7 velocity (on foot) on day after spray
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VELOCITY (m/sec)
® -0.06-048

0.49-1.32
1.33-2.99

3.00-3.73 ' Child # 5-2
3.74- 450 - | 7112/02

Appendix 4 SS: Child 8 velocity (on foot) on spray day
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VELOCITY (mi/sec) §
® 0.00-0.04
0.05-0.07
0.08 - 0.11

0.12-0.20 EOREERN Cildl #5-2
0.21-5.02 RN 7/13/02

Appendix 4 TT: Child 8 velocity (on foot) on day after spray
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Appendix 5A: Data processing flowchart.

Part one.




290

Part two.
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Appendix 5B: Time-Location Determination for ‘GPS+Model’ and ‘Standard’
Methods

GPS+Model

e The GPS-PAL was set to record once every 5 seconds.
Paths were reviewed to determine which points fell indoors and outside of the
community. Indoor points were excluded from exposure analysis.

e Paths were reviewed to determine mode of transit: on foot, on bicycle, or in
vehicle.

Standard

e GPS-PAL path was categorized into 5 categories similar to the NHEXAS diary:
Indoors in Community, Indoors out of Community, Outdoors in Community,
Outdoors out of Community, and Transit. Indoor points were excluded from
exposure analysis.

e One hour resolution was used. The location category with the majority of time
counts during a given hour was coded as the correct time-location for that hour.

Appendix SC. Formulae for breathing rate calculations
GPS+Model

Weighted Breathing Rate = (1+ V) *(Ry)
Vs

V = velocity (m/s)
Vy = baseline velocity (m/s)
Ry = age specific breathing rate (m3/hr)

Velocity calculated from GPS time-location data.

Baseline Velocity from Knoblauch et al. 1996.
Baseline walking velocity = 1.22 m/s
Baseline bicycling velocity = 2.44 m/s
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Age Specific Resting Breathing Rates from Adams et al. 1993, EPA 2002.
<2yo =0.35 m3/hr
3y0-5.9 yo = 0.40 m3/hr
6yo-12yo = 0.47 m3/hr

Standard
No Weighting.

Age-gender Specific Moderate Activity Breathing Rates from Adams et al. 1993, EPA
2002.
M <3yo =0.78 m3/hr
3yo0-10 yo = 0.96 m3/hr
>10yo = 1.5 m3/hr

F <3yo = 0.60 m3/hr
3yo0-10 yo = 0.90 m3/hr
>10yo = 1.26 m3/hr

Appendix 5D. Formulae for inhalation exposure (encountered air concentration)
calculations

GPS+Model

Total is the mean of all time intervals (minimum 5 seconds):
1. If Within the Community Model Output Grid

Cp=2 [(Chp+ Cye )¥] /2t

Cg = Encountered Air Concentration (ng/m3)

C,e = Concentration Output from Aerosol Model for that Time and Location
(ng/m3)

C..=Concentration Output from Gas & Vapor Phase Volatility Model for that
Time and Location (ng/m3)

t = interval time (sec)

2t = sum of time over all intervals (sec)

2. If Outside the Community Model Output Grid
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Encountered Air Concentration = Cyy

Cyy = Upwind pump fixed location concentration for that time period (ng/m3)

Standard
For a given time period.

1. If Within the Community Model Output Grid
Fixed Air Concentration = C¢r

Cyr = Mean community concentration at fixed locations for all pumps for that
time period (ng/m3)

2. If Outside the Community Model Output Grid
Fixed Air Concentration = Cys

Cyr = Upwind pump fixed location concentration for that time period (ng/m3)

Appendix SE. Formulae for inhaled mass calculations
GPS+Model
Total is a summation of all time intervals (minimum 5 seconds):

Mi= 2% [Cy*Rpny * _Lhr *t]
3600 sec

Mi = Inhaled mass (ng)

