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Abstract

Robust Estimation of Factor Models in Finance

Heiko Manfred Bailer

Chair of the Supervisory Committee:
Professor Douglas Martin
Department of Statistics

Standard asset-pricing models entail expressions for expected returns in terms of
coefficients relative to risk factors. Methods to estimate premiums of risk factors have, at
its core, a single or multiple linear regression models. Ordinary least squares (OLS)
estimation is the common choice. However, it is well established that financial returns are
heavy-tailed, skewed, and vary over time. This dissertation shows that small fractions of
outlying observations bias OLS estimates and inflate its variability. Outlying
observations include months, firms, time periods, and gross errors. Some subset of
outlying firms may have some economic value, which leads to a great fear of simply
rejecting them. This dissertation uses exploratory data analysis and the robust MM-
estimator to separate influential observations from the bulk of the data and to estimate
risk premiums on both groups. The key results are: OLS alphas from the single-factor
market model are often over-estimated due to outliers and positive asymmetry of the
returns distribution. OLS betas are highly sensitive to outliers. Robust alphas and betas
are superior in predicting future returns and risk, and are insensitive to the choice of
returns type and returns that are dirty, e.g. not split or dividend adjusted.

The risk premium as found by Fama & French (1992) to be flat for beta and negative for
size is a small size firm and seasonality effect. The risk premiums for beta (size) are
positive (negative) only in January and for a tiny number of influential small size firms.
Once adjusted the beta (size) risk premiums become negative (positive), confirming

partial results of Knez & Ready (1997). The seasonality effect appears to be small



compared to influential firm effect, only since seasonal effects average out. The January
effect is significant and spills over into February and March; in addition, size shows
seasonal and book-to-market quarterly variability. Overall the MM-estimator is shown to
be not only an easy-to-use alternative to the OLS estimator, unbiased towards small
fractions of unusual observations, but also a tool that can be used to identify and analyze

influential observations and to find trading strategies.
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Preface

This dissertation contributes to the empirical field of financial asset-pricing studies.
Most theoretical asset-pricing models are based on either the principles of no arbitrage
(market forces align prices to eliminate arbitrage opportunities) or financial equilibrium
(mean-variance optimization), and are tested on historical financial data. A large body of
empirical studies has contributed with well-refined tests, confirming, but also often
contradicting each other and the theoretical models. Many of the tests engage ordinary
least squares (OLS) regression at its core that assumes a Gaussian distribution of the
underlying data. Unfortunately, classical OLS regression is highly sensitive to deviation
from normality, and particularly towards extreme data points (outliers). This dissertation
draws on well developed robust regression techniques with amiable statistical properties
capable to cope with the predominant non-Gaussian nature of the data. Robust regression
techniques are competent not only to fit models that are less sensitive to small numbers of
abnormal observations, but also to identify these outliers reliably, analyze them, and

possibly provide an opportunity for new trading strategies.
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1. Introduction, Models, Methods

1.1, Introduction

The principle of financial equilibrium (mean-variance efficiency) and the principle of
no arbitrage (market forces align prices to eliminate arbitrage opportunities) are the
foundation of most theoretical asset pricing models. Based on the first principle, Sharpe
(1964) and Linter (1965) developed the capital asset pricing model (CAPM). The CAPM
relates the expected returns of an asset to the expected returns of the market portfolio.
The relationship can be expressed by a number called beta—the asset’s sensitivity to non-
diversifiable risk (also known as systematic risk or market risk). The beta has come to
play a fundamental role in estimating the cost of equity and in measuring the risk of an
asset (Block, 1999; Graham & Harvey, 2001). Based on the second principle, Ross
(1976) developed the arbitrage pricing theory (APT). The APT differs from the CAPM
in that it is less restrictive in its assumptions. It allows for an explanatory (as opposed to
statistical) model of asset returns by using the cross-sectional empirical relation of
expected asset returns to the asset’s attributes or other factors. Each investor can hold a
unique portfolio with its own particular array of beta factors, as opposed to the identical
market portfolio. The CAPM can be considered a special case of the APT in that it
represents a single-factor model of the asset price, where a single beta factor is the
exposure to changes in the value of the market portfolio. The CAPM can be viewed as a
demand model, as it results from a maximization problem of each investor's utility
function and from the resulting market equilibrium. In contrast, the APT can be seen as a
supply model with its beta factors reflecting the sensitivity of the underlying asset to
economic factors. Today’s research is focused as much on developing and justifying

theoretical models as on empirical approaches of accepting or rejecting it.
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Following Ferson (2003), both the CAPM and the APT entail expressions for
expected returns in terms of coefficients relative to one or more beta factors. These factor

models lead to the following form for the expected return of an asset R, at time ¢ +1

X
EI I:Rn,tHJ = }/0,1 + anj,t}/j,t’ vn (11)
J=1

Here, b,,, are the beta factors or exposures of asset 7 to risk factors f,,. The y,, are the

risk factor premiums (dependent of the specific asset) presenting the incremental return

per unit of b, ,. The y,, coefficients are usually estimated by time series or cross-
sectional regression of the asset returns on the risk factors f,. If an asset R, is
uncorrelated with any of the K factors, then y,, would be its return. The coefficient y,,

is also called the zero-beta rate or the return of a risk free asset.

Economical content in (1.1) is absent until empirical factors f, are selected. Connor

(1995) divided empirical factors into three main types: statistical, macroeconomic, and
fundamental factors (all three factor models are statistical factor models in the statistical
terminology).

Statistical factor models use statistical factor analytics or principal components
methods. Statistical factor models are motivated by the APT, where the correct factors
are the ones that capture all the risk, leaving only nonsystematic risk in the residuals
(Connor & Korajczyck, 1988; Roll & Ross, 1980). Even though Burmeister & McElroy
(1988) worked on interpretation relative to more intuitive economic variables, statistical

factor models provide little economic intuition.



Macroeconomic factor models are used to estimate the risk premium of an asset’s
factor beta using time series regression. For K=1, an asset return R, and benchmark
return Ry, both in excess of the risk-free rate, b, = R, ,, o, =7,,, and B, =y,, equation

(1.1) reduces to
E[R]=0,+B, Ry, a.BeR (1.2)
The estimates &, and B, are obtained from an ordinary least squares (OLS) time series
regression of excess returns of asset R, on a benchmark R,
R =a+B-R;, +¢, t=1.,T, a,peR (1.3)
The error term €, is assumed to be normally distributed, centered on zero, and

uncorrelated with R, , . Under the CAPM R, = R,, (R,, the market portfolio) and o =0.

Equation (1.3) is also called a single-factor model.

Fundamental factor models often estimate the risk factor premiums of the risk factors

in a two-step process. In the first step, the risk factor premiums v, (1) are estimated for
each time period ¢ in a cross-sectional regression of the N assets returns R, (¢) on risk

factors f .

K
R(D)=y,()+ D27, (0) f, (1) +6,(1), 1 =1,.,T, i=1,.,N, 75,7, €R (1.4
J=1

In the second step, the resulting time-series of risk factor premiums is evaluated.
Equation (1.4) is also called a multi-factor model.

Both macroeconomic and fundamental factor models use OLS regression in the
estimation procedure. However, the OLS estimate is the best linear unbiased estimate
(blue) with a convenient distribution theory for inference only when the errors are
Gaussian (normally distributed). Unfortunately, this is an idealized assumption that often
fails in practice. There is considerable evidence in the literature that returns are not
normally distributed, but rather leptokurtotic (following some heavy-tailed distribution

that generates outliers) and are positively skewed (Cable & Holland, 2000; Chou, 2002;
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Chunhachinda, Dandapani, Hamid, & Prakash, 1997; Peird, 1999; Singleton &
Windender, 1986).

Outlying returns cannot only substantially bias the values of the factor beta estimates
(Hampel, Ronchetti, Rousseeuw, & Stahel, 1986; Huber, 1981; Judge, Hill, Griffiths,
Liitkepohl, & Lee, 1988; Rousseeuw & Leroy, 1987), but also inflate the estimation error.
The estimation error can be expressed as inflated variance or mean-squared-error and has
been receiving increased attention in financial literature (Gomes, 2002; Lewellen &
Shanken, 1997; Stambaugh & Péstor, 1997). However, little noticed is the fact that, while
the variance of the regression estimate goes to zero like 1/n, the bias due to non-
conforming outliers persists for arbitrarily large sample sizes. Therefore, it is also
important to be concerned about bias caused by outliers.

Among all the robust regression methods that have been used in the empirical asset
pricing research, none were obtained as the result of solving an attractive statistical
optimization problem (see Section 2.1 and Section 4.1 for details). This was true until
only recently, when Martin and Simin (2003) used a special maximum-likelihood type
estimator (MM-estimator) to analyze stock betas. The MM-estimator has a well-
developed statistical optimality theory: It minimizes the bias due to non-conforming
outliers while achieving a user-specified high efficiency at the Gaussian model. The bias
robust approach to regression was initiated by Martin, Yohai, & Zamar (1989), and the
Gaussian efficiency-constrained bias robust solutions were obtained by Yohai & Zamar
(1997) and Svarc, Yohai, & Zamar (2002). As a convenient by-product, the resulting
estimator obtains high efficiencies at non-Gaussian outlier generating distributions. The
optimal MM-estimator also has the property of being a consistent estimate of factor beras
when the error distribution in (1.1) is asymmetric, which may come as a surprise to many

cynics.
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Regardless of the successful developments and availability of sophisticated robust
estimates in statistics, there are remarkably few published robustness papers in finance.
Zaman, Rousseeuw, & Orhan (2001) found only 14 papers in a search on ECONLIT for
the term “robust regression” and attribute this to the following five factors: existing belief
that enough data cannot be biased; outliers can simply be detected by eye, usual residuals,
or sensitivity analysis; robust regression techniques with differing strengths and
weaknesses provide little guidance of proper usage; unfamiliarity with interpretation of
robust results; unawareness of gains available from robust analysis of real data sets.

In addition, there is another persistent belief and controversy: robust methods are
dangerous because they do not differentiate between good and bad outliers. The fear
seems to be that valid data points are rejected and thereby trading opportunities missed
and risk misstated. This fear even prevents from recognizing the possibility that outliers
may be gross errors or isolated events that can bias estimates, inflate estimation errors,
and cause trading strategies to fail. The conviction is not only caused by the failure of
classical methods to dependability detect outliers (Rousseeuw & Leroy, 1987,
Rousseeuw & Van Zomeren, 1990), but also by the lack of available robust alternatives.

A solution needs to be easy-to-use and able to unfailingly detect and characterize
outliers so they can be classified and then rejected, included, or analyzed separately.

The MM-estimator offers just that: it reliably detects leverage and influential points,
higher dimensional outliers, and even clusters of outliers. Its easy-to-use implementation
in S-PLUS (2001) allows for the following two-pass procedure. The first pass flags data
points identified as outliers. In the second pass, flagged data points are analyzed and
either rejected, kept with the rest of the data, or treated separately. Outliers recommended
for rejection would be dirty data (not adjusted for stock splits or with recording errors), or
economically unmotivated (fortuitous two-dimensional stock and market return
combinations that occurred independently and are not likely to recur). Outliers to be kept
are data points that conform to the regression model. Outliers to be treated separately
may show associations with fundamental factors and can be used to illustrate market

inefficiencies and exploit arbitrage opportunities.
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The remainder of Chapter 1 recalls the robust MM-estimator with its properties, and
shows how it can be used to obtain robust location estimates, standard errors, and t-tests.
It also introduces graphics used in Chapter 2 through Chapter 4 that may be unfamiliar to
the reader. Chapter 2 is dedicated to the single-factor market model and its estimation of
stock alphas and betas. The impact of the robust regression estimator is demonstrated in
examples and a performance measure is introduced. Alphas and betas are then compared
using the OLS and the robust estimator on discrete returns, log returns, and on returns
that are not adjusted for stock splits and dividend distribution. The chapter also compares
the property of the alphas and betas to predict future risk and return. Chapter 3 is based
on the famous paper of Fama & MacBeth (1973) and the therein presented and widely
used two-pass cross-sectional regression technique (FM). It replicates and extends their
results to recent time periods. It further compares their results to a rigorous robust version
of FM using the MM-estimator (RFM), and suggests various improvements. Chapter 4
extends the work of Fama & French (1992) and the robust replication approach of Knez
& Ready (1997) and (Chou, Chou, & Wang, 2004) by replication and extension to recent
time periods. It justifies the choice of the MM-estimator over the LTS-estimator and
identifies influential observations, such as influential months, firms, and time periods.
The chapter then compares the FM and RFM approach for all firms, and separately, for
firms rejected.

Throughout the dissertation, acronyms are used to shorten the notation and to avoid
distractions from the actual results. A list with all acronyms used can be found in the

glossary.



1.2. Robustness

“... just which robust/resistant methods you use is not important — what is important is
that you use some. It is perfectly proper to use both classical and robust/resistant methods
routinely, and only worry when they differ enough to matter. But when they differ, you
should think hard.”

J. W. Tukey (1979)

Classical maximum likelihood estimates (MLE) are based on idealized Gaussian or
non-Gaussian distributions like exponential, Weibull, and gamma. Even though, in most
of the applications, the actual data generation process follows the idealized distribution
only to a certain degree, the MLEs, derived from the idealized distributions, are usually
able to sufficiently summarize the data generation process.

However, often assumed-away is the well established fact that even high quality data
sets can contain single data points, as well as clusters of data points that are well
separated from the bulk of the data. These single data points are called outliers. Clusters
of outliers can cause a distribution to be skewed or hint to multiple data generating
processes. Outliers can be valid data points that are an important part of the data
generating process. However, outliers can also be erroneously included data points
caused by data entry errors, wrong pre-processing (such as not adjusting for stock splits
or dividend distributions), or inopportune combinations in higher dimensions. Regardless
if outliers are good or bad, it is important to understand that even a few can highly bias
the classical MLEs and substantially increase the estimation error.

Robust statistics (Hampel, Ronchetti, Rousseeuw, & Stahel, 1986; Huber, 1981;
Rousseeuw & Leroy, 1987) developed tools that help to detect and to analyze outliers,
and to provide robust alternatives to classical computation of location, scale, regression,
covariance, and even time series models.

This dissertation frequently draws on tools developed in robust statistics to estimate
location, scale, and regression coefficients. The basic robustness concepts used are as

follows.



1.2.1. Efficiency
The efficiency of a robust estimator is a performance measure when no outliers are
present. A desired property of an estimator is to have a small variability when the data is
normally distributed. The classical MLE has the smallest variance, i.e., the highest
efficiency of all estimators at the Gaussian model. The relative efficiency (RE) of the
MLE to another estimator at an underlying Gaussian distribution Fy,, is defined as
. . var(dDMLE )
RE(@MLE’q)ROBUST)=A— (1.2.1)
vat (CDROBUST )
Foauss

E.g., RE of the sample median is 64%, i.e., the sample mean needs roughly only 64% of

the observations that the sample median needs for the same precision. The asymprotic

relative efficiency is the limit for infinite sample size. Going forward, the efficiency of

5 ROBUST 2 MLE
PROBYS o)

the robust estimator will be stated without mentioning and the underlying

Gaussian distribution F, s .

1.2.2. Breakdown Point
The breakdown point is defined as the largest fraction of data that can be moved to

infinity without completely distorting the estimate. For a regression problem this can be
formally expressed as follows. Let M = {(x“,...,xlp,yl),...,(le,...,pr,yN )} be a sample
of N data points and 7T : M +— @ be a regression estimator. Consider all samples M

where m subsets in M are replaced by arbitrary values. Define the maximum bias caused

by such m as

bias(m;T,M)=sAuZp”T(A2f)—T(M)H (12.2)
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Then the breakdown point of T at the sample M is defined as

&, (T, M) = min {%;bias(m;T,M)is inﬁnite} (12.3)

The breakdown point for the sample mean is 0% and for the sample median is 50%. A

breakpoint higher than 50% cannot be achieved.
1.3. MM-Estimator

This section begins to introduce the robust MM-regression estimator and discusses its
properties. It then shows how to use the MM-estimator to compute location estimates,
standard errors, and to do robust inference. It closes with a brief discussion on the

efficiency of the MM-estimator.

1.3.1. Robust Linear Regression

The robust estimator of beta proposed in this paper is a special regression maximum
likelihood (M) estimator based on a bounded loss function that leads to very desirable
robustness properties. Because a bounded loss function results in a non-convex
optimization problem, the M-estimate needs to be computed in a careful way in order to
obtain a good local minimum. First, the estimator is defined and its efficacy illustrated
with some simple examples. Then its attractive robustness properties are discussed and

the computational method is described.

1.3.1.1 M-Estimator

Any K-factor model can be written in the general linear model form

K
Yi =¢o,z +Z¢j,t Xy TE, i=1..,.N
J=1

=X D+g,

(13.1)

For example, equation (1.3) is obtained for K =1, ®” =(a,p) and X/ =(1,Rp,). The

class of regression M-estimates of @, introduced by Huber (1964), is defined by

. N —XT
D = arg min, Zp(z’—ﬂj (1.3.2)
§

i=1
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where p is a symmetric robust loss function and § is a robust scale estimate for the

residuals. Dividing the residuals by the scale estimate § makes the estimator ® invariant

with respect to the scale of the error €,. Note that OLS and least absolute deviations

(LAD) estimates are special M-estimates, corresponding to p,,¢ () =r*and

P () =|r|, respectively.

Although ® is directly estimated by minimizing (1.3.2), it is more intuitive to think of

the first order condition for optimizing (1.3.2) with respect to @, namely

ZX ( XCDJ 0 (1.3.3)

where v =p'.
The favorite choice of Huber (1964), p,,z, was an unbounded convex function

compromising between the OLD and LAD estimators, behaving like OLS for |r|< ¢ and

behaving like LAD for |r| > ¢, for an appropriate constant ¢. The convexity of py; is

quite attractive from a computational point of view. Unfortunately, when an unbounded
loss function is used and the predictor variables other than the intercept are random, as is
the present case, arbitrarily large bias of the parameter estimates can occur under normal
mixture models. This was established by Martin et al. (1989), who initiated work on the
use of regression M-estimators with bounded loss functions. That led to obtain bias
robustness (Yohai, Stahel, & Zamar, 1991) and finally to the analytic expressions for the

p and v functions

3.25.¢
p 2 r 4 . 6 r 8
p(r;c)= cz-{1.792—0.972-(—j +o.423-(—j —0.052-[—) —0.002-(—}}
c c c c
0.5 7* (1.3.4)
’r/c}>3
2<|r/c‘£3
‘r/c‘SZ

and
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0
r r g r ’ r ’
y(r,c)= c-|:—1.944-(—j 1.728-(—) -0.312-(—] +0.016-(—j }
c c c c
r (1.3.5)
]r / c‘ >3
2< ‘r / c‘ <3
‘r / cl L2
The functions p and y are displayed in Figure 1 for various efficiencies.
OPTIMAL M-ESTIMATE RHO OPTIMAL M-ESTIMATE PSI
— 99% efficiency — 99% efficiency
wo N | 95% efficency | /| || 7 95% efficiency
...... 90% efficiency o~ == 90% efficiency

RHO(x)
PSI(x)
o
1

Figure 1. Examples of the Optimal p and y-Functions.

Both p and y-functions are plotted for three cutoff values ¢ = 0.95, 1.06, and 1.29, corresponding to
Gaussian efficiencies of 90%, 95%, and 99%.

The function p is a bounded loss function with piece-wise polynomial shapes and
constant values outside a cutoff region (—c,c), shown for ¢ =0.95, 1.06, and 1.29 in the

right-hand panel of Figure 1. The corresponding y -functions are plotted in the right-hand
panel of Figure 1. The three values for ¢ yield efficiencies of 90%, 95% and 99% when
the distribution of the stock returns, conditioned on market returns, are Gaussian. Note,
the corresponding efficiency on the standard deviation scale is 99.5%, i.e., the standard
deviations of the robust estimate is about 0.5% greater than that of the OLS estimate

when the returns are Gaussian. As ¢ increases, the Gaussian model efficiency of the M-



12

estimator increases, tending to 100% as ¢ tends to infinity. In this case, the estimator
becomes the fully-efficient least squares estimator p,,¢ () =r".
The w functions in Figure 1 are smooth approximations to sard- rejection functions

Wz » With slope one on the interval (—c,¢) and zero outside that interval. A hard
rejection function y,, makes the untenable assumption that all observations in the
interval (—c, c) are perfectly good, while those outside this interval are totally bad. The

discontinuity of v, also causes problems during optimization. The smooth transition of
the v from its minimum and maximum toward zero avoids these undesirable features of
¥ - The region of smooth transition of y in Figure 1 occurs in the flanks of the

distribution, where it is most difficult to decide whether an observation is good or bad.

1.3.1.2.  MM-Estimator: High Breakdown Point and High Efficiency

In order to obtain both a high breakdown point and high efficiency at the Gaussian
model, a special form of robust M-estimator was introduced by Yohai (1987), called the
MM-estimator. Yohai (1987) proposed the computation of the MM-estimator in three

steps.

