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Abstract
Latent Models for Cross-Covariance
by Jacob A. Wegelin

Co-Chairs of Supervisory Committee:

Associate Professor Thomas S. Richardson
Statistics

Professor Paul D. Sampson
Statistics

Cross-covariance problems arise in the analysis of multivariate data that can be divided
naturally into two blocks of variables, X and Y, observed on the same units. In a cross-
covariance problem we are interested, not in the within-block covariances, but in the way
the Ys vary with the Xs.

In the current work several approaches to the cross-covariance problem are discussed,
including Reduced-Rank Regression (RRR), Canonical Correlation Analysis (CCA), Par-
tial Least Squares (PLS, also called Projection to Latent Structures), Structural Equation
Models (SEM), and Graphical Markov Models (GMM).

A family of latent models for cross-covariance, called paired latent models, is specified.
It is shown that the set of covariance matrices which can be modeled under the rank-r
paired latent model is the same as those which can be modeled under rank-r Reduced-Rank
Regression. The degree to which the parameters of the rank-one paired latent model are
underidentified is precisely characterized, and a natural convention is proposed which makes
the model identifiable. This result has implications for the estimation of correlation between
the latent variables.

It is shown that symmetric and asymmetric versions of the paired latent model are



covariance equivalent, and that this equivalence fails when the within-block covariance is

constrained to be diagonal.
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Chapter 1

PRGCBLEM DEFINITION, TERMINOLOGY, AND NOTATION

1.1 Introduction

Suppose we have matrices X and Y, respectively N x p and N x g, where the columns
correspond to variables and the rows to observations or units. We call these matrices blocks.
Suppose further that we are primarily interested, not in the within-block covariances XTX

and YTY, but in the cross-covariance X7Y. This is the cross-covariance problem.

An example from behavioral teratology. In a study of the relationship between fetal
alcohol exposure and neurobehavioral deficits reported by Sampson et al. [SSBB89] and
by Streissguth et al. [SBSB93a], X has thirteen columns, each corresponding to a different
measure of the mother’s reported alcohol consumption during pregnancy. Y has eleven
columns, each corresponding to a different IQ subtest. The researchers are not primarily
interested either in the relationships between the different measures of the mother’s alcohol
intake or in the relationships between the different IQ subtests. They are interested in the
relationship between alcohol intake and IQ. Neither of these phenomena can be measured

directly, and they may possess more than one dimension of interest.

Models for cross-covariance. The models which are the focus of the current work have

the following properties in common:

e It is only

X z

yx Zyy



which is being modeled. Means are assumed to be zero, and higher moments are

ignored.

e The models place no restriction on the within-block population covariances, 3 x x and

vy.

The parameters of a constraint model are £ xx, = xy, and ¥yy. In such a model the
only constraint is a rank constraint on the population. cross-covariance, ¥ xy. (Provided
¥ is nonsingular, this is equivalent to placing a rank constraint on the off-diagonal block
of the inverse covariance matrix. For a detailed proof see Proposition A.0.3 on page 151.)
This constraint gives us immediately a way to define a sequence of nested models. Let R
be the maximum rank of £ xy which is allowed by a model; then each value of R from 0
to rank(X7Y) specifies a distinct model. The model with highest rank will fit ¥ exactly.
The covariances ¥ which can be modeled by a constraint model are equivalent to those that
can be modeled by reduced-rank regression (T. W. Anderson [And99], Reinsel and Velu
[RV98]). This fact is reviewed in Appendix A.

Latent models for cross-covariance. Hidden or latent variables, together with a set
of linear relationships between these and the data, may be used to model cross-covariance.
In this context the data are called observed variables or indicators. Each row, X,.
and Y., corresponds to a unit of observation. These are assumed to be independent,
identically distributed (iid) draws from a population specified by the model. A model
specifies s explanatory latent variables for the X-block and ¢ explanatory latent variables
for the Y-block. The scores on the explanatory latent variables are denoted by the N x s
matrix E for the X block and the N x ¢t matrix € for the Y block. Thus the explanatory
latent variable scores for X,,. are =,,. and the explanatory latent variable scores for Y. are

Q.. The matrices of noise, E for X and Z for Y, are respectively N x p and N x q.

It will be convenient to use lowercase letters to denote the values for individual obser-



vations, seen as column vectors. The lowercase notation is:

Xn = X,’I;, ,
Yn = YZ.,
§ n - 32-1 )
W = 927
€, = EZ )
¢, = ZT.

Although €, and ¢, are latent, it will be convenient to call them simply “noise,” and to
reserve the term “latent variables” for the explanatory latent variables £, and w,.

The covariance of the latent variables is

=7 | & G
Cov &n = Cov ™ = : ; (1.2)
Wn ol G ¥
and the dispersion matrices for the noise are respectively ¥ and e
Let A be p x s and B g x t. Specify the data by

X, = A, + €q, (1.3)

Yn = Bwn+Cn7

equivalently

X = =AT+E,
Y = QBT +2Z.

The family of latent models defined thus far is very general. The models considered in the

current work will be subject to the following two additional constraints:

e The number of latent variables for the X block is the same as the number of latent
variables for the Y block. In this case we speak of pairs of latent variables, each bair
containing one latent variable for the X block and one for the Y block. We let R
denote the number of pairs of latent variabies (s = ¢t = R), so that ®, ¥, and G are

all R x R.



e The noise for any block has zero covariance with the noise for the other block, and

with the latent variables for either block. Under this assumption we may write

[ ¢, =T ] (& G o
Wn Qr G ¢ 0
Cov = Cov = (1.4)
€n EZ 0 0 X,
| ¢ | Z7 | | 0 0 0 = |
These constraints imply
EXX = AQAT + Xee )
vy = B¥BT + 2(( s (1'5)
Lxy = AGBT.

The resulting model is called a paired latent model. It is by design that £ xy has a
simpler form than the other blocks. This is the block for which we seek a parsimonious,
easily-interpreted model.

It will often be convenient to assume that R < p and R < q, and that A, B, and G are

all of full rank. Under such an assumption we call R the rank of the model.

Cross-diagonal models. If a paired latent model for cross-covariance is constrained to

have
G = diag(gl)""lgR) 3
g1 2 g2 = ... > gg > 0,

we say that it is a cross-diagonal latent model. The parameters of this model are

interpr_etable in a straightforward way. The diagonality of G implies

COV((xn)ir(wn)r) = COV(Xn.iaQnr) = grA;
and
Cov ((¥a);+(6a),) = Cov(Ynj,Zwr) = gBjr.

In this case, the values A;; and B;, are called saliences.



%3]

SVD latent models. The parameters of the cross-diagonal latent models are not identi-

fiable. We may constrain this class further by requiring
ATA =1,
BB = I,.

Under these conditions the parameters A, B, and G constitute a singular value decomposi-
tion of ¥ xy . Since this decomposition is unique up to sign, the constraints guarantee that
A, B, and G are identifiable up to sign. Cross-diagonal latent models which satisfy this
constraint are called svd latent models.

In keeping with familiar svd notation (for instance, the function svd() in S-PLUS
[Mat96]), the cross-diagonal parameters of the svd model will often be called U, V, and D

in the current work.

Behavioral teratology, revisited. Recall the example introduced on page 1 in Section
1.1. A class of methods exists for estimating saliences and for computing composite scores
on hypothesized latent variables which uses no probability theory. These methods, called
Partial Least Squares (PLS), are discussed in Section 2.3, Chapter 3, and in Wegelin [Weg00].
Using a PLS method, the researchers estimated saliences for a latent model with rank R = 1.
In addition, they computed estimated composite scores én,l and ﬁn,l for each subject in
the study. Since the model was of rank one, é, ﬁ, X, and B each consisted of a single
column.

The composite score for the Y-block, ﬁ.l, summarized the 11 IQ subtests, and the
composite score for the X-block, ..'s...l, summarized the mother’s drinking during pregnancy.

These vectors of scores were optimal in the sense that

lCov (._. 1,92 |Cov (Xa,YvV)| .

1)l = lal=ibil=t
Another optimality criterion is that of canonical correlation a.nalysis (CCA). The two op-
timality criteria are contrasted in Section 3.11, and the researchers’ reasons for using PLS
rather than CCA are given.

The zth estimated X-salience K,-,l was proportional to the covariance of the ith measure

of maternal drinking and the explanatory latent variable for IQ. Thus it measured the



degree of association of the ith measure of maternal drinking with the IQ explanatory

latent variable, relative to the other measures of maternal drinking.

Similarly the jth estimated Y-salience ﬁj,l, proportional to the covariance of the jth
IQ subtest and the explanatory latent variable for maternal drinking, measured the degree
of association between the jth IQ subtest and this latent variable, relative to the other IQ

tests.

Asymmetric models. The latent model specified thus far is symmetric in the following

sense.

1. yn is not explicitly a function of x,, nor vice versa; rather

2. The indicators are functions of the latents: x, of &, ¥Yn of wy.

In many applications it makes more sense to think of ¥Y» as a function of x,, because of
what we may believe about the process which caused the phenomenon we are attempting
to measure. For instance, in the example from behavioral teratology mentioned on pages 1
and 5, we might believe that IQ is a function of alcohol exposure. This suggests that we

might specify the data by the following asymmetric latent model:

xn = I-l':r: + en 1
£n = ATxn + (775),1 ’
W, = G'Sn + (le)n : and

Yn = Bwn +<n H



=~

where

i is a p-dimensional mean vector for the X-block,

€n i1s p-dimensional random vector of errors for the X-block,
(m¢),, is an R-dimensional random vector of errors for &,,,"

A is a p x R constant matrix linking &, to xp,

(Ny), is an R-dimensional random vector of errors for w,,

G is an R x R constant symmetric matrix linking w, to &,,,
¢n 1s a g-dimensional random vector of errors for the Y-block,
B is a ¢ x R constant matrix linking y, to w,, and

€n, (775)“ »(My),, and ¢, are mutually independent.
In this case

Yn = Bwn+(,
= B(G, +(n,),) +¢a
= B(G[ATxq+ (ng),] + ()n) +¢a
= B(G[ATux +ATen + (ng),] + (n)n) + <o
= BGATuy +BGATe, + BG (ng), + B (n,), + ¢

Let
Pees Er)gnfv oo 2((

be the variances of

€n, (nf)n 3 (ﬂu)n 1 Cn
respectively. Then the covariance of the data is given by

EXX = Ece ’
Tyy = BGATZ. AGBT +BGX,,, GBT +Bx, , BT + 5, (1.6)
Exy = XZ.AGBT .

Thus in the asymmetric model the error covariance for the X block is part both of the

cross-covariance and of the covariance of the Ys. Nevertheless we shall see in Chapter 6



that the symmetric and asymmetric models are covariance equivalent over the indicators.
That is, for each set of parameters of the symmetric model there is a set of parameters of
the asymmetric model which induces the same covariance over X and Y, and vice versa.

Consequently ¥ must be interpreted differently in the two models. -

Normal distribution. A multivariate normal distribution will be assumed in part of the
current work. Latent models for cross-covariance are defined first without the specification

of any density, however, and some work will be done in the more general setting.

Factor models. The paired latent model is not a traditional factor model. This is be-
cause factor models are usually assumed to have diagonal within-block error covariance, or
“uncorrelated errors of measurement.” Recall that one of the defining characteristics of the
paired latent model for cross-covariance is unconstrained within-block error covariance.

Traditional factor analysis is also called exploratory factor analysis (EFA). In confirma-
tory factor analysis (CFA), the requirement that the within-block error variance be diagonal
is relaxed. Thus the paired latent model for cross-covariance does fit this broader definition
of a factor model. As long as we keep this broader definition in mind, we can call the
saliences of the paired latent model by the more familiar term factor loadings.

Bollen discusses both exploratory and confirmatory factor analysis ([(Bol89], Chapter
seven). Mardia, Kent and Bibby [MKB79] and Chatfield and Collins [CC80] each devote a

chapter to factor analysis. The reader is also referred to Harman [Har76].

Notational convention. Subscripts “n” indicating that an observation belongs to a sam-
ple of size N have been used up to this point. In the sequel the “n” subscript may be dropped
when this can be done without confusion. Thus, for instance, rather than Xn,i, indicating
the nth realization of the ith indicator of the X-block, the notation X; may be used. This

represents the ith indicator as a random variable.

Zero partial correlation. The notion of a path diagram is introduced in Section 1.2,
and that of m-separation in Section 1.3. On page 13 a result is stated which pertains to zero

partial correlations. The following property of the paired latent model for cross-covariance



follows from that result. For any 7 and any 7,

Cor (xi1le£h R 7€R) = Cor (Xi7 lewlx .- 7wR)
= Cor(X;,Y;|&,..-,&r,wW1,---.WR) (1.7)
= 0.

In particular, if the data have a joint multivariate normal distribution, X; and Y; are
conditionally independent given either {£,,...,&g}, {wi,...,wgr}, or the union of these

two sets.

1.2 Path diagrams

Path diagrams are a convenient way to display a set of hypothesized relationships between
observed and latent variables. An example of a path diagram may be seen in Figure 1.1
on page 10. Path diagrams exist within a larger class of objects called graphs, in which
variables are represented by vertices, and edges are drawn between the vertices. Many
different conventions exist, each defining a different kind of graph. The conventions used in
the current work will now be stated.

Vertices (equivalently, nodes) in a path diagram represent random variables, either ob-
served or hidden (latent). When a distinction between observed and hidden variables needs
to be made, observed variables are enclosed in rectangles and hidden variables in ellipses.

Edges in the current work will be either directed (+— or —) or bidirected (++). These
may also be called, respectively, singleheaded and doubleheaded arrows. Two nodes will
share at most one edge.

Path diagrams are translated into the familiar notation of covariance matrices and linear

relationships, and thus into a set of parameters, in the followinz manner.

¢ Any node at which one or more directed edges points is a linear function of the nodes
on the tail ends of the directed edges, plus error. Thus to each edge corresponds a

linear coefficient.

e If two nodes share a bidirected edge, the covariance between their errors is not con-

strained to equal zero. Thus an explicit expression for the error covariance is included
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Figure 1.1: Path diagram representing the symmetric cross-diagonal parameterization of a.
rank R latent model. Error terms are displayed in this figure. The same model is displayed
without error terms in Figure 1.2 on page 11. Path diagrams are introduced in Section 1.2.
The cross-diagonal parameterization is introduced in Section 1.1.

in the specification of the model.

e Errors may be displayed in path diagrams as latent variables, or may be omitted.
Each variable other than an error is assumed to have an error term, whether the error

term Is displayed or not.

Path diagrams for the symmetric cross-diagonal latent model may be found in Figures
1.1 on page 10 (with error terms displayed) and 1.2 on page 11 (error terms not displayed).

Both path diagrams make the following specifications.
e X, : is a linear function of the following R + 1 latent variables,
Endr---28n,r, and Ep, ;,
and Y, ; is a linear function of
Qnj,-.., g, and Z,;.
This relationship is specified in Equation 1.3 on page 3.
e For any n and any r, the pair of latent variables (En,7» Qn ) has unrestricted covari-
ance, but for r # s

Cov(E,,,2,;) = 0.
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Xp Yq

Figure 1.2: Path diagram representing the symmetric cross-diagonal parameterization of a
rank R latent model. This represents exactly the same model as is represented by Figure
1.1. The only difference between the path diagrams is that error terms are not displayed
in this one. Error terms are always understood, however. Path diagrams are introduced in
Section 1.2. The cross-diagonal parameterization is introduced in Section 1.1.

This is equivalent to constraining G to be diagonal in Section 1.1, but placing no

constraints on the diagonal values other than that the entire covariance matrix of the

® G
latent variables, , be positive semidefinite.

G ¥

e The within-block covariance of explanatory latent variables is unrestricted. - That is, for
any n, r, and s, Cov(Z,, E, ) is unrestricted, and Cov(Q, ., 2, s) is unrestricted.
This is equivalent to placing no constraints on ® and ¥ other than that thgy be
positive semidefinite, and again that the entire covariance matrix of the latent variables

be positive semidefinite.

e The within-block noise is unrestricted. That is, for any =, ¢, and ', Cov(Enp i, En )
is unrestricted, and for any n, j, and j', Cov(Z,j,Z, ;') is unrestricted. This is
equivalent to placing no constraint on X, and 3¢¢ other than that they be positive

semidefinite.



12

1.3 M-separation

Zero-partial-correlation relationships Cor (X,Y|Z) = 0, where X and Y are variables and
Z is a set of variables, will be of interest in the current work. It may require extensive
calcuation to determine, however, from a variance-covariance matrix 3, whether a given
zero-partial-correlation relationship obtains. Fortunately theorems are available, in the
context of path diagrams, which often make a question regarding zero partial correlation
easy to answer. Theorems are also available, in the same context, which will enable us to
prove that certain models, represented by different path diagrams, induce the same set of

covariance matrices.

In the current section we consider a fixed path diagram G, and a covariance matrix X [F]
over the variables represented by the vertices of G. Since different parameter values can be
assigned to the model represented by a path diagram, potentially many different 3 [G]s may

be associated with a fixed G. Note that a zero-partial-correlation relationship is a property
of 3 [G].

We now introduce some definitions, necessary to make use of the theorems mentioned
above. A sequence of vertices joined by edges, in which no vertex is repeated, is called a
path. A path of the form o — ... - 3, on which every edge is of the form —, with all the

arrowheads pointing toward g, is a directed path from a to 8.

A directed cycle is a directed path from « to 3, together with a directed edge from § to

a = ... =5 B = «

In the current work all path diagrams considered will be free of directed cycles.

A vertex « is said to be an ancestor of a vertex S either if there is a directed path from

ato fB,orifa=p.

A non-endpoint vertex ¢ is a collider on a path if the edges before and after ¢ have
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arrowheads at . That is, ¢ looks like one of

or

I 1T
AN A A
T T

Otherwise it is a non-collider.
Let Z be a set of vertices in G. If « is an ancestor of any vertex in Z, then « is said to

be an ancestor of Z. A path between vertices « and 3 is m-connecting in G given Z if

1. Every non-collider on the path is not in Z, and

2. Every collider on the path is an ancestor of Z.

If there is no m-connecting path in G between « and 3 given Z, the vertices are m-~separated
in G given Z.

We now are able to state the following fact. It is proved as Theorem 1 in Spirtes et
al. [SRM*ar].! Consider a path diagram G, and any covariance matrix 3 [G] over the
variables represented by the vertices of G, induced by any set of parameters for the model
represented by G. When vertices a and 3 are m-separated in G given Z, we necessarily have
Cor (o, 8|Z) = 0. The partial correlation result stated at 1.7 on page 9 follows from this
fact.

For a more extensive treatment of graphical models with bidirected edges, the reader is

referred to Richardson and Spirtes [RS00] and to Spirtes et al. [SRM™ar].

1.4 Classes of latent models for cross-covariance

In Section 1.1 and in Figure 1.1 the symmetric rank R cross-diagonal parameterization was
presented. In this section three more classes of symmetric rank R latent models for cross-

covariance will be described and diagrammed. The four models differ only in the constraints

'In the reference cited, the term d-separation is used rather than m-separation. In the path diagrams
considered in the current work, m-separation and d-separation are equivalent.
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Figure 1.3: Path diagram representing an unrestricted rank R latent model, as described in
Section 1.4.

they place on the covariance matrix of the latent variables,

[4@ GJ
. (1.8)
G ¥

The models are as follows.

A The unrestricted rank R model, Figure 1.3 on page 14, places no constraint on ®, P,
or G other than that ® and ¥ must be positive semidefinite, and that (1.8) must be

positive semidefinite.

B The cross-diagonal rank R model, Figure 1.1 on page 10, adds the constraint that G

must be diagonal.

C The within-block diagonal rank R model, Figure 1.4 on page 15, leaves G as in the

unrestricted model, and constrains ® and ¥ to be diagonal.

D The double-diagonal rank R model, Figure 1.5 on page 1.5, combines the constraints

of the cross-diagonal and within-block-diagonal models, as its name suggests.

By definition we have BC A, CC A,D=BnC.



Figure 1.4: Path diagram representing a within-block-diagonal rank R latent model, as
described in Section 1.4.

Figure 1.5: Path diagram representing a double-diagonal rank R latent model, as described
in Section 1.4.
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Chapter 2

CURRENT FRAMEWORKS FOR CROSS-COVARIANCE PROBLEMS

In this chapter, three frameworks are discussed which are applicable to two-block prob-
lems. These are Canonical correlation analysis (CCA), Structural equation models (SEMs),
and Partial Least Squares or Projection to Latent Structures (PLS). PLS has been used
successfully on cross-covariance problems. CCA and SEMs may superficially appear to be

suited to cross-covariance problems. The reasons why they are not so suited are summarized.

2.1 Canonical correlation analysis (CCA)

CCA is a well-known method for the analysis of two-block data. Harold Hotelling published
the seminal paper in 1936 [Hot36]. In CCA, a sequence of up to min(p,q) paired N-
vectors (§,,w,) are computed. These vectors are linear combinations of the data, X and Y
respectively, and have been viewed by some as scores on latent variables. Let a, and b, be
the coefficients which define the linear combinations. They are computed as follows. Let

XM « X, YN « Y. Then
(a11 bl) «— a-rgma.xaemp,bemq Cor (X(l)a’ Y(l) b) )

When the rth pair of coefficients are computed, the following vectors, satisfying the criterion

of maximal correlation, are also computed:

& « XMa, |
wr <« YUp, .

Rank-one projections onto these vectors are computed:

X)) « & (€7e,) T eTx)

?(r)(w,.) “— wy (wfwr)—l w?Y(') ,



and residual matrices are computed by subtraction of the rank-one projections:

X+ o x0 -,

YO+ o y® 9Ty

In general, a, and b, are chosen to maximize correlation as follows:
(ar,b;) ¢ argmaxuemr pems Cor (Xa, Y©p) .

Although &, and w, are sometimes viewed as scores on latent variables, the coefficients
a, and b, which link them to the data possess no interpretation in terms of the parameters
of the paired latent model intré)duced in Section 1.1. In particular, these coefficients are
not consistent for the saliences of the paired latent model. To see this, consider the case
where there is just one Y variable (g = 1), and recall that in this case CCA is equivalent to
-multiple regression of Y on X. Let u signify the vector of saliences for the X-block under
the paired latent model. Under this model, we have the following expression for the pxl

cross-covariance:
Yxy = du,

so that the salience vector u is proportional to the cross-covariance. The CCA coefficients,

on the other hand, in this case are
a = B Bxy

by the familiar regression formula. Thus the canonical correlation coefficients are consistent
for the paired latent model saliences only when the within-block dispersion matrix is a scalar
multiple of the identity.

CCA is discussed in Chapter 3 and in Wegelin [Weg00], in the context of PLS, the

method which will be introduced in Section 2.3.