C.i = Encountered Interval Air Concentration (ng/m3 per interval duration)
Ry = Weighted Breathing Rate (m3/hr)

t = Interval Time in seconds (sec

Standard

For a given time period:
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Mi=C/*BR*T

Mi = Inhaled mass (ng)

Cr = Fixed Air Concentration (ng/m3)
BR = Breathing Rate (m3/hr)

T = Time Outside in hours (hr)

Appendix 5.F. Formulae for dermal exposure (encountered ground load)
calculations

GPS+Model

Total is the mean of all time intervals (minimum 5 seconds):

Le=3% [My*t]/ 3t

L = Encountered ground load (ng/cm2)

M.y = Deposition Cumulative mass per area output from model for location
during that time interval (ng/cm2 per interval duration)
t = interval time (sec)

2't = sum of time over all intervals (sec)

Standard
For a specific time period:

Fixed Ground Load = Dygr

Dy = Mean cumulative deposition plate fixed location load for all deposition
plates in the community for that time period (ng/cm2). This number is
cumulative through the end of deposition, at which point it becomes constant.
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Appendix 5.G. Formulae for mass on skin calculations

Assumed transfer factor for all calculations: 400 cm2/hour
GPS+Model
Total is a summation of all time intervals (minimum 5 seconds):

Mg=2X [Rg*F, *1 hr *t]
3600 sec

Ms = mass on skin (ng)

Rcq = Deposition Cumulative rate output from model for location during that
time interval (ng/cm2 per interval duration)

F, = Transfer Factor (cm2/hr)

t = Interval Time in seconds (sec

Standard

For a given time period:

Mg=Dy *F, *T
Mg = mass on skin (ng)
Doy = Mean deposition plate fixed location load for all deposition plates in the
community for that time period (ng/cm2)

F, = Transfer Factor (cm2/hr)
T = Time period in hours (hr)

Appendix 5.H. Formula for transfer factor calculation.

F, = E4 * 1 * 60 min
20 min D, 1 hr

E,= dermal exposure (from Bernard et al 2001, 1600 ug)
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D, = application rate (measured on deposition coupons) (from Bernard et al.

2001, 12 ug/cm?2)

The application rate as measured on deposition coupons was selected for use in the
denominator because both deposition coupons and silica deposition plates are assumed
to capture 100% of the deposited pesticide. The transfer factor (F;) was estimated from
these calculations to be 400 cm?2/hr.



Education'

Experience

297
VITA

PhD, Environmental & Occupational Hygiene, University of Washington ,
2004

PhD Student, Pharmacology/Toxicology, Washington State University, 1998-99

MPH, Public Health Promotion & Education, Environmental Health & Safety
Emphasis (Magna cum laude), Oregon State University, 1998

BS, Biology (Honors), University of Puget Sound, 1994

1999—present University of Washington

Dissertation research, “GPS tracking to characterize children’s exposure to
pesticides”

1999-present University of Washington

Other research projects

Evaluation of creatinine levels in the urine of Seattle children (1999-2000)
Measurement of spray drift using LIDAR remote sensing (2001-2002)

Comparison of urinary organophosphate pesticide metabolite levels in two
groups of Seattle children: those eating mainly organically-produced foods and
those eating a conventional diet (2001)

Development and evaluation of an FTIR-ATR spectrophotometric probe
technique to measure pyrethroid pesticide concentration on skin (2002)

2002-2003 University of Washington
Pre-doctoral Instructor

ENVH 111 Exploring Environment & Health Connections
http://courses.washington.edu/envh1 [ 1/faculty.html

ENVH 51 1Environmental & Occupational Health

2001-2002 University of Washington
Graduate Teaching Assistant

ENVH 453 Industrial Hygiene

ENVH 511Environmental & Occupational Health

1998-1999 Washington State University
Graduate Researcher “Biomarkers of renal oxidative stress and injury”

1997-1998 Oregon State University
Graduate Instructor

SMILE (Science & Math Integrated Learning Experiences) Program
Staffer



Publications

Presentations g ’

298

1997 Oregon State University / US EPA, Corvallis, OR
Pesticide Specialist

Elgethun K, Fenske RA, Yost MG and GJ Palcisko. Time-location analysis for
exposure assessment studies of children using a novel global positioning system
instrument. Environmental Health Perspectives 111(1): 115-122 (2003).