Step 1 computes an initial estimate dDO , which has a breakdown point of 50% but

typically an efficiency of less than 29%. The highly robust initial estimate Cbo is
key to obtaining a good local minimum to the estimation problem (1.3.2) when
using a bounded, non-convex loss function such as p. To compute dbo,

Rousseeuw & Yohai (1984) proposed the S-estimate approach. The S-estimate
has as its foundation an M-estimate § of an unknown scale parameter s for

observations y,,..., ¥, (assumed to be robustly centered). Consider

N _ 3T
LS| 22X ®P1 g5 (1.3.6)
N_K i=1 S(q))

where each value of @ corresponds to a robust scale estimate 5(@) . The

regression S-estimate is the value @, that minimizes §(®), namely
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A

D, = arg min, 5(®) (1.3.7)
Step 2 selects the minimum value of §(®), corresponding to (iDO in (1.3.7) as the initial
robust scale estimate 5.

Step 3 obtains the final M-estimate ® as the nearest local minimum of (1.3.2) to Ci)o,

using the high-efficiency and bias-robust function p and the robust scale estimate
Sy -
Yohai (1987) showed that & not only inherits the high breakdown point property
from Ci)o , but also achieves high efficiency when the data is normally distributed. The

overall computational strategy was proposed by Yohai et al. (1991) and implemented in
S-Plus (2001).

1.3.1.3.  Consistency and Asymptotic Normality.
Yohai (1987) showed that @, as computed in Section 1.3.1.2, is consistent and

asymptotic normal with asymptotic covariance matrix

C. :%(XTX)_l v (1.3.8)

[

where X is the (N, K') -matrix of independent variables, with the scalar v given by
5% E[\yz (s/s)]
- E? [\p’(s/s)}
Here, ¢is the error term in (1.3.1) and s the asymptotic value of the robust scale estimate

(Huber, 1981; Yohai, 1987)

(1.3.9)

Yohai (1987) established consistency of @ in the general linear model under the
often used assumption that the distribution of the errors is symmetric. However, this
assumption is not necessary. It can be shown that when the error term has an asymmetric
distribution and the linear regression model has an intercept, as is the case in the single
factor market model, the estimates of the slope coefficients (all coefficients except the
intercept) are consistent while the intercept will typically have some degree of asymptotic

bias.
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Set K =1 in model (1.3.1) and assume asymmetrically distributed errors . Then the
conditions for a consistent unbiased solution are violated (Huber, 1981) by

E{wC{R’_a_B'RB"ﬂ:&O (13.10)

s

E{RB,,-WC(RI_O‘_B'RBJH;EO (13.11)

A

However, for a monotone or re-descending y, with unique root and support on all real

numbers, there exists a d, such that (with €, =R —a—-B-R; ,)

E{wc(&;s"ﬂ:o (1.3.12)

One can show that the existence of §, is trivial for monotone y (Maronna, Martin, &

Yohai, 2005). For the re-descending case see Lehman (1994) or Reeds (1985). From

(1.3.12), with o’ =0 +3, and €, =¢, -3, it follows that

E[\yc[R’_a ;RBY"BH=0 (13.13)

Further by conditioning on R, , it follows directly from (1.3.12) that

R-o =Ry, -
EI:RBJ'WC( t a - Bt B]:‘:E RB,I.E{W{;(st S80j}‘RB,I =0 (1.3_14)

=0
This result shows that the slope estimates are consistent even when the errors have an
asymmetric distribution, while the intercept estimate (alpha) can be biased. The size of

the bias §, is yet to be estimated and needs further research.

1.3.1.4.  Efficiency Constrained Bias Robustness

Martin et al. (1989) obtained solutions to the problem of minimizing the maximum
bias of linear model regression estimates under contaminated distributions. Within the
class of M-estimator, they showed that min-max bias robust estimates minimize quantiles

of the absolute residuals. Here, the absolute residuals are well-approximated by the least
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median squares (LMS) estimate Rousseeuw (1984). Unfortunately, the LMS does not
converge at the usual rate and has zero asymptotic efficiency when the data is normally
distributed. This shows that it is not enough to minimize maximum bias without any
other constraints.

The natural constraint to impose is the achievement of high efficiency when the data
is normally distributed, thereby obtaining efficiency-constrained bias robust estimates.
The first such estimate was obtained by Martin & Zamar (1993) for location estimates,
but the result was not of great practical importance. Then, Yohai & Zamar (1997)
obtained an efficiency-constrained robust regression estimate that minimizes the
maximum bias locally for small fractions of outliers in a mixture model. This is also the
estimator used and implemented in the functions p and y of Figure 1. Subsequently,
Svarc, Yohai, & Zamar (2002) showed that the min-max bias property holds globally
subject only to the choice of desired efficiency. For the purpose of this paper, the local

property is sufficient as only a very small fraction of outliers are typically encountered.

1.3.2. Robust Location Estimate

Robust location estimates with robust standard errors (Section 1.3.3) can conveniently
be obtained using the regression MM-estimator by setting K =0 in equation (1.3.1). For
the MM-regression, as implemented in S-Plus (2001), this is equivalent to fitting just the
intercept. This will be the choice over using the median or other robust location

estimates.

1.3.3. Robust Standard Errors and Covariance
Robust standard errors and t-statistics for the robust location and regression estimates
can easily be derived from the asymptotic covariance matrix (1.3.8) as proposed by
Yohai et al. (1991). The idea is to estimate the covariance of the estimated coefficient C,
by
é, =%(}?TX)“-Q (13.15)
where v in (1.3.9) is replaced by its natural estimate ¥V based on sample averages and X is

replaced with a weighted version X to down-weight the influence of outliers in the
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independent variable. This can be done by computing the natural estimate of ¥ in

(1.3.15) as

=R (1.3.16)

A

where f,=(y,.—x,.T-CDO)/§O :

Returns with very large residuals should be rejected in the estimation procedure by

replacing the corresponding rows of X with vectors shrank to zero. This can be achieved

by the following weighting of X in the estimation of C & - Define
R .
X=ﬁdzag(\[@)-)(, i=1-,N (1.3.17)

N
with w, =y(7 )/ and W=%Zw, .Use X to compute

i=1

é, =%()2T)?)‘1 Ry (1.3.18)
with ¥ asin (1.3.16).
This way, a consistent, non-parametric robust covariance matrix estimate for the
estimated regression coefficients is obtained when data is Gaussian. The square roots of
the diagonal elements of this matrix provide robust standard errors of the coefficient

estimates.

1.3.4. Robust Inference

T-statistics lack robustness of power in the presence of outliers. To see this, let X be a

sample of size N. Let X be the sample mean with sample variance s* and standard errors
of ¥ se(x)= s/~/N . A single outlier can not only inflate ¥ but also s.e.(¥), thus

widening the confidence interval

[f—tN_l% .s.e.()?),37+tN_L% 's.e.(f):|

While the confidence interval inflates, the coverage of the true value remains roughly

constant, though at the cost of lower precision. For that reason, the t-test is robust with
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respect to a type I error but lacks power under the alternative (Adrover et al. (2004)
proposed a method on how to achieve globally robust inference for the location estimate).

Robust t-tests are easily obtained by replacing the classical estimates of the mean

x and the standard error s.e.(¥) with its robust counterpart, i.e., replacing ¥ by the
location MM-estimate (Section 1.3.2) and s.e.(f) by the robust standard errors taken as

the square root of the diagonal matrix (:’é (Section 1.3.3).

1.3.5. Model Selection

The goal of model selection is to optimize the trade-off between fitting error and
complexity (Weisberg, 1985). Among popular methods this dissertation chose the Akaike
Information Criterion (AIC) and the robust AIC (RAIC) to perform backward stepwise
model selection to obtain OLS and robust cross-sectional regressions, respectively, in
Section 4.7.3. The RAIC was proposed by Ronchetti (1985) and Yohai (1997) and
implemented in S-Plus (2001).

1.3.6. Choice of Efficiency

Higher efficiency keeps the variance of the MM-estimator low compared to the OLS
estimator when no outliers are present. However, it offers less protection against bias
when outliers are present. Martin & Simin (2003) used an efficiency of 85%, which one
might argue leads to rejection of too many data values. It came as a pleasant surprise, that
efficiency of 99% provided considerable bias protection, while giving up almost nothing
to the OLS estimator for normally distributed data. As shown in Chapters 2-4, even small
a percentage of outliers will result in significant differences between the OLS and the
proposed MM-estimates. Further, the number of outliers detected at 99% efficiency is in
line with other research (Knez & Ready, 1997). Therefore, for the remainder of this
paper, the efficiency is set 99%.

1.4. Graphic Displays

This section explains the graphing techniques used in the result sections. All graphic

displays used are implemented in S-PLUS (2001).
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1.4.1. Quantile-Quantile Plot

A quantile-quantile plot, or ggplot, plots the ordered set of quantiles from the
empirical distribution against an ordered set of quantiles of the hypothesized distribution.
If the scattered points cluster along a straight line, the data set likely has the hypothesized

distribution. QQplots are also useful to compare two empirical distributions.

1.4.2. Box Plots

Boxplot graphics show the center, spread of a distribution, and unusually deviant data
points. The box is centered at the mean of the data and the filled dot in the interior of the
box is located at the median of the data. The width of the box is the interquartile distance,
which is the difference between the third and first quartiles of the data. The whiskers (the
lines extending from the left to right of the box) enclose about 99.3% of all data when the
data has a Gaussian distribution. Data points beyond the whiskers are outliers and marked

individually.

1.4.3. Time Series Plots

The time series plots in this dissertation allow showing different number of panels,
with either equal scale or a scale that fits best the range of the time series. The dashed
center line is set at zero. The two dashed lines above and below zero are set at plus and
minus two robust standard deviations of the time series. The robust standard deviations

are estimated using the median absolute deviation about the median (MAD).

1.4.4. Trellis Plots

Trellis graphics displays (Becker, Cleveland, & Shyu, 1996) enable to view how
graphs of one or two variables change in relationship to a third variable through
conditioning. The data is displayed in a series of panels, where each panel contains a
subset of the first one or two variables divided into intervals of the third conditioning
variable.

Trellis graphics, displaying boxplots, time series, and histograms, are utilized

extensively throughout the remainder of the dissertation.



19

2. Single-Factor Model

2.1. Introduction

This chapter reveals the effects of outliers on the OLS regression estimates of alphas

and betas as computed from the single-factor market model (1.3), with R, = R,, . It shows

that most OLS results are driven by a very small fraction of outliers. These outliers can
be created in various ways, such as by valid data points, gross data entry errors,
distribution asymmetry, the choice of return type, and even by not adjusting returns for
stock splits and dividend distributions. In contrast, the MM-estimator (ROB) is shown to
be capable of maintaining a low bias in presence of outliers, while keeping the variance
low when no outliers are present. It also can detect and separate outliers for further
analysis. In a central comparison of prediction capabilities, ROB proves to be superior.
Overall, it will be shown that robust alpha and betas have sufficiently attractive
performance properties to warrant routine use as a complement to, or even substitute for,
the classical OLS alphas and betas.

Since alphas and betas are used for different investment purposes they are treated

separately.

2.1.1. Alphas

Challenging CAPM’s prediction, the & estimated from the single-factor market
model by OLS regression is often non-zero and plays an important role in various
investment decisions. To name a few applications: plan sponsors, fund of funds, and
consultants use & for due diligence analysis of hedge funds and to select long-only
managers; analysts often use (1.3) to compute & and information ratios, IR =4/6, ,
where o_is the residual standard error, or some tracking error of the benchmark. This is

used to gauge the performance of active money managers while not rewarding managers

for taking on more risk than the benchmark (Goodwin, 1998): if, B >1 then & will be

smaller than it would be if ﬁ was fixed at 1. This in turn will decrease the information

ratio and thus punish the manager that is taking on the extra risk; and, mutual funds are
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widely rated and analyzed using & (Jensen, 1968; Pastor & Stambaugh, 2002). More
sophisticated methods for asset pricing in a multi-factor model framework have been
developed and used, e.g., to evaluate a mutual fund’s performance (Lehmann & Modest,
1987). Today’s established models include Fama and French’s three-factor regression
model (Fama & French, 1993), the four-factor regression model (Carhart, 1997), and
other black-box and easy-to-use off-the-shelf products, such as Barra’s Alpha Builder or
FactSet's Alpha Tester.

However, alphas from the single or multi-factor models have the OLS regression
estimator at its core, thus facing similar problems. The discussion of bias protection and
estimation error inflation of OLS alphas in the single-factor market model will also lay
out the groundwork for future research on better alphas in the multi-factor model
framework.

Problems in estimating & have been recognized by a number of researchers. Grinold
& Kahn (2000, page 377) state: “The alphas are often unreasonable and subject to hidden
biases”; further on page 378: “Implementation schemes must address two questions ...
what procedures can we use to make the portfolio construction process robust in the
presence of unreasonable and noisy inputs? How do you handle perfect data, and how do
you handle less than perfect data...”; and finally on page 382: “Closely examine all
stocks with alphas greater, in magnitude than, say, three times the scale of the alphas. A
detailed analysis may show that some of these alphas depend upon questionable data and
should be ignored (set to zero), while others may appear genuine. Pull in these remaining
genuine alphas to three times scale in magnitude.” Wermers, Kosowski, Timmermann, &
White (2003, page 9) recognize that “...the empirical distribution of residuals from
Jensen (and other) regressions is highly non-normal for most mutual funds in our
sample.” The hypothesis of normally distributed alphas as generated by various multi-
factor models in their study is rejected for over 50% of funds, challenging the validity of
inference tests. Using non-parametric bootstrap techniques (Efron & Tibshirani, 1993;
Shao & Tu, 1995) to analyze the tails of the alpha distribution, the authors find that the

right tail of the distribution of alphas, i.e., most of the positive alphas computed from
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actual fund returns are substantially overestimated, compared with alphas computed from

bootstrapped returns.

2.1.2. Betas
Most financial service providers report OLS estimates of B . Martin & Simin (2003)

conducted a thorough survey and pointed out that, besides Barra and Ibbotson, none of
the following providers do any outliers treatment: Bloomberg, Dow Jones, Merrill Lynch,

Standard and Poor's, Value Line, Vestek, and Wilshire. Some financial service providers

also report an adjusted version f§ =0.35+0.67- G , designed to correct for the tendency of

[3 to revert towards the market beta of one over time (Blume, 1975; Levy, 1971).

The financial literature proposed a number of alternatives to the OLS estimator that
are robust toward outliers according to various statistical criteria. The LAD estimate is
perhaps the oldest and most widely known. In the context of estimating beta, the LAD
estimate was studied early on by Sharpe (1971), who considered thirty common stocks,
used to compute the Dow Jones Industrial Average, and thirty mutual funds, both in the
mid-to-late 1960°s. Cornell and Dietrich (1978) also studied the LAD estimate using 100
companies randomly drawn from the S&P 500 from 1962 to 1975. Both studies were
motivated by the knowledge that returns sometimes have influential outliers associated
with non-Gaussian distributions, and that an alternative to OLS might therefore perform
better. Sharpe (1971) and Cornell & Dietrich (1978) concluded that the LAD alternative
did little to improve the OLS estimate of beta. These results are evidently due to the lack
of influential outliers in portfolio returns of large size firms and mutual funds, and to the
lack of relatively high volatility firms for these early time periods. Nevertheless, Sharpe
(1971) mentioned that, on the stock level, the differences were significant.

Motivated by these findings, a number of more sophisticated robust estimators were
studied. Fong (1997) used a generalized t-distribution to model skewness, as well as
kurtosis to obtain robust estimates of the beta factor. He found improvements over using
the normal distribution or the standard t-distribution. Connolly (1989) compared the
weekend effect for different estimators, such as the OLS, a Huber-type M-estimate

(Huber, 1981), and a regression-quantiles estimate proposed by Koenker & Basset
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(1978). His results indicated that the weekend effect is much smaller than previously
thought. Barnes & Hughes (2002) used regression-quantiles in the Fama & MacBeth
(1973) method to test the CAPM and found significant beta coefficients for over-
performing and under-performing stocks. Chan & Lakonishok (1992) showed that the
regression-quantiles method could provide higher variance efficiency than OLS when
estimating beta. Mills, Coutts, & Roberts (1996) and Mills (1999, section 6.4) also
advocated using the regression quantiles approach to obtain robust estimates of the beta
factor, and presented some convincing results in support of the approach. Cable &
Holland (2000) studied the use of several robust estimators with a focus on applications
to event studies. They found that robust estimators only increase the efficiency of the beta
estimate, but do not restore normality to the residuals. However, this is an inherent
strength of the robust estimator, as it makes outliers better detectable.

Martin & Simin (2003) proposed to obtain robust betas using the MM-estimator. On a
moderately limited universe of US equity returns, Martin & Simin (2003) showed that
OLS and robust betas differ by more than a sizeable 0.5 for about 12% of the firms. They
also showed that robust betas predict future robust betas better than OLS betas, and that
the existence of influential outliers is mainly a small firm effect.

Section 2.2 describes the data, data characteristics, and conditioning variables used in
Trellis graphs. It also shows the percentage of outliers rejected at various efficiencies of
the MM-estimator and discusses the issue of discrete and continuous returns. Section 2.3
demonstrates, with striking examples, the effects of outliers on the OLS regression.
Section 2.6 and Section 2.7 present the alpha and beta results from a rigorous empirical
data analysis using all U.S. equity returns from 1964 to 2003. Section 2.6.3 and Section
2.7.4 show the strength of the robust estimator on an out-of-sample prediction study.
Both sections also show the effects of return type choice (discrete versus continuous
returns) on alphas and betas, as well as the effects of using data that is not adjusted for

stock splits and dividends (dirty data).
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2.2. Data, Data Characteristics, Conditioning Variables

The study on alphas and betas uses weekly stock prices and daily returns aggregated
to weekly returns for firms listed on NYSE, AMEX, and NASDAQ, and the value
weighted NYSE/AMEX/NASDAQ composite as the market proxy in excess of the one-
month T-Bill. The data was obtained from the Center for Research in Security Prices
(CRSP). Weekly data was chosen as a compromise between data volume and loss of
granularity. The analysis is carried out on contiguous two-year intervals from 1964
through 2003. The two-year period reflects a reasonable timeframe used by practitioners,
contains sufficient number of data for inference purposes, and does not disguise time
variant trends. To be included, a firm must have been listed for at least one of the entire
two-year intervals. To be included in the prediction studies (Section 2.6.3 and Section

2.7.4) a firm must have been listed for at least four consecutive years.

2.2.1. Characteristics and Implications

Standard measures of the shape of the return distribution are skewness and kurtosis,
which are close to zero for Gaussian data. Positive (negative) skewness means that there
is a greater than normal probability of having large positive (negative) returns, i.e.,
skewness measures the fatness of one tail. Kurtosis measures the peaked-ness of the
return distribution or the fatness of both tails. Larger kurtosis means higher chance for

large positive and large negative returns.
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To examine the distribution characteristics of discrete returns, the distribution of

skewness parameters over time is shown in Figure 2.
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Figure 2. Skewness of Discrete Returns.
The positive asymmetry is clearly evident across all firm sizes with small size firms showing a stronger
positive skewness. The irregularity in 1986-1987 is attributed to the October 1987 market crash.

With the exception of the 1986-1987 period that included the October 1987 stock market
crash, more than 75% of the firms have positive skewness, many with very large positive
skewness that decreases as firm size increases.

The classical skewness and kurtosis measures are based on the first moments of the
data and therefore sensitive to outliers. The kurtosis measure is further restricted to
symmetric distribution. These disadvantages can be overcome by using an approach that
is not based on moments of the data as suggested in Brys, Hubert, & Struyf (11/2005;,
2003). This robust measure of skewness and kurtosis has a breakdown point of 25% and

is illustrated in Figure 3 for discrete returns only.
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Figure 3. Robust Skewness of Discrete Returns.
The positive asymmetry is clearly evident across all firm sizes with small size firms showing a stronger
positive skewness.

The range of skewness parameter is much smaller than in Figure 2. While the smallest
size firms showed the most positive skewness in Figure 2, their overall skewness in
Figure 3 is not much different anymore to the other size quartiles, even though they show
a stronger sensitivity to market behavior than the other size quartiles. Extreme outliers,
such as in October 1987 that distort the skewness in Figure 2, do not show much impact

in Figure 3.
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Figure 4 shows the kurtosis for discrete returns.
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Figure 4. Kurtosis of Discrete Returns.
Kurtosis parameter is plotted over contiguous two-year time periods, sliced by firm size quartile. Across
all time periods and size quartiles, firms are showing a positive median skewness.

Figure 4, shows that kurtosis is virtually always positive and often quite large. In

addition, kurtosis decreases as size increases, which hardly comes as a surprise.
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Figure 5 shows pair-wise differences of the skewness parameter computed on discrete

and on continuous returns.
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Figure 5. Skewness: Difference on Discrete and Continuous Return (pair-wise).
Continuous returns are symmetrizing, reducing the positive skewness and center the distribution closer
around zero when compared to discrete returns. The irregularity in 1986-1987 is attributed to the October
1987 market crash.

The pair-wise differences are positive due to the property of the log transformation to
symmetries. Returns are shifted closer to zero, resulting in reduction of skewness. As

expected, the effect is strongest for the smallest size quartile.
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Figure 6 shows pair-wise differences of the kurtosis parameter computed on discrete

and on continuous returns, sliced by size quartiles.
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Figure 6. Kurtosis: Difference on Discrete and Continuous Return (pair-wise).
With the exception of the smallest size quartile, the kurtosis parameter is not very much affected by
using continuous over discrete returns.