2.2 Structural Equation Models

The latent models for cross-covariance introduced in Section 1.1 belong to a large class called

Structural Equation Models (SEMs). SEMs can have any number of latent variables and any
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set of linear relationships between the latent variables. The paired latent model, introduced
in Section 1.1, is therefore a small subset of these models. Even if we consider only those
SEMs with two latent variables and one block of indicators for each latent variable, however,
the latent model of the current work forms a small subset of this class. This-fact is due to
the constraints which define this model, specified in Section 1.1, page 3. We noted on page

8. Section 1.1 that

o After adjusting for (or conditioning on) the explanatory latent variables, the partial
correlation of the X block with the Y block is zero. Under the assumption of joint
multivariate normality, this means that indicators in different blocks are conditionally

independent given the latents.

e On the other hand, indicators in the same block are correlated, even after adjustment

for the explanatory latent variables.

Structural equation models typically do not have this property. For instance, Bollen [Bol89]
contains more than 60 path diagrams, several of which are of the two-block, two-latent-
variable variety. None of these has the covariance structure of the current model class.
Although the class of SEMs is much bigger than the current model class, the kind of
SEM encountered most frequently in the literature is in an important sense more restricted
than this class, because constraints are placed on the within-block covariance. This can
be seen by an examination of the models in Bollen’s book. In many of these, indicators
within a block are assumed to have independent errors. When correlation is allowed within

a block, typically it is of a kind such that

e some indicators of a block are constrained to be independent of each other, in spite

of the correlation allowed between other indicators in the same block, and/or

e some direct dependency exists between the blocks—that is, dependency which cannot

be removed by conditioning on the latent variables.

For the kind of problem which motivates the current work, i.e., for a cross-covariance

problem, it is unrealistic to place constraints on the within-block covariance. Take for
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instance the example from behavioral teratology. There is no reason to believe that a set of
latent variables which account for the covariance of the 13 measures of maternal drinking
with the 11 IQ subtests will also account for the covariance of the 13 measures of maternal
drinking with each other.

Software packages exist for performing maximum-likelihood estimation in general struc-
tural equation models. Three of these are LISREL, EQS, and AMOS. We saw in Section 1.1
that cross-covariance problems are characterized by a focus on XTY and a lack of interest
in the within-block covariance. The latent model class of interest in the current work is
specified with this in mind. No constraint was placed on within-block covariance, and the
model was so constructed that t;he X and Y blocks are conditionally independent of each
other given the latent variables. A method for data analysis in the context of this class
should exploit this special covariance structure. LISREL, EQS, and AMOS, being general
tools, do not.

LISREL, EQS, and AMOS work in the following manner. The user specifies a set of
linear relations between the observed variables (the columns of our X and Y) and a set of
hypothesized latent variables. With EQS the user also specifies a starting point for iteration.
The software generates a likelihood, and then uses a standard optimization routine to seek
a local maximum. EQS uses “a modified Gauss-Newton method” (Bentler [Ben89] page
228).

LISREL and EQS are not guaranteed to converge. Convergence depends on the starting
value. The experience of the author has been that it is extremely easy to furnish a dataset
and a starting value for which EQS will not converge. Attempts to apply EQS to two
datasets suited to a two-block PLS analysis, one consisting of simulated data and one derived
from standard multivariate datasets from the S-PLUS libraries, both led to convergence
difficulties.

In their convergence difficulties, LISREL and EQS differ radically from PLS, a method
which will be introduced in Section 2.3. These difficulties are not surprising, in view of the
fact that these software packages were not designed specifically for the two-block case, but
rather for a much more general class of problems.

For further discussion of SEMs the reader is referred to Steiger [Ste01].
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2.3 Partial least squares (PLS)

Partial Least Squares (PLS) is a class of methods for analyzing data which naturally can be
divided into multiple blocks of variables observed on the same units. PLS is not based on
a probability model. In the words of its inventor, Herman Wold, PLS is “distribution-free™
[Wol85]. Given any two-block dataset as described in Section 1.1, PLS methods exist which
can express the dataset in terms of pairs of latent variables, linear coefficients linking the
data to the latent variables, and errors. Coefficients computed by PLS are numerically
stable in the presence of partial or complete collinearity. In the example from behavioral
teratology on page 5, Section 1.1, a PLS method was used to estimate latent scores and
saliences.

PLS methods are discussed in detail in Chapter 3. The PLS methods of greatest interest
in the current context will be referred to as PLS-W2A and PLS-SVD. Precise statements of
the algorithms are found in Chapter 3. The method used in the example from behavioral
teratology was PLS-SVD.

An analogy exists between paired latent models for cross-covariance on the one hand and
two-block PLS methods such as PLS-W2A and PLS-SVD on the other. Both model cross-
covariance by latent variables. The equations by which PLS-SVD and PLS-W2A express the
data are exactly those which appear in the statement of a latent-variable model, Equations
(1.3) on page 3. PLS-SVD is consistent for the cross-covariance parameters, A, B, and
G, of the “svd” variant of the paired latent model. (Recall that this variant is deﬁned by
adding, to the definition of the paired latent model, the additional constraints that G is a
diagonal matrix and that ATA =T and BTB = I.) This is a consequence of the continuity

of the singular value decomposition.

PLS is not an estimator of the entire parameter set in the paired latent model.
PLS is an empirical method, of course, not a statistical model, and thus the analogy is not
complete. Some methods which originated apart from a statistical model, however, turn
out to be method-of-moments estimators for statistical models. For instance, the sample

mean and variance are moment estimators for the parameters of the multivariate normal
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distribution. PLS does not stand in an analogous relationship to the paired latent model.
This is because the coefficients computed by PLS pertain only to Cov(X, Y), not to Var(X)
or Var(Y).

Although PLS is not a statistical model, it is sometimes said thatthe vectors of latent
scores for a block “model” an interesting subspace of the column space of that block. This
is merely another way to say that these vectors form a basis for that subspace. This sense
of the term “model” is different from the statistical sense. The following example serves to
underline this. First observe that, in a full-rank PLS analysis, as long as XTY is of full
rank the block with the minimum number of variables is “modeled” without error. That is,
the vectors of latent scores for that block form a complete basis for the column space of that
block. For instance, if p < g, X7Y is of full rank, and the analyst, using either PLS-SVD
or PLS-W2A, computes p pairs of latent score vectors, then X can be exactly recovered (up
to rounding error) from the p vectors of latent scores and the p salience vectors for the X
block. Let use return, however, to the statistical sense of the word “model.” There is no
reason that a paired latent model with p < ¢ and ¥ xy of full rank must specify a fully
deterministic relationship between the random vector x, and its latent variable £,,. This

would, of course, mean an identically zero error, €, = 0.

Since PLS is not an estimator for the paired latent model, in particular we cannot use
PLS to provide starting points for an iterative maximum-likelihood algorithm designed for
structural equation modeling. Suppose we take, as estimates of within-block variance of

the latents ¢ and ¥, the sample variances and covariances of the PLS latent scores. These

values may fail even to be feasible, in that they may yield a matrix which fails to
D v

be positive semidefinite. The reason for this is explored on page 23. Finding a feasible value
is not trivial. In the current work, Chapters 4 and 5, algorithins will be presented by which
estimates of within-block parameters can be obtained, starting from a SVD decomposition

of XTY such as is used in the PLS-SVD algorithm.

We might shift our attention from the sample dispersion to the population dispersion.
Then we might ask ourselves whether, given a population dispersion for the indicators, a

PLS method might be used to find feasible parameters for the paired latent model. This



iIs a continuation of the foregoing theme, and the answer again is no. The matrices of
latent scores and errors computed by PLS methods are not guaranteed to satisfy constraints
analogous to the population constrainits of the latent model. The error variables for a given
block are guaranteed to be uncorrelated with the latent variables for that block. That is,
E L Eand Z L . The errors will not, however, in general be uncorrelated with the matrix
of latent variable scores for the other block, or with the error matrix for the other block.

That is, in general

E8 £ o
78 2 o (2.1)
E'Z £ 0.

An example with V =3 and p = ¢ = 2 is in Section 2.3.2. As a consequence of (2.1), the
coeflicients linking X and Y to the latent variables do not provide a decomposition of the

cross-covariance.

PLS and likelihood. Since PLS is not linked to a probability model, no unified set of
techniques exists for performing inference on the coefficients computed by the algorithm.
Some researchers (for instance, Sampson et al. [SSBB89] page 482 and Streissguth et
al. [SBSB93a] page 83) advocate use of the bootstrap for performing inference. Cross-
validation has been used for model selection [HHMT97]. Others have proposed approaches
based on a multivariate normal likelihood (for instance Hoskuldsson [H88] and Holcomb et
al. [HHMT97]). In spite of the assumption of multivariate normality that underlies some
of these approaches, however, none of them explores the full potential of a parametric,
likelihood-based framework.

The lack of principled methods for model selection and verification in the context of
PLS analysis is a serious shortcoming. In a properly specified model, PLS saliences are
stable, even when one or more indicators is removed from the analysis and saliences are
recomputed. If the model has been incorrectly specified, however, saliences will not in
general have this property. Thus a misspecified model can produce misleading results. The

effect of misspecification on saliences computed by PLS is examined further in Section 2:3.1.
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PLS and correlation. PLS underestimates the between-block, within-pair correlation of
the latent variables. Consider, for instance, the SVD model when rank R = 1. (This model
is defined at page 3, Section 1.1.) The population correlation is
d -
p = \/TT/J .

The PLS estimate of correlation is computed from the vectors of latent scores. Let u and
v be the population saliences for the X- and Y-blocks, d the covariance of the latents.
(Recall that in the SVD model we use u and v for the population saliences, as stated on
page 5.) Let their PLS estimates be U, V, and d. Since these come from the singular value
decomposition, they are known to be numerically stable. They are also consistent, as argued
on page 2.3. The PLS estimate of the variance of the latent for the X-block is

3 % (X7 (X) (22)
ul’'s xxu

u? (¢uuT + 2“) u

>
o lé I

¢ + uTEeeu 3

similarly 'zz; — P + vTE«v as N approaches infinity. There is no reason for the second
term in these expressions to be close to zero. The PLS estimate of correlation between the

latents is
(2.3)

N-ooo d

Spearman’s correction for attenuation: Readers will note that the bias toward zero
of p in (2.3) is nothing but the “attenuation” first discussed by Spearman [Spe04]. This

may be seen even more explicitly in the fact that we have the following PLS-SVD estimates



24

of the latent scores for the nth observation:

——

€n = xid = €£,+€lt  and
Gn = WIV = w,+(Iv.
Corrections for attenuation, resulting in disattenuated correlations, have been used
since Spearman’s seminal article. The original formula is

Cor(X,Y)
V/Cor(X, X")Cor(Y,Y")

Cor(T;,T,) =

In this formula, T, and T, are true, unobservable scores. What are observed are X, XY,

and Y’', where

X=T,+F, X =T, +F,

Y=T,+2, V' =T, +2;

E,E',Z,Z' are independent of each other,

Var(F) = Var(£') , and Var(Z) = Var(Z') .

The variables X and X' are called parallel measurements. The quantities Cor(X, X')?
and Cor(Y,Y")? are “reliabilities,” or squared correlations between observed scores and true
scores.

Corrections for attenuation have been used since Spearman’s seminal article, yet they
are controversial and fraught with difficulty. Since reliabilities themselves must be esti-
mated, disattenuated “correlations” exceeding unity are common. In the rank-one paired
latent model, however, explicit disattenuation methods, with their attendant estimation of
reliabilities, are unnecessary. It will be seen in Section 4.3.3 that p can only be identified up
to a lower bound on its absolute value; a correlation of 1 or —1 is always feasible. This is
true even if the population dispersion of the indicators, X, is known. The lower bound on
p is obtained directly from the dispersion of the indicators, without computation of latent

scores.



Figure 2.1: A misspecified model, as discussed on page 25. The analyst believes that the
data are properly divided into two blocks, X.;,...,X.s and Y.,..., Y4, and that the cross-
covariance is of rank one. A direct dependency exists however between X 5 and Y .4, making
the rank-one model inappropriate.

There is an extensive literature on attenuation and on corrections f;)r attenuation. Spear-
man’s seminal article [Spe04] was reprinted in 1987 [Spe87]. Attenuation is mentioned by
Kendall and Stuart [KS67], page 327, and by Fisher and van Belle [FvB93], page 385.
Lord and Novick provide a mathematical justification for the correction for attenuation
[LN68]. The current exposition is obtained from that reference. Muchinsky reviews the
issues and controversies surrounding disattenuation, including alternate formulas [Muc96].
Zimmerman and Williams use simulation to investigate the properties of the disattenuated

correlation under various conditions [ZW97].

2.3.1 An Ezample of Misspecification

It was stated in Section 2.3 that the application of PLS under a misspecified model can
produce misleading results. In the current section we look at an example. Consider the
covariance structure specified in Figure 2.1 on page 25. Without the relationshib indicated
by the broken line, the data satisfy a rank R = 1 paired latent model. Suppose however
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that the relationship indicated by the broken line is included. Then

— pu —~ -

0 0
0 0
XE = ubn+ | 0 |wnt]| 0| (Co)a+en B
0 0
[ v | | 1]
and
C o] o]
0 0
Cov (X7, YT) = duvl+ | 0 [vT+ | 0 | Cov((¢,)a:C,)
0 0
[ Va4 [ 1]

0
0
= duvl + | g (U4VT +(Z¢e)y) s
0
1

where (¢,,)4 is the fourth component of ¢,,, and 3¥¢¢ = Var(¢,). The rank-one PLS model

is no longer appropriate, since this is a rank-two matrix.

Graphical Evaluation of Salience Stability. In the misspecified model we cannot
expect that saliences will be stable. An exa.rpple was simulated to demonstrate this. Two
thousand observations were simulated from the properly specified model discussed on page
25. This dataset was used as input to the two-block Mode A PLS algorithm with R, the
number of pairs of latent variables, equal to one, and scaled saliences were computed for
the full set of indicators. (The two-block, Mode A PLS algorithm is discussed in detail in
Chapter 3. In the R = 1 case, the saliences computed by this algorithm are simply the
scaled left and right singular vectors of XTY corresponding to the largest singular value.)

Then one by one each of the indicators was removed from the dataset, leaving the others in,
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Figure 2.2: Leave-one-out salience plot for a correctly specified model, as discussed in
Section 2.3.1.

and the scaled saliences were recomputed for the remaining indicators. Finally the scaled
saliences were plotted as a function of “model.” “Model” here means which indicator has
been removed before computation of PLS saliences. The “full” model is the model when all
indicators are included. The results for the properly-specified model may be seen in Figure
2.2 on page 27. When indicators for the Y block are removed, saliences for the X block
change, but retain the ordering of the full model. Similarly when indicators for the X block
are removed, saliences for the Y block change but retain the ordering of the full model. The
movement of saliences for a given block is almost imperceptible when indicators for that

block are removed.

When the model is incorrectly specified, however, removal of an indicator can change
the order of the saliences. This can be seen in Figure 2.3 on page 28. With X.5 in the
model, the salience for Y 4 is less than the saliences for Y.; and Y.3. When X5 is removed,

the salience for Y .4 becomes greater than these saliences.
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Figure 2.3: Leave-one-out salience plot for a misspecified model, as discussed on page 26.

2.3.2 An ezample where the analogy between PLS and the latent-variable model breaks

down

In Section 2.3 it was claimed that “the matrices of latent scores and errors computed by PLS
methods are not guaranteed to satisfy constraints analogous to the population constraints

of the latent model.” In this section a counterexample is given which proves the claim.

Suppose
01 -3 —1]
X = 01 and 'Y = 3 5
1 1 0 ——2J

Both matrices are of full rank, but the first column of Y is orthogonal to both columns of
X. Thus the cross-product is of rank one:
0 -2 o~
XTY = = ODV’
0o 2
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where

and

This means that the PLS latent score matrices will be of rank one:

-1//2
E = XU = | -1/v2
0
and
1
Q =YV = | 5| ,
2

so that the residuals will be nonzero. Regressing X on Z we obtain the following coefficients

and residuals for X:
00
° E 00
-2 ’
Regressing Y on € we obtain the following coefficients and residuals for Y:

-24 0
~ —0.6 ~
A = [ } » L4 = 00

-1
1.2 0

=)
I
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We confirm that the decomposition is correct:

[ _1/v3 00
S4B = | yvi ([0 ~va]+ o o
] 0 11 )
[0 1 0 0
= lo1|+]0o0
00 11
- X
and
[ 1 24 0
QA" +Z = | _s [-06 —1]+ 00
|2 12 0
[ 06 —1] [ -24 0
= 3 5|+ 0 0
12 -2 12 0
- Y.

The residuals for the X block are not orthogonal to the latent variable scores for the Y
block, the residuals for the Y block are not orthogonal to the latent variable scores for the

X block, and the residuals for the the two blocks are not orthogonal to each other:
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2.4 Conclusion

Three classes of methods are currently in use which can conceivably be applied to cross-
covariance problems. Of these, canonical correlation analysis (CCA) anid a class of methods
designed for structural equation models (SEMs) are unsuited for cross-covariance problems.
Partial Least Squares, alias Projection to Latent Structures (PLS), has been used success-
fully on cross-covariance problems. PLS has hitherto not been linked to a statistical model,

however.

In the current work a class of latent-variable models, the paired latent models, is spec-
ified. This class has the property that the rank-one PLS saliences are consistent for the
subset of the parameters of the rank-one paired latent model which govern the relationship
between the latent variables and the indicators. PLS is not a way to obtain values for the
full parameter set, however. In particular PLS does not compute values for the parameters
which govern the within-block covariance. Also it does not provide a consistent estimate
for the within-block correlation p; between the kth pair of latent variables. In the current
work a method is presented by which any distribution in the rank-r reduced-rank-regression
model (equivalently, a rank-r constraint model, as defined on page 2 in Section 1.1) can be
parameterized by a rank-r paired latent model. Since it starts with the singular value de-
composition of X xy, this method may be seen as an extension of PLS. Furthermore, by

linking PLS to the paired latent model we obtain a consistent estimate for p,.

We end this chapter by noting a recent article in the chemometric literature. Burnham et
al., writing in the Journal of Chemometrics, say: “...to the best of our knowledge, there is
no research that has dealt with PLS from the standpoint of a parameter estimation method
for a st;atistica.l model. If PLS could be derived as a method arising from the application of
a reasonable statistical parameter estimation technique to a believable statistical model for
the data, this would lend some strength to the argument that it is a good choice of parameter
estimation method for such data” (page 50 of [BMV99]). Burnham et al. then express two-
block asymmetric PLS as maximum-likelihood estimation for a family of statistical mode_ls,

- but their family contains no latent variables. Their analogue to the latent variables £ and
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w of the current work is a fixed parameter vector T, satisfying

X = TP+E,
Y = TQ+F.

Thus, as the number of observations increases so does the number of parameters. The
parameter set in the current work, on the other hand, does not change with the number of
observations. Instead, pairs of latent variables are postulated, and a method is presented by
which the parameters governing their distribution may be estimated. Since the number of
parameters remains constant as the number of observations increases, there is the possibility

that standard asymptotic methods may be used to gain insight into this model family.
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Chapter 3

SURVEY OF PARTIAL LEAST SQUARES (PLS) METHODS, WITH
EMPHASIS ON THE TWO-BLOCK CASE

3.1 Abstract

Partial Least Squares (PLS; the acronym has also been explained as “Projection to Latent
Structures” [BEE98]) is a class of techniques for modeling the assaciation between blocks
of observed variables by means of latent variables. Originated by Herman Wold in the
1970’s, PLS is important in many scientific disciplines, including psychology, economics,
chemistry, medicine and the pharmaceutical sciences, and process modelling (Rannar et
al. [RLGWY4]).

PLS has many variants. The algorithm can be run in two modes, called A and B. It can
be applied to data that are divided intoe two or more blocks. The general algorithm due to

Wold can be followed, or it can be modified.

Wold stated his general algorithm in terms different from those customarily used by
statisticians. In the current work the algorithm is placed into more familiar terminology and
notation, and the two-block case is discussed. Wold’s two-block Mode A PLS (PLS-W2A)
is stated. Its properties, and the properties of the coefficients it computes, are examined in
detail. In particular PLS-W2A is shown to be a special case of Wold’s general algorithm.
Another two-block Mode A variant, PLS-SVD, is shown to depart from Wold. PLS-SVD
has been used for both modeling (Sampson et al. [SSBB89], Bookstein et al. [BSSB96}) and
for prediction (Tishler and Lipovetsky [TL00]). PLS-SVD is also called Robust Canonical
Analysis, Intercorrelations Analysis, and Canonical Covariance (Tishler et al. [TDSL96]).
The article by Tishler et al. does not refer to the work of Sampson and Bookstein regard-
ing PLS. Differences between the coefficients computed by PLS-W2A and PLS-SVD are

discussed.
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PLS-W2A and PLS-SVD are contrasted with another two-block variant, PLS2. which
appears in the chemometric literature and is used for prediction. PLS1, another variant
which appears in the chemometric literature, is shown to be a special case of PLS2 with
one of the blocks consisting of a single variable. Canonical Analysis, also called Canonical
Correlation (CCA), an older approach to the modeling of association between blocks of data,
Is equivalent to Mode B of Wold’s algorithm. The properties of CCA are contrasted with
those of PLS-W2A and PLS-SVD. Finally, an inner loop which appears in some statements
of the algorithm is nothing but the well-known power method for computing the singular

vectors of a matrix. A detailed proof of this fact is presented.

3.2 Framework

Suppose we have two matrices, X and Y, respectively N x p and N X g, where the columns
correspond to variables and the rows to observations. Two-block Mode A Partial Least
Squares is a class of techniques for modeling X7Y, the cross-covariance of X and Y. by
means of latent variables.

Partial Least Squares (PLS) is an important tool in many scientific fields, including
psychology, economics, chemistry, medicine and the pharmaceutical sciences and process
modelling. (Rannar et al. [RLGW94] p. 111.) This widespread use is explained by the fact
that PLS has many attractive properties. The coefficients computed in a PLS analysis are
well-defined and easy to interpret. PLS is especially useful when the columns of X or of Y
are collinear or nearly collinear, or when there are more variables than observations p>N
or ¢ > N), since few other methods are available in such a case. The PLS algorithms
which are used in the “two-block, mode A™ case (to be defined below) are numerically
stable. Provided the singular values of XY are distinct, these algorithms are guaranteed
to converge. As we have seen in Chapter 2, PLS compares favorably with other techniques
which might be used for modeling association between two blocks of variables, such as

canonical analysis, multiple regression, and the software packages LISREL and EQS.

An Example from Behavioral Teratology In a study of the relationship between fetal
alcohol exposure and neurobehavioral deficits reported by Sampson et al. [SSBB89] and by



Streissguth et al. [SBSB93a], the X.; are 13 different measures of the mother’s alcohol intake

during pregnancy, and the Y ; are 11 IQ subtests.