Curl CL, Fenske RA and K Elgethun. Organophosphorus pesticide exposure to
urban and suburban pre-school children with organic and conventional diets.
Environmental Health Perspectives 111(3): (2003).

Elgethun K, Neumann C and P Blake. Butyltins in shellfish, finfish, water and
sediment from the Coos Bay estuary (Oregon, USA). Chemosphere 41: 953-64
(2000).

Elgethun K, Weppner S, Lu C, Tsai MY, Ramaprasad J, Yost M, Fenske RA,
Kissel J, Hebert V. GPS/GIS aided assessment of children’s exposure to
pesticide drift in a farm community. ISEA Annual Meeting, Stresa, Italy, 24
September 2003.

Elgethun K. GPS to characterize children’s time-location (Invited talk). EPA
National Children’s Study Workshop, Boston, MA, 13 May 2003.

Elgethun K. Progress report: Integration of GPS/GIS with environmental and
biological monitoring to characterize children’s exposure to methamidophos.
15™ Annual UBC-UW Occupational & Environmental Health Conference,
Blaine, WA, 10 January 2003.

Elgethun K, Fenske RA, Yost MY, Kissel JC, Lu C and S Weppner.
Integration of GPS/GIS & heart rate monitoring in a sampling plan to
characterize children's exposure to pesticide spray drift. ISEA/ISEE Annual
Meeting, Vancouver, BC Canada, 13 August 2002.

Elgethun K, Fenske R, Yost M, Kissel J and G Palcisko. Evaluation of a new
GPS instrument to characterize children’s time-location in pesticide exposure
assessment studies. Society for Risk Analysis Annual Meeting, Seattle, WA, 3
December 2001.

Elgethun K, Fenske R, Yost M, Kissel J and G Palcisko. Evaluation of a new
GPS instrument to characterize children’s time-location in pesticide exposure
assessment studies. ISEA Annual Meeting, Charleston, SC, 6 November 2001.

Elgethun K. GPS for human time-location studies. 13™ Annual UBC-UW
Occupational & Environmental Health Conference, Blaine, WA, 12 January 2003

Elgethun K, Neumann C and P Blake. Butyltins in shellfish, finfish, water and
sediment from the Coos Bay estuary (Oregon, USA). American Association for
the Advancement of Science Annual Meeting , Anaheim, CA, January 1999,



299

COnferencee e International Society of Exposure Analysis, 2000, 2001, 2002, 2003.

attended

. UW-UBC Occupational & Environmental Health Conference 2000, 2001, 2002,
2003.

Society for Risk Analysis, 2001.
American Industrial Hygiene Conference & Exposition, 2001.

Pacific NW Association of Toxicologists, 1998.

Memberships& - American Conference of Governmental Industrial Hygienists
(. International Society of Exposure Analysis
Washington State Environmental Health Association

Reviewer for journal: Environmental Health Perspectives

Faculty search committee, University of Washington

Languages © Scale: 1 (basic) to 3 (fluent)
Reading, writing, speaking: Spanish (2, 1, 1), French (2, 2, 1), English (3, 3, 3).
AWal'dé & Funding Outstanding Student Award, Department of Environmental & Occupational
"~ Health Sciences, 2003.

EPA-NIEHS Center for Child Environmental Health Risks Research, 2001-
present

NIOSH Pacific Northwest Agricultural Safety & Health Center, 2001-present.
NIOSH Training Grant 1999-2001

Murdock Charitable Trust, BS Thesis research in chemical ecology, 1993-1994.

Citizenship US Citizen.