As can be seen from the centering of the medians around zero, kurtosis computed on
continuous returns is only slightly different than that computed on discrete returns. The
main result is: the median skewness almost disappears when using continuous returns,
while kurtosis persists at roughly the same levels, as when using discrete returns. With

respect to reducing bias in the presence of outliers, continuous returns are of little help.
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2.2.2. Conditioning Variables

For the analysis of classical versus robust estimates of alphas and betas, it is
informative to condition or slice on intervals of other factors. Results can then be
displayed graphically in Trellis plots (Section 1.4.4).

During the analysis it turned out that slicing on robust mean returns was most
effective when analyzing alpha estimates and conversely slicing on firm size (where size
is the log of the market capitalization in millions) when analyzing beta estimates. For
slicing by robust mean returns, firms are split in four equal sized groups, called R.25,
R.50, R.75, and R.100 for the lower quartile, median, upper quartile, and highest return
quartile, respectively. For slicing by size, firms are split in four sized groups, SIZE.25,
SIZE.50, SIZE.75, and SIZE.100 for the lower quartile, median, upper quartile, and
highest size bracket, respectively. The breakpoints for the size quartiles where chosen to
reflect the current ratios of small to mid to large to super large cap firms and were

recomputed for every two-year interval.
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Figure 7 shows the distribution of firm’s robust mean return across the robust mean

return quartiles on two-year intervals from 1964 to 2003.
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Figure 7. Distribution of Firm’s Robust Mean Returns.
Firm’s robust mean returns are ordered and split into quartiles with R.25 the lowest and
R.100 the highest return quartile. R.25 and R.100 vary widely.

By way of construction, the two middle quartiles are fairly tight. The lowest and the
highest return quartile are skewed to lower and higher returns, respectively.
Figure 8 shows the break points of the size quartiles on two-year intervals from 1964

to 2003.
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Figure 8. Size Breakpoints.
The size breakpoints in millions of dollars. The drop in 1984 corresponds to a steep
increase of small size firms listed on NASDAQ.

The drop in the 1984-1985 period corresponds to a large number of new listings of small
size firms on NASDAQ when listing requirements were eased. The above-average
increase of size break point in the largest size quartile during 1994-2001 is peculiar and

possibly due to large capitalizations of Internet firms.
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Figure 9 shows the number of firms included in this study over time.
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Figure 9. Number of Firms Included in Analysis.

Spikes and dips correspond to changes in regulation or market events. The number of
firms jumped up when NASDAQ eased the listing barrier in 1985 and 1997 and when
Internet trading was introduced in 1994. It fell during the bear market of the Seventies,
aftermath of October 1987, Asia and Russian crises in 1998/1999, the 2001 technology
bubble burst, and September 11.

Spikes and dips in number correspond to changes in regulations or market events. For
example, the number of firms decreased from 1972 through 1983 during the bear market
of the Seventies, as oil crisis, inflation, and unemployment stifled the U.S. and world
economy. It further dropped in the aftermath of the October 1987 crash when the DJIA
fell by 508 points (22.6%), during the Asia currency crisis in 1998, Russia’s default on its
debt in 1999, technology sector bubble burst, and the September 11, 2001 terrorist
attacks. The number of firms included soared in the 1984-1985 period when NASDAQ
eased its listing barrier, in 1994 when Internet trading was introduced, and even further in

1997 when NASDAQ eased its listing standards again.
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2.2.3. Outlier Protection versus Efficiency

Computations over the full data range from 1964 to 2003 at efficiencies of 85%, 90%,
95%, and 99% resulted in median (mean) data rejection of 6.5% (7.3%), 5.3% (6.1%),
3.9% (4.7%), and 1.44% (1.78%), respectively. Table 1 shows the percentage of outliers
rejected on contiguous two-year intervals at 99% efficiency, sliced by firm size.

Table 1. Percentage of Outliers deleted at 99% Efficiency.

Median Mean
SIZE.25 1.92 2.79
SIZE.50 1.92 1.93
SIZE.75 0.96 1.45
SIZE.100 0.96 0.98

The percentage of data rejected increases with decreasing firm size, which is not
surprising since smaller size firms tend to be more non-normal. The median percentage of
outliers rejected over all time periods, ranges from 0.96% for the largest size quartile to
1.92% for the smallest firm size quartile. The results in Section 2.6 and Section 2.7 will
show that even the small percentage of outliers rejected at efficiency of 99% will result in

significant differences between the OLS and the proposed MM-estimates.
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2.2.4. Discrete versus Continuous Returns

Practitioners typically compute relative difference in price (discrete model) returns

discrcte _ pt+1 pt
rt+1
Py

where p, is the price at time . Inspired by the continuous time, geometric Brownian

motion stock model, much of the finance literature and some practitioners use the natural

logarithmic difference returns computed as

re —log(};"‘]
t

Since split and dividend adjusted log returns are not directly available from CRSP, log
returns, in this dissertation, were computed from weekly discrete returns using the

relationship:

H = 10 (Ds/ 1) = lo (s = )] 1, +1) = log (47 +1)

Standard Taylor series approximation arguments are often used to show that there is
little difference between discrete and continuous returns. However, this argument breaks
down when returns are large, e.g., containing outliers. In this case, the difference between
the two definitions can be substantial. For example, a price jump from $5 to $15
corresponds to a discrete return of 200%, but a continuous return of only 110%. A drop in
price from $15 to $5 corresponds to a discrete return of -66%, but to a continuous return
of -109%.

This demonstrates the fundamental problem: discrete returns are asymmetric, ranging
from -100% to arbitrarily large values, while logarithmic returns are more symmetric
with arbitrarily large and small values. Section 2.6.4 and Section 2.7.5 show how the

choice of returns type impacts alphas and betas.
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2.2.5. Clean versus Dirty Returns Data

Clean stock returns data are adjusted and checked for stock splits and dividend
distributions. Access to clean data can prove to be expensive and still not offer 100%
protection against gross data entrée errors. A common cause of returns to be dirty
(besides data recording errors) is when providers fail to adjust for stock splits and
dividends. Not adjusting for stock splits creates negative outliers while not adjusting for
reverse splits creates positive outliers. Outliers caused by splits and reverse splits are
expected to be of several orders larger than outliers caused by dividend distributions.
Section 2.2.5 and Section 2.7.6 compare OLS and ROB alphas and betas for 18,316
firms, listed on at least one two-year time period. The data sets used are clean weekly
CRSP returns and dirty weekly returns computed directly from weekly CRSP prices,

unadjusted for splits and dividend distributions.

2.3. Motivation

2.3.1. Real Data Example

Figure 10 shows scatter plots of monthly returns, from 1997 through 2003, of
National Healthcare Corp. (NHC) and Zenix Income Fund Inc. (ZIF) with S&P500 in
excess of the Libor as the market proxy. Both panels compare the OLS (dashed) with the
ROB (solid) regression line. The upper panel displays the values of the intercept alpha,

the lower panel the values of the slope beta.
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Figure 10. OLS versus Robust Estimates for Alpha and Beta.

The upper panel shows the alpha estimates for National Healthcare Corp. (NHC).
ROB rejects the single outlier in the upper part of the graph causing an alpha
difference of 38.6%, or 1.9 times the robust standard deviation. The lower panel
shows the beta estimates for Zenix Income Fund Inc. (ZIF). ROB rejects only the
large outlier in the upper right causing a beta difference of 0.31, or 2.4 times the ROB

standard deviation.

0.05
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In the upper panel, only the single large positive outlier is rejected. This creates a
difference between the OLS and robust alphas of 38.6%, or 1.9 times the ROB standard
error. In the lower panel, only the large positive outlier on the right side is rejected. This
creates a difference between the OLS and ROB beta of 0.31, or more than twice the

standard error of the ROB beta.

2.3.2. Monte Carlo Simulation
The Monte Carlo simulation compares the behavior of the OLS and ROB alphas and
betas for normal returns versus normal mixture returns with a small contamination

(outliers). The simulation compares 1000 replicates of OLS and ROB regression

estimates computed from returns data as follows: 1000 replicates (RBJ €, )’=1 -

drawn from a bivariate normal distribution with mean zero, standard deviation 4%, and

correlation zero. The replicates (Ry,.€,) . are used to compute 1000 replicates
(R).., 10 from (1.3), assuming o =0 and B =1. Now, y% of the 100 observations in

each of the 1000 replicates (RBy, R )H are randomly replaced (or contaminated) by

,,,,, 100
pairs (R B ,R,) that are drawn from a bivariate normal distribution with means —12 and

16, respectively, standard deviations one, and correlation zero.

Now, (1.3) with the original uncontaminated replicates (RBJ R, );:1 oo and the

contaminated 1000 replicates (1?3', ,1?,) ,are used to estimate OLS and ROB alphas

1=1,..,10

and betas.
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Table 2 shows the estimated alphas for y = 1%, 2%, and 3%.

Table 2. Monte Carlo Simulation Results for Alpha Estimates.

OLS ROB
Y=1%
Mean 0.265 0.004
Standard Deviation 0.412 0.409
Y =2%
Mean 0.482 0.004
Standard Deviation 0.432 0.413
Y =3%
Mean 0.669 0.006
Standard Deviation 0.454 0.414

The mean of the OLS alphas shifts away from zero with rising contamination y, while

the mean of the ROB alphas are virtually not affected. The OLS standard deviation
(estimation error) increases with rising v, while the ROB estimation errors remain

basically unaffected.

The mean of the OLS alphas consistently increase for increasing v, while the ROB

alphas are virtually unaltered.
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Figure 11 shows histograms of the OLS and ROB alphas of 1000 Monte Carlo
replicates for v =3%.
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Figure 11. OLS versus ROB Alpha Estimates on Simulated Data(y =3%).

The left two panels are not contaminated and the reference distribution overlays the
simulated alpha distribution. The right two panels contain outliers in the negative
market and positive stock return direction.

The histograms are quite close to the theoretical normal distribution for y = 0%, or zero
contamination. At y = 3%, the mean of the OLS alphas is overestimated by 0.67, with

standard deviation of 0.45, resulting in bias as a percentage of the root-mean-squared-
error of 83%. The location for the ROB alpha estimate is virtually not effected, at 0.006,

with a bias as a percentage of the root-mean-squared-error of merely 1%.
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Table 3 shows the estimated beta for y = 1%, 2%, and 3%.

Table 3. Monte Carlo Simulation Results for Beta Estimates.

OLS ROB
v =1%
Mean 0.800 0.999
Standard Deviation 0.099 0.102
Y =2%
Mean 0.634 0.999
Standard Deviation 0.100 0.103
Y =3%
Mean 0.492 0.999
Standard Deviation 0.101 0.104

For 1%, 2%, and 3% contamination, the summary statistics for the regression beta
estimates of 1000 OLS and ROB regressions are shown. The shift of the OLS betas
away from one due to the presence of outliers, while the ROB betas are virtually not

influenced.

The means of the OLS beta consistently decrease for increasing vy, while the ROB beta is

virtually unaltered. The slightly larger standard deviation of the ROB beta estimate

reflects the very small price paid in return for bias robustness toward outliers.
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Figure 12 shows histograms of the OLS and ROB betas of 1000 Monte Carlo
replicates for y=3%.
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Figure 12. OLS versus ROB Beta Estimates on Simulated Data (y =3%).

The left two panels are not contaminated and the reference distribution overlays the
simulated alpha distribution. The right two panels contain outliers in the negative market
and positive stock return direction. OLS estimators underestimate the beta coefficient,
while ROB estimators remain unaffected.

The histograms are quite close to the theoretical normal distribution for y = 0%, or zero
contamination. At y =3%, the mean of the OLS betas is underestimated by 0.51 with

standard deviation of 0.101. This results in bias as a percentage of the root-mean-
squared-error of 98.1%. The location for the ROB beta estimate is not effected at 0.99

with a bias as a percentage of the root-mean-squared-error of merely 0.1%.
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2.4. Performance Measure

The root-mean-squared-error (RMSE) is a commonly used performance measure of
prediction capabilities of an estimator (Klemkosky & Martin, 1975). The RMSE is

defined as

RMSE = \/iﬁ(cbj—cbﬁk)z (2.4.1)
Nj=1

where @ ; 1s the prediction based on data in time interval j of an estimate 0 ;+ based on

data in time interval k units of time in the future. That is, an interval shifted forward in
time by a week or a quarter, and m is the number of time intervals used. The RMSE
compares the predictive performance of classical versus ROB alphas and betas. It is
estimated on two-year moving windows of weekly returns, using the estimate on a
current window as the predictor of the estimate on windows one week and one quarter in
the future. Performance is compared by computing the ratio of OLS to ROB RMSE
denoted RATIO.

When no outliers are present in the prediction window, the OLS and ROB regression
results are very close, and there is no advantage of replacing the OLS estimate.
Therefore, the aim is to compare performance when at least one outlier is present. Here,
an outlier is defined as an observation rejected by the ROB at 99% efficiency. Thus, the
conditional RATIO (CRATIO), conditioned on the presence of at least one outlier in the
prediction window, is computed only over those j for which the prediction window

contains at least one outlier.
2.5. Intrinsic Variability of the MM-Estimator

The influence of outliers of the OLS and ROB estimate, computed in Section 2.6 and
Section 2.7, can best be compared by taking pairwise differences. Yet, one might be
concerned that the pairwise differences is merely intrinsic variability that is caused by the
inefficiency of the ROB estimator at the Gaussian model.

The variance of the differences 6,,; —0,,; can be roughly estimated as follows.
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Assume that the differences are normally distributed
Oors =Oros = N(OVpyer ) 25.1)
where
Voirr = Sous * Cros =2 Co1sOros P (2.5.2)
High efficiency is equivalent to high correlation between 6, and 0,,;, (Lehmann &

Casella, 1998) i.e.,

2
o’ = EFF =295 (2.5.3)
O ros
or equivalently
Gl = Oxpp EFF (2.5.4)

Thus
Vowr = Oous + Oron =2 O o150 k0p P
=02y, EFF +0%, =2-Cppp N EFF -Gy N EFF (2.5.5)
=G5 ' (1— EFF)
For the efficiency level used in this paper of EFF = 99%
Ve = Ghos +(1-0.99)

N (2.5.6)
=0.01-6%,,

The value of ¥, can be used to compute approximate t-statistics for the differences

between the OLS and ROB estimates.
2.6. Alphas

Section 2.6.1 and Section 2.6.2 examine the performance of OLS and ROB alphas, as
well as their standard errors. Section 2.6.3 continues with an out-off-sample test of the
prediction capabilities of OLS and ROB alphas for one-week and one-quarter ahead time
periods. Section 2.6.4 and Section 2.6.5 show the effects on alphas of using discrete

versus continuous returns alphas and clean versus dirty returns, respectively.
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2.6.1. OLS versus ROB

This section examines the performance of OLS and ROB alphas, as well as their
standard errors on twenty contiguous two-year intervals from 1964 through 2003. Alphas
are estimated by OLS and ROB regressions from the single-factor market model (1.3),

with R, = R,, , and the market proxy as described in Section 2.2.

Figure 13 shows alphas computed using OLS regression, on two-year contiguous
time-intervals, sliced by their ROB mean return quartiles. All alpha estimates are
displayed as annual percentages returns.
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Figure 13. OLS Alphas.

Alphas tend to follow market events. This effect is strongest for the lowest return

quartile. Alphas across all return quartiles tend to be skewed to the right.
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Slicing OLS alphas by return quartiles shows on average that firms with lower (higher)
ROB mean returns tend to have lower (higher) alphas. While the alphas are highly
skewed in the lowest and highest return quartile, they have a smaller spread and are much
more symmetrically in the two middle return quartiles. The positive skewness and
distinct tendency of alphas to follow market trends across all return quartiles is visible.
Alphas across all return quartiles are lower during down market times, such as the energy
crisis and Vietnam War in 1972/73, Emerging Market crisis mid-1980s and Black
Monday 1987, Asia Turmoil starting in late 1995 with its peak in 1997, and Russia’s
default on their debt in 1998. ROB alphas, sliced by return quartiles, give an even clearer

picture, as shown in Figure 14.
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50 -100 -5 0 50 100 150

Figure 14. ROB Alphas.
Alphas tend to follow market events. This effect is strongest for the lowest return
quartile. Alphas across all return quartiles tend to be skewed to the right.
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ROB alphas estimated for lower return firms tend to have an asymmetric distribution
skewed towards negative alpha values, while alphas of the highest returning firms have a
positively skewed distribution.

Of greater interest and concern, however, is the pair-wise distribution shown in

Figure 15 and summarized in Table 4.
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Figure 15. Pair-wise Difference of OLS and ROB Alphas.

The association with market events has almost vanished. The positive median
difference across all return quartiles shows that OLS alphas tend to be significantly
overestimated, in particular for lower returning firms.

Across all return quartiles, the distribution of the pair-wise differences between OLS and

ROB alphas is positively skewed with positive medians. The effect is stronger for low
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returning firms. Median differences for the lowest return quartile range between 10%-
30% annually, with positive differences well over 100%. This compares to findings in
Mamysky, Spiegel, Zhang (2003, p.2): “static OLS alphas can be off anywhere from 5 to
87 percent from a fund’s time averaged alpha.” This is a striking result considering that
the alpha differences arise from rejecting only a small fraction of the most extreme
outlying returns. The pair-wise differences in the lowest return quartile still show market
effects, whereas in down and higher volatile markets the median of the pair-wise
differences increases. The increase of volatility and positive skewness of the pair-wise
differences is also clearly visible in recent years. This can be attributed partially to the
larger numbers of small firms that are new listings on NASDAQ (Figure 9).

Table 4. Summary of Pair-wise Differences of OLS and ROB Alphas.

Min 1st Quartile  Median 3rd Quartile Max

R.25 -140.73 12.73 31.87 63.18 1019.76
R.50 -126.22 0.40 8.79 21.98 949.96
R.75 -109.18 -0.25 3.68 12.88 288.96
R.100 -81.35 -0.81 3.57 13.98 303.58

Differences show a positive asymmetry with median close to zero, with considerable
numbers of very large differences across all size quartiles.

Figure 16 provides even greater detail. It shows the complementary empirical
distribution function of the alpha differences sliced by ROB mean quartile. The size of
the differences is plotted on the horizontal axis, while the vertical axis shows the

percentage of the corresponding percentage of firms.
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Figure 16. Distribution of Pair-wise Difference of OLS and ROB Alphas.

Well visible is the positive bias of the OLS estimator caused by a small fraction of
outlying returns.

More than 80% of all pair-wise alpha differences are positive. More than 10% of the pair-
wise differences in second smallest return bracket (R.50), and about 55% of the smallest
return bracket (R.25) are greater than 50% on an annualized percentage basis. Again, it is
important to remember that the differences are caused by rejecting only a small fraction
of outlying returns.

The alpha differences from Figure 15, scaled by the estimate of the variability of the

differences VD,FF (Section 2.5) are shown in Figure 15.
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Figure 17. Scaled Pair-wise Difference of OLS and ROB Alphas.

Scaled by approximate variability of the differences at the Gaussian model. The majority
of the median differences are significant, with even higher significance levels in the
lower return quartiles.

The vertical dashed lines show the fraction of the t-statistics that are significant at the 5%
level. This fraction is much larger than what one expects under a null hypothesis of equal
OLS and ROB alpha under the Gaussian model. Thus, the majority the differences

between OLS and ROB estimates are statistically significant.

2.6.2. Standard (Estimation) Errors
The MM-estimator provides standard errors that are, unlike their OLS counterpart,
less inflated by outliers. Figure 18 compares the pair-wise ratios of OLS to ROB standard

errors of the alpha estimates.
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Figure 18. Ratio of OLS to ROB Alpha Standard Errors.

The cross-sectional distributions show a median ratio greater one for the two smallest
size quartiles, while the largest size quartile shows a median ratio smaller than one.

The overall OLS standard errors are about 46% larger. Figure 18 shows that the median
of the cross-sectional distributions for the two smallest size quartiles is greater than one,
while the largest size quartile has a median slightly less than one. Responsible for the
seeming contradiction are the properties of the ROB estimator, namely bias protection
and efficiency loss. The bias robustness of the MM-estimator prevents the inflation of its
standard errors when influential outliers are present, but inflates the standard errors only
very slightly when influential outliers are not present, as is the case with most of the

larger size firms.
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2.6.3. Prediction

Alphas obtained from historical data must show a certain degree of predictability over
future time periods to be useful in applications. This section compares the performance of
the OLS and ROB estimator using the CRATIO (Section 2.4). For a firm to be included in
this study it had to be listed for a minimum of four years consecutively. This condition
left 17,402 firms in the predictive study.

Table 5 displays the mean and median CRATIO for the alpha estimates for both the

one-week-ahead and one-quarter-ahead predictions by return quartiles.

Table 5. Conditional Ratios (CRATIO) of Prediction Errors (OLS to ROB).