Path Diagrams Path diagrams are useful for displaying graphically a set of hypothesized
relationships between variables [SRM™ar]. In particular, they are useful for diagramming
the set of assumptions which justifies the application of a PLS analysis to a specific dataset.
A path diagram for the example from behavioral teratology may be found in Figure 3.1
on page 36. Observed, or indicator, variables are enclosed in rectangles, latent variables
in ellipses. A double-headed arrow between two variables indicates a non-zero correlation
between their errors. A single-headed arrow from one variable to another indicates that an
equation is hypothesized for the first variable, and that there is a non-zero coefficient for
the second variable in this equation. The entire set of independence and conditional inde-
pendence relationships between the variables represented by the vertices of a path diagram
can be determined from a graph. For details the reader is referred to Section 1.2.

Several different kinds of path diagrams appear in the literature, following different
conventions. No attempt will be made to survey them. It should be noted, however, that the
path diagrams that accompany Herman Wold’s general PLS algorithm, an example of which
is displayed in Figure 3.2 on page 57, do not follow the convention stated here. The reason
for this difference is that the path diagram discussed in this section specificies all dependent
relationships, or nonzero correlations, between the variables in question. H. Wold’s path
diagrams, on the other hand, at least those which accompany his 1985 article [Wol85],
specify only those relationships which will be translated into instructions for the algorithm

which he defines in that article.

3.3 Background and Overview

Many variants of PLS appear in the literature. Herman Wold used the term first, in the
context of structural equation models [Wol75]. A survey and history of PLS methods
may be found in Geladi [Gel88]. Wold’s method is not a single algorithm but a class of
algorithms, encompassing arbitrary numbers of blocks of indicators with their associated

latent variables, arbitrary linear relationships between the latent variables, and two Modes
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Latent variable for
alcohol exposure

Latent variable for IQ

Thirteen different Eleven IQ subtests on
measures of mother's child at age 7
drinking during

pregnancy

Figure 3.1: Path diagram for a study of fetal alcohol exposure and IQ. Path diagrams are
introduced in Section 1.2. Enclosed in ellipses are latent variables £ and w. The X and Y
variables, enclosed in rectangles, are observed or indicator variables. The double-headed
arrow between §{ and w indicates a non-zero correlation. The single-headed arrows from
the latent variables to the indicators indicate there are non-zero coefficients for the latent
variables in the equations for the indicators. The lack of an arrow, or edge, between £ and
Y.: means that any dependence between these variables can occur only through the other
variables. The fact that the removal of w from the diagram would result in the lack of
a path between £ and Y.; means that £ and Y.; are conditionally independent given w.
The doubleheaded arrows between the X variables means that they are not conditionally
independent given £. Similarly the doubleheaded arrows between the Y variables means
that they are not conditionally independent given w.



in which computation can be performed, Mode A or Mode B [Wol85]. The algorithms can
be computed in either of the Modes or in a combination of the two. Coefficients computed
by an algorithm run completely in Mode B are interpreted in a fundamentally different way
from coefficients computed by an algorithm run completely in Mode A.,

The current work focuses on what is called, in the context of Herman Wold’s work, “Two-
Block Mode A Partial Least Squares.” Here it will be referred to as PLS-W2A (Wold’s
Two-Block, Mode A PLS). This is first described in detail, and its properties are discussed.
Then Wold’s original, general class of algorithms is described in detail. Then several more
algorithms in the PLS class, and their differences from PLS-W2A, are discussed. The
algorithms are placed, as much as possible, into a common notation to facilitate comparison.

The following points are made.

e Wold’s algorithm, applied to two blocks, but in Mode B rather than Mode A, is
equivalent to canonical correlation analysis (CCA). CCA coefficients are interpreted
in a fundamentally different way from PLS-W2A coefficients. Although CCA belongs
to the class of PLS algorithms, for historical reasons the term PLS has come to be
associated with Mode A algorithms.. Thus two-block Mode B PLS will be referred to
in the current work as CCA, not as PLS. CCA, and its differences from PLS-W2A,

are discussed in Section 3.11.

e In some contexts, Mode A algorithms are reported without use of the term “PLS.”
For instance, Tishler et al. use the terms “Intercorrelations Analysis,” “Canonical
Covariance,” and “Robust Canonical Analysis” [TDSL96] [TL00] to refer to PLS-
SVD: Section 3.6.

e PLS-SVD has been used by Sampson, Bookstein, Streissguth et al. in the study of
behavioral teratology [BSSB96]. In this application it is used for modeling, not for
prediction, and the PLS-SVD coefficients are interpreted in a way similar to those of

PLS-W2A: Section 3.6.

e PLS-SVD can also be used for prediction, as shown by Tishler and Lipovetsky: Section



3.6.

¢ In both PLS-SVD and PLS-W2A, there is nothing in the algorithms themselves to
prevent the number of pairs of vectors of latent scores computed from exceeding the
rank of XTY. Although this may not occur in practice, this fact should be noted in
a rigorous study of the algorithms. In PLS-SVD, if § = rank (X7Y), it is only the

first S pairs of latent score vectors which have nonzero covariance: Section 3.7.

e PLS2 and PLS1, variants of two-block Mode A PLS which appear in the chemometric

literature, are used for prediction: Section 3.9.

e PLS1, the special case of PLS when the Y block consists of a single column, is a

regularization technique in the same class as ridge regression: Section 3.9.

e PLS-W2A, PLS-SVD, PLS2, and PLS1 are equivalent when just one pair of latent
variable scores (£ and w) is computed. The differences occur in cases when the outer

loop exceeds one iteration: Section 3.10.
In addition we shall deal with the following more technical issues.

e We shall confirm that PLS-W2A is a special case of Herman Wold’s original algorithm:
Section 3.8.5.

e Wold’s algorithm can use as input either the raw data (X and Y in the two-block
case) or what Wold calls product data (XTY in the two-block case), and the result is

the same up to roundoff error: Section 3.8.4.

e Frequently in the literature the computation of the first pair of singular vectors of the
current cross-product matrix (Step 3 on page 41, in the PLS-W2A algorithm) is not
stated in terms of singular vectors; no mention is made of singular vectors or of the
singular value decomposition. Instead this computation is stated as an explicit inner

loop. We shall see that an a prior: starting value exists for this inner loop such that
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it is guaranteed to converge, and to yield the first pair of singular vectors, as in Step

3 of the PLS-W2A algorithm: Section 3.12.

3.4 Framework for Two-Block PLS

Let X and Y be data matrices, respectively N x p and N x q. We use PLS-W2A when

e we think that the X variables (the columns of X) serve as “indicators” for one or
more latent variables, say &, and the Y variables serve as “indicators” for the same

number of latent variables, w,,

e we are primarily interested, not in the covariance matrix of the X variables or the

covariance matrix of the Y variables, but in the cross-covariance of X and Y, and

¢ we wish to model the cross-covariance by pairs of composite scores on hypothesized

latent variables, say

(§1,w1),---, (§r,wr)-

e we wish the set {£,,...,&R} to be orthogonal, and we wish the set {w,...,wp} to

be orthogonal.

Note that each distinct value of R corresponds to a different model. Thus a decision re-
garding the number of pairs of latent variables to compute constitutes the selection of a
model. The value of R has been called the rank. Nothing in the PLS-W2A or PLS-SVD
algorithms themselves prevents the number of pairs of latent variables from exceeding the

rank of XTY, however, as we shall see in Sections 3.5.2 and 3.7.

On the absence of “hat” notation in this chapter. A difference exists between the
notation in this chapters and in the other chapters of this thesis. In the rest of this thesis,
the “hat”™ notation, such as u and a, may be used to represent estimates of parameters
and latent variable scores. This chapter is not concerned with statistical models, however.
All quantities represent either data, as in the case of X and Y, or quantities computed the

from the data, for instance &; and w;.
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3.6 PLS-W2A

The data are as in Section 3.3. PLS-W2A computes a sequence of pairs of vectors of latent

scores

(glvwl)v'--a (ngwR)

such that the sets

{€1.---,€r} and {wy,...,wr}

are orthogonal. For any value of r between 1 and R, the sets

{€1,---.&} and {wy,...,w,}

span the “most interesting” subspaces of the ranges (column spaces) of X and of Y. The
subspaces are “most interesting” not from the point of view of accounting for X7X or YT,

but from the point of view of accounting for XTY. We have
dl = Cov({l,wl) = max“u”=||vn=l COV(XU., YV) (3~1)

Let u; and v; be the vectors of coefficients which maximize (3.1). Then by a well-known
property of the singular value decomposition we know that dlulv'{ is the best rank-one
approximation of X7Y in the least-squares sense (Harville [Har97] page 556).

To obtain the subsequent pairs of latent vector scores,

(62’ w2)7 ey (€R1 OJR),
a sequence of residual matrices

{(x(r),Y(ﬂ) cr= 1,...,R}

is computed by subtracting, at each step, from the current versions of X and Y, rank-
one approximations based on the latent vector scores already computed, and repeating the

optimization in (3.1) with X and Y replaced by X" and Y. Details are in Section 3.5.1.
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In addition to latent variable scores, PLS-W2A yields vectors of coefficients u, and
vr, 7 = 1,..., R. These coefficients, called salie nces, are interpretable in relation to the

residual matrices. We have

[ Uy, ] [ Cov (X(lr),w,.) -
u, = x
| urr j Cov (X(;),wr)
vy = Uflr x ( ({)’ r)
| o (¥.6) |

vJr

The scalar u;, is a measure of the importance of X(: ) in relation to the latent variable for

the Y() variables. The scalar vjr 1s interpreted im an entirely symmetric manner.

3.5.1 PLS-W2A Algorithm

In order that the coefficients may be readily interpreted, we usually assume that the columns
of X and Y have been centered. In addition, we assume that within each block, the variables
are measured in the same units. (In practice, the variables may have no intrinsic units. In

this case they may be simply standardized so that each column has unit norm.)

1. 7« 1.

2. X X,
YN v,
T
3. Compute the first pair of singular vectors of (X(T)) Y(). These are the singular

vectors associated with the largest singular walue. Let u, and v, be respectively the

left and right vectors of this pair.

The following convention makes this step unambiguous:

u,T.'ur = 1, va,. = 1, and

(ur); > 0, wherei = argmax|(u,);| .
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4. £, « Xy,
wr YOy

5. Regress X(™) on & Y on w,, obtaining rank-one approximations of-the data ma-

trices:

X7 = ¢ (7e,) T eTx

¥ (w,) = w, (wlw,) " WTY®)

It will be useful to write the regression coefficients explicitly:
¥ = (€7¢,) " €Tx0

67 = (wlw,) ' WwTY™

The vectors <y, and §, will form the columns of matrices " and A. Using this notation,

we have

X (e,) = €T

()
Y (wr) = w67
6. Subtract the rank-one approximations to obtain remainder matrices:

X0 X0 - R(g,) = X0 — .47

Y+ o y(r) _ ?(r) (wr) = Y — w, 6T

7. If

o (X(r+1))TY(r+1) —~ 0, or

e If a decision has been made that the model’s dimension should not exceed the

current value of r,

(a) R « r. This is the rank or dimension of the PLS model.

(b) Halt and exit.
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Else continue.
8. r—r+1

9. Go to Step 3.

Inner and Outer Loops. For purposes of comparison with Herman Wold’s original PLS
algorithm and with other PLS variants, we should note that the above algorithm contains

two loops, one nested within the other.

e The outer loop begins at Step 3 and ends at Step 9. This loop is indexed by r. The
number of times we iterate through this loop is equal to the dimension or rank of the

PLS model we are calculating.

e The computation of singular vectors at Step 3 is a concise statement of a procedure
which appears as an inner loop in Herman Wold’s general algorithm (Step 7 on page
54). As we have noted on page 3.1, this inner loop is simply the power method for
computing singular vectors. Thus we may think of the inner loop as being implicit
at Step 3 of the PLS-W2A algorithm. Frequently in the literature the inner loop is

stated explicitly.

3.5.2 Properties of PLS-W2A

We have decomposed X and Y by expressing each as the sum of mutually orthogonal

rank-one matrices, plus a residual:

=~ ~(R
X = X% +...+X (g + x®HD
& +-.- + EpvR + XAHY
= Er’ +x(R+1)
and > (3.2)
Y = ¥ +...+ TP wp) + Y&
= w187 +... + wpdg + Y(R+D
QAT 4 Y(R+1) )
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where possibly X(7+!) = 0 or Y(&+1) = 0. The decomposition is unique, provided we agree
on a convention such as is stated in Step 3.
The rank-one approximations of X are mutually orthogonal, and the rank-one approxi-

mations of Y. are mutually orthogonal: -

[((X7)) &e) = veeqT
=0
r#s= ¢ and > (3.3)
(?"’(w,))T?(s’(ws) = wlw,sT
§ ' =0 )

by the orthogonality of the latent scores, so that =T = and QT are diagonal. A well-known

property of linear regression gives us

(7)) x© = o

(7n) Y& = o o

r<s=
that is, the rank-one approximations are orthogonal to the residual. In general neither I’
nor A is orthogonal, and in general ZT€} is not diagonal. This may be seen in the example
on pages 45 to 46.
T
If the algorithm continues long enough, the condition (X("“)) YO+ = 0 in step 7

will eventually be satisfied, so that the cross-product of the residual matrices equals zero:
T
(X(R+1)) Y&+ - . (3-5)

This is because the operation by which the matrices are updated at each iteration guarantees

that

rank (x(f+1)) < rank (x(')) —1 and
rank (Y(r'*'l)) < rank (Y(T)) -1.

The algorithm cannot continue beyond min (rank(X), rank(Y)) iterations because at that

point at least one of X("+1) and Y +1) would equal zero. It does not however follow that



either of the residual matrices must be zero. Consider for instance the centered matrices

2 0]
X = -1 and 'Y = 1
~1 -1 -

Here XTY = 0, so that the algorithm has nothing to do. The residual matrices equal X
and Y.

The number of pairs of vectors of latent scores, R, can exceed rank (XTY) . For instance,

let
01
X = 01
1 1
and
-3 -1
Y = 3 5 3
0 -2
so that
0o -2
xXTy = ,
0 2

of rank one. Although an example could be constructed with centered matrices, for ease of

exposition we apply the algorithm to uncentered matrices. After the first iteration, we have

00
X(2) = 0 0 3
1 1
-24 0
Y(z) = 00 1

1.2 0
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and

T _ 1.2 0
(X(2)) Y (2) [1-2 OJ

also of rank one. An additional iteration yields

—--L 0
v2 10
= = -1 =Tz =
= 75 0 , so that 0 2 s
0 —Vv2
-06 -1
A = )
-1 0
1 2.4
T 30 0
Q = -5 0| ,sothat Q@'Q = )
0 7.2
2 —-1.2

and the residual matrices are zero. The reader may check that ZEI'T = X and QAT = Y.
In spite of the fact that rank (XTY) = 1 and rank (ETQ) = 1, both pairs of latent scores

have nonzero covariance:

TQZ

1]

2v2 —-1.22
—2v3 122 |

This example also serves to demonstrate that T'TT is not necessarily orthogonal, and =7
is not necessarily diagonal.

The latent scores £, and w, in PLS-W2A are chosen in an optimal way. We have
[Cov (€, ,w,)| = |Cov(XMu,,Y"v,) |

= d, (3.6)
= maXaj=pij=1 |Cov(Xa, Y|



This is a well-known fact about the singular value decomposition. For didactic purposes a

proof is given on page 69 in Section 3.13.

Proofs and counterexamples for the remaining properties are in Section 3.13.

(ur)i.

= Wa) (YD) e,

(Vr)]

ur

Vr

g,

Wr

= (1/d;) (x?{))Twr = (IV/d,)Cov (XF{’,w,)'

(N/d,)Cov (Y€, ) o

If

Ty (v®) T ()

is an eigenvector of (X(r)
x(r) (x(r)) Ty

)T (3.8)
is an eigenvector of (Y('))

: T T
is an eigenvector of X() (X(r)) Y™ (Y(r))

T T (3.9)

is an eigenvector of Y (Y(")) xX() (X(r))
The u, are mutually orthogonal and
the v, are mutually orthogonal,
) (3.10)
but they are not necessarily singular

vectors of XTY. j

The &, are mutually orthogonal, and hence
form an orthogonal basis for an R-dimensional
subspace of the column space of X.

) (3.11)
The w, are mutually orthogonal, and hence

form an orthogonal basis for an R-dimensional

subspace of the column space of Y. J

ur L vy,
For r < s, T s 3.12)
vy 1 4;.

Xy, = o0,
For r < s, (3.13)
Y®lv, = 0. ‘
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3.6 PLS-SVD

Sampson et al. [SSBB89] and Streissguth et al. [SBSB93a] report an analysis, in the context
of behavioral teratology, using a PLS variant which is here called PLS-SVD. In this context

the method is used for modeling, not prediction.

Tishler et al. use the same method in the context of industrial management, where
the goal again is modeling rather than prediction [TDSL96]. In this paper the method
is called “Intercorrelations Analysis”‘ or “Canonical Covariance.” Tishler and Lipovetsky
demonstrate that the method can be used for prediction [TL0O]. To emphasize differences

between this method and CCA, they call the former “Robust Canonical Analysis.”

For r = 1 this method is identical to PLS-W2A, but differs for - > 1. At the end of
the outer loop, when r is incremented, PLS-W2A subtracts rank-one estimates of the data
matrices X" and Y™ to obtain X+ and YU+, From these updates a new cross-
product matrix is computed. Sampson, Streissguth et al., on the other hand, do not update

X and Y. Instead they subtract a rank-one approximation directly from X7Y.

For instance, for 7 = 2, the updated value in PLS-SVD is XTY — dlulvf, equivalently
r—=—

R »dru vI. Thus the u, and v, in PLS-SVD are simply the columns of U and V in the

singular value decomposition of XTY.

In PLS-S5VD the singular value decomposition only needs to be computed once, on the
original cross-product matrix X7Y. By contrast, in PLS-W2A singular vectors must be
computed at each iteration of the outer loop. On the other hand, in PLS-W2A only the

first pair of singular vectors needs to be computed at each of these iterations.

After the first iteration of the outer loop, the two algorithms yield different answers. The
vectors of latent scores computed by PLS-SVD, ¢ and w”, are not in general orthogonal. In
addition the updated version of the cross-product matrix with which each algorithm begins
the outer loop differs in the two algorithms for + > 1. For instance, for r = 2 it is not

T
generally true that (X(z)) Y®? =XTy — diuyvi.



49

3.7 Rank and Orthogonality in PLS-W2A and PLS-SVD

Both PLS-SVD and PLS-W2A can compute R = min(p, q) pairs of latent variable scores,
even when R > rank (X7TY). The latent scores for the X block form the N x R matrix =,
and the latent scores for the Y block form the N x R matrix . The properties of [Z[2]

differ in the two algorithms, however, in the following way.
e In PLS-SVD, in general neither Z7= nor Q7Q is diagonal, but =TQ is diagonal.
e In PLS-W2A, in general Z7Q is not diagonal, but ZT= and Q7 are diagonal.
In particular, if R > rank (XTY), the two algorithms differ as follows.

e In PLS-SVD, the last R — rank (X”Y) pairs of latent scores have zero covariance,
so that all of XT'Y is accounted for by the first (rank (X7Y)) pairs of latent scores.
This follows from the fact that all the latent scores for a given block in PLS-SVD are
defined from the singular value decomposition X7Y = UDVT:

= = XU

Q2 = YV,
so that

=T = D

e In PLS-W2A, it is possible for all R pairs of latent scores to have nonzero covariance,
even though the rank of X7Y is less than R. The example on pages 45 through 46 in

Section 3.5.2 demonstrates this.

3.8 Herman Wold’s Original PLS Algorithm

We noted in Section 3.3 that Herman Wold originated the term “Partial Least Squares.”
His algorithm is more general than PLS-W2A, being used to model linear relationships

between an arbitrary number of blocks of variables. In Wold’s setup, rather than X and Y



we have a set of blocks of variables, or matrices, X%, a = 1,...,A. These are the observed
variables. To each block X is linked a single latent variable £%. The analyst specifies a set
of inner relations, that is, linear relations between the &?. When there are more than two
blocks (A > 2), hence more than two latent variables, many different sets of inner relations
are possible, i.e., many different models. The analyst must specify a particular set of inner
and outer relations before starting Wold’s algorithm.

Once the set of inner and outer relations has been specified, the algorithm is started.
It takes as input the data, X*, a = 1,..., 4, and the model specification. At convergence
(provided it converges) it yields a set of coefficients defining linear relationships. These

relationships are of two kinds.

e Linear relationships between latent variables are called inner relations.

e Linear relationships between an observed variable X% and the latent variable for the

same block, &2, are called outer relations.
The specification of the model for Wold’s algorithm consists of two components:

e A set of outer and inner relations. This is determined in advance, as stated above.

¢ A decision regarding the dimension R of the model. It will be seen that the algorithm
contains two loops, one nested within the other. The dimension of the model is
determined by the number of times the analyst chooses to iterate through the outer

loop.

Note that the specification of the model does not include a probabilistic model or a likelihood.
In Wold’s words, PLS is “distribution-free.” A
For further information beyond what is presented here, the reader is referred to Wold

[Wol85] and [Wol82].

3.8.1 Framework and Notation.

e k indexes the inner loop, r the outer loop.



X% a=1,..., A, are data matrices, or blocks, of dimension N x p,.

X is the rth remainder matrix of X computed at the end of the (r — 1)st outer

loop. Xe(1) = X2

£ = (&4,... ,ffV)T are vectors of latent variable scores associated with the blocks.

Z° is a diagonal matrix, defined as follows. For each column X% of X% the analyst
decides in advance the sign of Cor (X%, £%). These postulated signs form the diagonal

of Z%.

The analyst postulates a set of linear relations in the form of a path diagram. An
example may be seen in Figure 3.2 on page 57. This is discussed further in in Section

3.8.2.

For any latent variable £%, another latent variable £° is said to be adjoint to &% if an
edge connects £% and £°. G is the set of indices of latent variables adjoint to &%, and

[G?| is its cardinality.
H* is the set of all b € G* such that the arrow points from &° to £°.
For each b € G%, the analyst decides in advance sq, the sign of Cor(£%,£%).

Formulas containing the symbol = signify linear models. For instance, the notation

X = £° (v®)7T is shorthand for the linear model
X =) t+e

Although Wold includes errors in his model statements, neither explicit notation for
errors nor explicit distributional assumptions are needed for a statement of his algo-
rithm. For reasons of economy such notation is not introduced here. When models
are fit, regression coefficients are estimated using the standard formulas of ordinary

least squares.



e Inner relations take the form
“= B+ Y BE.
bEH=
For each block a and each iteration r of the outer loop the set of coefficients 3 U8B - b e HY}
specifies the inner relation. Inner relations are signified in the path diagram by arrows

between the £°.

e Quter relations take the form
XS ~ ol +75€°.

For a given iteration r of the outer loop and for each observed variable Xflj(r) the
pair (7,‘}j0,7,‘5j) specifies the outer relation. Quter relations are signified in the path

diagram by arrows between £° and the variables X%

“Each indicator is linear in its LV [latent variable]” (Wold [Wol85] page 583), in spite
of the fact that, in the path diagram, some arrows point from the indicators to the

latent variables. See, for example, Figure 3.2 on page 57.
o v2 = (v¢,..., U;‘L) is a vector of coefficients such that X = £° (v“)T.