One-Week-Ahead One-Quarter-Ahead

No. Firms Median Mean Median Mean

R.25 4349 1.183 1.279 1.097 1.217
R.50 4351 1.108 1.175 1.068 1.146
R.75 4351 1.066 1.230 1.031 1.139
R.100 4351 1.041 1.081 1.017 1.080

A CRATIO of 1.279 means a 27.9% increase in prediction error of the OLS estimate.
The positive bias of the mean hints at a great number of positive large CRATIO, with
much higher OLS than ROB RAMSE.

All median CRATIO values are greater than one. This indicates a smaller RMSE and
therefore a better performance of the ROB estimator. Further, the positive bias of the
mean, compared to the median CRATIO, indicates that many CRATIO values are
substantially greater than one. The ROB estimator performs slightly better on weekly
than on quarterly predictions. For weekly alpha predictions, the gains are greatest for the
smallest size quartile and minimal for the largest size quartile, while for quarterly alpha
predictions the gains are small and uniform across firm size. Overall, the ROB estimator

has clearly superior prediction capabilities.
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2.6.4. Discrete versus Continuous Returns

Figure 19 shows the distribution of pair-wise alpha differences estimated from

discrete and continuous returns for both the OLS and ROB estimator.
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Figure 19. OLS and ROB Alpha Estimates on Discrete and Continuous Returns.

OLS alphas differences are consistently positively biased, while ROB alphas
differences are more symmetrically, though still showing a positive median bias
across all time periods.

The effects of choice of return-type are quite remarkable for the OLS estimator. It shows

a systematic positive bias towards alphas computed from discrete returns. The median

differences are as large as 10% annually. The bias has also been steadily increasing over

the years with only a small decrease in the 2002-2003 time period. On the other side,

ROB alphas are indifferent to large outliers in discrete returns, rejecting them, and

therefore arriving almost at the same results as with continuous returns. The use of
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continuous returns can therefore help to reduce bias caused by asymmetry but is of little

help with respect to reducing bias.

2.6.5. Clean versus Dirty Returns Data
The left panel of Figure 20 shows pair-wise scatterplots of OLS alphas computed on
clean data (horizontal axis) and on dirty data (vertical axis). The right panel of Figure 20

shows pair-wise scatterplots of ROB alphas.
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Figure 20. OLS and ROB Alpha Estimates on Clean and Dirty Returns.

The solid lines through the distribution have intercept zero and slope one. The dotted
lines are plotted at + two ROB standard deviations to the center line. The center of the
distribution of OLS alphas computed on dirty data is even more positively biased than
when computed on clean data. There are also a large number of positive outliers in the
“dirty” data direction. The center of the ROB alpha scatterplot is shifted to the lower
right.
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If alphas were not influenced by the choice of returns type they would plot on a straight
line through the origin with slope one. The left panel of Figure 20 shows that most OLS
alphas plot close to the straight line; however, there are a considerable number of outliers.
These outlying points are caused by splits and reverse splits in combination with positive
and negative market returns. Overall, the OLS fit has an R? of only 21.4%, i.e., the
variation of the clean alpha explains only 21.4% of the variation of the dirty alphas. The
pair-wise scatterplot of ROB alphas, on the right panel of Figure 20, however, shows the
majority of the points plot close to the straight line. The center of the scatterplot is
located well into the 3™ quadrant. Further, the ROB fit of dirty on clean alphas has an R’
of 91.7% , meaning that ROB alphas are quite reliable for returns data not adjusted for
splits and dividends. The proposed ROB alpha estimator is not much influenced by
outliers regardless of origin; i.e., whether outliers are true returns associated with
unusually large price movements or results of erroneous data. Additionally, the center of
the OLS scatterplot shifts from the upper right quadrant to the lower left quadrant for the
ROB scatterplot, confirming the positive biased-ness of OLS alphas.

2.6.6. Conclusion

OLS alpha estimates are widely used by practitioners, either directly through the
single-factor market model, or indirectly in most of the sophisticated multi-factor models.
The results demonstrated that OLS alpha estimates cannot only be severely biased by
small fractions of outlying returns or even just one single outlier, but can also have
significantly inflated estimation errors. The ROB alpha, however, greatly reduced the
bias due to outliers caused by non-Gaussian and asymmetric distributions, and thereby
giving a better point estimate of alpha. In addition to controlling bias, ROB alphas have
smaller standard errors that were not inflated by outliers. This has the important effect
that the power of the t-tests increases, thereby providing a great tool to detect and further
analyze outliers.

Slicing OLS and ROB alphas by return quartiles shows that firms with lower mean
returns tended to have lower alphas and that alphas followed market trends, with lower
alphas in times of down markets. However, the cross-sectional distribution of the pair-

wise differences of OLS and ROB alphas was heavily positively skewed, showing that
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OLS alphas were often overestimated. This held particularly for lower return firms with
median differences between 10%-30% (annualized) and single larger differences well
over 100%. In the empirical distribution of the pair-wise differences, over 80% of the
differences were positive and about half of the lowest returning firms showed a
difference greater than 50%. The ROB estimator rejected only a very small fraction of
outlying returns and performed for all practical purposes as well as the OLS estimator in
absence of outliers.

Even more important for the practitioners is the property of an estimator to predict
future risk and return. Using the standard root-mean-squared-error performance measure
when outliers are present (CRATIO), it has been shown that the median (mean) increase
of the OLS alpha one-week-ahead prediction error, ranges from 4.1% (8.1%) for the
highest return firm size quartile to 18.3% (27.9). For the lowest returning firm quartile
and for the one-quarter-ahead prediction error, it ranges from 2.7% (8%) for the largest
firm size quartile to 9.7% (21.7%) for the lowest returning firm quartile.

As a convenient by-product, it has also been shown that ROB alphas are insensitive to
the choice of discrete over continuous returns, and when clean data is not available,
situations where OLS alphas are highly biased.

In summary, the results strongly support the use of ROB alphas as a complement to,
or even replacement of classical OLS alphas. When the two estimates agree there is
usually nothing to worry about. When they disagree it is almost always because outliers
or the asymmetry of returns is influencing the OLS alpha. The final decision to choose
ROB over OLS estimators and to be protected against bias caused by a small fraction of
outliers (and simultaneously solving the issue of choosing discrete versus continuous
return types) is up to the investor. However, the question should be asked: is a large alpha
estimate a good predictor of future excess returns if this alpha value is entirely caused by

very small fractions of outliers, possibly only a single outlier?
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2.7. Betas

Section 2.7.1 and Section 2.7.2 examine the performance of OLS and ROB betas, as
well as their standard errors. Section 2.7.3 examines the idiosyncratic risk. Section 2.7.4
continues with an out-off-sample test of the prediction capabilities of OLS and ROB
betas for one-week and one-quarter ahead time periods. Section 2.7.5 and Section 2.7.6
show the effects on betas of using discrete versus continuous returns betas, and clean

versus dirty returns, respectively.

2.7.1. OLS versus ROB
Figure 21 shows betas computed using OLS regression for the 20 two-year time

periods, sliced by firm size.
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Figure 21. OLS Betas.

Median betas show little association with market events but a striking trend towards
smaller values below the market beta of one, in particular for the smallest size
quartile.
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Figure 22 shows ROB betas for the same 20 two-year time periods, sliced by firm

size.
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Figure 22. ROB Betas.

Median betas show little association with market events, but a striking trend towards
smaller values below the market beta of one, in particular for the smallest size quartile.
While more outliers start to appear in recent years, the width of the cross-sectional
distribution on each of the two-year intervals is relatively constant.

Figure 21 and Figure 22 look very similar on first sight. The cross-sectional distributions
of the OLS and ROB betas over time show little association with market events—only a
consistent trend towards smaller beta values, with this effect being more pronounced for
smaller size firms. The early oscillations of the median, up during 1968-1971 and down
during 1972-1978, are most apparent for smaller sized firms, and may be related to
market or political events, such as the Vietnam War and energy crisis in the early

Seventies. However, after 1980 there is a consistent decrease in median betas across the
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lower three size quartiles and even for the largest size quartile starting in 1986, indicating
decreasing systematic risk, as seen within a CAPM framework; and, correspondingly
increasing specific risk or presence of other risk factors that explain returns, see Section
2.7.3 for further discussion.
The similarity between Figure 21 and Figure 22 disappears when comparing the pair-

wise differences of OLS and ROB betas, graphed in Figure 23.
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Figure 23. Pair-wise Differences of OLS and ROB Betas.

The nearly symmetrical cross-sectional distribution around zero with a positive median
difference across all size quartiles indicate that OLS betas tend to over and understate
the ROB betas.

The substantial difference between the OLS and ROB betas, despite that only a very
small fraction of the most outlying returns are rejected, comes as a surprise. Over time,

the distribution of the difference between OLS and ROB betas are fairly symmetric, with
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some positive skewness about their mostly positive medians and a considerable number
of very large differences across all size quartiles. There is an unclear pattern of the
distribution over time, with an abruptly increased variability starting in 1984 across all
firm sizes. This increase can possibly be attributed to the increasing number of firms
(Figure 9).
Table 6 summarizes the pair-wise difference between OLS and ROB betas.
Table 6. Pair-wise Differences of OLS and ROB Betas.

Min 1" Quartile  Median 3" Quartile Max
SIZE.25 -12.17 -0.05 0.045 0.22 6.47
SIZE.50 -2.35 -0.03 0.027 0.15 3.12
SIZE.75 -1.43 -0.023 0.014 0.101 2.66
SIZE.100 -1.01 0.018 0.0024 0.054 1.60

The differences show a positive asymmetry with median close to zero, with
considerable numbers of very large differences across all size quartiles.

Figure 24 provides even more detail that shows the complementary empirical

distribution function of the beta differences sliced on firm size.
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Figure 24. Distribution of Pair-wise Difference of OLS and ROB Betas.

Beta differences plotted on horizontal axis and percentage of firms on vertical axis.
E.g., 20% of smallest quartile firms have a difference greater than 0.35 and about
70% of all firms have a positive beta difference.
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For example, about 8.5% of the smallest sized firms have differences greater than 0.5,
while about 3.5% have values less than -0.5, and together 12% have absolute differences
greater than 0.5. In general, the graphs show that there are more positive differences than
negative differences, and positive differences are larger than negative differences across
all firm sizes. These results are reasonably consistent with Martin & Simin (2003) who
studied a more limited time period of 1990 through 1997.

The beta differences from Figure 23, scaled by the estimate of the variability of the

differences I}D,FF (Section 2.5) are shown in Figure 25.
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Figure 25. Scaled Pair-wise Difference of OLS and ROB Betas.

Beta differences are scaled by the crude variability of the difference of the estimators
at the Gaussian model. Even though the medians are mainly within two standard
deviations, a large portion of differences is significantly different from zero.
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The fraction of the significant t-statistics at the 5% level is much larger than what one
expects under a null hypothesis of equal OLS and ROB beta. Thus, many of the

differences between OLS and ROB estimates are statistically significant.

2.7.2. Standard Errors and Significance of Differences for Beta Estimates
As mentioned in Section 2.4, ROB estimators provide ROB beta standard errors that
are not as inflated by outliers as OLS standard errors. Figure 26 compares the pair-wise

ratios of OLS to ROB standard errors.
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Figure 26. Ratio of OLS to ROB Betas Standard Errors.

The cross-sectional distributions show a positive median for the two smallest size
quartiles. This is due to the dominant numbers of outliers in small size firms inflating the
OLS standard errors, while the largest size quartile shows a slight negative median,

which is due to the inefficiency of the ROB estimator when data contains no outliers.




62
The OLS standard error is on average about 43% larger than the ROB standard error. A
closer look shows that, with the exceptions of the 1986-1987 period that included the
October 1987 stock market crash, the median of the cross-sectional distributions for the
two smallest size quartiles is greater than one, while the largest size quartile has a median
slightly less than one. The bias robustness of the ROB betas prevents its standard errors
from being inflated when influential outliers are present, while the high Gaussian
efficiency of 99% of the ROB betas inflates the standard errors only very slightly when

influential outliers are not present, as is the case with most of the larger size firms.

2.7.3. Idiosyncratic Risk Factors

The CAPM states that only market risk is rewarded and that the risk premium varies
linearly in beta. As observed in Figure 21 and Figure 22, the distribution of OLS and
ROB betas decreases over time to values well below the market beta value of one.

At the same time, the left panel of Figure 27 shows that the distributions of market

returns do not show a monotonic decreasing time trend.
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Figure 27. Market Returns and Mean Stock Returns.

The left panel summarizes market returns, while the right panel shows the distributions
of mean returns. The horizontal scale of the left panel was restricted to not show the
large negative outlier in the 1986-1987 time period caused by the October 1987 market
crash.

According to CAPM this would imply that mean firm stock returns (right panel of Figure
27) should exhibit a monotonically decreasing expected return. However, the
distributions of mean firm stock returns, in the right panel of Figure 27, reveal no such
decreasing expected return pattern. This questions the validity of the CAPM, and
suggests that other risk factors may be rewarded, including the possibility that
idiosyncratic risk is rewarded. The median of the distribution of mean stock returns over
time in the right-hand panel of Figure 27 is highly correlated with the median market
returns in the left panel of Figure 27. However, unlike the market volatility, which tends
to increase in down markets and decrease in up markets, firm returns show a significant

increase in volatility since the mid-1980s.
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Figure 28 shows boxplots of A, = K —f, - R,,, where i is a firm index, and the mean

return estimates R, and R,,, and the beta estimates ﬁ[ are computed over each two-year

time interval, using both OLS and ROB betas.
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Figure 28. Difference of Firm Returns and Firm’s Beta times Average Market Returns.
Differences are taken for each firm and quantities are estimated on all two-year time
intervals. The overall pattern is similar, though ROB median returns as well as
skewness are shifted to the left.

The CAPM predicts that the average of the A, should be close to zero, while the

decreasing betas of Figure 21 and Figure 22 and the results in Figure 27 predict that the

A, should increase over time. However, Figure 28 does not reflect either type of

behavior, and exhibits only increasing volatility after 1982-1983 and some associated
skewness that is positive for the OLS betas and negative for the ROB betas.

This kind of contradiction has recently been observed by other researchers. E.g.,
Malkiel & Xu (1997) suggest that other idiosyncratic factors may be relevant and can

serve as risk proxies, in which case the role of beta in explaining cross-sectional returns
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will decrease. Malkiel & Xu (1997) found that idiosyncratic volatility is useful in
explaining cross-sectional returns. Further, Campbell, Lettau, Malkiel, & Xu, (2001)
found strong evidence of a positive deterministic trend in the idiosyncratic firm-level
volatility, not caused by an increase in numbers of publicly traded companies. Even after
hand deletion of outliers associated with market crashes, such as October 19", 1987
(“Black Monday”), in the variance calculations, they find that firm-level variance
doubled between 1962 and 1997, with no similar trends in industry or market volatility.

This dissertation finds similar results as follows: the single factor model (1.3) with the

2
€i°

usual assumptions results in the variance decomposition o} =B o, +o_,, where, on each

two-year time interval, the sample standard deviation estimates &, and &,, are directly
computed from each firm’s returns and the market returns, and the estimates fi,. and G,
by fitting the model (1.3) via a OLS or ROB regression over the same time interval. Since
the residual standard error o, , represents the idiosyncratic risk, an increase of the ratio

c,, / o, over time would indicate a decreasing contribution of systematic risk, and an

increasing presence of idiosyncratic risk.
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The systematic contribution to total risk, .6, /6, , is displayed in the left panel, while

the ratio G,, / 6, , estimated over each two-year time interval, is displayed in the right

panel of Figure 29.
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Figure 29. Ratio of Systematic and Idiosyncratic to Total Risk.
Left panel: systematic to total risk, B6, /5, . Right panel: idiosyncratic to total Risk,

G, / 6, . The left panel shows that the systematic risk component remains fairly

constant, while the left panel shows that the dominating portion of the total risk is the
idiosyncratic risk, which increased since the 1970-1971 time period until the 2002-
2003 time period.

The right panel of Figure 29 reveals a varying pattern of location and scale (volatility)
over time. The idiosyncratic risk decreases only from 1964 to 1971 and shows, thereafter,

an overall increasing trend until 2002. It consumes almost the total risk, with a distinctive
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shift to the left in 2003-2004. The left panel of Figure 29 shows, overall, a relative
constant pattern in location as well as scale. A good explanation for the shift in 2002-
2003 is still missing.

Of further interest is the contribution to the total variance. On the volatility scale,
Figure 30 shows the differences &, -,6,, for all firms, where the estimates are

computed on two-year time intervals, using both classical OLS and ROB model fitting.
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Figure 30. Residual Standard Error minus Firm’s Beta times Market Volatility.

For each firm, the differences are estimated on two-year time intervals. Classical and
ROB differences are very similar. The residual standard error is increasingly dominating
the total volatility, i.e., the idiosyncratic risk is systematically increasing until the 2002-
2003 time interval
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The predominantly positive locations of the distributions show that the residual volatility
is almost always the main contributor to the overall volatility. It also shows, starting in

1984-1985, that residual volatility is steadily increasing, with a steep drop in 2002-2003.

2.7.4. Prediction

Betas obtained from historical data must show a certain degree of predictability over
future time periods to be useful in applications. This section compares the performance of
the OLS and ROB estimator using the RMSE and CRATIO introduced in Section 2.4. For
a firm to be included in this study, it had to have at least four years of consecutive listing,
which left 17,402 firms in the predictive study.

Table 5 displays the mean and median increase of CRATIO for the beta estimates, for
both the one-week-ahead and one-quarter-ahead predictions, sliced by size quartiles. The
CRATIO values for the ROB betas increase, for both weekly and quarterly predictions
across all groups indicating a significantly smaller RMSE of the ROB estimator. Note the
positive bias of the mean compared to the median CRATIO, indicating great number of
very large CRATIO values. Furthermore, the median gains are higher for weekly
predictions than for quarterly predictions. For weekly beta predictions, the gains are
greatest for the smallest size quartile and minimal for the largest size quartile, while for

quarterly beta predictions, the gains are small and uniform across firm size.

Table 7. Conditional Ratios (CRATIO) of Prediction Errors.

Beta
One-Week-Ahead One-Quarter-Ahead
No. Firms Mean Median Mean Median
SIZE.25 4310 1.334 1.109 1.207 1.065
SIZE.50 4351 1.152 1.073 1.189 1.071
SIZE.75 4351 1.120 1.049 1.226 1.069
SIZE.100 4351 1.059 1.015 1.217 1.069

Mean and median of CRATIO of OLS to ROB RMSE for betas, sliced by firm size
quartile. The positive bias of the mean hints at a great number of positive large
CRATIOs. E.g., a CRATIO of 1.334 means a 33.4% increase in prediction error of the
OLS estimate.
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2.7.5. Discrete versus Continuous Returns

As discussed in Section 1.3.1.3, both OLS and ROB betas are consistent estimates

even when the error distribution in the single factor model (1.3) is asymmetric. Thus, one

would expect OLS and ROB betas estimates to be similar when compared, not between

each other, but compared on different choices or return types.

Figure 31 compares the distribution of the paired beta differences between using

OLS and ROB regression on discrete and continuous returns.

02-03
00-01
98-99
96-97
94-95
92-93
90-91
88-89
86-87
84-85
82-83
80-81
78-79
76-77
74-75
72-73
70-71
68-69
66-67
64-65

OLS BETAS

-—{.H_—..... .

1iitl
T

T

Plidid
P

L

|
-1.0

-0.5

0.0

T

05

1.0

‘| 02-03

00-01
98-99
96-97
94-95

Tt 92-93

90-91

| 88-89

86-87
84-85
82-83
80-81
78-79
76-77
74-75
72-73
70-71
68-69
66-67
64-65

ROBUST BETAS

_
(el
Y

3
]— T

|
T

111]
1

RRRA

T

..—-.-—{.E_}_ - s

-1.0

-0.5

0.0

T
0.5

Figure 31. Betas: OLS and ROB Estimates on Discrete and Continuous Returns.
Betas are computed via OLS and ROB regression using discrete and continuous
returns. Due to the properties of the slope estimate (Section 1.3.1.3), the symmetrizing
log-transformation does not have strong effects. Note however, that the log-

transformation does not solve the problem of kurtosis.

1.0



70
While there is somewhat greater variability in the values of both OLS and ROB estimates
with respect to the choice of returns definition for decreasing firm size, in the majority,

the differences are quite small, e.g., with respect to a market beta of one.

2.7.6. Clean versus Dirty Returns Data
The left panel of Figure 32 shows OLS betas computed on clean data on the
horizontal axis and on dirty data on the vertical axis. The right panel shows the ROB beta

counterpart.
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Figure 32. Betas: OLS and ROB Estimates on Clean and Dirty Returns.
BETA is computed, using OLS and ROB regression, from clean and dirty returns for
18314 firms listed at least over a two-year time period. The center straight lines have
intercept zero and slope one, the dotted line are plotted at plus and minus two ROB
standard deviations to the center line. OLS BETA a wide spread indicating many large
differences due to data imputations.
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If betas were not influenced by the choice of returns type, they would plot on a straight
line through the origin with slope one. The left panel of Figure 32 shows that the points
plot close to the straight line, about 6% at a distance more than twice the average
standard error of the ROB betas on clean data, and that there are a considerable number

of outlying points. These outlying points are caused by splits and reverse splits in

combination with positive and negative market returns. Overall, the OLS fit has an R* of
21.4%, i.e., the variation of the clean beta explains only 21.4% of the variation of the
dirty betas. The right panel shows that the majority of the points plot close to the straight

line, with about 5.6% at a greater distance than twice the ROB standard error of the beta

estimate of the clean data. The ROB fit of dirty on clean betas has an R* of 91.7%. This
means that ROB betas quite reliable for returns data not adjusted for splits and dividends.
In summary, the ROB beta estimator has the attractive property to be relatively
immune to data errors, such as not adjusting for splits and dividend distributions, thereby
offering an easy solution to arrive at acceptable estimates, even if the underlying data

contains small fractions of unclean or erroneous entries.