= (k) . . . ]
o &2 denotes the estimate of €% at the kth iteration of the inner loop and the rth
~ — —T
iteration of the outer loop and £2 = (f,‘.‘l, RN ,‘.‘N) the estimate at convergence of

the inner loop.

G _ (k) ——NT : a iterati
o vi = (v .., 08, denotes the estimate of v® at the kth iteration of the
— — —\T
inner loop and the rth iteration of the outer loop and veé = (v‘rll,.. . ,v;‘pa) the

estimate at convergence of the inner loop.

3.8.2 Path Diagram

As stated above, the analyst must specify a model before starting Wold’s algorithm, and
this is done by drawing a path diagram. An example of such a path diagram may be found
in Figure 3.2 on page 57. This diagram is based on Wold [Wol85).



The three arrowheads pointing at £° in the ellipse in the lower right-hand corner of the

figure signify the following inner relation:

€ =~ i1+ BJet +B5€° + BEec.

The three arrowheads pointing from £° to the three indicator variables in the X® block

signify the following outer relations:

X.61 = ’Y?,O 1 + 7?56,
6 ~6
X% = 5ol+7¢°,

6
X% ~ 'yg’ol+73§6.

The rest of the path diagram is interpreted in a similar manner. As stated in Section 1.2,
this path diagram does not follow the convention used elsewhere in this paper and specified
in Section 1.2. The indicators for a given latent variable may fail to be conditionally
independent given that latent variable; nevertheless, the diagram contains no doubleheaded

arrows between indicators.

3.8.83 The Algorithm

1. r« 1.
2. For all ¢, X1  xe,

3. Beginning of outer loop:

For all a, center and scale X%,

4. Set k « 0.

(V) (0)

.5. Assign arbitrary starting values v . For instance, set v3 ° « plal.

(0

6. va ' ;E(O)Z“/ ||\7§(0)|| (rescale or normalize).



7. Inner loop.
Estimate £2 and v@ iteratively, as follows.

Repeat

(a) k—k+1.

(b) For all qa, é;;(k) — X“(")Z“\’;—E(k—l). (Recall that Z° is defined on page 51.)
(c) For all a, compute the N x 1 sign-weighted sum (w?)®) « 2 bege sabé(k)
(d) For all @, estimate ;E(k) by one of the following modes.

e Mode A: Compute \/IE(E) by fitting p, simple linear models. That is, for
J=1,...,pa, fit the model Xa( M x = vl (w )(k)

e Mode B: Compute va by performing multiple regression. That is, fit the
linear model (w“)(k) Xa(rlye

() vE® ¥ a®)y
until for all a, @(k) has converged.

8. Estimate the inner relations, up to intercept, by regressing £2 on the latent variables

which have arrows pointing to £2. That is, for each a fit the linear model

Y peed.

beH=

9. Estimate the outer relations, up to intercept, by regressing each column of X%™) on

the latent variable for this block. That is, for each szj(r) fit the simple linear model

XU-(T) =~ 'Y] Er

As noted on page 52, in the outer relations the indicators are seen as functions of the
latent variables, not vice versa, regardless of the direction the arrows point in the path

diagram.

10. Estimate the intercepts. For each a,



[4)]
[9)]

_— T
(a) X + (Xa(")) 1, a po x 1 vector of columnwise means.

J— —T _
(b) £2 « X4 v2, a scalar.
(c) BE « £ — Y beHe beg, the scalar intercept for the inner relation.

(d) v% = (v%4,:--- ,'y;‘pao)T « X)) — 42£% the vector of intercepts for the outer

relations for the ath block.

11. At this point the analyst makes a decision, or acts on a decision already made, re-
garding the dimension R of the model. Recall the discussion of model specification on
page 50. If r, the number of times we have iterated through the outer loop, does not

yet equal the model dimension on which the analyst has decided, we do the following:

For each a update X®() to equal the residuals of the outer relations:

XA+ X — (1 (v%)T + €2 (v8)T)

r < r+1

and return to the beginning of the outer loop at Step 3.

3.8.4 Raw Data Versus Product Data.

The blocks X are, in Wold’s terminology, “the raw data of the model. The product data
are the means and the product moments ...” ([Wol85] page 584). Wold states that the
algorithm can be run with product data input and will yield parameter estimates that are
the same, up to rounding error, as when raw data are used. Without raw data, of course, we
cannot obtain estimates é\;‘. of the latent variable case values, and we cannot update X
in Step 11. It is possible, however, to run the inner loop on product data alone, and to
compute the é?,f after convergence of the inner loop.

PLS-W2A, described in Section 3.5, uses product data input. Section 3.8.5 demonstrates

equivalence of the raw data-and product data approaches for the two-block case.
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3.8.5 PLS-W2A is a Special Case of Wold

Under certain conditions the inner loop of Wold’s general algorithm yields the same coeffi-
clent values as the “singular value decomposition” step of PLS-W2A (step 3 on page 41).

These conditions are:

e There are two blocks (4 = 2).

¢ Estimation is performed in Mode A as in line (7d).

This is true for any iteration = of the outer Ioop. and for any X'(") and X*("). Thus PLS-
W2A is a special case of Wold’s general algorithm. When we prove this, we will obtain
as a corollary the fact that, in the two-block Mode A case, the raw-data approach vields
identical values for saliences and latent scores as the product-data approach.

To see the result, let us first translate Wold’s notation into notation for the two-block
case, compatible with our statement of PLS in Section 3.5.1. A table of equivalent notation
may be found in Table 3.1. '

A path diagram such as could be used for the two-block Mode A case may be found in
Figure 3.3 on page 57.

It should be noted that the direction of the arrows between the & variables and the
w variables in a path diagram for the two-block Mode A case has no influence on the
coefficients computed by PLS-W2A. The directions of the arrows in a path diagram for
Wold’s general algorithm influence the kind of inner relations which are computed at the
end of each iteration of the outer loop. In the case of PLS-W2A, or any two-block PLS
method, the sole question would be whether we regress w” on &£ or vice versa. The explicit
specification and éstimation of inner relations is not part of PLS-W2A, however.

At initialization (step 5), we have

Gﬁo) «~ -1

N T

O g
At step (7b) we have

R XO)yk-D



\
ROaA [1]2]a]+]sTs]
IS Iy €

Figure 3.2: Example of a diagram by which the analyst might postulate inner and outer
relations in specifying a model in the context of Herman Wold’s original PLS algorithm.
This is discussed in Section 3.8.2 on page 52.

X.1 Xl (Xa| (X4 Y, Yol | Y3

Figure 3.3: A path diagram for a two-block PLS model. As noted in Section 3.8.5, when
Wold’s general PLS algorithm is applied in Mode A to the two-block case, the coefficients are
identical to those computed by PLS-W2A. As noted on page 56, the direction of the arrows
between £ and w has no effect on the values of the coefficients computed by PLS-W2A.



Table 3.1: Translation of the notation of Herman Wold’s general a.lgorithm,—'described in
Section 3.8, into two-block notation compatible with PLS as described in 3.5.1.

General | Two Blocks
m |1
p2|J
XX
X2y
e é e &Y
&2, 2" | w, 5"
Vl u
v2 v
Z% |1
G!', the latent | w, the only

variables adjoint

latent variable

to £! | besides €
s12, s21 | 1 (that is, we
postulate d > 0)
(wl)(k) (:,:(k)
G2, the latent | £, the only

variables adjoint

latent variable

to £2 | besides w
k) | =)
(wz)( ) £




w® YOI

At step (7d), for each column X(]r ) of XM we compute the regression coefficient of XFJ'.')

on w(rk), and we similarly regress the columns of Y{") on ff-k). But since the columns of

XM and of Y have been centered, the regression coefficients are proportional to inner

products. That is,
T
ﬁ\r(k) o (X(r)) Cj_,‘\r(k)
: T ~(k
=® o« (y0) £W.

But this means

Tk o (x(r))T;;r(k)
- (Xm) YO -D
~ (x(r)) Ty (Y(r)) T g k2

~ (x<r)) Ty (Y(r)) T xgatk-2),

~

So at convergence—provided the inner loop does converge—we have
& (Xm) Ty® (Y(r))T X,

T
Thus Uy is a left singular vector of (X(")) Y™, and similarly ¥; is a right singular vector.

Conditions for convergence are given in Lemma 3.12.1 in Section 3.12.1.

3.9 PLS2 and PLS1

The variants of PLS that appear most frequently in the chemometric literature are called
PLS2 and PLS1, and differ from PLS-W2A in a way that shall be seen shortly. My sources
for PLS2 are Hoskuldsson [H88] and Holcomb et al. [HHMT97]. PLS1 is the case of PLS2
where Y consists of a single column (Geladi [Gel88] page 237), but has been examined in
its own right. '

Like PLS-SVD, PLS2 differs from PLS-W2A only when r is incremented. PLS-W2A
and PLS-SVD are symmetric in the blocks. In PLS-W2A both blocks are updated by the
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subtraction of a rank-one estimate based on what Wold calls the outer relation and what
Hoskuldsson calls the loadings. In PLS-SVD the cross-product matrix XY is updated. In
PLS2, on the other hand, Y is updated by subtracting an estimate based on £, the latent
variable score estimate for the X block, and the inner relation between € and w. That is,

the following additional step is inserted:
B, + (7€) ' elw,
and Y7 is updated as follows:
Y+ oy _ B.& w] .

This difference is crucial, and is most easily seen in PLS1, the case where Y consists of
a single column. For any PLS algorithm, let R be the maximum number of times that we
could iterate through the outer loop, disregarding any consideration of model selection in
the choice of R. Now consider the case where Y consists of a single column. In PLS-W2A
or in PLS-SVD we compute once the I x 1 vector of inner products X7Y and I;ave nothing
more to do. For instance, in PLS-W2A, the space spanned by Y is a line through the origin
in IR’. A rank-one approximation of Y is equal to Y; subtract it and you have nothing left
for the second iteration, for » = 2. In PLSI, on the other hand, R is limited only by the
rank of XTX.

PLSI1, the case of PLS2 where Y is a single column, is a regularization technique, in the
same class as ridge regression and principal component regression. At each iteration of the
outer loop (each value of ), PLS1 finds a direction in the space of regression coefficients
orthogonal to the previous regression coefficients. Regression here is of the single response
variable Y on the predictor variables X. An analyst will typically use a regularization
technique when the problem is inherently asymmetric: There is a large, possibly redundant
set of predictor (or carrier or “independent”) variables from which a single response (or
dependent) variable is to be predicted. For more information on PLS1, see Sardy [Sar98],
Frank and Friedman [FF93], and Helland [Hel88). For the relationship between PLSI and

other regularization techniques, see Sardy.
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3.10 PLS-W2A, PLS-SVD, PLS2: Summary of differences and similarities

We have seen that PLS-W2A, PLS-SVD and PLS2 differ from each other when the outer
loops exceeds one iteration, but that in the first iteration they are equivalent.

The equivalence is seen in the fact that the first iteration of the outer loop in each
algorithm involves the computation of the first singular vectors of X7 Y that is, the singular
vectors corresponding to the greatest singular value.

The difference between PLS-W2A and PLS-SVD is discussed in Section 3.7. In addition,
recall that u, and v, in PLS-SVD are by definition singular vectors of X7 Y. In PLS-W2A,
on the other hand, this is not true in general. This is stated as property (3.10) on page 47,
and proved on page 73. Instead u, and v, are the singular vectors corresponding to the
greatest singular value of (X('))TY(").

The difference between PLS2 on the one hand and PLS-W2A and PLS-SVD on the other
is the difference between symmetric and asymmetric treatments, and is discussed in Section

3.9.

3.11 Canonical Correlation Analysis (CCA), alias Mode B PLS

The difference between Mode A and Mode B PLS lies in the way the coefficients are updated
which relate an indicator variable to its latent variable. (In Wold’s ge-neral algorithm this
is Step 7d on page 54.) In Mode A the coefficients are computed by a set of simple linear
models, one for each coefficient. In Mode B they are computed by one multiple regression
model for each block of indicators.

Two-block Mode B PLS is equivalent to Canonical Correlation Analysis (CCA). CCA,
however, has béen known since 1936, when Harold Hotelling published the.seminal paper
[Hot36], long ‘before Herman Wold originated PLS (1975 [Wol75]). For this reason CCA
will be called by its customary name, and the term “PLS,” unless otherwise specified, will
be used to refer to Mode A.

CCA, like PLS-W2A4, is a method for analyzing association between two blocks of vari-
ables. In addition to being older than PLS it is better known. Both PLS-W2A and CCA

compute orthogonal sets of latent scores which are linear combinations of the X and Y
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variables. In both methods. the latent scores come in pairs—one for X, one for Y—and
these pairs maximize a criterion which measures association.

Although the two methods may appear superficially to be similar, they differ fundamen-
tally, both in their numerical properties and in the interpretation of the coefficients which
they yield.

PLS coefficients are computed by the singular value decomposition, which is known to
be numerically stable. Stability is not affected by the relationship between the number of
variables (I 4+ J) and the number of observations (V). CCA, on the other hand, involves
the computation of two inverses, that of XTX_ and that of Y7Y. Thus when the number of
variables exceeds the number of obser\;ations the canonical correlation coefficients are not
uniquely defined. Similarly, we run into problems if XTX or YTY is ill-conditioned, even
fI+J < N.

We may work around the numerical difficulties of CCA by applying a penalty to XTX
and YTY, for instance a ridge penalty (Vinod 1976 {Vin76]). This however does not alter
the fact that CCA coefficients are not interpretable in the same way as PLS saliences. A
PLS salience for a given indicator variable—say, u;, the salience for X ;—is proportional to
the sample covariance of the indicator variable and the computed vector of latent scores for

the other block:
u; o< Cov(X,,w).

If another indicator, say X.(i+1), is removed from or added to the analysis, this change has
little effect on u;, provided the model has been correctly specified. This property, in fact,
can be used to test whether the model has been incorrectly specified (see page 26).

CCA coefficients, on the other hand, are analogous to multiple regression coefficients.
In the case where Y consists of a single column, they are identical to multiple regression
coefficients. The coefficient for X ;, say u;, means something different each time another
indicator, say X .(i+1)» is added to or removed from the analysis.

Although CCA is older than PLS, and better known among statisticians, inference about
CCA coefficients and latent scores is not much easier than inference about the analogous

values computed by PLS. “[T]he distribution theory of canonical correlations and canonical
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vectors is complicated even in the null case ... The important case from the practical point of
view is the non-null case, and the distribution theory associated with it is almost intractable”
(Kshirsagar 1972 [Ksh72], page 278). In particular, the CCA coefficients are not known to
maximize a likelihood. -

Kettenring [Ket82] gives an introduction to canonical analysis, and an example of its
application to a dataset. Although Kettenring’s article is an exposition of canonical analysis,
not an argument against its use, his examples demonstrate both the difficulty in interpreting
the coefficients, and their instability. For instance, he repeats an analysis several times
using “various combinations of” the indicator variables, “[t]o gain insight into the relative
importance of the variables” (pége 361). By contrast, PLS saliences themselves measure the
relative importance of the variables, and as stated above, the salience of a variable remains
nearly constant when other variables in the same block are added or removed, provided the
model is correctly specified.

Whereas Kettenring’s article focuses on canonical analysis, Sampson et al. [SSBB89]
apply both PLS and canonical analysis to the problem in behavioral teratology introduced
in Section 1.1.

The algorithm used by Sampson et al., PLS-SVD, differs from PLS-W24, as discussed in
Section 3.6. Nevertheless the differences which Sampson et al. point out between canonical
analysis and PLS exist regardless of whether we use PLS-SVD or PLS-W2A. PLS gives
results that are clearer and easier to interpret.

In addition, Sampson et al. give a qualitative argument why PLS is preferable in their

particular application (pages 481f):

Canonical correlation may be explained in terms of multiple regression: canon-
ical variable coefficients «; and B; would be computed as multiple regression
coefficients rather than the simple regression coefficients . ..in the PLS solution.
However, the idea of multiple regression is inappropriate here. We should not
compute the regression of any IQ item, or any weighted combination of items,
on the alcohol variables taken as thirteen separate predictors. This is because

we cannot imagine the partial effect on an IQ subtest of changing one alcohol
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variable while holding constant the values of all other alcohol scores. The alcohol
scores covary jointly as different aspects of a single underlying exposure scale
--.and so we cannot hold other alcohol scores unchanged when we vary one of

them. -

The differences between PLS-W2A and CCA are listed in greater detail in Table 3.2 on
page 65.

CCA is a powerful tool, and some of its numerical shortcomings can be overcome, for
instance by the use of penalties on the sample dispersion matrices XX and YZY. In some
cases, both PLS and CCA might be applied to the same problem. The question whether a
penalized version of CCA would perform better than PLS in some cases is open.

Methodological research must begin, however, with a clear awareness of the fundamental
differences between the two methods. As for data analysis, the researcher would do well to
follow the example of Sampson et al., thinking carefully about the scientific question which

is to be answered, and then choose the method which best fits the situation.

3.12 The Power Method in PLS

We have seen that Wold’s general algorithm contains an inner loop. We have seen that in
the two-block, Mode A case, this inner loop reduces to the extraction of the first pair of
singular vectors of the cross-product matrix XTY_—the pair which correspond to the largest
singular value.

It turns out that all the PLS algorithms discussed in this work contain an inner loop,
either implicit or explicit. This inner loop is implicit, for instance, in the statement of
the PLS-W2A algorithm in Section 3.5.1. The inner loop is often stated explicitly in the
literatui‘e, however. For instance, Sampson et al. [SSBB89] and Streissguth et al. [SBSB93a]
state the inner loop explicitly, as does Héskuidsson [H88].

In this section we take a closer look at the explicit form of the inner loop in the two-block
Mode A case. This is well-known as the power method for computing eigenvectors (Stewart
(Ste73)], page 340). The power method is stated, and a lemma giving conditions under which

the power method is guaranteed to converge.



Table 3.2: Contrast between Canonical Two-Block Mode A Partial Least Squares (PLS) and
two-block Mode B PLS, which is better known as Canonical Correlation Analysis (CCA).
The index 7, used in the discussion of PLS algorithms in Sections 3.5 and 3.3, is left out of
the table. The contrast holds for any value of r.

PLS-W2A cCA
Objective | [Cov(Xu, Yv)| [Cor(Xu, Yv)|
Feasible | |{u]l =|lv]| =1 all u, v
set
Solution is | XTYYTX (XTX) "' XTy(YTy)"'YTX
eigenvector of | Y/ XXTY (YTY)'yTX(XTX)-'XTYy
Objective
sensitive to | yes no
scale of
columns of
X,Y?
If X or Y are | stable unstable

nearly collinear

Interpretation | u; < Cov(X.;, YV) No straightforward

of uand v | v; < Cov(Y.;,Xu) | interpretation

If Y isa | u; & simple u; o multiple

single column | regression coefficient | regression coefficient

If p>n | uand v remain u and v no longer
or ¢ > n | uniquely defined uniquely defined
Effect of adding | u; changes u; can
X.(i+1) nearly | little change a great
collinear with X-¢ deal

Easiest to | all measure
interpret | the same are
when columns | underlying orthogonal

of a block ... | latent variable
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Although the inner loop of PLS-W2A requires only the greatest singular value and the
associated pair of singular vectors, for the sake of completeness the algorithm stated here
yields the entire singular value decomposition. One reason for the inclusion of the more
general algorithm is that PLS-SVD, described in Section 3.6, uses the entire singular value
decomposition.

The lemma is proved for the case where C = XTY has distinct eigenvalues.

The algorithm as applied to a single matrix C corresponds to the “product-data-input”
version of PLS, mentioned in Section 3.8.4 on page 55. First we shall state this version, and
give a proof of convergence. Then we shall see the raw-data version. The proof that the

raw-data algorithm converges is a corollary of the proof for product data.

3.12.1 The Algorithm

Superscripts on vectors (u* and v¥) are indices of iteration in the inner loop (1d), whereas
subscripts (u, and v;,) are indices of the outer loop, and denote columns of U and of V.
Superscripts on scalars (d*, etc.) indicate exponents, following conventional notation.

Let C be an I x J matrix. Set r « 0.
1. Repeat

(a) Set r «—r + 1.

(b) Choose u® € R'.

(c) Set k « 0.

(d) Repeat
k « k+1
vk  CTyu*-!
vE e VE/IVE
ut — CvF
u® o uf/uf|

until [[uf — u*=1!|| is less than some convergence criterion.



(e) Save

u, « u*

vy — vk

d: « (u;)¥ Cv,.
(f) Set C « C —d,u,v’.
until ||C|| is less than some criterion.
2. Reorder the d, so that

di >da > ... >dp,

and reorder the u, and v, accordingly.

3.12.2 Conditions for Convergence

Lemma 3.12.1 Let C have distinct singular values. If at step (1b) u® is chosen so as not
to be in the left nullspace of C, the algorithm stated in Section 3.12.1 yields the singular
value decomnposition. If u® is chosen to equal %Cl, the mean of the columns of C, then the
singular vectors computed by the algorithm will be computed in the descending order of their

corresponding singular values. Thus step (2) will be unnecessary.
Proof. See Section 3.14.

3.12.8 Raw Data Input

1. Initialize u® € R! and v® € R’ by

2. Repeat until convergence:
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(@) k—k+1

(b) Update latent scores.

{k — Xu*!

wf o~ YviI

(c) Update saliences.

o o XTot ((wk)ka)“
ut o uf/jef
vk e YTe ((ék)TE")—I
vE e vE/lvE.

Proof of convergence is in 3.14.

3.13 Proofs of PLS-W2A Properties

These properties were stated in Section 3.5.2.
For the proof of Property (3.7) we dispense with the r index. Recall that at any iter-

ation of the outer loop (any value of r), u, and v, are the first pair of singular vectors of
(x(r))Ty(r).

X w XTyYv
X?;w X?;Yv
= XTvyv

= UDVTv by the SVD

= dl ui.
Thus

u; = (1/d)XZw.
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The result for v; holds by symmetry. This proves Property (3.7).

Property (3.8) follows from the definition of the singular value decomposition.

x(*) (Xm) Ty® (Y(r)) Te = xt (x(r)) Ty (Y(r)) Tx(ny,
x X©u, by (3.8)
= &, by definition,
which proves the first half of (3.9). The second follows by symmetry.
The proof of Property (3.6) on page 46 follows from the fact that u, and v, are the first
T
pair of singular vectors of (X(ﬂ) Y. The property holds for any conformable X, Y,
and their first pair of singular vectors. We drop the r subscript in this proof, since it is a
distraction.
(n —1)Cov(Xa,Yb) = a’X7Yb

= alUDVTb by the singular value decomposition

= ofDp
R
= > dicuB; (3.14)
i=1
where R is the number of nonzero singular values, and where
(_al"-"aR) = aT
= alU, and
Brs---.BR)T = B
= VTb.
Note that
lell = o'e
= a’U%Ua
T

= a a by the orthogonality of U
= 1 , and similarly (3.15)
gl = 1.
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By (3.14),

(n — 1) [Cov(Xa, Yb)|

R
Z d;c; 5;
i=1

R I/ R i
(Z dia?) (Z diﬁ?) (3.16)
=1 1=1

by Cauchy-Schwarz. We can maximize each term of (3.16) separately, in o and 3 respec-

IA

tively, noting that their domains are compact. Since d; > dy > ...dp >0,
R R
2_dio < diy o}
= d by (3.13), and similarly
R
> diB? < di.
i=1
Thus
(n-1)|Cov(Xa,Yb)] < d;.

This value is attained when a and b are the first left and right singular vectors of X7Y.
This completes the proof of Property 3.6.
The proofs of Properties 3.10 through 3.12 are adapted from Héskuldsson [H&8].

X = X0 — ¢ (¢Te,) T ETX)
= AMX®  where (3.17)
A = 1-¢ (7)€l
We may then write
X6 = AG-Ux(s-1)
= A1 AG-2)x(s-2)
and in general for 1 <r < s,

X6 = AG-D) | ACH) A ()X

ZA(MX() (3.18)



for some matrix Z.

Side calculation:

AMXMy, = 0, since (3.19)
ANXMy, = AM¢ by definition of €, '

= & —& (7€) €T,

= £ -,

Putting (3.18) and (3.19) together, we obtain

Xy, = ZAMX My,
= 0, (3.20)

which is Property (3.13). Now since u; is a singular vector,

ul o uf (X(s))TY(S) (Y(s))TX(S), and so
ulu, x ul (x(s)) T yis) (Y(S)) T Xy,

= 0,

by (3.20). The example on pages 73 to 75 shows that the u, are not necessarily singular
vectors of XTY. By symmetry the v, are also not necessarily singular vectors of X7Y.
This completes the proof of Property (3.10).

To prove Property (3.11), first we prove that £ZX() =0 for r < s.

- -1 —
X = x-D_g  (eT 16, ) €7, X060
(but &_; = XE~Vu,_, so that)

_ _ -1 _
= X6-D _x6-Uy (€T_,¢,,) €T x(-D

= Xb-D [I —ug_y (EZ—lfs-l)_l 5?—13((5_1)] .
Let

BO = I-u, (7¢,)7 /X0, (3.21)
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so that

X = x(s-1gls-1)

= XG-2BG-2g6-1)

— X(r+I)B(r+I) L B(s—l)

~ X(r+l)g (3.22)

for some matrix Z. Multiplying this equality on the left by €7 and plugging in (3.17) we

obtain
EZ’x(S) = g'rI’A(r)x(r)Z
-1 r
= €l [1-¢ (Fe) 7 €T xVz
-1
= [¢F - €Fe, (€Fe,) T €T Xz
= 0. (3.23)
Thus
&€ = &XWy
= 0. (3.24)
So for r =1,..., R we have £, orthogonal. By construction, each &, is in the column space

of X. So the £, are an orthogonal basis for an R-dimensional subspace of the column space
of X. The result for w, follows by symmetry. This completes the proof of Property (3.11).
Recall that ~, is computed by regressing each column of X(¥) on &.. That is,

-1
vy = (€f€,)” €TX9 | or

ve o (x9) 7,
so that

T
Ty, e uf (x0)7e,
0, (3.25)
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since by (3.20) the product of the first two terms is zero. This proves Property (3-12).
Property (3.10): To see that the u, are not necessarily singular vectors of XTY, consider

the following example:

2.88 —035 —0.07 0.27
-1.03 —0.13 -1.01 —0.45
X = 0.91 -0.97 1.08 —1.48
0.79 —0.69 —0.32 1.42
062 —111 065 013

2742 2.966 0.195 3.061 2119
—2.385 —6.058 —1.357 —1.829 —2.618
Y = | —0421 -3.631 0252 -0.703 —0.799
0.989 4.085 0279  1.698 —0.149
0.251  0.84 0865 0.545 —0.922

Then

[ 10.90733 15.22556  2.94534 11.73914 7.38282
—1.2023 -0.47954 —1.28894 —1.92824 1.49995

1.6089 1.22828  2.10205 0.68467 1.08131
3.87368 14.8107  0.79897 5.17197 2.60131

= AGBT

by the singular value decomposition, where G is diagonal, ATA =15, and BTB = I,. In

fact

[ —0.825620  0.519257  0.161596  0.150365 |
0.051425 —0.164196  0.966686 —0.189508

—0.084740  0.192279 —0.152159 —0.965762

| —0.555451 ~—0.816358 —0.127485 —0.093710 |

after rounding. Recall that A, the matrix of left singular vectors, satisfies

XTYYTXA « A



74

by definition. We may confirm this by computing

[ 551.775992 —35.773533 58.461860 350.025429
—35.773533 9.304810 —4.931103 -—18.860437

58.461860 —4.931103 10.153849 32.457440
| 350.025429 —18.860437 32.457440 268.516672

XTyvyTx =

and then computing the componentwise quotient, defined by

[XTYYTXA/A], = [(XTYYTXA], /A .

This is computed in S-PLUS [Mat96] by the single command

Ce(X) x4 Y %% t(Y) %*% X %*% A ) / A

Each column of this matrix consists of a single value (up to rounding error), repeated four
times:

[ 79549 3444 6359 3.23 |
795.48 34.44 6.39 3.23
795.49 34.44 6.539 3.23
795.49 34.44 6.59 3.23

XTYYTXA/A =

Applying PLS-W2A to X and Y we obtain, after rounding,

U = [ui|ufuz|uy)

[ —0.825620 —0.524052 —0.068777 —0.197461 ]
0.051425 0.000730 —0.990437 0.128024
—0.084740 —0.243436 0.119356 0.958808

| —0.555451 0.816154 —0.007675 0.159081

These coefficients were computed by the S-PLUS function PLS2blockModeA (Section 3.15).
We see that U.; = A.,, but that the subsequent columns are not equal. Since singular
vectors are unique up to permutation and scaling, it follows that not all the columns of U are
singular vectors of XTY. We may see this more dramatically by examining XTyvTXU/U.

If the columns of U were singular vectors of XTY, we would observe the same pattern for



XTYYTXU/U as we observed for XTYYTXA/A. We observe this only in the first

column, however:

795.49 33.86 —25.78 9.11
795.48 6248.45 7.27 4.11
795.49 27.20 15.30 2.84
795.49 34.07 466.51 14.49

xXTyvyTxu/u =

Similar results are obtained if the columns of X and Y are centered before the two algorithms

are applied to them.

3.14 Proof of Convergence of the Power Method, Lemma 3.12.1

The lemma is stated on page 67.
Let R be the rank of C. Because of the symmetry of the singular value decomposition,

we may assume without loss of generality that I > J. Let
C = UDVT

be the singular value decomposition, where U, D, and V have been augmented. That is,
UisIxI,DisIxI,and Vis I x J, with
D = diag(dl'l"'adR1dR+17"-7d[)
and
dy>de>...>dp > 0 =dpe1 =...=dy. (3.26)
We have strict inequality in (3.26) because we assumed that the singular values were distinct.

First we shall see that the loop at (1d) yields a pair of singular vectors. We may write

u’ = ou;+...+arup + appiugsr + - - - +eruy, (3.27)

for some set of coefficients a,. Because u® is not in the left nullspace of C, we have |oy| > 0

for at least one r < R. Then, still in the loop at (1d), we have

vl « CTu® (3.28)
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I
= > aVDUTu,
r=1
I
= Zardrvr ('329)
r=1 -
R
= > ordv,. (3.30)
r=1
In going from (3.29) to (3.30) we drop the last (I — R) terms because 0 =dpy| =... = d.

Next we plug the value for v! obtained at (3.30) to obtain

u' - Cv!
R

= Y a:d,UDVTv,
r=1

R

= E a,.dgu,..

r=1

More generally, the value of the estimate of u obtained at the kth iteration of the (inner)

loop at (1d) contains the scalar d, raised to the (2k) power:
R
uf Zardfkur. (3.31)
r=1

We have noted that at least one of the coefficients in (3.27) must be nonzero. Let us assign

the indices r1,...,7as to these nonzero coefficients. Then (3-31) becomes

M
uf E armd?.f‘ u, .
m=1

That is, at the kth iteration of the (inner) loop at ( 1d) there is a nonzero constant v such

that
M
k 2k
o= %S o du,,
m=1

For each m and each k, define the constant 8%, = vcar., d?* | so that we can write

M
u = R, (3.32)
m=1
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We have expressed u, the estimate of u at an arbitrary iteration & of the inner loop, as
a linear combination of the M left singular vectors u,,...,u,,,- This subset of the left
singular vectors of C does not change as the inner loop iterates. We shall now show that,
as k approaches infinity, the first coefficient ﬂ'f goes to one and the other coefficients go to
Zero.

Recall that u* has been scaled to have unit norm. Recall furthermore that the u, have
unit norm by definition. and form an orthogonal set, so that on the right side a vector has
been expressed as a linear combination of orthonormal basis vectors. Using this information,

let us take the norm of both sides of (3.32) to obtain

1= ( > (ﬂ,‘;)2) % (3.33)

m=1

(Eae)

Let us divide 3%, by the expression for one obtained in (3.33) to obtain

23—

k ﬂm armdzri
() (Seta)
Inverting and squaring (3.34), and plugging in m = 1, we have

2 2 4k 2 Jdk 2 ik
( 1 ) ar d;;  of,dr; L
k o2 dik 2 gak Voot 0o 4k -
By af diy L di z, di

(3.34)

N~
Ni=

The first term is identically 1. Because d,, > d,,, for m > 1, the subsequent terms go to 0
as k — 0o. Thus limg_,0 BF = 1. But in view of (3.33), we must have limg_, o0 85, = 0 for
m > 1. Thus limg_,oo uf = u,, , where u,, is the left singular vector of C, among those not
orthogonal to u’, corresponding to the largest singular value.

It follows from construction that limg_, o, v¥ = Vr,, and that the value of d computed in
(le) is dy,.

Since C = Zf=1 dru,vT, resetting the value of C in (1f) simply removes one of the
terms from this sum. After the Rth iteration of the outer loop, the new value of C will be

zero. Thus both the inner and outer loops will halt.
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Setting u® to the mean of the columns of C guarantees that [a;| > 0 in Equation 3.27
on page 75. Thus at each iteration of the outer loop the pair of singular vectors computed
will be those associated with the largest singular value for the current C. O

To see that the raw data method of 3.12.3 converges, note that

Vlc o YTgk
x YTXu*!

— CTuk-l

This is the general form of line (3.28) on page 75, and the proof proceeds as before.

3.15 S-PLUS code for PLS-W2A

"PLS2blockModeA" <~

function(X = structure(.Data = c(288, -103, 91, 79, 62, -35, -13,
-97, -69, -111, -7, -101, 108, -32, 65, 27, -45, -148,
142, 13), .Dim = c(5, 4), .Dimnames = 1ist(NULL, paste(
“x", 1:4, sep = "")))/100, Y = structure(.Data = c(2742,
-2385
» —421, 989, 251, 2966, -6058, -3631, 4085, 840, 195,
-1357, 252, 279, 865, 3061, -1829, -703, 1698, 545, 2119,

-2618, -799, -149, -922), .Dim c(5, 5), .Dimnames =

list(NULL, paste("y", 1:5, sep = “")))/1000, R = NULL,

center = T, returnData = F, tolerance = 1e-08)
Two-block Mode A PLS according to Wold, using what Wold calls

Decomposes X and Y by computing Xi, Omega, Gamma, Delta, E, and

{

#

#

# "product data input."
#

# Z such that

#

(1) X = Xi %*% t(Gamma) + E
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(2) Y = Omega %*/ t(Delta) + Z

(3) t(Xi) %*% E =0

(4) t(Omega) %*% Z =0

(5) t(Xi) %*% Xi is diagomal ]
(6) t(Omega) %=/, Omega is diagonal

In addition the following numbers are output:

integer R: the number of columns in Xi and in Omega
vector d, of length R:

inner products of the pairs of latent scores t(Xil[,r]) %*%

Omegal,r] for r=1, ..., R .

Optionally the following can be output (if returmData=T):
rankXtY: rank of t(X) %=*% Y

Matrices U and V: the coefficients used to compute Xi
and Omega

data X and Y

O # B OB K ¥ R X OH OF K ¥ R O O F w3

assign("kitn", function(...)
cat(..., "\n"), frame = 1)
assign("euclideanNorm", function(x)
sqrt(sum(x~2)), frame = 1)
if(is.matrix(X$X) &% is.matrix(X$Y)) {
# X and Y are passed in a single list.
thelist <- X
X <- thelist$X
Y <- thelist$Y
}

if(center) {
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if (any(abs(apply(X, 2, mean)) > tolerance)) {
themax <- max(abs(apply(X, 2, mean)))
cat("X was not centered. max(abs(apply(X, 2, mean)))=",
themax, ". Centering X now.\n") -
X <- scale(X, scale = F)
}
else kitn("X was centered already.")
if (any(abs(apply(Y, 2, mean)) > tolerance)) {
themax <- max(abs(apply(Y, 2, mean)))
cat("Y was not centered: max (abs(apply(Y, 2, mean)))=",
themax, ". Centering Y now.\n")
Y <- scale(Y, scale = F)
}
else kitn("Y was centered already.")
}
else kitn(“No attempt to center the data.")
svdStuff <- function(X, Y, tolerance)
{
A< t(X) %=, Y
thesvd <- svd(A)
Rank <- sum(abs(thesvd$d) > tolerance)
if (Rank < 1) {
thesvd <- NULL
return(Rank, thesvd)
3}
dimnames(thesvd$u) <- list(dimnames(X) [[2]],
NULL)
ldimnames(thesvd$v) <- list(dimnames(Y) [[2]],
NULL)
return(Rank, thesvd)



}

rankXtY <- svdStuff(X, Y, tolerance)$Rank
Ir <- X

Yr <- Y

Xi <- NULL

Omega <- NULL

U <- NULL

V <- NULL

Gamma <- NULL

Delta <- NULL

d <- NULL

r <-1

current <- svdStuff(Xr, Yr, tolerance)

while(current$Rank > 0) {
cat("r=", r, * ")
thesvd <- current$thesvd

ur <- thesvd$ul, 1, drop F]

vr <- thesvd$v[, 1, drop F]

xir <- Xr %=, ur

omegar <- Yr %*% vr

gammarT <- as.numeric(t(xir) %#*% xir) ~(-1) = t(
xir) %*% Xr

deltarT <- as.numeric(t(omegar) %=’ omegar) (-1) =
t(omegar) %*Y Yr

U <- cbind (U, ur)

V <~ cbind(V, vr)

Xi <- cbind(Xi, xir)

Omega <- cbind(Omega, omegar)

Gamma <- cbind(Gamma, t(gammarT))

Delta <- cbind(Delta, t(deltarT))

81
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d <- c(d, thesvd$d[1])
Xr <- Xr - xir %*Y, gammarT
Yr <- Yr - omegar ¥x*%, deltarT
r<-r+1 #
#
# We either halt when t(Xr) %#*% Yr has rank O (is zero) ,
# or when we’ve computed as many pairs of
# latent variables as the user specified.
#
#

if((!is.null(R)) &% (r > R))

break

current <- svdStuff(Xr, Yr, tolerance)

by
kitn()
E <- Xr
Z <~ Yr

R <- length(d)
if (returnData)
invisible(return(rankXtY, X, Y, R, d, U, v, Xi,
Omega, Gamma, Delta, E, Z))

invisible(return(R, d, Xi, Omega, Gamma, Delta, E, Z))
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Chapter 4

RANK-ONE LATENT MODELS FOR CROSS-COVARIANCE

4.1 Introduction

A class of Gaussian latent-variable models for cross-covariance is specified, and the set of
distributions over the observed variables to which they correspond is precisely characterized.
In this class the observed variables, or indicators, are divided into two blocks, X and Y.
A pair of latent variables is postulated, one for each block, £ for X and w for Y. The
indicators are linear functions of their respective latent variables plus error, and errors for
the X block are uncorrelated with those of the Y block. This latent-variable model differs
from the well-known exploratory factor model in that the within-block covariances of the
errors are unconstrained.

Any variance-covariance matrix over the indicators with rank(E xy) = 1 can be fit
exactly by the latent-variable model. Although the model is underidentified, the linear
coefficient vectors a, linking £ to X, and b, linking w to Y, are identified up to sign
and scale. Cor(§,w) = 1 is always feasible, and |Cor (§,w)]| is bounded below. When
|Cor (§,w) | attains its minimum, the scales of a and b are maximized and within-block
errors are minimized. Subject to the constraint that [Cor (§,w) | is at its minimum, the

model is identified up to sign.

4.2 Model specification
Basic terms are introduced which will be used to state the result.

4.2.1 Rank-one constraint models

Let p be the number of X-variables and ¢ the number of Y-variables. A rank-one sym-

metric constraint model (equivalently, a rank-one reduced-rank-regression model) is the
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set of (p + ¢) x (p + q) positive semidefinite matrices satisfying a rank constraint on the
cross-covariance matrix:
Yxx Exvy

Yvyx Zyy

> (4.1)

where ¥ vy is p x q of unit rank. )

4.2.2  Pazred latent correlation models

A rank-one symmetric paired latent correlation model is the set of distributions
over the latent variables £ and w, the observed variables X and Y, and the errors € and ¢,

specified as follows.

3 )
x = a+e,

» where
y = bw+é,,

[ 1
Var '3 _ P ’

w p 1
Var(e) = Bee » . (4.2)
Var(¢) = e s
e b E , € JdL Cy E AL C7
w w

ac€lRP, be RY. )

Thus the parameters-are p, a, b, 3, and 3¢¢, subject to the constraints that |p| < 1 and
that 3. and ¥ must be positive semidefinite. The observed variables X and Y are called

indicators, and the vectors a and b are called saliences or loadings.
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Figure 4.1: Path diagram of a paired latent correlation model. Paired latent correlation
models are defined on page 85, Section 4.2.2.

2

7 AX

A path diagram for a paired latent model may be seen in Figure 4.1 on page 85.

Lack of identifiability. The paired latent correlation model is underidentified. That is, in
general there may be an infinite number of values of the full parameter set {p, a, b, =, e}
which induce the same distribution in the constraint model. This fact will be demon-
strated in the proof of Theorem 4.3.1. We shall precisely characterize the degree of non-

identifiability, however, and suggest a natural convention which makes the model identifi-
able. '

4.2.3 Single latent models

A rank-one symmetric single latent model is equivalent to a paired latent mode! where

§ = w. It is the set of distributions over the latent variable 7), the errors € and ¢, and the
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~

X

Figure 4.2: Path diagram of a rank-one single latent model, discussed on page 86, Section
4.2.3.

observed variables X and Y, specified as follows.

X = an+e€,

where
y = bn+(,
Var(n) = 1,
Var(e) = X, pxp,
Var(¢) = ¥¢» agXxXaq,

elln, e, nl¢,

a€RP, be RY.

Thus the parameters of a symmetric single latent model are Peer ¢, a and b, where 3,

and X must be positive semidefinite. A path diagram is seen in Figure 4.2 on page 86.



4.3 Maps between spaces of models

Every set of parameter values in a rank-one paired latent correlation model induces a dis-

tribution in the rank-one constraint model as follows:

Sxx = aal + e s
Zyy = bbT + 3, (4.3)
Zxy = ablp.

The equations (4.3) define a map from the space of symmetric rank-one paired latent cor-
relation model parameterizations into the space of rank-one constraint model distributions.
The existence of such a map im—mediately raises the question whether every distribution in
the rank-one constraint model can be obtained by a set of parameter values in a paired
latent correlation model—i.e., is the map onto. If such a set of parameters may be found
for a given distribution in the constraint model, we shall say that this set parameterizes
or is a paired latent parameterization of the distribution over the constraint model.
The answer to the question in the previous paragraph is yes. Every rank-one constraint
model can be parameterized by a symmetric paired latent correlation model. We show this
by first proving a stronger result, i.e., that any rank-one constraint model can be parame-
terized by a symmetric single latent model. The result regarding paired latent correlation

models is then obtained as a corollary.

4.3.1 A theorem regarding single latent models
We now state and prove the main result.

Theorem 4.3.1 For each distribution within the rank-one constraint model there is a non-
void class of parameter values in the symmetric single latent model which induce this dis-

tribution.

Proof. We use two lemmas, stated and proved in Section 4.6.1. Decompose ¥ as follows:

aal ab”
Q = ) (4.4)
bal bbT

(4.5)
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e o
E = ,
0 ¢
so that
¥ = Q+E.

Given a covariance ¥ as in (4.1), that is, a distribution under the rank-one constraint model,

we seek a, b, I, and 3¢¢ such that

xx = aal +X., 3. positive semidefinite,
, (4.6)

vy = bbT + 3¢c . X positive semidefinite,
and Tyxy = abT . 4.7)

Since ¥ xy has rank one, by the singular value decomposition we can always find a and b
satisfying (4.7). The two vectors are only determined up to sign and scale, however, since
for any 6 # 0,

bT
2,\'y = abT = Exy = (5&) (T)

The scale and sign of a constitute the only degree of freedom, or lack of identifiability, in the
map from the constraint model to the single latent model. This is because the direction of
a is determined by (4.7). Once the sign and scale of a are determined, then b is determined
by (4.7), and Z,, and %¢; are determined by (4.6).

Let us express the single degree of freedom in this model formally. Define u and v

according to the convention of the singular value decomposition. That is, let
Exy = wld, |u|[=|v]| = 1, (4-8)

where [|-]| represents the Euclidean norm. Furthermore let us assume that a sign convention
has been adopted, so that the lack of identifiability consists only in the scale of a. For 0 < a,

let

a(a) =au, b(a)= Xac—i . . (4.9)
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For future reference we note that

@Il = o, bl = <. (+10)

Thus a(a) and b(a) satisfy T xy = a(a) [b(a)]T. To show that a latent parameterization
exists it suffices to show that, if ¥ is positive semidefinite, a value of a can always be found

such that the values determined by

Te(a) = Byx —ala)(a(@)]’] = Txx-o?ufu]’
(4.11)
vvT g2
T(e) = Byy —b@ @]’ = Zyy--—j
are positive semidefinite. Define f : (0,00) + IR and g : (0,00) — IR by
f(a) = min{eigenvalues of X ()} , (4.12)
g(a) = min {eigenvalues of Z¢c(a)} .

It may be shown that these functions are continuous (Theorem 6.3.2, page 365 of Horn and

Johnson [HJ85]). By Parts 1 and 3 of Lemma 4.6.1:

e f is monotone nonincreasing and goes to —oo as a — oo;

e g is monotone nondecreasing and goes to —co as « | 0.