2.7.7. Conclusion

It was shown that the commonly used OLS regression method of estimating betas
can be severely biased by small fractions of outliers, while the ROB betas greatly reduced
the bias due to outliers. At the same time, the ROB betas achieved a high efficiency when
the returns are Gaussian. In addition to controlling bias, ROB betas had smaller standard
errors that are not inflated by outliers. It has also been shown that ROB betas are
consistent estimates under asymmetric error distributions; and, as a consequence, the
above results hold even when the returns distribution is positively skewed.

The cross-sectional distribution of the pair-wise differences of OLS and ROB betas
were reasonably symmetric about a slightly positive median. The spread tended to widen
in times of down markets, an effect particularly noticeable in the smallest size quartile.
For the smallest firm size quartile, 75% of the firms had an OLS versus ROB beta
difference that ranges in value between 0.20 and 1, though beta differences much larger
than one were visible across all size quartiles and time periods. It is to be noted that these

differences were obtained using a ROB estimator that rejects only 1-3% of outliers and
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performs for all practical purposes, as well as OLS when the data has a Gaussian
distribution. Differences of this magnitude will be financially significant to many
investors, who need to be alerted to such differences, and who often will prefer the ROB
beta as a better description of the vast majority of the data.

The most important property of a good beta estimate is its ability to accurately
predict over future time periods. Using the standard root-mean-squared-error
performance measure when outlier are present (CRATIO), it has been shown that the
median (mean) increase of the OLS beta one-week-ahead prediction error ranges from
1.5% (5.9%) for the largest firm size quartile to 10.9% (33.4) for the smallest firm size
quartile, and for the one-quarter-ahead prediction error from 6.9% (21.7%) for the largest
firm size quartile to 6.5% (20.7%) for the smallest firm size quartile.

As a convenient by-product, it has also been shown that the ROB beta is useful when
the data is not clean, e.g., not adjusted for stock-splits, or simply containing gross data
recording or transmission errors.

In summary: the results strongly supported the use of ROB betas as a complement to
or even replacement of classical OLS betas. When the two estimates agreed, there was
usually nothing to worry about, but when they disagreed, it was almost always because
outliers were influencing the OLS beta. The investor should be alerted by such
differences to investigate the causes and timing of outliers, and may well prefer the ROB

beta as a better indicator of risk and return.
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3. Cross-Sectional Regression

3.1. Introduction

This chapter analyzes the multi-stage procedure of Fama & MacBeth (1973), and
applies ROB statistics on various steps and evaluates its impact.

The Fama & MacBeth (1973) cross-sectional regression technique (FM) is not only
an historically important method, but is also still one of the most widely used tools in
basic empirical finance, with main contributions in empirically validating the CAPM or
ATP models. The empirical FM approach is a very intuitive three-step procedure and can
easily be extended to time-varying factors (Campbell, Lo, & MacKinlay, 1997;
Cochrane, 2001; Elton & Gruber, 1995). The three-step procedure works as follows:

S L. Use ordinary least squares (OLS) regression to fit the single-factor market model
(1.3), with R; =R,, .

R,=o,+B,-R,, +¢g, t=1..T,i=1..,N, a,peR (3.1.1)
For each security N, this results in an estimate B, of the CAPM measure of market
risk.

S II: Given the ﬁ: and residual standard errors s, computed in S I for time period #, and
1?,, the one-month percentage return on security i in time period #-1 to ¢, use the
cross-sectional regression model (1.4) and subsets of risk factors

R, =7, +7 B+ 7, B +7,5 +%,, i=1..,N (3.1.2)
to produce time series of estimates of 7, assuming that 7, is independent of the
predictor variables.

S III: Analyze the time series of the ;7 . estimates using averages and t-statistics to test for

the main three hypotheses C1 through C3:

C1: In any efficient portfolio, the relationship between a security’s expected return

and risk is linear, i.e., H,: E[}/z’,] =0.
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C2: B is acomplete measure of the risk of security i in the efficient market
portfolio, i.e., H: E[;@J =0.
C3: Higher risk should be associated with higher expected excess returns, i.e.,
Hy: E[Vu:l = EI:RM,, :I - E[Rf,,] >0, with R, the risk free rate.
FM recognized that in S III, the use of estimated Bi in place of true g, introduces an

errors-in-the-variables problem, and that ,B: averaged over portfolios are more precise

estimates of the true £, . Therefore, FM decided to group stocks into 20 portfolios based

on ranked values of ,31 .
However, high (low) observed ,B, tend to be above (below) the true S and portfolios

formed that way tend to over (under) estimate the true S,. To avoid this serious
regression problem, FM chose to use different data to first form the ,/3’p -portfolios, then

estimated the initial ﬁp -values, and finally to ran cross-sectional regression for the

testing period. This was done as follows:

Formation: Over a 5 or 7-year formation period, ,8: are estimated for each stock and
initial portfolios were formed by grouping all stocks into 20 portfolios based
on their ranked ,3, .

Estimation: Over subsequent 5-year estimation periods following the formation period,
,BA[ are re-estimated for each stock and ﬁp re-computed by averaging over

each of the 20 portfolios.

Testing:  Over another final subsequent 4-year testing period, 3, were re-averaged
monthly (without re-computing the BI -component) to allow for delisting of

firms, while the individual ﬁl components were annually re-computed over

the beginning of the estimation period to the end of the current year of the

testing period.
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To test hypothesis C1, C2, and C3, FM used the following four cross-sectional
regression models (subsets of (3.1.2)), labeled Panel A through Panel D:

Panel A: R, =7+ 71,,,3,7,1-1 1,

. — 3 22
Panel B Rp,t - 70,! + yl,tﬂp,l—l + 7/2,113,;,1-1 + 77,,,:

A

_ (3.1.3)
Panel C: R, =y, + 71,1:8;;,1-1 V355,

Panel D: R,, =7,, + 71,11317,1-1 + 72,::3;3,1—1 + 7’3,:571;,:-1 +1,.
where p =1,...,20. FM’s results are summarized in FM, Table 3.

This chapter will be restricted to FM’s results of Panel A and Panel D, since Panel B
and Panel C deal with the linearity of the single-factor market model and sources of
measures of risk, which are also tested in Panel A and Panel D.

The center of attention will be the reproducibility of the results by providing code
written in S-PLUS (2001), available upon request, and the extension of FM by applying
the code to data through December 2002.

Robust methods are used when forming g -portfolios, running cross-sectional

regressions, and averaging over month-to-month regression coefficients. The impact of
using robust methods may be washed out on a portfolio level (Cable & Holland, 2000;
Sharpe, 1971). However, the use of robust MM-estimator may show significant
differences when applied in S I through S III, and may also improve the regression model
assumptions. Furthermore, the introduction of the MM-estimator, within the factor model
framework, is intended to lay the groundwork for its use in larger multi-factor models, as
in the framework of the (Fama & French, 1992) model and the Barra-type fundamental
factor models (Chapter 4).

Section 3.2 describes the data. Section 3.3 calibrates the data to the results of FM.
Section 3.4 extends FM through December 2002 and analyzes the month-to-month time
series averages on various time intervals and tests conditions C1 through C3. Section 3.5

shows the effects of the robust estimator. Section 3.6 provides concluding comments.
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3.2. Data

The data are monthly discrete returns (Section 2.2.4), adjusted for splits and dividend
distributions for all stocks traded on NYSE during the time period January 1926 through
December 2002. The market proxy is the equally weighted average return of all stocks
listed on NYSE in month ¢ and the risk-free rate the 1-month Treasury bill. The data was
provided by the CRSP.

3.3. Calibration to FM

Since the FM procedure may be confusing, Table 8 recalls the different time periods

and lengths of formation, estimation, and testing periods used in S I and S II.

Table 8. Overview of FM S I and S II Time Periods.

S1I

Period Formation Estimation Testing
! 1/1926-12/1929 1/1930-12/1934 1/1935-12/1938

5 years 5 years 4 years
1/1927-12/1933 1/1934-12/1938 1/1939-12/1942

2 7 years S years 4 years
1/1931-12/1937 1/1938-12/1942 1/1943-12/1946

3 7 years 5 years 4 years
1/1935-12/1941 1/1942-12/1946 1/1947-12/1950

4 7 years 5 years 4 years
9 1/1955-12/1961 1/1962-12/1966 1/1967-6/1968

7 years

5 years

1.5 years

The results in S II of Table 8 are time series of the month-to-month cross-sectional

regression coefficients ﬂAp,,, /3’;,,, sTp,,, and 77, over the testing periods from 1/1935

through 6/1968. S III produces averages and t-statistics from these time series over

various time-periods.
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The different time periods over which FM analyzes S II are summarized in Table 9.
Table 9. Time periods used in FM, S III.

S I

Period Testing Length
1 1/1935-6/1968 33.5 years
2 1/1935-12/1945 11 years
3 1/1946-12/1955 10 years
4 1/1956-6/1968 12.5 years
5 1/1935-12/1940 6 years
6 1/1941-12/1945 5 years
7 1/1946-12/1950 S years
8 1/1951-12/1955 5 years
9 1/1956-12/1960 5 years
10 1/1961-6/1968 7.5 years

The comparison of the replicates will be restricted to regression coefficients,

corresponding t-statistics, and coefficient of determination of FM, Table 3, Panel A and
D. Due to software restrictions, the notation in graphs willbe g_0,g 1,g 2,g 3,andR_f
in place of y,,%,, 7,, 75, and R, respectively. Results that are based on the data in this
study are referred to as replicates.
3.3.1. FMTable I

In order to be included in a portfolio, a security must be available for at least 4 years

in the portfolio formation period, for the full 5 years in the estimation period, and

additionally in the first month of the testing period.
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Figure 33 shows the percentage difference between the number of securities meeting

the data requirements in FM, Table 1 and the replicates.

| | [ ! | |
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Figure 33. Percentage Difference of Available Securities in FM versus Replicates.

The number of available securities in this study is, overall, somewhat smaller than that in

FM due to revisions of the CRSP database.

3.3.2. FMTable?2
FM, Table 2 provides sample statistics of the estimation periods only for the periods

2,4, 6, and 8 of Table 8.
Figure 34 shows a qqplot (Section 1.4.1) of the values of the 20 portfolios ﬂAp,,_l taken
from FM, Table 2 versus the replicated ﬁp’,_l values of this study. The solid line has slope

one and intercept zero. The closer the points are to the solid line, the better the match

between FM, Table 2, and the replicates.
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Figure 34. Comparison of ,BAP,,_1 of FM, Table 2 versus Replicates.

The replicates match FM, Table 2 closely for all time periods.

3.3.3. FMTable 3

FM, Table 3 shows the average of the month-by-month regression coefficient

estimates %, R?, and the corresponding t-statistics computed as

A

(7)) = ——m (3.1.4)

s(7,)/NN

with s(}/ j.) the standard deviation of the time series over time periods described in Table

9.
The comparison with the replicates for FM, Table 3, Panel A on these 10 time periods

is shown in Figure 35 and Figure 36. The solid line has slope one and intercept zero.
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Figure 35. Estimates of FM, Table 3, Panel A versus Replicates.
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Figure 36. R* Estimate of FM, Table 3, Panel A versus Replicates.
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The replicates in Figure 35 and Figure 36 match the coefficient estimates,

corresponding t-statistics, and coefficient of determination of FM, Table 3 closely for all

time periods. Figure 37 and Figure 38 show the comparison for Panel D. The estimated

intercept is not shown as its values are close to zero.
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Figure 37. Estimates of FM, Table 3, Panel D versus Replicates.

The replicates in Figure 37 and Figure 38 match FM, Table 3 not as well as in Figure 35.

The intercept y, shows an upward bias of the replicates, while the slope y, shows a

downward bias. Overall, they are still relatively similar across all time periods.
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Figure 38. R? of FM, Table 3, Panel D versus Replicates.

3.4. Extension of FM

Table 10 gives an overview of the natural extension through 12/2002 of FM, with

respect to formation, estimation, and testing periods.

Table 10. Overview of Extended S I and S II Time Periods.

S1 S1I
Period Formation Estimation Testing
1 1/1926-12/1929 1/1930-12/1934 1/1935-12/1938
5 years 5 years 4years
1/1927-12/1933 1/1934-12/1938 1/1939-12/1942
2 7 years 5 years 4 years
17 1/1987-12/1993 1/1994-12/1998 1/1999-12/2002

7 years 5 years

The time series averages and t-statistics in S III will be taken over 14 five-year and 7 ten-

4 years

year periods, as well as over the full time periods from 1/1935 through 12/2002, and
excluding the World War II (WW II) period, i.e., from 1/1947 through 2002,
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3.4.1. FMTable ]
Figure 39 shows the number of available securities in this study for all testing periods
from 1935 through 2002.
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Figure 39. Number of Available Securities.

The number of firms available steeply increases mid-1970s and mid-1980s.
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3.4.2. FM Table 3, Panel A, 5-year Averages

Figure 40 shows contiguous 5-year averages of the month-by-month regression

coefficient estimates 7 ; (intercept annualized) and corresponding t-statistics for the
model of Panel A, while Figure 41 shows the corresponding R*.

Y N N N | N I S N S

L
g 0

000 005 010 0.15

-0.05

g1 | t(g_1)

005 010 0.5

0.00

-0.05

1935 1955 1975 1995 1935 1955 1975 1985
Figure 40. Panel A: 5-Year Averages of Coefficient Estimates and T-Statistics.

The intercept 7, is significant for the time periods starting in 1945, 1950, 1955, and
1985. The slope 7, is never significant under the null-hypothesis C3, but shows a large t-
statistic in the 5-year period starting in 1975. Note that the null hypothesis in C3 can only
be rejected when negative values with a large t-statistics occur. The slope coefficient 7,

is negative for the time periods starting in 1970, 1985, and 2000, but without significant

t-statistics.
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Figure 41. Panel A: 5-Year Averages of R*.

The uptrend in the R*, since 1955 with the exception of the 1980-1990 period, is

noticeable, and could be due to market turbulences decreasing the validity of the model.

3.4.3. FM Table 3, Panel D, 5-year Averages
Figure 42 shows contiguous 5-year averages of the month-by-month regression

coefficient estimates 7, (intercept annualized) and corresponding t-statistics for Panel D.,

and Figure 43 shows the corresponding R* values.
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Figure 42. Panel D: 5-Year Averages of Coefficient Estimates and T-Statistics.
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Figure 43. Panel D: 5-Year Averages R*.
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The only significant coefficient is the 7, coefficient, which is significant in the 5-year
time period starting in 1950. The 7, coefficients fluctuate; however, it is insignificant on

all 5-year periods. Similar to Figure 41, Figure 43 shows an uptrend in R* after 1955
with the exception of the 1980-1990 period.

3.4.4. FM Table 3, Panel 4, 10-year Averages
Figure 44 shows contiguous 10-year averages of the month-by-month regression

coefficient estimates 7, (intercept annualized) and t-statistics for Panel A. Figure 45

shows the corresponding R*.
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Figure 44. Panel A: 10-Year Averages Coefficient Estimates and T-Statistics.

The intercept 7, is only significant in the 10-year time period that contains WW II. The
slope 7, is never significant, but shows a large t-statistic in the 10-year period starting in

1975. The slope coefficient 7, is always positive.
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Figure 45. Panel A: 10-Year Averages R’.

As in the 5-year windows, there is an uptrend in the R? since 1955, with the exception of

the 1980-1990 period.
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3.4.5. FM Table 3, Panel D, 10-year Averages
Figure 46 shows contiguous 10-year averages of the month-by-month regression

coefficient estimates 7 ; (intercept annualized) and t-statistics of Panel D. Figure 47

shows the corresponding R*.
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Figure 46. Panel D: 10-Year Averages of Coefficient Estimates and T-Statistics.

Only the quadratic term 7, is significant on the 10-year time periods starting right after
WW I in 1945. The slope coefficient 7, is positive except for the time periods starting in

1955 and 1995, with a large t-statistics in the 10-year periods starting during WW II.
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Figure 47. Panel D: 10-Year Averages of R*.

The R? shows the usual uptrend since 1955, with the exception of the 1980-1990 period.

3.4.6. FM Table 3, Panel A, Other Time Periods

Figure 48 shows the time series of the coefficients ¥, and y, from the month-to-

month cross-sectional regressions over the full testing period from 1/1935 through
12/2002. The time series show a large number of outliers and show different regimes of
high and low, as well as increasing and decreasing volatility. A regimes, e.g., of higher
volatility is the WW II period from 1935 through 1940, followed by a extremely low and
then rising volatility regime until 1943. The next periods of high volatilities are in the

Seventies, early Nineties, and early Millennium.
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Figure 48. Time series of Coefficients Estimates y, and y, from S II.

Averages and t-statistics taken over sub-time periods will easily be biased by outlying
values that occur more often in periods of high volatility. To make this point more clear,
Table 11 shows the t-statistics for the full and sub-periods. The t-statistic of the intercept
stays high when volatility time periods are excluded, but the t-statistics of the slope
parameter decreases.

Table 11. T-Statistics over selected Time Periods.

Yo N
01/1935 - 06/1968 2.62 2.56
01/1935 -12/2002 3.11 2.69
01/1946 — 12/2002 3.14 1.96
01/1946 — 06/1968 3.12 1.81
01/1946 — 12/1974 597 161

01/1977 — 12/2002
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Even though the power of the t-test decreases in times of higher volatility, one would still
think that the t-statistics of the slope parameter could be positive and large, but this does
not conform to Table 12.

Table 12. T-Statistics over High Volatile Time Periods.

Yo '
1/1935-02/1946 1.05 1.89
1/1974-12/1976 -0.10 1.25
01/1991-03/1992 -0.05 0.48
10/1999-01/2001 -0.61 1.59

Moreover, Table 12 that shows in times of high volatility an insignificant intercept and
very small values of the t-statistics of the slope. This also confirms findings of Section
4.2 and Section 4.4, emphasizing the impact of the choice of time periods on the overall

results.

3.4.7. Testsof Cl, C2, and C3

C1: Panel D tests if the relationship between expected returns and {3 is linear. With the
exceptions of the 5-year and 10-year time-periods that include 1955, all t-statistics of
the y, coefficient are insignificant, thus C1 cannot be rejected.

C2: Panel D also tests if there is additional systematic risk besides (3 that affects
expected returns. On S-year and 10-year time periods, the t-statistics of the coefficient
¥, are insignificant. Thus, condition C2 cannot be rejected.

C3: Panel A tests for a positive trade-off between expected return and risk. It shows that
the slope coefficient ¥, is negative in the 5-year time periods starting in 1970, 1985,
and 2000. That is in 3 out of 14 time periods or 21.4% of the times. However, its t-
statistics are never significant (under the null-hypothesis), and large only in the 5-
years time period starting in 1975. On 10-year windows, Panel A shows all y, to be
positive; however, only the t-statistics for the 10-year time period starting in 1975 is
large. Excluding time periods with high volatility, as shown in Table 12, renders all t-

statistics of ¥, to be small, and they remain small when only periods of high volatility
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are considered (Table 12). All taken into consideration, there is not enough evidence

to reject C3 as it only tests for significant y, <0.

3.5. Impact of Robust MM-Regression

It was established in Section 3.3 that the data and methodology of this study
sufficiently replicate the results of FM. Section 3.4 extended FM’s methods through
12/2002. In this section, FM will be compared with robust versions of FM. Robust
versions of FM are obtained by applying the MM-estimator (ROB, Section 1.3.1) to
various combinations of steps S I through S III. The following notation will be adapted

going forward.

RS S 11is robustified, i.e., the OLS estimator in (3.1.1) is replaced by ROB.

RS II: S I and S II are robustified, i.e., the OLS estimator in (3.1.1) and (3.1.2)
is replaced by ROB.

RSMex I S II but not S I is robustified, i.e., only the OLS estimator in (3.1.2) is

replaced by ROB, but S -portfolios are formed using the FM approach.
RS III: S 1, SII, and S III are robustified, i.e., the OLS estimator in (3.1.1) and
(3.1.2) is replaced by ROB, and in S III the classical averages of the time
series of the 7, estimates and its t-statistics are computed robustly,
again using ROB.
RS III ex I&IL: Only S III is robustified by replacing the classical averages of the time

series of the 7, estimates and its t-statistics by robust methods, while S I

and S II are done the classical FM way.

Section 3.5.1 motivates the potential impacts when using robust methods. Section
3.5.2 compares FM and RS I. Section 3.5.3 compares FM and RS II. Section 3.5.4
implements the full robust approach comparing FM and RS III ex I&II and RS IIL
Section 3.5.5 uses RS III in Panel A and Panel D to test conditions C1, C2, and C3.