Let
F = {a:f(a) <0}, and
G = {a:g9(a) <0} .
By the continuity of f and g these sets are open, but by monotonicity they are in fact
intervals: . .
F = (o1,00) and
G = (0,a2) .
The closed set IR \ (FUG) is the set of feasible o values. By Lemma 4.6.4, this set is
nonvoid; that is, we must have oo < ;. Since this is the case, let us call them respectively

Omin and omax. The feasible set of values for « is

[omin, @max] (4.13)
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and we note for future reference:

. vwld? | .. . .
Omin = min< a: Xyy — 5— IS positive semidefinite » ,
a
(4.14)
« = max{a'E-——- 2au” i iti idefini
max = : ¥ xx — o®uu’ is positive semidefinite} .

These follow from the definitions at (4.11) and (4.12).

The fact that IR \ (¥ U G) is nonvoid means the following: In equations (4.6) and (4.7)
on page 88 there is at least one scale of the salience vector a such that both e and ¢
are positive semidefinite. Thus there is a single-latent parameterization of any rank-one
constraint model. O

Examples of constraint models and their parameterizations by the single latent model

are presented in Section 4.4, starting on page 94.

Corollary 4.3.2 FEach constraint model can be parameterized by at least one paired latent

model.

Proof. Let i be the latent variable of the single latent model. Let § and w be the latent

variables in the paired latent model, and let £ = w = 7. _ a

4.3.2  Practical considerations

The proof of Theorem 4.3.1 suggests that the task of finding a single-latent parameterization
of a covariance matrix (4.1) in the rank-one constraint model might be broken into the

following two steps: First find a decomposition
2,\’}/ = abT ; (4-15)

then estimate

Qmax = max {a: T xx — a?aa’l is positive semidefinite} (4.16)

Gmin min {a : Tyy — bbT /a2 is positive semidefinite} .
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The decomposition of X xy. If ¥ is known, the decomposition (4.15) is exact, and
can be found directly. For instance, set a equal to the first nonzero column of ¥ xy, and

determine b by

Sy )
b; = (:I—Y)”,where
i
t = min{k:ar #0}.

When X is estimated by the sample covariance matrix S, in most cases we will have
rank (Sxy) > 1 and (4.15) will be an approximation. Then standard singular value de-
composition software could be used. For instance, let u and v be the first pair of singular

vectors, and define a and b as in (4.9) on page 88.

Estimating omin and amax. From (4.16) we have

amax = max {a : least eigenvalue of £ xx — o2aal is nonnegative }
= max {a : least eigenvalue of Ly x — o?aal is zero} (4.17)
= max{a:|Exx —a’aa’| =0} , (4.18)

where the equality at (4.17) follows by the continuity of the least eigenvalue. By Propositions
4.6.5 and 4.6.6 on page 111, to find « satisfying the expression inside the brackets at (4.18)

we may consider the eigenvalue problem
|Exkaal —AI] = o0,

provided the inver.se exists. Since 2}1XaaT is a rank-one matrix there will be a single
nonzero eigenvalue, say A. But since E}kaaT is not necessarily symmetric, we have not
yet confirmed that the eigenvalue will be positive or even real. Let us therefore convert
the equation inside the brackets at (4.18) to a symmetric, positive semidefinite eigenvalue
problem. Let R be the inverse of a symmetric positive definite square root of £ x x. Since
|R| > 0, we may left-multiply and right-multiply both sides of the equation by |R| without

changing the problem, to obtain

[I-o?Raa’R| = 0. (4.19)
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By Proposition 4.6.5, or by multiplying both sides of (4.19) by (—Lz) . we obtain the
@

symmetric positive semidefinite eigenvalue problem

lRaaTR— izl = 0.
a4

An example of an eigenvalue approach to finding o'min and amay is presented in Section 4.4.

The equation inside the brackets at (4.18) expresses a generalized eigenvalue prob-
lem. The problem of computing generalized eigenvalues has been studied extensively. Com-
putational methods exist which are preferable to the procedures presented above. A brief
discussion of the generalized eigenvalue problem, an introduction to computational issues,
and a bibliography, may be found in Golub and van Loan [GVLY6], pages 375-390 and
461fF.

4.3.8 Parameterization of paired latent correlation models

The proof of Theorem 4.3.1 guarantees at least one paired-latent parameterization of any
rank-one constraint model. In this parameterization the latent variables (& for the X block,
w for the Y block) have unit variance and unit covariance, hence unit correlation. In the
current section the complete set of paired latent parameterizations for a given rank-one
constraint model will be characterized.

A distribution in the rank-one constraint model is mapped to an equivalence class of
parameter values in the symmetric paired latent correlation model as follows. Consider the

following set:
{(pa): ol <1, okin<o?®, @< ama) (4.20)

where amin and @max are defined by (4.14) in the proof of Theorem 4.3.1. When anj, =

Qrmax, this set is a singleton; otherwise it is a continuous closed region. Let
0= (py a, b7 2667 ECC)

denote the parameter vector for the paired latent correlation model. Each point in (4.20)
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determines a value of @ as follows.

a = .au
b = —d, )
ap
> (4.21)
26( = le\——aa’r,
— T
S« = Syy-bbT. |

When the map (4.21) is applied to any value outside the set (4.20), the resulting values do
not define feasible parameters for the paired latent correlation model. This will be shown in
the current section. Consequently (4.20) is called the feasible set for the rank-one paired
latent correlation model. An example of a feasible set may be seen in Figure 4.4 on page
98.

We have already seen in Corollary (4.3.2) that Cor (§,w) = 1 is always feasible. Ob-

serving that

-
a? < a2, and a2, <p?’a® = |p|>—=

max

we see that the constraints at (4.20) entail a lower bound on the correlation, and we define

Umin

Pmin =
max

To justify the term “feasible set” for (4.20), it suffices to show

1. that the parameter values defined above recover 3 (that this parameterization maps

into the constraint model with which we started), and

2. that the constraints at (4.20) are necessary and sufficient for the parameters to be

1
feasible—that is, for X, X¢, and P to be positive semidefinite.
p 1
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Condition (1), the fact that the parameterization recovers the constraint model, follows

from (4.21) and from the fact that

Cov(x,y) = abTp by (4.2)
= uvld by (4.21)
= Xxy by (4.8).

As for Condition (2), the feasibility of the set, the constraint [pl < 1 is necessary and

1
sufficient for p to be positive semidefinite. Since
p 1

Yee = Xxx—aal = Xxx — a?uu? :

by (4.14) on page 90 a necessary and sufficient condition for Y ee to be positive semidefinite
is @ < omax- By the definitions of £ and b at (4.21),

VVT

2
o

3¢ = Zyy —bbT = Zyy —

By (4.14) on page 90, the greatest real number ¢ such that Byy —tvvT is positive semidef-

inite is >—- Thus
min

d2
pPa?

The parameterization has been shown to be correct.

S

32¢¢ is positive semidefinite < >
Qmin

4.4 Examples

Parameterization of a 5 x 5 positive definite matrix in the rank-one constraint

model. Consider the following symmetric positive definite matrix.

(7 0 0 1 05
0 7 0 2 1
= 0 0 7 3 15 (4.22)
1 2 3 9 0
|05 1 1.5 0 5



Let p = 3, ¢ = 2. We shall first parameterize (4.22) using a simple approach which parallels
the proof of Theorem 4.3.1. Then we shall parameterize it again, using the generalized
eigenvalue approach of Section 4.3.2, and verify that the approaches give identical results.

Choosing the convention that both d and the component of u with greatest absolute

value shall be positive, we obtain

1
o V14 35
a(a)—\/_l—4.2 7b(C¥)—El , d = 5
3
98 — a? —2a? —3a?
1
Eeela) = 13 —2a? 98 —4a? —6a? :

—3a? —6a? 98 — 902

14 7
e @

Teela) = ,
7 _ 7
2 %o
203
detB(a) = 343 —490?, detZc(a) = 45~ 5,
203
[amin ) ama.x] = l: —90—, \/7} =~ [1.50, 2.65] .
The curves of least eigenvalues are plotted in Figure 4.3 on page 97. The minimum feasible
correlation is pmin = “min _ 1 290 = 0.57. The feasible set for the paired latent
Cmax 30

correlation model is displayed in Figure 4.4 on page 98.

In Section 4.3.2 it was pointed out that the problem of finding amin and amax is a
. generalized eigenvalue problem. We shall now follow the derivation in Section 4.3.2 and
verify that its solution is identical to that derived above. Following (4.15) on page 90, let

us take a(1) and b(1) as our decomposition of the cross-covariance. To find @y, We then
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solve Z}E\-a(l)a(l)T — a,izl = 0, where
1 2 3
- 1
Exxal)a(l)’ = 98 2 4 6| - -
3 69

. .1 ..
The sole nonzero eigenvalue is 7; thus a;lnax =7, as expected. Similarly we note that ami,

solves [E;—;b(l)b(l)T - aZIl = 0, where

4 7
: 9 9
Srb(Mb)T =
{ {
5 10

; e . 203 .
The single positive eigenvalue is 90’ °ur solution for o2, , as expected.
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least eigenvalues of
SIGMA .eps.eps(alpha) and SIGMA .zet.zet(alpha)

least eigenvalue

T T T T T T T
14 1.6 1.8 2.0 22 2.4 26

alpha

Figure 4.3: The least eigenvalues of X.(a) (the decreasing function) and X¢¢(e) in the
single latent parameterization of the matrix at line (4.22), page 94. The feasible values for

« lie in the closed interval %, V7| = [1.50,2.65]. These are the values of « for which

the least eigenvalues of both 3. (a) and X¢c(a) are nonnegative.
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alpha

alpha 2.65
max

alpha 1.50
min

0.57 1 rho

rho
min

Figure 4.4: Feasible p and « for the paired-latent correlation parameterization of the rank-
constraint distribution specified by (4.22). Feasible values are in the shaded region. The

right boundary of the feasible set corresponds to the single latent model. The (curved) left
boundary is the line pa = @iy The minimum feasible correlation is Pmin = Fmin
’ ®max




99

least eigenvalues of
SIGMA .eps.eps(alpha) and SIGMA zet.zet(alpha)

least eiganvalue

alpha

Figure 4.5: The least eigenvalues of $.(a) and Y ¢c(a) for the singular matrix at line (4.23),
page 99, where there are two X-variables and two Y-variables. The decreasing function is
the least eigenvalue of (). Since v/2 is the only point where both curves equal or exceed
zero, this is the only feasible value for «.

A singular matrix in the rank-one constraint model for which the feasible set
consists of a single point. The following matrix is singular. For purposes of comparison

with the matrix at (4.24) on page 100 we note that its eigenvalues are {4.56, 1,0.44,0}.

- -

(4.23)

—_ =N
e e
T

1
1
2
1

Let p = ¢ = 2. Then the only value of o which parameterizes the single latent model is v/2.
Consequently, in the paired latent parameterization the only feasible correlation is unity.

The least eigenvalues of ¥ (a) and ¥¢¢(a) are plotted in Figure 4.5, page 99.
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A singular matrix in the rank-one constraint model for which the feasible set
is infinite. The example at (4.23) notwithstanding, a matrix in the rank-one constraint
model may be singular and still admit an infinite number of paired-latent parameterizations.
The following degenerate case illustrates this. The matrix at (4.24) has eigenwvalues 4.56, 1,

0.44, and 0, as does the matrix at (4.23).

2 11 1
1211
T = (4.24)
11 1.1
|11 1 1|

Again let p = q¢ = 2. The matrix (4.24) represents a degenerate distribution, since the
two Y variables are perfectly correlated. The fact that there are infinitely many feasible
parameterizations follows from the fact that vvT is proportional to Yyy. The feasible set
is [\/5, \/§] . The value a = /2 entails zero error for the Y-block, so that each Y variable

measures the latent 1 exactly. All feasible values of a, however, entail a singular error
d ¢

éd ¢
for some § € IR. When V2 < q, so that & > 0, the least eigenvalue is 0. For o < v/2, hence

covariance for the Y-block. For all values of o, whether feasible or not, Xec(a) =

6 < 0, ¢c(a) is not a covariance and the least eigenvalue is strictly increasing in «. The

least eigenvalues are plotted against « in Figure 4.6, page 101.
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least eigenvalues of
SIGMA .eps.eps(alpha) and SIGMA .zet.zet(alpha)

1.0

least sigenvalue

alpha

Figure 4.6: The least eigenvalues of ¥(a) (the nonincreasing function) and Y¢c(a) for the
matrix (4.24), page 100.
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least eigenvalues of
SIGMA .eps.eps(alpha) and SIGMA zet.zet(alpha)

least eigenvalue

1.5 2.0 25 3.0

alpha

Figure 4.7: The least eigenvalues of Yee(a) (the decreasing function) and X¢c(a) for the
matrix at line (4.25), page 102. As we would expect, since this matrix fails to be positive
semidefinite there is no a, or scale for the X-salience vector, by which the single latent
model can parameterize it. This may be seen by the fact that there is no value of o for
which both curves are greater than or equal to zero.

A matrix which cannot be parameterized. The following matrix,

(2 1 2 2]
11 2 2
s = , (4.25)
2 2 2 1
2 2 1 1|

is not a variance; that is, it fails to be positive semidefinite. Its least eigenvalue is —1.62.
The curves of least eigenvalues of ¥ («) and X¢¢(@) are plotted in Figure 4.7 on page 102,

under the assumption that p = g = 2.
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4.5 Discussion

Likelihood and the equivalence of model spaces. Three spaces of covariance matrices

over the observed variables X and Y are of interest in the current work. They are:

1. Those corresponding to the rank-constraint model.
2. Those induced by the symmetric paired latent model.

3. Those induced by the symmeéric single latent model.

It follows from definitions and from Equations (4.3) that Set 3 C Set 2 C Set 1. Theorem
4.3.1, however, implies that Set 1 C Set 3. Hence Set 1 = Set 2 = Set 3, a fact which we

state as the following corollary.

Corollary 4.5.1 The sets of covariance matrices over the observed variables induced by the
symmetric paired latent correlation model and the symmetric single latent model are equal

to the set of covariance matrices belonging to the rank-one constraint model.

Thus all single and paired latent parameterizations within an equivalence class have the
same likelihood under the multivariate normal model for (X7, Y7) T, and consequently
there is no way using only data to distinguish between the three models. Furthermore it
may be shown that the rank-one constraint model is covariance equivalent to reduced-rank
regression (RRR). This fact is reviewed in Appendix A. Since maximume-likelihood estima-
tion procedures are available for RRR (Anderson [And51] [And80] [And99]), the problems
of maximume-likelihood estimation for the paired and single symmetric latent models are

solved, at least when the covariance matrix is invertible.

Within-block error tradeoffs in the single latent model. The feasible sets intro-
duced at (4.13) and (4.20) characterize the degree to which a single latent or paired latent
model is not identified.

Let us first consider the single latent model. If amin = crmax there is only one parameter-

ization, say a*. Since f and g, the functions used to define amin and amax, are continuous,
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f(e*) = g(a®) = 0 and the unique parameterization vields singular within-block error
variances for both blocks.

If the joint variance-covariance X is strictly positive definite, amin < amax. The converse
is not true, however, because f or g may fail to be be strictly monotone. We have seen an
example at (4.24) on page 100.

When amin < @max, the likelihood for the single latent model gives no information on
what value of @ within the feasible set should be chosen. The choice of & does however entail
a decision as to which block of indicators is interpreted as measuring the latent variable
more precisely. This is because of the way the within-block error variances vary with « in
(4.11). The variances of the X-block érrors decrease linearly in o?, those of the Y-block
in %. Thus when a constraint distribution permits a within-block error covariance to be
nonsingular, that error covariance can be made singular only by simultaneously

e reducing the variances of all the errors in the block, and

e increasing the variances of all the errors in the other block.

Thus « may be considered a “tradeoff parameter.” When o = Cmin, X¢¢ is singular and
consequently Y measures the latent ) as closely as possible. At the same time the errors
of the X-block, X, have the greatest variance permitted by the constraint model. When

« = pax the reverse is true.

Correlation, identifiability, and tradeoffs in the paired latent correlation model.
When amin = amax the paired latent correlation model has a unique parameterization, just
as the single latent model has. When Qamin < amax this model, like the single latent model,
1s not identified. In this case, however, the fea.sible; set lies in the plane, and we consequently
have two tradeoffs, not one as with the single latent model.

The choice of the quantity p within the feasible interval [Pmin, 1] entails a tradeoff between
error variance on one hand and correlation on the other. When p = Pmin the error variances
for both blocks are at their minimum, and in fact the covariance matrices X, and 3¢¢ are

singular. When p = 1 the feasible values for o are exactly those for the single latent model,
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and the tradeoff described for that model applies. In particular, at least one of the error
variances may be nonsingular.

Recall that pmin = z:—:( is a constant determined by the constraint model, that is, by
the joint population variance-covariance matrix ¥. When this quantity is less than one
we may choose to have latent variables perfectly correlated but poorly measured (p = 1);
or latent variables measured with minimal error, in fact with a singular error distribution,
but poorly correlated with each other (p = pmia); or anything between these two extremes.
The former entails an additional choice as to which block shall have greater error, as in the
single latent model. If the latter choice, (¢ = pmin), were adopted as a convention, and a

sign convention were also adoped, the model would be identifiable.

Singular value decomposition. In two-block rank-one Mode A Partial Least Squares
(PLS), an application of the singular value decomposition to the sample cross-covariance
matrix, empirical saliences u and v are computed. These PLS saliences are scaled sample
covariances between indicators and paired latent-variable scores, one for the X-block and
one for the Y-block. The scores are computed as linear combinations of the variables for
their respective blocks.

Although the PLS procedure depends on no statistical model, it is closely related to the
family of paired latent models. This relationship is seen most easily when an equivalent
paired latent model, the SVD paired latent model, is considered rather than the paired
latent correlation model. The SVD paired latent model is defined and discussed in Section
4.6.3.

Provided the two largest singular values of X xy are distinct and a sign convention
has been adopted, it can easily be shown that the PLS saliences are consistent for the
saliences or loadings of the SVD paired latent model. That is, as the number of observations
approaches infinity, the values of the PLS saliences approach the loadings of the SVD paired
latent model with probability one. This fact follows from the continuity of the singular
value decomposition (Theorem 6.3.2, page 365 of Horn and Johnson {HJ85]). Note that
prior to Theorem 4.3.1 it was not known whether every population covariance matrix over

(XT, YT)T with rank (¥ xy) = 1 could be interpreted as having arisen from a paired latent
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model. This has now been shown.

In PLS applications, vectors of scores on paired latent variables are computed as linear
combinations of the indicators. The correlation between these variables has been estimated
from the vectors of latent scores. This estimate of correlation is sub ject to the attenuation
discussed by Spearman [Spe87]. A traditional correction for attenuation however is not
necessary.! Instead the lower bound for correlation shown in the current work may be used.

An example of two-block Mode A PLS, and of the interpretation of PLS saliences, may

be seen in Streissguth et al. [SBSB93b)].

Factor models. Bollen ([Bol89], paées 227ff.) distinguishes between confirmatory and
exploratory factor models. He states that, in exploratory factor models, within-block errors
or “measurement errors” are uncorrelated. In confirmatory factor models, on the other hand,
these errors may be correlated. Thus single and paired latent models are closely related to
confirmatory factor models. When they are identified they satisfy Bollen’s definition, and
may be considered confirmatory factor models.

A practical difference exists, however, between the current approach and the manner in
which confirmatory factor models have customarily been treated. Although general state-
ments of the confirmatory factor model family often place no a priori constraints on the
within-block error covariance, few if any specific confirmatory factor models can be found
in the literature with unconstrained within-block covariance. Reasons for this are both that
such a model would be underidentified, and that it could be difficult to fit.

The current work deals with both difficulties. The degree to which the model is under-
identified has been characterized. The model has been shown to be identified under the
convention that p = pnis. In addition the problem of fitting the model by maximum likeli-
hood has been transformed into the well-studied problem of fitting a reduced-rank regression

model.

!There is an extensive literature on attenuation and on corrections for attenuation. Spearman’s seminal
article [Spe04] was reprinted in 1987 [Spe87]. Attenuation is mentioned by Kendall and Stuart [KS67],
page 327, and by Fisher and van Belle [FvB93], page 385. Lord and Novick provide a mathematical
justification for the correction for attenuation [LN68]. Muchinsky reviews the issues and controversies sur-
rounding disattenuation, including alternate formulas [Muc96]. Zimmerman and Williams use simulation
to investigate the properties of the disattenuated correlation under various conditions [Zwa7].



4.6 Appendix

4.6.1 Lemmas
To prove Theorem 4.3.1 we require the following lemmas.

Lemma 4.6.1 Let A and C be symmetric matrices of the same dimension, C positive

semidefinite. Let h : [0,00) — IR be defined by

h(a) = the smallest eigenvalue of (A — aC) .

Then

1. The function h is monotone nonincreasing. If C is strictly positive definite, the func-

tion is strictly monotone decreasing.
2. limg o h(a@) = R(0).
3. If C has at least one positive eigenvalue, limgroo A(a) = —o0.

Proof. Let z(a) be the eigenvector belonging to the smallest eigenvalue of (A — aC), with-
out loss of generality let ||z(a)|| = 1, and recall that, with this convention, z(a)T (A — aC) z(«)
equals the smallest eigenvalue.

Part 1. Let o < 5.

z(a)T (A - aC) z(a)

i

h(a)

z(a)T Az(a) - az(a)T Cz(a)

> z(a)TAz(a) - fz() " Cz(a) (4.26)
= z(a)T (A - BC) z(a)

> z(B)" (A - BC)z(B) (4.27)
= h(B).

At line (4.26) the inequality is not strict because possibly z(a)T Cz(a) = 0. If C is strictly
positive definite, the inequality at this line is strict and hence A is strictly decreasing. The

inequality at line (4.27) occurs because z(8), by definition, minimizes the quadratic form.
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Part 2. This is a consequence of a well-known theorem regarding the eigenvalues of
a diagonalizable matrix under perturbation. See, for example, Horn and Johnson [HJ85],

Theorem 6.3.2, page 365. An ad-hoc proof of the continuity of h at 0 is included here as an

exercise.
h(a) = ”rrhin (xTAx — axT Cx) (4.28)
x|l=1
> min x! Ax — max (ayTCy) ; (4.29)
lix[|=1 llyll=1

since in line (4.28) the feasible set is a subset of the feasible set in line (4.29). Lettinga 1 O
we see that the limit is bounded below by A(0).
ha) = 2z(a)T (A - aC)z(a)
< 2(0)" (A~ aC)2(0)
= h(0) — az(0)¥ Cz(0) .
Thus the limit is also bounded above by A(0).

Part 3. Let y be an eigenvector corresponding to a positive eigenvalue of C.

”m”inl xT (A-aC)x < yTAy - ayTCy .
Xi|=
The first term is constant. The second term approaches negative infinity as « approaches

infinity.

u
Lemma 4.6.2 Let x be a p-vector, y a g-vector. Let U be PXR, VgxR,let W= [ } ,
Vv

Q = WWT. Let the entries in these matrices and vectors be real, and consider the quadratic
form
[ xT, tyT ] Q| x

ty

Z@) =

Then there is a real t such that Z(t) = 0 if and only if one or more of the following conditions

holds:



109

Furthermore the real solution, if it exists, is unique.

Proof.

[ xT,tyT ] U [UT, VT] x
\'%2 ty

= (xTU+tyTV) (UTx + tvTy)

Z@E) =

= (xTUUTx) +2t (xTUVTy) +¢2 (yTvvTy) .

This is quadratic in ¢. Let z = x7U and w = yTV, and let 8 be the angle between z and

w. Then Z(t) is of the form

Z(t) = at’+bt+c,
where
a = y'vvly = wlTw = [|w|?,
b = 2xTUVTy = 227w = 2|z]| |[w|| cos6, and
c = xTUUTx = 2Tz = |[z]|2.

If the discriminant is nonnegative, there is a real root ¢ such that Z (t) = 0; if the discriminant

is zero, the root is unique.

b2 — dac

2 2
1 = |lzll? [Iwl[® cos®6 — [z][* |jwl|

= ||z|i? [|w][? (c0520 -1) .

This value is real and nonpositive. It is zero if and only if at least one of the conditions

holds which are stated in the lemma. a
Corollary 4.6.3 If R =1, there is a unique t such that Z(t) = 0.
Proof. Apply Lemma 4.6.2, and notice that in this case x7 U and yTV are scalars. O

Lemma 4.6.4 Let

A C
cT B
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where X is symmetric positive semidefinite, A and B are respectively p x p and q X q. and

C s of rank one. Let u and v be p- and q-vectors satisfying

C = uvl.
Define
A" = A—-uul,
B* = B-vwvvl.

Then at least one of A* and B* is positive semnidefinite. Furthermore, if ¥ is positive

definite, at least one of A* and B* is positive definite.

Proof. Let x and y be the eigenvectors of A* and B* corresponding to their smallest

eigenvalues, ¢ and ¢, so that

A’x = 6x and B*y = ey
Let
u A* 0
w o= , Q = wwl'| E = ,
v 0 B-
so that
2 = Q+E.

For real ¢, consider the following quadratic form:

pTeyT] = | x _ Tl Q [ x| + xTAx + t’yTB*y
ty i tyJ
. [xT,tyT] Q (x- + § + t3.

By Corollary 4.6.3, there is a unique real ¢ such that the first term is zero. Thus

max (6,e) <0 = X has a negative eigenvalue, and

max (d,e) <0 = X has a nonpositive eigenvalue.



111

By the contrapositive, it follows that, if ¥ is strictly positive definite, then at least one of
A* and B” is strictly positive definite; and if ¥ is positive semidefinite, then at least one

of A* and B* is positive semidefinite. a

4.6.2 Facts related to generalized eigenvalues

The following facts are used in Section 4.3.2.

Proposition 4.6.5 Let A and C be n x n matrices. If A\ # 0, then

A-)C| = 0 & ’C—%Al = 0.

l n
Proof. Multiply both sides of the expression on the left by (——:\-) . O

Proposition 4.6.6 Let A be nonsingular. Then any generalized eigenvalue \ satisfying

|C — AA| =0 is an eigenvalue of A~!C.

Proof. For some nonzero x we have

0 = Cx-)\Ax

= A7 lCx-)x.

4.6.3 SVD paired latent models

The rank-one SVD paired latent model is equivalent to the rank-one paired latent
correlation model specified at (4.2). The rank-one SVD paired latent model is the set of

distributions over the latent variables £ and w, the observed variables X and Y, and the
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errors € and (, specified as follows.

Xx = uf+e, ‘
?where
y = vw+(¢, |
[ d
Var '3 _ @
w _d P
Var(e) = e s ? (4.30)
Var(() = 3¢c s
e 1L ¢ , € U ¢, ¢ a4 ¢,
w w
uelRP, veR?, ||ul|=]{v]l=1. )

Thus the parameters of the SVD paired latent model are &, ¥, d, u, v, B, and T, subject

to the following constraints:

lal = |Ivll =1, (431)
Yee positive semidefinite, (4.32)
3 ¢¢ positive semidefinite, (4.33)

o > . (4.34)

The parameters of the SVD paired latent model may be partitioned into those which govern

cross-covariance,
u’ v’ d 7

and those which govern within-block covariance,

¢1 1)["1 2661 2(( -
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Such a partition is not possible in the paired latent correlation model. Note that d is a
covariance, not a correlation. The correlation between the latents, p, is a function of the

parameters:

d -
= —. 4.35
= Ve (#:33)

A rank-one constraint model is mapped to an SVD paired latent model as follows. Using

the singular value decomposition, determine d, u, and v by
Sxy = duvl (4.36)

where, as we have noted, a sign convention is necessary to make these parameters identifi-

able. Determine the constants ¢max and ¥max by

Pmax = max{¢: (Zxx —puu’) is positive semidefinite} ,
(4.37)
Ymax = max {¢: (Syy —yvvT) is positive semidefinite} .
By Lemma 4.6.1, ¢max and ¥max exist. For future reference we recall line (4.14), page 90,

noting thereby that

d2
¢max = azma_x b "/Jma.x - 2 - (4’38)
Uhin
Then each point in the two-dimensional feasible set,
{(¢.%) : 6 < Pmax » ¥ < Pmax , ¢ > d°} (4.39)

represents a SVD parameterization of the rank constraint model. That this set is nonempty
is a consequence of Theorem 4.3.1. For any (¢, %) in the feasible set, the remaining param-

eters are defined by

2€€(¢) = ¥xx — ¢uuT )
() = Zyy —yvvl.

(4.40)

To see that this parameterization is correct, it suffices to note that the following requirements

are rnet.
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1. The parameter values defined recover ¥ —that is, this parameterization maps into the
constraint model with which we started. This follows immediately from (4.36) and

(4.40).

2. The constraints at (4.39) are necessary and sufficient for the parameters to be feasible—

that is, for X, 3¢, and ¢ to be positive semidefinite. This follows imme-
d ¢
diately from the definitions of @max and ¥max, and the condition &Y > d? in the

definition of the feasible set.

The values of ¢ and ¢ corresponding to the single latent model form the lower left
boundary of the feasible set, which is the intersection of the curve
d2
®

with the rectangle [0, dmax] X [0, ¥max]. For constraint models such that Qmax = Qmin, the

P =

feasible set degenerates to the single point (max> Pmax)-
Define ¢min and ¥min by

d? d?
wmin

d’ma.x ’ ¢ma.x )

(4.41)

(bmin

The constraints

¢ > ¢min ) '¢' > '(/Jmin

are implicit in the definition of the feasible set, since both ¢ and 9 have maximum values,
and ¢ > d?. At any point where ¢ or v attains its maximum the covariance of the latents
is singular. The minimum value for ¢ is attained only when % attains its maximum, and
vice versa.

The value (¢max, ¥max) entails a nonsingular variance for (&, w)T whenever the feasible
set is not degenerate. In all cases, however, (dmax, ¥max) entails singular within-block error
variances for both blocks. The minimum feasible correlation is attained at this point, and
defined by

d
SR =



Bijection between parameterizations. It was stated on page 111 that the SVD paired
latent model and the paired latent correlation model are equivalent. This may be seen by
the fact that a bijection exists between the feasible sets for the two parameterizations. as
defined at (4.20) and at (4.39). Given a point (a, p) in the feasible set, for the paired latent

correlation model, we obtain a point in the feasible set for the SVD paired latent model by

d?
= 2 ] _ —_——
é o, ¢ oy

Given a point (¢, ) in the feasible set for the SVD paired latent model, we obtain a point
in the feasible set for the paired latent correlation model by

d
04=\/5’P=m-

Example. Let us return to the constraint model (4.22) on page 94, and compare its

SVD-model feasible set with its paired-correlation-model feasible set. Recall that

/35 1
d = =, Qqin = —/m——, « = V7.
2 e 30./2030 max

Comparing (4.14) on page 90 with (4.37) on page 113 we see that the constraints defining

the SVD-model feasible set are obtained By

¢ma.x = a[2na_x = 7 1
d? 225
P = —— = — =~ 7.76.
fmax o, 29
Then we also have
d? 203
in = = — =~ 226,
¢mm wmax 90
d? 5 .
: = —_— = — = 2_ s
¢mm ¢max 2 5
d = 290 =~ 0.568 .

Pmin = mabmae 30

The feasible set is plotted in Figure 4.8 on page 117. The point where p = Pmin and

consequently ¥ (¢) and S¢¢(¢) are singular is in the upper right corner of the feasible set.
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In Figure 4.4 on page 98, the level set for the paired latent correlation model, by contrast,
P = Pmin at the leftmost point of the feasible set. The points corresponding to the single
latent model (p = 1) in this Figure are on the lower left curved boundary, whereas in Figure

4.4 they are on the right boundary.



psi

! tho=0.7

psi

P tho=0.8

psi o o ~ - rho=0.9
min T rho=1
2 - .

[+

0 1 phi 3 4 5 g phi

phi

Figure 4.8: Feasible set for the SVD parameterization of the constraint model (4.22) on page
94. The SVD paired latent model is defined in Section 4.6.3. A bijection exists between
this feasible set and the feasible set plotted in Figure 4.4 on page 98, representing the
paired latent correlation parameterization of the same constraint model. Level sets of p

d? V29
lie on the curves 9 = % Feasible values for p are in the closed interval [TO, l} LAt
Vv 2
p= —3202(—) = 0.568, the level set is the point | 7, -—2—?5—) , that is, the upper right corner of the

broken rectangle. A selection of level sets for p are plotted as solid curves. Feasible values
for ¢ and 9 lie inside the broken rectangle and on or to the right of the p = 1 curve.
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Chapter 5

RANK-R LATENT MODELS FOR CROSS-COVARIANCE

Abstract. We specify a class of rank-r latent models for cross-covariance. We show by
construction that any variance-covariance matrix for the observed variables induced by
rank-r reduced-rank regression can be induced by a rank-r latent model.

This chapter parallels Chapter 4, with fewer examples. Theorem 5.2.1 is new.

5.1 Model specification

Basic terms are introduced which will be used to state the result.

5.1.1 Rank-r constraint models

Let p be the number of X-variables and ¢ the number of Y-variables. The rank-r symmetric
constraint model (equivalently, the rank-r reduced-rank-regression model) is the set of
(p + ¢q) x (p + q) positive semidefinite matrices satisfying a rank constraint on the cross-

covariance matrix:

Lxx Zxvy

Yvx Zyy

( (5.1)

where ¥ sy is p x ¢ of rank r. J

5.1.2 Rank-r paired latent models

The rank-r symmetric paired latent model is the set of covariances over the latent r-
vectors £ and w, the observed p-vector X, the p-vector of errors €, the observed g-vector Y,

and the g-vector of errors (, specified as follows.
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x = Af+e€ and
y = Bw+ ¢ ., where
I R
Var (¢7, wT)T =
R I,
R = dia’g (Pla---’Pr) ? 4 (5'2)
Var(e) = X, pXp,
Var({) = X, gxgq,

el (€7, wT)" , ewg¢, (6777 1c,

A e RP<n) B e RU*T

Thus the parameters of the symmetric rank-r paired latent model are the correlations
P1,---,pr and the matrices A, B, X, and 3¢, subject to the feasibility constraints that
—1 < pr £1 for all k¥ and that ¥ and ‘2« must be positive semidefinite. The observed
variables X and Y are called indicators, and the columns of A and B are called saliences

or loadings. A path diagram for this model may be seen in Figure 5.1 on page 120.

5.1.8 Rank-r single latent models

The rank-r symmetric single latent model is the set of distributions over the latent r-

vector 7, the observed p-vector X, the p-vector of errors €, the observed g-vector Y, and
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Y,
X[ p
&1 < L (o,
X, Ya

P:

%] Y,

Figure 5.1: Path diagram representing a symmetric rank-r paired latent model. This model

is defined in Section 5.1.2. In the parameterization guaranteed by Theorem 5.2.1, p; =
-.-=pr =1 since §; = wy for all k.

the g-vector of errors (, specified as follows.

X = An+e€ and )
Yy = Bn+(¢ , where
Var(n) = Igr,
r (5.3)
Var(e) = EEE) p X p’
Var({) = X, gxgq,
elln, el¢, nl(,
Ac€ B(Px"') s Be B(‘IXT) . J

Thus the parameters of the symmetric rank-r single latent model are the matrices A, B,
e, and X¢¢, subject to the feasibility constraint that ¥, and 3¢¢ must both be positive

semidefinite. The reader will observe that the rank-r single latent model is a special case of



121

z

Yq

Xp

Figure 5.2: Path diagram representing a symmetric rank-r single latent model.

the rank-r paired latent model where £ = w. A path diagram for a symmetric rank-r single

latent model may be seen in Figure 5.2 on page 121.

5.2 Maps between spaces of models

Every set of parameter values for the paired latent model induces a set of covariances over

the observed variables as follows.

yvx = A.AT + X y
vy = BBT + E(C , 7 (5.4)
xy = ARBT.

The equations (5.4) define a map from the space of rank-r paired latent models into the
space of rank-r constraint models. The existence of such a map immediately raises the
question whether every covariance in the rank-r constraint model can be obtained by a
set of parameter values in the rank-r latent model—i.e., is the map onto. If such a set of
parameter values exists, we say that it parameterizes or is a latent parameterization
of the covariance matrix.

The answer to the question in the previous paragraph is yes. Every rank-r constraint
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model can be parameterized by a rank-r symmetric paired latent model. We show this by
first proving a stronger result, i.e., that any rank-r constraint model can be parameterized
by a symmetric rank-r single latent model. The result concerning paired latent models is

obtained as a corollary.

5.2.1 A theorem regarding rank-r single latent models

We now state and prove the main result.

Theorem 5.2.1 For each covariance matriz (5.1) in the rank-r constraint model there is at
least one set of parameter values in the rank-r symmetric single latent model which induces

it.

Proof. Let X and Y be matrices such that

Sxx = XTX,
Exy = XTY, and
vy = YTY.

Such matrices are guaranteed to exist. For instance they may be obtained by partitioning
the symmetric positive semidefinite square root of . Let rz be the rank of X and 7, the

rank of Y. Without loss of generality suppose rr < 1y. It can be shown that there are

matrices U and V such that U is a basis for the range (the column space) of X, V is a

basis for the range of Y, UTU =1I,_, VIV =1, , and
UuTv = [b|o], (5.5)

where 0 is an 2 % (ry, — ;) matrix of zeroes, absent if re =1y, D is an r; x r; diagonal

matrix satisfying
D = diag(cos(6;),...,cos(8;),0,...,0) , (5.6)
the last (r; — 7) diagonal entries of (5.6) are zero if r; > r, and

cos(61) > ... >cos(6;) >0.
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The columns of U and V are principal vectors, and the 6, are principal angles. These
facts are reported as Theorem 9.1 and Corollary 9.11 in Afriat [Afr57]. Golub and van Loan
report an algorithm for computing U and V in the case when X andY are of full rank
(pages 603f [GVLI6]). Bjorck and Golub [BG73] discuss numerical methods, including the
case where X and Y are rank-deficient. In a statistical context the cos(;) are known as
canonical correlations and the principal vectors as canonical correlation variables or
canonical variates. Mardia, Kent and Bibby develop these concepts within a statistical
context for the case where ¥ has full rank (Chapter 10, pages 281-299 [MKB79]), as does T.
W. Anderson [And99]. The cancor() function in S-PLUS [Mat96] may be used to compute
canonical correlations. S-PLUS .also computes two matrices, respectively r; xr; and ry, xry,
which may be used to compute U and V from X and Y provided X and Y have full rank.

Let n be the number of rows in X. Then Uisnxrzand Visnxry. Let Ebeanr; xp

matrix and F an r, x ¢ matrix such that
X = UE, Y = VF. (5.7)

Define the p x r; matrix A and the ¢ X r; matrix B by

A = ETVD,
vD
B = FT[

where D and 0 have the same value as in (5.5). Then by (5.5)
ABT = ETUTVF
= XTy.

Then

Sxx — AAT = XTX -ETDE
= ETUTUE - ETDE
= ET@1,, -D)E

= ETdiag(1 - cos(6,),...,1 —cos(6;),1,...,1) E, (5.8)
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a positive semidefinite matrix. By a similar argument

D o
Zyy -BBT = FT |, —
00
= FTdiag(l—cos(Gl),...,l—cos(Br),l,...,l)F, (5.9)

also positive semidefinite. Define the p x p matrix ¥ and the ¢ x ¢ matrix ¢ by

zce = EXX - AAT s
¢ = Zyy -BBT.
The values of A, B, ¥, and 3¢¢ satisfy the definition of a rank-r single latent model,

stated in (5.3), and they induce . O

Corollary 5.2.2 The values of both £, and 3¢¢, derived in the proof of Theorem 5.2.1,

are strictly positive definite if and only if £ is strictly positive definite.

Proof. X is strictly positive definite if and only if the columns of the combined matrix
[X]Y] are linearly independent. This condition holds if and only if the following three

conditions hold.

1. The columns of X are linearly independent of the columns of Y, so that the first
principal angle satisfies cos (6,) < 1 (the first canonical correlation is less than one in

absolute value). Note that this is the only way that
diag (1 — cos (61),...,1 —cos(b;),1,...,1)
can have full rank.
2. The following equivalent conditions hold.

¢ The columns of X are linearly independent.
® T:C = p,

e rank(E) = p.
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3. The fcllowing equivalent conditions hold.

e The columns of Y are linearly independent.
[ ] Ty =4q.

e rank(F) =q.

Thus if 3 is strictly positive definite, both (5.9) and (5.8) are of full rank, that is, strictly
positive definite.

Suppose on the other hand that (5.9) and (5.8) are of full rank. The matrix at (5.9) is
p x p, the product of a p x r; matrix, an r; X r, matrix, and an r; X p matrix. Since r; < p,
this matrix can be of full rank only if r, = p. Furthermore it can be of full rank only if
the middle matrix is of full rank, which requires p; < 0. Similarly if (5.8) is of full rank it
follows that ry, = ¢ and p; < 0. Thus ¥ is of full rank. 4d

Remark on Corollary 5.2.2. Corollary 5.2.2 notwithstanding, for a given strictly pos-
itive definite covariance matrix in the constraint model there may be parameterizations,
different from those derived in the proof of Theorem 5.2.1, with singular within-block co-
variance. For instance, Wegelin et al. [WRRO1] show in the rank-one case that a parameter-
ization is always possible in which the within-block-error covariance matrices are singular

for both blocks.

Corollary 5.2.3 Fach rank-r constraint model can be parameterized by at least one rank-r

paired latent model.

Proof. Let n be the latent variable of the single latent model be given by Theorem 5.2.1,

andlet £ =w=1n.

Remark on Corollary 5.2.3." The correlations between €, and wy, written pi, are not
to be confused with the canonical correlations which appear in the proof of Theorem 5.2.1.
The correlation between the latents in the paired latent parameterization guaranteed by

Theorem 5.2.1 is unity: Cor (§,,w;) = 1 for all k. The canonical correlation which appears
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in the proof of Theorem 5.2.1, on the other hand, is only unity if ¥ is singular. In the

example on page 126, for instance, the canonical correlation is about 0.57.

5.3 Example

Consider the following symmetric strictly positive definite matrix, and let p = 2, ¢ = 3.
This is a distribution in the rank-one constraint model, and is identical to (4.22) on page

94, except that X and Y have been transposed.

(0 0 1 2 3
0 5 05 1 L5
X = 1 05 7 0 0
2 1 0 7 0
315 0 0 7

Following the proof of Theorem 5.2.1, we obtain

[ 0.79431  0.56228
0.5326 —0.82666
U = | 007811 -0.0058 | ,
0.15622 —0.0116
| 0.23433  —0.0174

.

[ 0.2615 0 0

0.15284 0 0
VvV = 0.25471 —0.9443 0.19202 )

0.50941 —0.02053 —0.8449
| 0.76412 0.32845  0.49926

0.56765 O
0. o]

0.75342 0
Ul = 3
0 0
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E =
1.67126 —1.85695

[2.49136 1.24568 }
0.70711  1.41421 2.12132

F = | -249838 —005431 0869 | .
0.50805 —2.23541 1.32002

- 1.87705 0
0.93853 0

[ 0.53275 0
B = | 1.0655 0
| 1.59825 0

We check that

T 1 2 3
AB = = Xxy .
05 1 1.5

Then the within-block covariances are

v 5.47668 —1.76166
Eee =
—1.76166 4.11917

full rank with least eigenvalue 2.9, and

6.71618 —0.56765 —0.85147
T = | -0.56765 5.86471 —1.70294 | ,
—0.85147 —1.70294  4.44559

also full rank with least eigenvalue 3.03.
5.4 Discussion .

Likelihood and the equivalence of model spaces. Three spaces of covariance matrices

over the observed variables X and Y are of interest in the current work. They are:
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1. Those corresponding to the rank-r rank-constraint, or reduced-rank-regression, model.
2. Those induced by the rank-r symmetric paired latent model.

3. Those induced by the rank-r symmetric single latent model.

It follows from definitions and from Equations (5-4) on page 121 that Set 3 C Set 2 C Set
1. Theorem 5.2.1, however, implies that Set 1 C Set 3. Hence Set 1 = Set 2 = Set 3, a fact

which we state as the following corollary.

Corollary 5.4.1 The sets of covariance matrices over the observed variables induced by
the rank-r symmetric paired latent correlation model and the rank-r symmetric single latent

model are equal to the set of covariance matrices belonging to the rank-r constraint model.

Thus all single and paired latent parameterizations within an equivalence class have the
same likelihood under the multivariate normal model for (XT, YT)T, and consequently
there is no way using only data to distinguish between the three models. Furthermore it
may be shown that the rank-one constraint model is covariance equivalent to reduced-rank
regression (RRR). This fact is reviewed in Appendix A. Maximum-likelihood estimation
procedures, and asymptotics, available for RRR (see Anderson [And51] [And80] [And99])

and Ryan et al. [RHC*92]) are thus available for the paired and single latent models.
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Chapter 6

RELATED EQUIVALENCE RESULTS

In this chapter we extend the results described so far by considering a number of other
latent models which relate the two blocks of observed variables.

These graphs are shown in F igure 6.1. (a) and (b) represent two path diagrams in which
: ::' \,..
Wl/;;:iF

Sporogh N
'-. i ¢

(¥

A 7, A,
& [ &N
[+

e

Figure 6.1: Path diagrams corresponding to two-block latent variable models. Under (I) the
dashed edges are present; under (II) they are absent. Under (I) all models are covariance
equivalent over X and Y.

the latent variables £ and w are parents of the observed variables. The only difference
between the models is that (a) specifies that £ and w are correlated, while in (b) £ is a
parent of w. The graph shown in Figure 6.1 (c) differs from that shown in (b) in that the
X variables are parents of £&. The graph in (d) is analogous to (a) and (b) but the pair of
latent variables £, w are replaced with a single variable. Likewise (e) represents the single
latent analogue to (c).