Section 3.5.6 looks at the regression model assumptions.
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3.5.1. EDA and Potential Impact of ROB Regression
This section points out at which steps of the FM approach robust methods may have

impact. Figure 49 shows the scatter plot of the month-to-month /3 -portfolio returns,

obtained using the FM and RS I approach over the time period starting in 1/1935 through
12/2002.
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Figure 49. Monthly (8 -Portfolio Returns of FM versus RS 1, 1/1935 - 12/2002.

Overall, the FM and RS I portfolio returns are similar, but there are a number of months
with large disparities, such as the outlier in the upper right corner of Portfolio 17 and the
outlier in the positive ROB direction of Portfolio 1—both corresponding to September

1939. Further, Figure 50 shows the portfolio § obtained using the S1 I and RS I approach
over 1/1935 through 12/2002.
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Figure 50. Monthly Portfolio Betas of S I versus RS I, 1/1935 - 12/2002.

As with the B -portfolio returns, both approaches give overall similar results, but still

show outlying values. E.g., in Portfolio 1, the number of the SI B is much larger than the

RS T B. It also seems that for smaller B -portfolios, S I seems downward biased, while for

larger B -portfolios, S I seems upward biased. Thus, the grouping of stocks by ranked {3

could be affected when using ROB regression to compute the individual stocks 3,

thereby creating [ -portfolios that are lower or higher then the S I B -portfolios.

S II computes regression estimates on the portfolio level. To understand the impact of

outliers on the month-to-month cross-sectional regressions, Figure 51 shows the month-

to-month portfolio returns obtained from forming P -portfolios using SI.
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Figure 51. Time Series of Portfolio Returns using S I.

The dotted lines around the center distribution, at plus and minus twice the ROB standard

deviation of the returns, clearly display a large number of outlying portfolio returns.

0.6

0.2

6.2

0.6

0.2

0.2



97
Figure 52 shows the number of return—f pairs that are classified by the ROB

regression as two-dimensional outliers and therefore rejected.
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Figure 52. Panel A: Number of Outliers rejected in RS IL

While the majority of the 816 month-to-month cross-sectional regressions reject none or
just one of the returns, there are a number of months where up to 8 out of the 20 month-
to-month returns were rejected. Therefore, cross-sectional regression estimates can be

affected when choosing ROB over OLS regression.
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In S I1I time series are averaged and t-statistics computed. Figure 53 shows the time
series of the month-to-month cross-sectional regression coefficients y, and y, of Panel

A, comparing S II, RS II ex I, and RS II approach. The two parallel dotted lines are two

times the ROB standard deviation around zero.
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Figure 53. Panel A: Estimates from S II using S I, RS T ex II, and RS II.

Non-stationary volatility and a number of large positive and negative outliers are clearly
visible. Averages taken over time periods that include large negative or positive outliers

can be substantially biased. Standard deviations computed over time periods that include
a large negative or positive outlier can be substantially inflated. T-tests formed with such
quantities have little power. Therefore the biggest effects of using ROB will be expected
in S IIL.
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3.5.2. SIversusRSI
This section compares S I to the RS I approach on five-year contiguous time intervals

from 1/1935 through 12/2002. The results are shown in Figure 54.
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Figure 54. FM versus RS I, 5-Year Contiguous Time Periods, 1/1935 - 12/2002.

The points scatter mostly near the straight line, with the exception of a few points that

correspond to the 5-year time periods starting in 1955 and 1990.
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The scatter plot of R* in Figure 55 indicates that the use of ROB cross-sectional

regression seems to increase the R, with the exception of the last time period.
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Figure 55. Corresponding R* of Figure 54.
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This section compares S II to the RS Il approach on five-year contiguous time

intervals over 1/1935 through 12/2002. The results are shown in Figure 56.
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Figure 56. FM versus RS I, 5-Year Contiguous Time Periods, 1/1935 - 12/2002.

R II matches S II sufficiently well.
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Figure 57 mainly confirms FM, Table 3, Panel A, but again, a few data points are

fairly different—one belonging to the WW II period and other ones to more recent time

periods.
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Figure 57. Corresponding R* of Figure 56.

3.5.4. S IIversus RS IIl ex 1&II and RS 111

As described in Section 3.5.1, time series averages and t-statistics as computed in
FM, Table 3 are sensitive to outliers, and the inflated standard deviations lower the power
of the t-tests. This section compares the FM approach to the RS III ex I&II and RS III
approach on 5-year and 10-year contiguous time intervals over 1/1935 through 12/2002.
Note that RS III ex I&II means just to make step S III robust, while computing S I and S
IT like FM.
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The results are shown in Figure 58.
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Figure 58. S III versus RS III ex I&Il, 5 & 10-Year Intervals: 1/1935 - 12/2002.

Figure 58 shows that replacing just the classical approach of building time series

averages and t-statistics using (3.1.4) by ROB methods already results in significant

differences on both the 5-year and 10-year periods.
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Figure 59 uses the full robust RS III approach over 5-year and 10-year contiguous

intervals.
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Figure 59. S III versus RS III, 5 & 10-Year Intervals: 1/1935 - 12/2002.

The differences are even greater. The results of Figure 59 are also displayed in Table 13

and Table 14.
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Table 13. S III versus RS III.

SIII RS III
5-Year Yo t(7,) 7o t(7s)
1/1935-12/1939 0.004 0.43 -0.010 -0.16
1/1940-12/1944 0.003 0.66 0.001 0.09
1/1945-12/1949 0.009 2.51 0.012 1.53
1/1950-12/1954 0.009 2.69 -0.009 -1.33
1/1955-12/1959 0.010 3.84 0.002 0.36
1/1960-12/1964 0.005 1.17 0024 | 254
1/1965-12/1969 -0.006 -1.34 -0.016 -1.23
1/1970-12/1974 -0.002 -0.39 0.002 0.17
1/1975-12/1979 -0.001 -0.30 0.005 0.66
1/1980-12/1984 0.006 1.19 0.003 0.31
1/1985-12/1989 0.015 | 3.77 | 0.002 0.24
1/1990-12/1994 -0.003 -0.46 0.017 | 199 |
1/1995-12/1999 0.006 1.51 0.010 1.47
1/2000-12/2002 0.006 0.71 -0.003 -0.33
5-Year 7 1(7,) 7 t(r)
1/1935-12/1939 0.013 0.82 0.006 0.08
1/1940-12/1944 0.016 1.79 0.020 0.87
1/1945-12/1949 0.001 0.22 -0.006 -0.37
1/1950-12/1954 0.008 1.34 0.035 | 279
1/1955-12/1959 0.001 0.24 0.007 0.49
1/1960-12/1964 0.002 0.39 -0.013 -0.59
1/1965-12/1969 0.013 | 1.82 | 0.022 0.85
1/1970-12/1974 -0.006 -0.65 -0.006 -0.18
1/1975-12/1979 0.023 | 2.57 | -0.005 -0.20
1/1980-12/1984 0.002 0.33 0.010 0.38
1/1985-12/1989 -0.007 -1.22 0062 [ 3.08
1/1990-12/1994 0.010 1.23 0.049 1.94
1/1995-12/1999 0.008 1.12 -0.016 -1.15
1/2000-12/2002 -0.002 -0.12 -0.015 -0.49

RS IIT lowers the percentage of significant time periods for the intercept y, from 29% to
14% and raises the percentage of t-statistics greater than 1.96 of the slope parameter y,

from 7% to 21% on 5-year time periods; however, on 10-year periods, it lowers the

significance of the y, from 29% to 14%, while the percentage of large y, remains even.
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Table 14. S III versus RS III, 10-Year Intervals: 1935 - 12/2002.

oy S 111 RS III

1 cat Yo t(?’o) Yo t(70)
1/1935-12/1944 0.004 0.69 0023 | 201
1/1945-12/1954 0.009 3.68 0.001 0.22
1/1955-12/1964 0.007 2.96 0.001 0.13
1/1965-12/1974 -0.004 -1.17 -0.007 -0.74
1/1975-12/1984 0.002 0.61 0.004 0.56
1/1985-12/1994 0.006 1.83 0.010 1.47
1/1995-12/2002 0.006 1.48 -0.002 -0.41
10-Year 4 t(n) g t(7)
1/1935-12/1944 0.014 1.59 0.040 | 2.67
1/1945-12/1954 0.004 1.09 0.017 1.67
1/1955-12/1964 0.002 0.45 0.000 0.00
1/1965-12/1974 -0.004 0.63 0.008 0.40
1/1975-12/1984 -0.013 | 2.22 | 0.005 0.31
1/1985-12/1994 0.002 0.27 0.020 1.40
1/1995-12/2002 0.004 0.53 -0.012 -0.81

3.5.5. ROB Tests of Cl, C2, and C3
Cl: Table 15 shows the percentage of month-to-month significant t-statistics for the

FM, RS II ex I, and RS III approach from 1/1935 through 12/2002 using Panel D.

Table 15. Panel D: Significant T-Statistics, 1/1935 through 12/2002.

FM RSIIexI RS1I

t(7,) 18.3% 13.4% 13.9%
t(7s) 14.5% 10.3% 6.9%
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Figure 60 shows the 5-year time series averages and t-statistics of the month-to-

month cross-sectional regression estimates obtained using RS I1I and Panel D.
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Figure 60. Panel D: Estimates using RS III.

Table 15 showed that the monthly percentages of significant t-statistics of y, and
7, in the FM, Panel D are only 18.3% and 14.5%, respectively. It also showed the

percentage of significant t-statistics for the RS II approach as 13.9% and 6.9%,
respectively. Thus, the percentage of significant t-statistics for RS II ex I are right in
the middle. Figure 60 shows that the y, t-statistics are significant in only two out of
14 time periods, i.e., in 14.3% of the times, and values of y, are close to zero.

Therefore it seems plausible not to reject C1.

C2: For similar reasons as in C1, the hypothesis in C2 cannot be rejected.



108
C3: Panel A, Figure 61, Table 16, and Table 17 will provide some answers. Figure 61

shows the 5-year continuous averages and t-statistics using the RS III approach.
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Figure 61. Panel A: 5-Year Averages and T-Statistics using RS III.

The 5-year averages of the slope parameter y, are positive, but the t-statistics of C3 is

never significant (under the null hypothesis), and values larger then 1.96 occur only
in two out of 14 time periods, i.e. in 14.3% of the time periods.
Table 16 shows the percentage of month-to-month large t-statistics for the FM,
RS II ex I, and RS III approach from 1/1935 through 12/2002.
Table 16. Panel A: T-Statistics larger than 1.96, 1/1935 - 12/2002.

FM RS Il ex RS II
t(7,) 49.9% 40.4% 38.6%
t(n) 61.9% 56.5% 54.8%

t(7,)&(7,>0) 31.7% 28.6% 27.8%
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Table 16 shows that the percentage of t-statistics larger than 1.96 to be only 31.7%
and 27.8% for the FM and RS II approach, respectively. Table 17 compares the S III
to the RS III for the full time period, with and without the WW II period.

Table 17. FM versus RS 111, 1/1935 - 12/2002.

S I RS III

%o (%) Yo t(%0)

1/1935-6/1968 0.005 2.62 0.007 1.80
1/1947-6/1968 0.005 3.10 0.002 0.61
1/1935-12/2002 0.004 3.12 0.005 1.85
1/1947-12/2002 0.004 3.09 0.003 0.97
% t(n) % t(n)

1/1935-6/1968 0.008 2.56 0.006 0.69
1/1947-6/1968 0.006 2.09 0.009 0.98
1/1935-12/2002 0.006 2.69 0.005 0.81
1/1947-12/2002 0.005 2.08 0.006 0.98

For S III, regardless of post WW II period or not, the t-statistics for the intercept y, is
always significant and the slope parameter 7, always insignificant, in the sense of C3,

with t-statistics always larger then 1.96. The t-statistics are small throughout for the
RS III approach. Overall, the slope parameter is non-zero. It appears that t-statistics
become insignificant when taken over shorter time periods and the ROB approach
tends to show smaller t-statistics that do not so much depend on the time-frame
chosen. Keeping in mind that differences in the methods are caused by a very small
fraction of outliers, it suggests that the ROB approach is more accurate. While C3
cannot be rejected, there is not much evidence for a strong positive risk-return trade-

off.
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3.5.6. Model Check

The cross-sectional regression models (3.1.3) assume that the error terms 7, are
serially uncorrelated and contemporaneously uncorrelated across assets, i.e.,

€OV (1y0s1l, )= 05, Yg=p, and s =1 (3.5.1)

=0, otherwise

Figure 62 shows the density estimates of the lower triangular covariance matrix from

(3.5.1) obtained using FM, RS I, and RS II.

-0.4 -0.2 0.0 0.2 0.4
Figure 62. Panel A: Probability Densities of CSR Residuals, 1/1935-12/2002.

The model assumptions expect the density distribution to center steeply around zero.
From the three methods, RS II meets the model assumptions better then the other two
approaches; still, however, the off-diagonals of the covariance matrix of the residuals are

far from being zero.
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3.6. Conclusion

This chapter replicated the results of Fama & MacBeth (1973) (FM). It extended the
results to more recent time periods, re-evaluated conclusions on various time-frames, and
studied the effects of robust regression, using the MM-estimator, on various stages of
FM’s three-step approach. Although the data source was the same as in FM, data base
revisions and consolidations made an exact data match impossible. However, a close
match on FM's timeframe of 1/1935 through 6/1968 was convincingly achieved.

FM's method was extended through 12/2002 and evaluated on 5-year and 10-year
contiguous time-periods, as well as on time periods excluding times with much higher
then usual volatility. FM's conclusions on C1 and C2 could be confirmed and C3 not
rejected; however, a strong positive trade-off between return and risk was not found on
neither FM's time horizon, when excluding WW II, nor on the extended time horizon
excluding small time periods of unusual volatility. This finding also holds when looking
only at time periods of high volatility.

The discrepancy of the results caused by outliers was strikingly confirmed in Section
3.5, where OLS regression and classical time series averages and t-statistics were
replaced by the MM-estimator. The MM-estimator was set at an efficiency of 99%
rejecting only a very small fraction of outliers. Nevertheless, the slope parameter beta
was mostly insignificant, regardless of time periods. The linear regression model
assumption, i.e., that the error terms are serially uncorrelated across assets and time, hold

better using the robust MM-estimator.
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4. Multi-factor Model

4.]. Introduction

This chapter makes use of the classical Fama & MacBeth (1973) (FM) and the robust
FM (RFM) techniques, developed in Chapter 3, to analyze and to extend a central result
in empirical asset pricing—the findings of Fama & French (1992) (FF) on beta and other
fundamental factors. It further compares and extends the ground-breaking work in
robustness of FF’s results by Knez & Ready (1997) (KR). The acronyms FM, RFM, FF,
KR, and others will be used through this chapter, and can be found in the glossary.

The FM method has become a standard tool to test theoretical models such as the
CAPM or the APT. Key results were published in FF, using returns and firm
characteristic factors of all US stocks 7/1963 to 7/1970 that met certain criteria and FM to
show that mainly two firm characteristics, size (natural log of market capitalization) and
the beme (book equity to market equity ratio), are able to capture the cross-sectional
variation in average stock returns, and that the CAPM beta (using a size-beta portfolio
classification system) is insignificant.

FF’s paper can be viewed as the departure of the academic research from the CAPM
beta and the beginning of a focus on size and beme, as well as other factors.

The controversial results in FF also initiated research to improve FM and to make it
less sensitive to outliers. KR applied, in a particularly motivating application, the least
trimmed squares (LTS) regression estimator (Rousseeuw, 1984) to the methodology and
data of FF. They showed that the negative risk premium on size, as reported in FF, is
caused by observations in only 16 months (out of 330) and a fraction (less than 1%) of
small sized firms. Trimming these outliers produced a positive relationship between
average returns and firm size. Motivated by the success of KR, Garza-Gomez,
Hodoshima, & Kunimura (2001) applied the KR method, using the same risk factors, to
the Japanese stock market and confirmed their results.

Chou, Chou, & Wang (2004) extended FF and KR through 2001. Unlike KR, they
also analyzed beta. Chou, Chou, & Wang (2004) were able to confirm the effects of
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influential months found in KR. Additionally they found that the beta coefficient is
positive and significant only in January, while in the rest of the time periods the beta
coefficient is either negative or flat.

KR, Garza-Gomez, Hodoshima, & Kunimura (2001), and Chou, Chou, & Wang
(2004) used the LTS estimator. The LTS has the following drawbacks: it lacks a simple
formula to compute coefficient standard errors; when the fraction of contamination is
greater then the fraction of trimming, then its efficiency is not clear anymore; and its
breakdown point depends on the fractions of contamination and trimming (Stefanski,
1991). Furthermore, in all these papers, robustness has only been applied to the cross-
sectional regression part, but not to the evaluation of the resulting time series regression
coefficients.

This chapter applies robust methods to all aspects of the methodology of FF that can
be influenced by outliers and also extends the results to recent time periods and additional
analysis.

The next section introduces notations and describes the data and FF’s specific
technique to compute the explanatory variable—stock beta. It then specifies which of the
models used in FF are focused on in this chapter, and recalls how the FM technique can
be robustified. The section ends with a brief comparison of the robust time series test-
statistics with the non-parametric Wilcox test. Section 4.3 calibrates the data to the results
of FF and KR. Section 4.5 and 4.6 detect influential months, such as the January effect,
and influential firms. Section 4.7 compares cross-sectional regression results using FM
and RFM on various time periods and on firms accepted and rejected separately. It
further compares results from FM and RFM, only on firms with significant month-to-
month coefficients, and ends with a proper model selection procedure using the classical

and a robust Akaike Information Criterion (AIC, RAIC) criterion.
4.2. Data, Notation, and Methods

The data are monthly discrete returns from 7/1970 through 6/2004 of non-financial
firms listed on NYSE, AMEX, and NASDAQ), intersected with the merged

COMPUSTAT annual industrial files of income-statement and balance-sheet data,
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maintained by CRSP.

FF uses FM’s approach (Chapter 3) to empirically test asset pricing. Cross-Sectional
regression (CSR) is conducted by OLS regression of the cross-section of returns on
variables hypothesized to explain expected returns. The resulting time series of regression
coefficients are then used to evaluate the model and to test for significance of the
explanatory variables. The time series of regression coefficients are evaluated using FM’s
time series averages and t-statistics approach (TT), detailed in Section 3.

Even though the data has the same structure and origin as in FF, the starting time
period chosen was not 7/1963 but 7/1970 for three main reasons: in the 1960s and early
1970s, the US secondary market for stocks was fragmented, meaning, that orders for a
given stock were handled differently from other orders (small versus large, several
exchanges, OTC). This was true until the Security Act of 1975; the number of stocks
available to build portfolios was insufficient for reliable inferences; before 1970, the CSR
of firm size shows unusual trend from negative to positive, see Figure 63.
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Figure 63. CSR Coefficients of Risk Factor Log of Market Capitalization.
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As will be shown in Section 4.3, this truncation does not affect the results from robust
methods, which justifies the truncation even more.

Explanatory variables used by FF are Earnings to Price, Stock Leverage: Asset to
Book Equity, Market Leverage: Asset to Market Equity, the natural log of Book to
Market Equity (BEME), the natural logarithm of Market Equity (SIZE), and the stock
BETA. All variables but the BETA can be measured precisely for each firm; however, the
estimate of market BETA is more precise for portfolios. Therefore, FF estimated post-
ranked BETA for portfolios and then assigned the portfolio post-ranked BETA to each
stock in the portfolio. The post-ranked BETA portfolios are obtained as follows.

4.2.1. SIZE-BETA Portfolios and Post-Ranked BETA

To allow for variation in BETA that is unrelated to SIZE, FF introduced the following
procedure (see details in FF). Portfolios are formed each year ¢. In July of year ¢, all
stocks are divided into SIZE deciles. The SIZE deciles are determined in June of year ¢
using only NYSE stocks. The SIZE deciles are sub-divided into BETA deciles using pre-
ranked BETA of individual stocks. The BETA deciles breakpoints are determined using
only NYSE stocks that meet the CRSP-COMPUSTAT data requirement with 2-5 years of
monthly returns history ending in June of year ¢. From July of year ¢ to June of year ¢ + 1,
all stocks are assigned to the SIZE and BETA deciles and 100 equal-weighted monthly
portfolio returns are computed. The replicate data has 408 (7/1970 through 6/2004)
monthly post-ranked portfolio returns on 100 portfolios formed by SIZE, then by (pre-
ranked) BETA. Finally, 100 post-ranked portfolio BETA is estimated using the full time
series (408 months) of post-ranking portfolio returns. The post-ranking BETA are then
assigned to the individual stocks according to their monthly SIZE-BETA portfolio
membership and used as explanatory variable in the cross-sectional regression.