We consider the five models corresponding to these graphs, under two sets of conditions
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on the error terms:

(I) Cov (€:,¢;) =0, but Cov (€;, €x) and Cov (¢;Ce) are unrestricted.

(II) Cov (ei,C]—) =0, and
Cov (€i,€x) = Cov (¢;,(,) =0fori # k, j # €.

Let N denote the set of Gaussian distributions over X and Y given by graph (a) in
Figure 6.1 under condition (I) on the errors, likewise for NI ./‘VbI, /\/b” and so on. Corollary

4.5.1 thus shows that ] = M}, We extend these results further in the next theorem.

Theorem 6.0.2 The following relations hold:
N =N =Nl =N] = N/
NI = Nl NE = W £ N £ A

(The first and third inequalities require p > 1. The second also requires ¢ > 1.)

In words: When the within-block errors are not restricted, all of the latent structures in
Figure 6.1 are indistinguishable. When the errors are uncorrelated, on the other hand, the

following conditions hold:

e We can distinguish structures in which £ is a parent of the X's from those in which
gu P

the X’s are parents of £.

e When the X’s are parents of £ we cannot distinguish between models with one and

two latent variables.

e When £ is a parent of the X’s we can distinguish models with two latent variables

from those containing only one.

The existence of equivalent models containing different numbers of hidden variables is impor-
tant for the purpose of interpretation. It highlights the danger of postulating the existence

of variables for which there is no evidence in the data.
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6.0.1 PROOFS OF EQUIVALENCE RESULTS

In order to prove the results in Theorem 6.0.2 we need several definitions. Following [RS00]
we say that a path diagram, which may contain directed edges (—) and bi-directed edges

(«) is ancestral if:

(a) there are no directed cycles;

(b) if there is an edge z <> y then z is not an ancestor of y, (and vice versa);

where a vertex z is said to be an ancestor of y if either z = y or there is a directed path from
z to y. Conditions (a) and (b) may be summarized by saying that if £ and y are joined by
an edge and there is an arrowhead at z then z is not an ancestor of y; this is the motivation
for the term ‘ancestral’. (In [RS00] a more general version of this definition is given which
applies to graphs containing undirected edges.)

A natural extension of Pearl’s d-separation criterion may be applied to graphs containing
directed and bi-directed edges. A non-endpoint vertex v on a path is said to be a collider if
two arrowheads meet at v, i.e. — v +—, <> v >, > U ¢ or — v «; all other non-endpoint
vertices on a path are non-colliders. A path m between a and f is said to be m-connecting

gwen Z if the following hold:

(i) no non-collider on 7 is on Z;

(ii) every collider on 7 is an ancestor of a vertex in Z.

Two vertices o and 8 are said to be m-separated given Z if there is no path m-
connecting «a and S given Z. Disjoint sets of vertices A and B are said to be m-separated
given Z if there is no pair ¢, 8 with « € A and B8 € B such that o and 8 are m-connected
given Z. (This an extension of the original definition of d-separation for DAGs in that the
notions of ‘collider’ and ‘non-collider’ now include bi-directed edges.) Two graphs G; and
G2 are said to be Markov equivalent if for all disjoint sets A, B, Z (where £ may be empty),

A and B are m-separated given Z in G; if and only if A and B are m-separated given Z in



G2. A distribution P is said to obey the global Markov property with respect to graph G if
AU B | Z in P whenever 4 is m-separated from B given Z in G.

An ancestral graph is said to be mazimal if for every pair of non-adjacent vertices a, 8
there exists some set Z such that o and 3 are m-separated given Z.

It is proved in [RSO0] that the set of Gaussian distributions given by parameterizing the
path diagram G is exactly the set of Gaussian distributions that obey the global Markov

property with respect to G. More formally, we have:

Theorem 6.0.3 If G is a mazimal ancestral graph then the following equality holds regard-

ing Gaussian distributions:

{N | N results from some assignment of

parameter values to G}

= {N | N satisfies the global Markov property for G}.

See Theorem 8.14 in [RS00]. As an immediate Corollary we have:

Corollary 6.0.4 If G| and G, are two Markov equivalent mazimal ancestral graphs then

they parameterize the same sets of Gaussian distributions.

See Corollary 8.19 in [RS00]. These results do not generally hold for path diagrams which
are not both maximal and ancestral.

The sets of distributions given by the models under (I) correspond to the path diagrams
shown in Figure 6.1 in which there are bi-directed edges between all variables within the

same block, thus X; & X (i # k) and YooY, (G #E).

6.0.2 PROOF OF THEOREM 6.0.2

We first show NI =N} =N!. Observe that in each of the graphs in Figure 6.1(a), (b) and

(c), the following m-separation relations hold:
(i) X; is m-separated from Y; by any non-empty subset of {&,w};

(ii) X; is m-separated from w by &;
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(iii) Y; is m-separated from £ by w.

Further, when bi-directed edges are present between vertices within each block all other
pairs of vertices are adjacent so there are no other m-separation relations. Consequently
these graphs are Markov equivalent and maximal since there is a separating set for each
pair of non-adjacent vertices. It then follows directly by Corollary 6.0.4 that these graphs
parameterize the same sets of distributions over the set {X,Y,w, £}, hence they induce the

same sets of distributions on the margin over {X,Y}.

The proof that N} = N[ is very similar. When bi-directed edges are present within
each block the only pairs of non-adjacent vertices are X; and Y; which are m-separated
by &. It then follows as before that these graphs are Markov equivalent and maximal and
hence by Corollary 6.0.4 they parameterize the same sets of distributions over {X,Y, ¢},

and consequently over {X,Y}.

Since we have already shown A} = N} in Corollary 4.5.1, the proof of equivalences
concerning models with error structure given by (I) is complete. It remains to prove the
results concerning models of type (II). These correspond to the path diagrams in Figure 6.1,
without the dashed edges between vertices within the same block. Subsequent references to
graphs in this figure will be'to -the graphs without these within-block edges.

First note that the m-separation relations given by (i), (ii), (iii) above continue to hold
when there are no edges between vertices within each block. In graphs (a) and (b) we also

have:
(iv) X; and X; are m-separated given &;
(v) Y; and Y, are m-separated given w.

Consequently these graphs are Markov equivalent and maximal. Hence NI = M by

Corollary 6.0.4. In the path diagrams corresponding to (c) and (e), we have

(vi) X; and X; are m-separated by the empty set.
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Consequently the variables in the X block are marginally independent in NH = N while
this is not so under A! '\/'b”,./\/:ﬁ[. This establishes two of the inequalities. By direct

a

calculation it may be seen that for any distribution in .f\/}[ it holds that

Cov (X;, Xk) Cov (Y;, Yy =
Cov (X;,Y;) Cov (Xi, Ye)

while this does not hold for distributions in NI = _r\/'b”- This establishes the third inequality.
It only remains to show that A" = A/IL. First observe that the set of m-separation relations
which hold among {X,Y,w} in the graph in (c), i.e. (i), (ii), (iii) and (v), is identical to

the set of relations holding among {X,Y,n} in (e), i.e. (i), (ii). (iii) and
(vii) Y; and Y, are m-separated by n,

where 77 is substituted for w. Conseqﬁently any marginal distribution over {X,Y,£} that
is obtained from the graph in (¢) may also be parameterized by the graph in (e) after
substituting 1 for w. It then follows that NI € N To prove the opposite inclusion it
is sufficient to observe that any distribution over {X,Y,n} that is parameterized by the
graph in (e) may be parameterized by the graph in (¢) by setting w = £ + ¢, and letting
Var (e,) + Var (¢) = Var (¢,;). This completes the proof. a



Chapter 7

FUTURE WORK

7.1 Future Work

In the remainder of this chapter some directions for extension of the current work are

outlined.

Extension of results to rank r > 1. In Chapter 4, in the context of a rank-one latent
model, the sets of parameter values are characterized which induce a given covariance ma-
trix. This is done for both the single and paired rank-one latent models. Two constants,
Qmin a0d amax, functions of the covariance X, are sufficient to characterize each set. Fur-
thermore a natural convention is presented by which the rank-one paired latent model can

be made identifiable. The convention is that the correlation between the latent variables

.. .. . Cmi
attains its minimum feasible value, ——.

Cmax

It would be interesting to see whether the results for the rank-one case can be extended

to rank r; that is, answers to the following questions would be interesting.

e How is the feasible set characterized for rank r? Is it always a “corner” in R} a5

is the case when r = 1? Is there any way to visualize it?

e Are there constants, analogous to &min and &may, which characterize the feasible set

for rank 77

e Is there a single point in the feasible set which minimizes a reasonable criterion related
to the correlations between the r pairs of latent variables? In particular, can the r
correlations be simultaneously minimized, or does the minimization of, for instance,
Cor (§,,w,) imply that Cor (£,,w>) is not minimized? In other words, are these

parameters variation independent?
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Likelihood. (See the following references: [[ze75] [Hea80] [HS79] [CMT79])

The current work suggests a way that maximum likelihood estimation could be per-
formed for a rank-r single or paired latent model: First compute the maximum-likelihood
estimate of the covariance X of the observed variables under rank-r reduced-rank regression,
and then map from X to the parameter values of the appropriate latent model. This needs
further exploration. In particular, issues of inference under the Gaussian model need to be
explored. Note that Izenman {Ize75] and T. W. Anderson [And99] report an asymptotic
variance for the reduced-rank estimator, and Ryan et al. [RHC*92] report a reduced-rank-

regression analysis with hypothesis tests.

Degrees of freedom. In the cross-covariance problem we are not concerned with within-
block covariance, only the relationship between X and Y. In the context of “projection to
Latent Structures” (PLS), it is possible to take advantage of this fact in situations where
vthe number of variables exceeds the number of units (p + g > n). Although sample within-
block covariances are singular, it is possible to estimate the loadings (“saliences”). The PLS
estimates are consistent for the loadings of the paired latent model; standard errors may be
computed using the bootstrap, and models can be compared by cross-validation.
Situations exist where it is unrealistic to expect the number of units to exceed the
number of variables, where a very large number of variables is in fact desirable. Examples
may be found in chemistry and toxicology; see for example Sardy [Sar98]. Behavioral
teratology is another field where this occurs. The following statement by Bookstein et
al. is apropos: “/BJehavioral teratology is best studied in breadth, not depth. There appears
to be a great variety of ‘moderately good’ measurements, and a complete dearth of ‘very
good’ measurements. There is no gold standard for measuring alcohol-induced brain damage
across the first 7 years of human life; rather, the presence of alcohol damage is a truly latent
variable, one developed more and more clearly by longer and longer series of outcomes
studied more and more patiently” ([BSSB90] emphasis in original). The same statement
could be applied to behavioral instruments in situations outside the realm of teratology.
Thus the following question deserves further exploration: What relationship between the

the number of variables and the number of units is required for inference in latent models
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for cross-covariance? Is there any means available for performing principled inference in

latent models for cross-covariance which does not require n > p + ¢?

More than two blocks. The current work is concerned with the two-block case. Pro-
jection to Latent Structures (PLS), however, the data-analytic method which inspired the
current work, can be applied to any number of blocks of indicators. Thus a natural exten-
sion to the current work would be to consider an arbitrary number of blocks. Canonical

Correlation Analysis provides a precedent for such an extension (see Kettenring [Ket82]).

Generalized inverse of the covariance matrix. By Proposition A.0.3 on page 151 we
know that a rank-constraint on ¥ xy is equivalent to a rank-constraint on the corresponding
block of the inverse covariance matrix, provided the inverse exists. Can this fact be extended

to generalized inverses?

Scientific applications. The original motivation for the current work was a study in
behavioral teratology (Streissguth et al. [SBSB93a]). Two-block symmetric PLS analyses
may be found in other fields, such as economic forecasting and modeling (Tishler and
Lipovetsky [TLO00]). Applications of the current results to a dataset from one or more
of these fields would be interesting. In particular, the current work provides a lower bound
on the correlation between hypothesized paired latent variables. This bound is computed
directly from an estimate of 3. An explicit correction for attenuation, as introduced by
Spearman [Spe87], is not necessary. It would be interesting to explore the significance of

this discovery in scientific applications.

Non-Gaussian likelihood. Only second moments have been considered in the current
work. Thus the current work provides a way to perform maximum likelihood estimation for
multivariate Gaussian models, but not for other distributions. Some questions for further

investigation are:

e To what degree is the usefulness of the current result limited in applications to real

data, in view of the fact that many datasets are not even approximately Gaussian?
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e Is there a way to extend the current result to one or more non-Gaussian distributions?

Vector graphs. Graphical models are used in the current work. An extension to the
existing graphical models system is proposed. The existing system was first developed by
Sewall Wright (1923). In this system, each vertex in a graph corresponds to exactly one
(univariate) variable in a family of probability distributions.

It is possible to define a class of graphs, called vector graphs, in which a vertex
can correspond to a random vector. Anderson and Perlman have done this for acyclic
directed graphs (ADGs or DAGs) [AP98]. The proposed work would deal with mixed
graphs (Richardson and Spirtes [RS00]).

Mixed ancestral graphs in the existing (univariate) system could be called scalar graphs.

Vector graphs are attractive for the following reasons.

¢ Some sets of vertices which must be represented individually in a scalar graph can be

represented by a single vertex in a vector graph; consequently

® More information can be conveyed in a given amount of space by a vector graph than

a scalar graph, and

e Vector graphs may be easier to read.

Vector graphs are natural and intuitive, and provide a notation as convenient for graphical
models as is linear algebra for systems of linear equations. Work is required, however, to

make the notion of a vector graph rigorous. The following work is proposed:

e Maps must be defined between the scalar and vector systems, with the result that for

each vector graph a corresponding scalar graph may be constructed and vice versa.

¢ The maps must be defined in such a way that m-separation relationships can be read

off vector graphs in exactly the same way as they can be read off scalar graphs.
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Appendix A

EQUIVALENCE OF SYMMETRIC AND ASYMMETRIC
CONSTRAINT MODELS OF RANK R

- - - x - -
In this section two reduced-rank models for Cov " | are reviewed, the symmetric

Yn
and asymmetric constraint models, and are shown to parameterize the same family of covari-

ances. (These were introduced in Section 1.1.) In the language of Spirtes et al. [SRM*ar],
the models are covariance equivalent over the observed variables.
It follows that, if x, and y, have a joint multivariate normal distribution, the maximum-

likelihood estimates of the within-block variances for the constraint models are the familiar

statistics
Sxx = Sxx = (1/N)xIx,,
Zyy = Syy = (/N)yly,..

These results are known (T. W. Anderson [And99]). Proofs are included.here for complete-

ness.

Definition of the symmetric and asymmetric constraint models. To emphasize the
fact that the models a priori represent different distributions, different names will initially
be used for the variables governed by the two distributions.

The first model is called the symmetric constraint model. It is specified by

E{™| =0, Var| ™| = &,

Yn Yn

where the covariance is partitioned as

s - Exx Xxvy

Zyx Zyy
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Y xx and Zyy are arbitrary positive definite matrices of dimension p x p and q x q respec-
tively, £xv is of rank R, and the composite matrix ¥ is positive definite. (By Proposition
A.0.3 on page 151, an equivalent definition would place a rank constraint on the off-diagonal
block of the inverse covariance matrix.)

The second model is called the asymmetric constraint model. It is specified by
w, = BTv, +4d, X

where v, and w, are observed random vectors of dimension p and q respectively, corre-
sponding to X, and y, in the symmetric model, §,, is error of dimension q, B is a p x g matrix
of rank R, E(v,) = 0, Var(v,) = Zyv, [E(,) = 0, Var(d,) = Xs5, Cov (vp,8,) = 0,
and ¥y and Xgs are positive definite matrices of dimension respectively p x p and ¢ x q.

The covariance over the indicators is

Yasym = Var " =
Wn BTEVV BTzva + Xss
Lemma A.0.1 The symmetric and asymmetric models are two ways of parameterizing the

same family of covariance matrics.

Proof. It suffices to show a bijection between the space of symmetric constraint models
and the space of asymmetric constraint models.

Suppose we have an asymmetric model. Then if we simply set £ = Zasym, the reader
can check that ¥ satisfies the conditions of a symmetric constraint model.

Suppose on the other hand that we have a symmetric constraint model. Set

vv = Bxx
B = EyxZik
L5 = Byy - SyxExxExy -

Then ¥y v is positive definite by definition, and B has the necessary dimension and rank.
356 is positive definite, since it is the conditional variance of Ynl|Xn-

The bijection has been demonstrated. Thus

Xn Vn
and

Yn Wn
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are indistinguishable, so that we may dispense with the v,,, w, notation, referring henceforth

only to x, and y,.

Maximum-likelihood estimation of within-block covariance. Recall that we have

the following equivalence of notation,

anXz:.

yﬂ = Yz;- b3

so that x,, and y, are the nth rows of the data matrices, seen as column vectors. Suppose
that these rows are independent and idéntically distributed (iid) according to a multivariate
normal distribution. It is natural to ask what the maximum-likelihood estimate is of the
within-block covariance when ¥y is subject to a rank constraint.

Two cases are well-known. If S xy = 0, x,, and y, are independent and their covariances

are estimated independently by
Sxx = (I/NXTX, £y = (1/NMYTY .

On the other hand, if £ xy is unconstrained, we are simply estimating an unconstrained X.

Then we use the familiar result that

Sxr Exv ~ Tx xTy
I S > R R V) |
Syx Zyy YI’X YTy

(Mardia, Kent and Bibby [MKB79] page 104).

Thus at the two extremes of rank—cross-covariance constrained to rank zero, and cross-
covariance unconstrained—we have the same maximum-likelihood estimates. When Yy s
constrained to rank R < min(p, ¢), however, we may naturally ask whether we do not need
the y,s as well as the x,s to estimate & xx- For instance, in the bivariate normal case,
if we know p, the x,’s are not sufficient to estimate o, (Kendall and Stuart [KS67] pages
57-60). It turns out however that the consequences of this constraint are different from the

consequences of a rank constraint on X yy. This is stated formally as follows.
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Corollary A.0.2 Under the assumption of multivariate normality, the mazimum-likelihood

estimates of L xx and Xyy are

£xx = Sxx = (1/NMXTX,
Svvy = Syy = (1/N)YTY.

Thus Sxx is sufficient for £ xx, and Syy is sufficient for Lyy. This holds even when

there is a rank constraint on T xy.

Proof. First note that by symmetry a proof for ¥ xx will suffice.
One way to prove that x;,...,xy are sufficient to estimate X yx- would be first to recall
that the asymmetric and symmetric models produce identical covariance matrices for the

observed variables. Then we could use the asymmetric parameterization. and notice that
~ N (BTx,, =)
Ynlxn xn: (1] 1

a distribution which does not appear to depend on Xy x. This argument could be seen as
skirting the issue, however, since, in the map from the symmetric to the asymmetric model,
the parameter ¥ x appears in the expressions for B and ¥;5. For this reason, sufficiency
will be proven in the context of the symmetric constraint model. Once this is accomplished
we will return to the argument which uses the asymmetric parameterization.

According to a familiar definition of sufficiency (Bickel and Doksum [BD77], Mardia,
Kent and Bibby [MKB79], and Larsen and Marx [LM86]), x1,.-.,xy are sufficient to esti-
mate X x y if and only if the conditional density of y,|x, is not a function of ¥ x-x. A naive
application of this definition, however, could lead to an incorrect conclusion. Since ¥ xx

appears in the expressions for the conditional mean and conditional variance,

E(ynlxn) = SyxExxXa

Var(ya|x,) = Zyy — SyxExxExy .

we might be tempted to conclude that the conditional density depends on ¥ xx and that
the x, are not sufficient to estimate ¥ x x-
To see that this is false, first note that the conditional density depends on two parameters,

a ¢ X p matrix of rank R, say B, and a g x g positive definite matrix, say ¥s5. That these
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parameters do not vary with ¥ xx can be shown by holding them constant and varying
X x over its space of feasible values. Let (Zxx)g: (Exy)y. and (Zyy)y be one set of

feasible parameter values, so that

Bxn = E(ynlxa) = (Bvx)e(Exx)s *n,

(A.1)
Ess = Var(yalxa) = (Byy)s— (Brx)e (Exx)e ' (Exv), -

Now fix x,, Xs;5, and B, and suppose that =y is an arbitrary positive definite matrix of

dimension p x p. Then we may set
Zyx = BExx = (Byx)e(Exx)s Exx - (A.2)
3 xy has the same rank as (Eyx)g: so it is feasible. Set

Zyy = 266+2}’,Y2}5(2)\'}: . (A.3)

N—

second term
356 is positive definite, since it is a conditional variance. The second term is positive
semidefinite, and consequently the entire right-hand side is positive definite.

Multiplying Equation A.2 on the right by EI_\-E\-, we have
ByaZix = B = (Zyx) (Bxx)g! - (A.4)

Subtracting the second term from both sides of Equation A.3 and recalling the value of ¥;;

in Equation A.1, we obtain

Svy ~EvxExExy = s

(A.5)
= (Byy)y — Crx)e Exx)g' (Exv)y -

Since Equations A.4 and A.5 hold for any feasible X y x-, we have shown that B and X35 do
not vary with ¥ xx. Thus, in spite of appearances, the conditional density of ¥Yn|Xn is not

a function of 3 x x. We have established that x;,...,xy are sufficient to estimate Yyx-

Cartesian product. We are now ready to return to the argument which explicitly uses
the asymmetric parameterization. We have established that when we map from a sym-

metric to an asymmetric parameterization, the parameters B and g5 of the asymmetric
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parameterization are not functions of X x x-. Thus we have a bijection between the following

two spaces:

xx XZx
2:x=| 7% T >0, (p+49) x (p+a) Sxv pxqofrank R
Pyvx Zyy

and the Cartesian product

{Exx:Zxx >0, pxp}x{B: gxp, rank R} x {55 : 55 >0, ¢ x q} .

The proof that the parameters B and ¥s5 do not vary with ¥y x constitutes a proof that
the second space is indeed a Cartesian product. To prove sufficiency, we are now free to

return to our original argument. We work in the Cartesian product space, write
YnlXn ~ N (Bx,,Zss) ,

and observe that the density does not involve ¥ x x. This completes the proof of Corollary
A.0.2. O

We stated on page 147 that a rank-R constraint on Zyy is equivalent to a rank-R
constraint on the off-diagonal block of the inverse covariance matrix. We now prove this

fact.
Proposition A.0.3 Let

A B
C D

> =

be square and invertible, where A isp xp, B isp x q, D is q x q, etc. Let the inverse be

partitioned as

E F
G H

=l = A =

where the dimensions of E match those of A, the dimensions of F match those of B, etc.

Then rank(F) = rank(B).
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Proof. Since A =1, the upper right corner of the product equals zero: in other words

AF = BH, whence
F = A 'BH.

Since ¥ is invertible, so are both A and H. By a well-known property of the rank of
products, rank (F) < rank (B) = min(p,q). But since A~! and H are both invertible,

equality must hold. Im|
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