Note that pre-ranked and post-ranked BETA is the sum of the slopes from a regression
of monthly firm returns on the current and prior month’s market returns. Stock can move
across portfolios with year-to-year changes in Stock SIZE and its pre-ranked BETA
estimate for the preceding 2-5 years. Monthly portfolio averages throughout the year can

also change when stocks are de-listed.
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4.2.2. Models used in Cross-Sectional Regression
FF uses various combinations of explanatory variables to test asset pricing. However,
the analysis of this chapter is restricted to the most discussed and promising models with
the explanatory variables the post-ranked portfolio BETA, SIZE, and BEME. Five
combinations of explanatory variables are studied:
RET,, =y,,+7,BET4, , +¢,
RET,, =y,, +n,SIZE,  +¢,,
RET,, =y,,+7,BEME, +¢,, (4.2.1)
RET,, =y,,+7 ,SIZE, +y, BEME, +¢,,
RET,, =y,,+7,BETA,, +y, SIZE , +y, BEME, , +¢,,

where i =1,..., N,, N, the number of firms in each month, and RET,, the return of the

individual stock i in month ¢. SIZE is used to distinguish between small-cap and large-
cap stocks, while BEME is used to distinguish between value stocks and growth stocks.
SIZE is a market measure, and BEME is a combination of accounting and market

measures.

4.2.3. Robustness of SIZE-BETA Portfolios, CSR, and TT

The MM-estimator (ROB) is the robust estimator of choice for reasons explained in
Section 1.2. It replaces the OLS estimator in the regressions and the classical location
estimate. The latter is done to be consistent with the regression and to be able to take
advantage of the robust standard errors provided by the MM-estimator.

FF’s SIZE-BETA portfolio construction uses the outlier sensitive OLS estimator to
compute pre-ranked and post-ranked betas. By replacing the OLS with the ROB
estimator, robust SIZE-BETA portfolios are obtained and thus robust post-ranked BETA.

A robust cross-sectional regression (RCSR) technique is created when the OLS
regression estimator in CSR is replaced by the ROB estimator.

The robust time series analysis (RTT) is obtained when the classical time series
average in TT is replaced by the ROB location estimate (Section 1.3.2) and the t-statistic
of the time series averages is replaced by the t-statistics of ROB.

TT is highly sensitive to the choice of time period, and its t-statistics may have little
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power. The proper use of t-statistics as pointed out in Section 1.3.4 and implemented in

RTT cannot be emphasized enough. KR, p. 1362, recognized that the violation of

normality can cause potential problems when calculating the significance levels from the

t-distributions, but dismiss the effect with: “This is because t-statistics tend to be robust

to deviations from normality as a consequence of the central limit theorem.” However, on

p. 1373, they recognize that the t-test may lack the power to detect the size premium in

certain periods.

4.2.4. Serial Correlation, T-statistics, and Non-Parametric Tests

T-statistics as well as, e.g., the nonparametric Wilcox rank method can break down

when the data is serially correlated.

Figure 64 shows the serial correlation of the CSR coefficients for model
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Figure 64. Autocorrelation of CSR Coefficients.
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Fortunately, it only shows significant serial correlation in SIZE at lag 12, indicating a
seasonal effect. The Wilcox test statistics, which works well for non-Gaussian data, were
computed along with RTT on all time periods (not shown). For the most part, both tests

match closely. This reconfirms the correctness of the ROB t-statistics.
4.3. Calibration of OLS and ROB Replicates to FF and KR

The purpose of this section is to calibrate the data and the proposed MM-estimator to
data and methodologies used in FF and KR. Due to the use of different time periods
(Section 4.2) and data base revisions at CRSP, results are expected to differ slightly.
Table 18 compares the time series averages and t-statistics of the monthly CSR
coefficients over a 1963-1990 period, as computed in FF and KR, with the replicates
computed over a 1970-1990 period.
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FF’s and KR’s OLS values match closely. The BETA coefficients are insignificant
and SIZE coefficients negative and significant, except for the SIZE replicates. The BEME
are remarkably similar, and the two-parameter model SIZE, BEME has an insignificant
SIZE replicate.

Comparing FF with the replicates, OLS BETA is insignificant, though with opposite
signs, and OLS SIZE is insignificant, but similar in values. BEME matches FF well. The
differences in values for BETA and SIZE are caused by the truncation of the data in 1970,
Interestingly enough, without the non-stationary trend as seen in Figure 63, the negative
SIZE effect has disappeared.

In the comparison of KR, LTS with the LTS replicates: for each trimming fraction, all
values and t-statistics match closely. This proves again that the truncation of the time
period before 1970 does not matter for ROB, since they are fitted to the bulk of the data.

Looking at the LTS replicates, it is peculiar that the coefficients are almost monotone
functions of the trimming values. The risk premium for SIZE becomes more and more
positive for rising trimming fractions. That indicates that the core of firms have a positive
SIZE premium.

The values of the ROB replicates (using the MM-estimator) fall right in between the
values of the LTS estimator with 2% and 3% trimming fractions. This means that a
trimming fraction of the LTS estimator between 2% and 3% corresponds to some
rejection percentage of the MM-estimator at efficiency of 99%. Note, as shown in Figure
68, the MM-estimator rejects a percentage of observations depending on the time period,
which can vary from below 1% to over 8% (during the dot.com bubble burst). On
average however, the MM-estimator rejects between 1% and 3%. Most results in KR
were done for a 5% trimming fraction, which is more than the MM-estimator at 99%
would reject.

The calibration was very successful. Going forward, the OLS replicates will be used.
Further, in view of the drawbacks of the LTS estimator mentioned in Section 4.1 and the
superior properties of the MM-estimator, the MM-estimator at 99% efficiency will be

used.
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4.4. EDA and Preliminary Results

This section explores the raw data of the SIZE-BETA portfolios obtained using OLS
and ROB, and the coefficients from CSR and RCSR. The hope is to be able to detect

distinct features that allow to fine tune the analysis.

4.4.1. Post-Ranking BETA: OLS versus ROB

As described in Section 4.2.1, the 100 SIZE-BETA portfolios are used to compute 100
post-ranking BETA, which are used as explanatory variable in the cross-sectional
regressions.

Figure 65 shows histograms of the 100 post-ranking OLS and ROB BETA.

| | | | L ] | ! ] |

57 ~ 5 L
4 ~ 4 7 -
- -
= z
34 - 2 34 u
' LL.
O o
E =
z 7
S 21 - 8 2- -
o e
a o
17 - 17 B
0 - 0 L
i ] T I I I f | | T I I
08 10 12 14 1868 18 20 08 10 12 14 16 1.8
OLS: POSTRANKING BETAS ROB: POSTRANKING BETAS

Figure 65. Histogram of Post-ranking BETA.

There is a notable gap between 1.6 and 1.75 for the OLS and between 1.5 and 1.7 (except

for two BETA around 1.6). There could be an economical explanation of the gap or it
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could have occurred just by chance. Nevertheless, the OLS and ROB post-ranking BETA
are very similar.
The left panel of Figure 66 calibrates the average returns from FF, Table 1, Panel A
with OLS replicates in a scatter plot. The right panel compares ROB replicates with OLS

replicates.
@ |
- o o
R2 = 0.53, RHO = 0.73 o R2=073, RHO =0.86 o
°
o o o ©
o
© | o ° [-] 8 o °
- o °
< ° © n o
g 000 & 0% %0 4
< o °
E <« o ©°0 © o 8] [ 0® °
- Y % ° 0 v 0w ®0°
- v ° o o o - ° % , °
w %¢ ° w 0 o ©
3 Q o ° g ° o 8%
e} o @ p ° %o o %0
,i{ 000,50 o e o eZoo°°°°
& N o [+ 4 oo o o
= ~7 o ® g ° ° °
- o9 o0 ° o @
o o s o o
04 ° o o [T © °§
b o © Bw ° %] o f&°
@ o0 o &£ e = °
[ o o o o % ° o °
S @ © 0gp © 2 o o9
- - oo o o~ °
w x <]
; © o009 0 ° E © oo °
|.|<.l ° o g °
2 L o °
g
o o
°
° °
n
o o S
(= [+]
o °
T T T T T T T T T T T T T T T T
0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

MEAN RETURNS FROM OLS REPLICATES MEAN RETURNS FROM OLS REPLICATES

Figure 66. Average SIZE-BETA Portfolio Returns.

In the left panel, the averages returns from FF, Table 1, Panel A match its OLS replicates
fairly well. In the right panel, the OLS and ROB replicates are very similar.

The left panel of Figure 67 calibrates the post-ranked BETA from FF, Table 1, Panel
B with OLS replicates in a scatter plot. The right panel compares ROB replicates with
OLS replicates.
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POST-RANKED BETAS FROM OLS REPLICATES

In the left panel, the post-ranking BETA from FF, Table 1, Panel B match its OLS
replicates fairly well. In the right panel, the ROB replicates and OLS replicates are very
similar, and the gap noted in Figure 65 appears again. Both Figures show, that the
replicates are close to the values in FF, Table 1, and that the impact of replacing OLS
with ROB is small. Therefore and to be able to better compare to the classical FM results,

the replicated OLS SIZE-BETA portfolios are used for the remainder of the chapter.

4.4.2. Leverage Points, Influential Points, and Variation across Time

In any of the cross-sectional regression models (4.2.1), outliers can occur in the
distribution of the explanatory variables (leverage points) and the independent variable
(influential points). Further, since the final analysis evaluates the month-to-month

regression coefficients, outliers can also occur across months.
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4.4.2.1.  Leverage Points
Figure 68 shows the month-to-month percentage of firms rejected (Section 1.3.1) for

all models in (4.2.1), as well as the total number of firms.
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Figure 68. Percentage of Firms Rejected in the RCSR.
The percentage of firms rejected varies little from model to model, indicating that
outliers are mostly rejected due to extreme returns, not due to leverage points.
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Over the period from 7/1970 through 6/2004, there are 763876 observations, of which
18707 observations were rejected. The percentage of firms rejected varies little from
model to model, indicating that outliers are mostly rejected due to extreme returns, not
due to leverage points. The analysis will, therefore, not focus on leverage points. The
Jowest panel in Figure 68 shows the number of total firms per month. The falling number
of firms from July of year ¢ to Jun of year #+1 is caused by FF’s construction of the SIZE-
BETA portfolios (firms are assigned in July of year ¢ and can only leave the portfolio

when de-listed from the exchange within the year).
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4.4.2.2.  Influential Points
Influential points occur in the returns direction of firms. During the SIZE-BETA
portfolios construction, the returns of all firms (7/1970-12/2004) were classified into
portfolio SIZE and BETA deciles. This classification can be used to plot the quantiles of
returns against the quantiles of a normal distribution, by SIZE or BETA deciles.
Figure 69 shows the distribution of firm returns versus the quantiles of a normal

distribution for the SIZE deciles (recall that SIZE 1 is the smallest of the SIZE deciles).
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Figure 69. Quantiles of Returns versus Normal Quantiles by SIZE.
The smaller the SIZE deciles, the larger the skewness and the more extreme the departure

from normality.

Figure 69 shows that the smaller the SIZFE deciles, the larger the positive skewness and
the more extreme the departure from normality. It shows also significant non-normality
for larger size firms. Figure 70 shows the distribution of firm returns versus the quantiles

of a normal for the BETA deciles (BETA 1 is the smallest of the BETA deciles).
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Figure 70. Quantiles of Returns versus Normal Quantiles by BETA.
The returns distribution is positively skewed regardless the BETA deciles.

Again, the returns distribution is positively skewed. There is a clear departure from non-
normality across all BETA deciles, however, not much BETA effect. Influential returns

are likely to have effect on the analysis.

4.4.2.3.  Variation across Time

The exploratory data analysis of the time series of cross-sectional regression
coefficients will be shown only for model (4.2.2).

The raw data used in the monthly cross-sectional regressions can be shown as scatter
plots revealing the typical structure. The best visualization of the characteristics would be
an animation of all monthly scatterplots. Obviously, that is not possible within this
dissertation document so scatter plots are shown for the year of 1997 in Figure 71 and

Figure 72 for BETA versus RET and SIZE versus RET, respectively, together with an OLS



127
(dotted line) and ROB (solid line) regression fit. The year of 1997 was chosen since it
was a year without dramatic market events in a bull market.
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Figure 71. Raw data for Cross-Sectional Regressions: BETA versus RET, in 1999.
The dotted line is the OLS and the solid line the ROB regression fit.

In Figure 71 the dotted and solid lines show the OLS and the ROB regression fit of BETA
on RET, respectively. In January both regression fits show a positive slope with the OLS
slope distinctly more positive. From February through April both regression slopes are
negative. From May through September the OLS regression slope is positive while the
ROB regression slope is flat. From October through December both regression slopes are

negative again.
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Figure 72. Raw data for Cross-Sectional Regressions: SIZE versus RET, in 1999.
The dotted line is the OLS and the solid line the ROB regression fit.

In Figure 72 the dotted and solid lines show the OLS and the ROB regression fit of SIZE
on RET, respectively. In January the OLS slope is clearly negative while the ROB slope
is flat. While both slopes are flat in February and March, they become positive in April
through July then negative in August. In September and October the OLS slope is
negative while the ROB slope is flat. In November and December both regression fits are
positive again. The OLS and ROB fit disagree whenever small fractions of influential
points were rejected in the ROB fit. In Figure 71 the slopes disagree from May through
September where the OLS slope is positive; once the 1%-4% of influential points were
removed, the ROB slope is flat. Note that outliers mostly appear for positive BETA and
positive RET. In Figure 72 the slopes disagree in January, September, and October where
the OLS fit is negative and the ROB fit is flat. Note that for SIZE most outliers have
small SIZE and positive RET.



129

For greater detail, the following graphs show scatterplots of BETA and SIZE on RET

for four different years for the months of January, August, and December.
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Figure 73. BETA versus RET: January 1998, 2000, 2001, 2003.
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Figure 74. BETA versus RET: August 1998, 2000, 2001, 2003.
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Figure 75. BETA versus RET: December 1998, 2000, 2001, 2003.
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Figure 76. SIZE versus RET: January 1998, 2000, 2001, 2003.
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Figure 77. SIZE versus RET: August 1998, 2000, 2001, 2003.
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Figure 78. SIZE versus RET: December 1998, 2000, 20851, 2003,
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Figure 73 throughFigure 78 shows greater details of the seasonal effects: positive risk
premium for BETA in January, while it is negative of flat in August and December;
negative risk premium for SIZE, while it is positive in August and December.
Furthermore, there is a tendency for outliers to occur for positive RET and large BETA
and small SIZE. Outliers in these quadrants tend to upward bias BETA and downward
bias SIZE.

The show the impact of months on the cross-sectional regression coefficients, the
time series of the cross-sectional regression coefficients will be compared for: CSR with
all months included, January excluded, January and February excluded, and RCSR. The
reason why certain months are excluded is to show the January effect (Keim, 1983),
explained in greater detail in Section 4.5.

Figure 79 compares the BETA coefficients.
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Figure 79. BETA: Time Series of CSR and RCSR Coefficients.
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Figure 80 compares the SIZE coefficient, Figure 81 compares the BEME coefficient.
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Figure 80. SIZE: Time Series of CSR and RCSR Coefficients.
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Figure 81. BEME: Time Series of CSR and RCSR Coefficients.
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All CSR coefficients show non-stationary over longer periods of time. The OLS
coefficients show higher volatility and more extreme outliers then the ROB coefficients.
However, removing the months of January and then both January and February from the
CSR removes the extreme outliers and make OLS and ROB look more similar. This
indicates weakly the existence of a January/February effect.
Also noticeable is the frequent outliers and non-stationary volatility. There are periods of

high volatility (1970-1976, 1998-2004), and one period with a low volatility (1976-1997).

4.4.3. SIZE-BETA portfolios. OLS versus ROB

The SIZE-BETA portfolios are used in FF, Table 1, Panels A through C as informal
tests to evaluate the relationship between SIZE, post-ranked BETA, and average SIZE-
BETA portfolio returns. The equal weighted average of the SIZE-BETA portfolio returns
is the same as the time series average of the mean returns of each portfolio. The averages
across months and across portfolios can be computed using the classical mean estimator
or the MM-estimator. Note that the notion of equal weighted portfolio return does not
hold anymore when using the MM-estimator; however, in the sense that an equal
weighted portfolio return measures the central tendency, the ROB mean also measures a
central tendency.

FF explains FF, Table 1, Panels A through C without proper tests. A simple two-way
analysis can test for significance and interaction. Figure 82 shows the two-way analysis
replicating FF, Table 1, Panels A, the average monthly returns in percent for the 100
SIZE-BETA portfolios.



135

@ ST © ST
[{=}
A [l=]
u'—J - S5+ L'—u - S5
o
5 i E
— - [=]
5 3 7k : . YES i
@ al B6 8 -
@ S7 © Se+
2 . s8f B8 g T B
- B9.1 o 58
S9 - s9 B9 1
[=]
- s9.10- s9.10t
SIZE BETA SIZE BETA
w© | = _ @ I ~ —

]
-1

RET
14
()
o i B
)
-]
21 BB
-

1.0
I

{

(- S
RET

1.4

[

{1 B

1.0

. —
— : : :
LT LT
— - 0 . :
. n - : : .
o . ’ : : - J :
. : | [ . , .
o o : .

i -

—

0.6
0.6

-—

S1 S2 83 S4 85 86 S7 S8 S9 89.10 B1 B2 B3 B4 B5 Bs B7 B8 B9 B9.10

SizE BETA

Figure 82. Two-Way Analysis: Average Returns of SIZE-BETA Portfolios.

SIZE explains more variability then BETA. Higher RET is associated with smaller SIZE.
RET and BETA show a slight negative trend, however, returns in the large BETA buckets
vary widely.

Figure 82 shows that SIZE explains more variability then BETA, and that the mean and
the median two-way main effects are fairly similar. Higher RET is associated with
smaller SIZE. RET versus BETA show a slight negative trend, however, the average
returns in the large BETA buckets do not show a clear trend. The F-tests are significant

for both factors ( Fy,,. =21.1, Fy,., =4.1).
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Figure 83 shows that there may be local interactions that could be tested for.
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Figure 83. Two-Way Analysis: Interaction between SIZE and BETA.

In Figure 82, the time series averages and equal-weighted averages across portfolios
were computed classically. In Figure 84, the equal-weighted averages across portfolios

were computed using ROB.
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Figure 84. Two-Way Analysis: ROB Average Returns of SIZE-BETA Portfolios.

In comparison with Figure 82 SIZE still explains more variability then BETA. However,
now, higher RET is associated with larger SIZE; and RET and BETA show a negative
trend.

Compared to Figure 82, SIZE still explains more variability then BETA; but, in contrast,
higher RET is associated with larger SIZE for the smallest five SIZE groups, while RET is
relatively constant across the five largest SIZE groups. RET and BETA show a negative
trend that is slight for the five smallest BETA and stronger for the five largest BETA.
Again, both F-statistics are significant ( Fy,, =14.1, Fj,,, =5.8) and negligible

interaction is present (not shown). Additionally, RTT does not provide new insight (not
shown).

The negative trend between SIZE and BETA in this informal analysis was already
noted in FF, who recognize on p. 433 that: “average returns are flat, or show a slight
tendency to decline.” However, it is a new result, indicated by the ROB SIZE-BETA
portfolios, that RET may be positively associated with SIZE.
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4.5. Influential Months and the January Effect

Keim (1983) examined month-by-month, the empirical relation between abnormal
returns and market value of NYSE and AMEX common stocks. He found abnormal
returns and a negative SIZE effect in January, and that January explains more than 50
percent of the size effect for the period 1963 through 1979. Knez & Ready (1997) found
that 20-30% of the months trimmed are in January, and also that SIZE is significant and
negative in January alone and significant and positive for all other combined months.
Chou, Chou, & Wang (2004) studied the January effect on BETA, SIZE, and BEME for
various time periods between 1963 and 2001. They found, in all time periods, that in
January, BETA is significant and positive, SIZE is significant and negative, and BEME
has mixed signals.

This section extends previous work to more recent time periods, analyzes all
individual months on 1971-1990, and 1971-2004, and compares on 5-year intervals and
various other time intervals the effect of January when using CSR and RCSR. Keep in
mind the preliminary indications of the raw cross-sectional regression data displayed for
the year of 1999 in Figure 71 and Figure 72.

Figure 85 shows the monthly TT (1971-1990) of CSR and RCSR coefficients using

model (4.2.2) in the upper panel, and the corresponding t-statistics in the lower panel.
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The January effect is visible for all three models. The effect is pronounced regardless of
the estimator used in the cross-sectional regressions, which confirms findings of Knez &
Ready (1997). Note that the January effect spills over into February, and even March.

OLS BETA is significant and positive in January through March. From April to
December, it is significant and negative with the exception of August, where it is flat.
The ROB BETA is always significant, however, positive only in January. OLS SIZE is
negative and significant in January through March, then mixed through September, and
thereafter positive and significant through December. The ROB SIZE is similar to OLS-
SIZE, but slightly more positive. OLS BEME and the ROB BEME behave equally,
positive from January through September with the exception of May, then negative from
October through December. Additionally, SIZE and BEME show very distinct seasonal
trends. SIZE is very negative and rises until the end of the summer. In September, it
jumps to large positive values and decreases monotonically through the end of the year.
BEME is positive in January and declines with up and downs through the end of the year,
even to negative values. These up and down trends appear to be a quarterly trend, with
peaks at the end of each fiscal quarter. This observation may not be know and needs
further research.

The next four graphs compare classical averages of CSR and RCSR coefficients
computed using (4.2.2) and averaged over 5-year periods from 1970 to 2004 (with only 4
years in the last period), and four other odd-size periods: 1970-1'976, 1976-1998, 1998-
2004, 1970-2004. The former three odd-size periods were chosen by looking at Figure
80, Figure 81, and Figure 64 and represent time periods of distinct volatilities.

Figure 86 shows the TT on CSR and RCSR using only January, and Figure 87 use all

months except January.
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The analysis in Figure 86 of just the month of January shows that most risk premiums
are significant, The left panel confirms the classical FF results for BETA and SIZE,
however, with BEME negative on recent time periods. Note the extremely high positive
BETA values, e.g., for the 2000-2004 period an average BETA larger then 10. For the
RCSR on the right hand side, however, BETA is negative with the exception of the 1990-
1995 period, SIZE is negative before 1980 and positive thereafter, and BEME is always
positive. The odd-sized periods show similar findings.

Without the month of January, the left hand panel of Figure 87 clearly contradicts the
classical FF results: BETA, with the exception of 1990-1995 and 1995-2000 period, is
negative and SIZE is either close to zero and insignificant, or positive and significant.
RCSR shows an even more negative and significant BETA, strongly positive SIZE, and
BEME coefficients.

These results go beyond findings of Chou, Chou, & Wang (2004), and they confirm
the general trends: when January is excluded, BETA get smaller, even negative; SIZE gets
larger, mostly positive; and BEME is not much affected, but shows a tendency towards
negative values in recent years. In general, RCSR coefficients are less affected by the

influential month of January.
4.6. Influential Firms

Section 4.5 provided the insight that certain months, mainly January, are highly
influential on CSR and to a much lesser degree on the RCSR coefficients. The focus of
this section is to identify firms that highly influence the CSR and RCSR coefficients, and
to analyze them separately from the bulk of firms. Figure 69 and Figure 70 indicated that
firms with positively skewed returns tend to be small SIZE firms with BETA ranging from
small to large.

The following graphs further split the rejected firms by the firm’s SIZE and BETA
characteristics, and the sign of its residual as measured in RCSR. Of the 18707
observations/firms rejected over 7/1970 through 6/2004, 15601 have positive residuals.

Figure 88 shows the distribution of rejected firms across SIZE break points as well as

by positive and negative residuals. Figure 89 shows the distribution of rejected firms
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across BETA break points as well as across positive and negative residuals.
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Figure 88 shows that most rejected firms have positive residuals and are in the smallest
SIZE bracket. Figure 89 shows that Most rejected firms have positive residuals, and
belong to the largest BETA bracket, specifically in recent years. The CSR and RCSC
performed on only rejected firms will separately be compared to CSR and RCSC on

accepted firms in the next section.
4.7. Influential Time Periods
The focus of this section is the impact of chosen time periods on TT and RTT.

4.7.1. TT and RTT on various Time periods

The TT and RTT on different time periods are compared for: CSR; CSR without the
months of January (no influential months); RCSR (no influential firms); and CSR on
firms rejected (only influential firms) with negative and positive residuals.

Figure 90 compares boxplots of cross-sectional coefficients over the full time period
1970-2004. The coefficients were obtained from classical CSR (OLS), CSR without the
months of January (EX.JAN), RCSR (ROB), and CSR on firms rejected with negative
residuals (REJ.NEG) and firms rejected with positive (REJ.POS).
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Figure 90. Cross-Sectional Regression Coefficients: 1970-2004.

Firms rejected with positive residuals are highly skewed, with BETA4 whiskers range from
-45 to 50, the SIZE whiskers from -16 to 6, the BEME whiskers from -16 to 11.
Specifically SIZE show negative outliers up to -40.

The median for BETA is similar and negative for the OLS, EX.JAN, and ROB, while the
mean for EX.JAN is closer to zero then for OLS and ROB. Rejected firms have a positive
BETA risk premium. The mean for SIZE is close to zero, for both OLS and EX.JAN, but
positive for ROB. While for SIZE, the rejected firms with negative residuals show a
positive median, the rejected firms with positive residuals (the majority of the rejected
firms) are for the most part negative. The median for BEME is always positive, except for
the rejected firms with positive residuals. The valuable point here is that, overall, the
influential month effect is small compared to the influential firm effect.

Regimes of different volatility (Figure 79, Figure 80, and Figure 81) suggest
analyzing TT and RTT on the following periods: five-year intervals, 7/1970-7/1976,
7/1976-12/1997, 1/1998-6/2004, and the overall period 7/1970-6/2004.
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Figure 91 and Figure 92 compare TT and RTT, respectively for CSR, RCSR, and

CSR for firms rejected on various periods.
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OLS BETA is either significant and negative or flat, with the exception in the 1990-1993
and 1995-2000 periods where it is significant and positive. The ROB BETA is only
significant and positive in the 1990-1995 period, and significant and negative otherwise.
The OLS BETA is insignificant on all other odd periods, while the ROB BETA4 is always
significant and negative. Rejected firms are mostly positive in all five year periods,
except the 1995-2000 period. Longer periods confirm the results on 5-year periods. RTT
shows that OLS and ROB BETA, and BETA of firms rejected are mostly flat.

Most CSR show a significant and negative SIZE effect, except for the 1985-1990
period. RCSR is consistently significant and positive. Rejected firms however, show a
significant and negative SIZE effect of several magnitudes larger than that of the CSR,
except for the 1975-1980 and 1985-1990 period, where it is insignificant.

All methods agree more or less on a significant and positive BEME. The rejected
firms tend to have insignificant BEME effects in most periods using RTT.

BETA and SIZE offer the conclusion that, once rejected firms are removed, the
positive BETA effect and the negative SIZE effect vanish completely. Now, the BETA
coefficient (the ROB BETA) is significant and negative, or insignificant, which is also
partially confirmed by results in Chou et al. (2004), and the SIZE coefficient is significant
and positive, partially confirmed by KR and Chou et al. (2004).

4.7.2. Significant Coefficients

The analysis in Section 4.7.1 considered all time series coefficients regardless of their
significance. The cross-sectional regressions in this section are also based on (4.2.2), but
the analysis is focused on significant coefficients only.

Table 19 shows the percentage of months in 7/1970-6/2004 for which the cross-
sectional regression coefficients are significant. The five columns show CSR (OLS),
CSR without the months of January (EX.JAN), RCSR (ROB), and CSR on firms rejected
with negative residuals (REJ.NEG) and firms rejected with positive (REJ.POS).
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Table 19. Significant Months in 7/1970-6/2004.

% OLS EX.JAN ROB REJNEG REJ.POS
BETA 62.25 56.86 70.83 0.98 5.15
SIZE 65.44 57.84 67.4 0.74 20.1
BEME 51.23 46.32 58.82 1.72 7.6

Total of 408 months.

Notably, ROB has the highest percentage of significant coefficients with 70.83%, and
20% of the rejected firms with positive residuals have a significant SIZE coefficient.
ROB has 8%-10% higher significance than OLS. When January is removed the
significance drops by 7%-8%.

Figure 93 repeats Figure 90 with only significant coefficients.
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Figure 93. Significant Cross-Sectional Regression Coefficients: 1970-2004.
Firms rejected with positive residuals are highly skewed, with BET4 whiskers range
from -30 to 60, the SIZE whiskers from -8 to 5, the BEME whiskers from -9 to 9.
Specifically SIZE shows negative outliers up to -40.
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Most of the conclusions are similar to Figure 90, but the distributions have a wider inter-
quartile range. Exceptions are the rejected firms: firms with negative residuals
(representing only a small fraction of the observations) have now a negative BETA and
SIZE premium, and BEME of firms with positive residuals is not positive anymore. Firms
rejected with positive residuals are further highly skewed, with BETA whiskers ranging
from -30 to 60, SIZE whiskers from -8 to 5, and BEME whiskers from -9 to 9. SIZE
shows negative outliers up to -40. Thus, the majority of the rejected firms with significant
risk premiums tend to have high positive BETA, large negative SIZE, and slightly positive
BEME.

The two valuable points here are that the January effect is small compared with the
influential firm effect (since effects average out over the year) and that only rejected
firms confirm with the classical CSR results. Once the rejected firms are out of the

analysis, i.e., in the RCSR, BETA has a negative and SIZF a positive risk premium.

4.7.3. Stepwise Model Selection
Table 19 shows that model (4.2.2) has a high percentage of months with insignificant
coefficients. It makes sense to drop insignificant terms from the model, but only if the

explanatory power can be retained. This can be achieved using model selection (Section

1.3.5).
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Figure 94 shows the time series of cross-sectional regression coefficients from the

CSR-AIC and RCSR-RAIC.

llllllllllllllllllllllll

30
| I

-10 0 10 20
PUR B U T S N S AT S R S S

BETA_ROR SIZE_ROR BEME_ROR

4 . M{W i

BN w{' ~
1970 1980 1990 2000 1970 1980 1990 2000 1970 1980 1990 2000
Figure 94. Time Series of CSR-AIC and RCSR-RAIC.
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The time series show higher volatility in the first and last years. Averages taken over
these time periods are highly sensitive to the time frame chosen. The RCSR-RAIC
coefficient has less volatility than the CSR-AIC coefficients.
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Figure 95 shows the pairwise differences of the CSR-AIC and RCSR-RAIC,

corresponding to Figure 85.
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Figure 95. Pairwise Differences of CSR-AIC and RCSR-RAIC.

As expected from looking at Figure 85, the pairwise differences in Figure 95 are large,
especially for BETA on recent time periods. Note that for BETA, the pairwise differences
are mostly positive, while for SIZE and BEME the opposite is true. This compares with
earlier findings of a more positive OLS BETA premium and a more negative OLS SIZE
premium.

Table 20 gives the percentage of months in which the eight combinations of variables
in model (4.2.2) are significant. The coefficients are ordered as BETA, SIZE, and BEME,

and assigned the letter “F” if insignificant and “T” if significant.
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Table 20. Percentage of Significant Months by Combinations of Models (4.2.2).
% FFF FFT FTF FTT TFF TFT TTF TTT
CSR 1.5 2.7 9.6 12.5 5.6 13.7 19.1 35.3
RCSR 1.2 3.7 5.6 10.3 4.9 14.7 19.1 40.4

Table 21 shows the percentage of times each variable combination was significant
across the eight combinations shown in Table 20. The placeholder ® stands for “F” or
“T”.

Table 21. Significance of Individual Combinations of Explanatory variables.
%  BETA,»,» SIZE,*,* BEME,*,» BETASIZE,* BETA *,BEME ¢, SIZE, BEME

CSR 73.7 76.5 64.4 54.4 49.0 47.8
RCSR 79.1 75.4 69.1 59.5 55.1 50.7

From the three explanatory variables, BETA is the most often included, both in CSR and
RCSR. Further, it is noteworthy that RCSR-RAIC has mostly a higher percentage of
significant explanatory variables than CSR-AIC. Comparing the significance of the
coefficients to Table 19 shows that the stepwise model selection arrives up to 8%-10% of

the times at a larger model (with significant individual explanatory variables).

4.7.4. Significant Coefficients and Stepwise Model Selection

Section 4.7.1 compared CSR, RCSR, and CSR on rejected firms using TT and RTT,
regardless of the monthly coefficients’ significance, and showed that a small percentage
of small SIZE and high BETA firms are driving the results. Section 4.7.2 showed that a
large portion of the coefficients used in TT and RTT were insignificant. Section 4.7.3
showed how to use OLS and ROB model selection to obtain CSR-AIC and RCSR-RAIC
and to improve the model fit.

This section compares CSR-AIC and RCSR-RAIC evaluated using TT and RTT to
Section 4.7.2. Figure 96 shows the results.
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With the exception of RTT BETA, the CSR and CSR-AIC BETA, as well as RCSR and
RCSR-RAIC, are very similar. OLS BETA is positive in 90-00, while ROB BETA is
positive only in 90-95. OLS SIZE is negative, except on 90-95, where it is close to zero,
while ROB SIZE is always positive. All BEME are positive or flat.

4.8. Conclusion

This chapter began by calibrating data and methods to the main results of Fama &
French (1992) (FF) and the robust FF replication of Knez & Ready (1997) (KR). Results
were shown for the most important risk factors: BETA, SIZE, and BEME. The chapter
then extended the results to more recent time periods and applied a modern robust
regression method (the robust MM-estimate, ROB) to the FF method. The efficiency of
the MM-estimator was set to 99%, which corresponds roughly to a trimming fraction of
the LTS-estimator of only 2%-3%. Beyond replication and extension, the chapter also
added improved data analysis relative to FF, e.g., to robustly compute SIZE-BETA
portfolios and robust time series averages, and also robust t-statistics of the cross-
sectional regression coefficients. The non-parametric Wilcox tests, used as a check,
confirmed the results of the robust t-test. The chapter further drew on classical AIC and
robust AIC stepwise model selection to arrive at cross-sectional regression coefficients
with a good model fit.

The calibration to FF and KR was done on data from 7/1970 through 12/1990 only,
truncating the data periods analyzed in FF and KR (7/1963 to 7/1970). However, as it
turned out, the truncation can be perfectly justified. Without the earlier time periods,
there was no significant difference in the OLS beta and the OLS size premium had
already vanished completely. The robust results are virtually not affected—the robust
LTS replicates and KR results match almost perfectly.

Leverage points (outliers in the explanatory variable or risk factor direction) were not
of concern and not a focus of the analysis. Classical and robust cross-sectional regression
results were then obtained for 7/1970 through 6/2004 and analyzed and compared for
influential months, firms, and time periods.

In the analysis of influential months, the January effect (Keim, 1983) was confirmed
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for BETA, SIZE, and BEME, but interestingly, the January effect was not the only effect.
BETA spilled into February and March then became negative through the rest of the year,
with an extreme low in October. SIZE showed an annual trend from negative to positive
and BEME an annual trend from positive to negative values with peaks at the end of each
fiscal quarter. This asks for further research and may provide opportunities for short-term
trading strategies. With respect to the influence of the month’s effects on the risk
premium, the analysis showed that the effects are small compared to the effects of
influential firms, which is likely caused by the fact that the seasonal effects cancel out
when averaged over the year.

The analysis of influential firms focused on equally treating firms rejected and
accepted under the robust regression estimator. Rejected firms were further categorized
by SIZE, BETA, and sign of residual return. Most rejected firms were small SIZE and
high BETA firms with positive residual returns (positive outliers). The fact that mostly
positive outliers were rejected excludes a potential survivorship bias. The characteristics
of rejected firms did not come as a surprise and confirmed results of KR. It was also
shown that those firms were mostly high BETA firms. This seemed to be specifically true
for recent time periods.

A crucial part is the analysis of the time series averages of the cross-sectional
regression coefficients, and thus, the analysis of influential time periods. Time series
plots of the cross-sectional regression coefficients clearly showed periods of varying
volatility and frequent outliers. This initiated the two main critics of the evaluation of
time series coefficients used by FF and KR: results depend on chosen time periods, are
biased by outliers, and leave t-tests with little statistical power.

For BETA, the classical time series analysis showed a negative (only partially
significant) relationship to expected returns on most, except for the 1990-1995 period,
where OLS BETA is significant and positive. On the other hand, ROB BET4 is mostly
negative and significant, while the rejected firms have positive BETA (only partially
significant). Thus, once the rejected firms were separated from the bulk of the data, the

remaining firms pointed towards a flat or negative BETA-return relationship.
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For SIZE, the classical time series analysis showed a negative and mostly significant
relationship on all sub-periods, while ROB SIZE was positive and significant, as
expected. The rejected firms showed a large negative and significant SIZE relationship to
expected returns.

For BEME, the relationship was positive and significant for OLS,ROB BEME, as well
as for rejected firms. Using robust time series analysis, these effects were even more
distinct. All results also confirmed findings by KR and Chou, Chou, & Wang (Chou,
Chou, & Wang, 2004).

Overlooked, or at the minimum neglected, is the fact that a large percentage of the
cross-sectional regression coefficients are insignificant in their monthly cross-sectional
regressions. It was interesting to find out that RCSR produced a 2%-8% higher number of
significant coefficients than CSR, with 70.1% for BETA, 67.4% for SIZE, and 58.8% for
BEME. The analysis of influential firms repeated on only significant coefficients yielded
a similar but more distinct conclusion. When classical and robust model selection was
used to compute CSR-AIC and RCSR-RAIC it chose a larger model in 8%-10% of the
times, compared only to CSR and RSCR with significant coefficients. The volatility
CSR-AIC is higher than that of RCSR-RAIC, and the pairwise differences confirm
previous results, in that OLS has a larger risk premium for BETA and a lower risk
premium for SIZE compared to ROB.

The valuable points from this chapter are that tiny fractions (1%-3%) of small SIZE
and high BETA firms with extraordinary (positive) period returns, as well as the choice of
test period, drive the positive BETA and negative SIZE risk premium, as reported by FF.
Furthermore, seasonal effects are very influential, but cancel out when averaged across
the year. Once the small fraction of influential firms is rejected, the risk premium for

BETA factor becomes negative or flat and for the SIZE factor positive.
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5. Conclusion

The goal of this dissertation was to study key empirical financial pricing models with
proper exploratory data analysis and to utilize robust statistical techniques that are
appropriate for the characteristics of financial data. Within a financial data framework,
the dissertation introduced the notion of robustness and summarized the properties of the
robust MM-estimator. The robust MM-estimator was then used to estimate factor models
and to compare the robust with the classical results. Furthermore, the robust MM-
estimator was used to identify and analyze influential observations (factors, firms,
months, and time periods). The estimation focused on stock alphas and betas from the
single-factor market model and on risk premiums for stock beta, firm size, and book-to-
market equity from a multi-factor model. For the single-factor model, the results of the
robust estimator were directly compared with the results of the OLS estimator. For the
multi-factor model, the OLS results were first calibrated on key papers (Fama & French,
1992; Fama & MacBeth, 1973; Knez & Ready, 1997) and then extended to recent time
periods.

The surprising and consistent message with all three large data applications was that
the rejection on average of 1%-3% of the most influential observations led to important
differences to the classical results: classical alphas tend to be over-biased and classical
betas turned out to be highly sensitive, frequently even changing signs, both robust alphas
and betas are superior predictors or return and risk, respectively; the positive risk-return
relationship, as found significant in Fama & MacBeth (1973), could not be confirmed.
The risk premiums, as found in Fama & French (1992) to be flat for beta and negative for
size, once adjusted for influential firm and seasonal effects, turned out to be negative or
flat for beta and distinctly positive for size. This confirms partial results of Knez & Ready
(1997) and Chou, Chou, & Wang, 2004. For a more detailed summary, the reader is
referred to Sections 2.6.6, 2.7.7, 3.6, and 4.8.

It was shown that the robust estimator has the property to retain an efficiency of 99%

at the Gaussian model, while protecting against bias caused not only by a small fraction
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of influential returns, but also by asymmetrically distributed returns. This suggests its
routine use along, or even as a replacement, of the OLS estimator.

Beyond being merely a bias protection tool that fits to the bulk of the data, the robust
estimator was also shown to be helpful in identifying influential returns. Once influential
returns are identified, they can be analyzed and either discarded or used to exploit market
inefficiencies, i.e., to construct trading strategies. The decision to keep an influential
return with the bulk of the data may be depend on the type of application, e.g., an analyst
who wants to build an alpha engine may well decide not to use positively biased alphas
unless she is confident that they will reoccur, while a conservative risk manager may
include positively biased beta values to make sure she is covered in a worst case scenario.

Natural extension of the research in this dissertation is to analyze other factors used
by practitioners, such as the five common risk factors in the returns on stocks and bonds
Fama & French (1993), the three-factor model of Fama & French (1996), or to revaluate
Barra-type factor models. Risk factors in up and down markets have also been treated
(Davis & Desai, 1998; Grundy K. & Malkiel, 1996; Woodard & Anderson, 2003) and
robust methods should be applied in this situation as well. An important application will
also be in conditional asset pricing models that allow tracing time-varying expected
returns and risk-factor relationships (Ferson, 2003).

The author also has successfully used robust techniques in various applications in the
fund of fund / plan sponsor environment: in a portable alpha strategy using robust
regression to compute the important beta exposure of a manager to the stock and bond
market; in asset allocation using a robust version of Stambaugh (1997) to compute a
robust covariance matrix when returns histories of the asset classes have unequal histories
(Reistad & Bailer, 2005); and in risk management to compute robust conditional value-
at-risk as well as spending and impairment risk.

The essence of the various applications of the MM-estimator is that it can be used to
automatically protect against a fixed level of bias when influential returns are present,
while paying only a small insurance premium in terms of efficiency loss (the MM-
estimator yields almost the same results as the OLS estimator when no outliers are

present), or it can be used to reliably recognize influential returns that can then be
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exploited for trading strategies, to be included with the bulk of the data, or simply be
rejected as gross data errors. Either way, the MM-estimator is an easy-to-use alternative
and that provides additional opportunities over simply disregarding the presence of small

fractions of unusual returns (possibly just one single return) that can distort the results.
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Glossary

Akaike Information Criterion

Cross-Sectional Regressions

Cross-Sectional Model Selection using AIC

Center for Research in Security Prices at the University of Chicago
Fama & French (1992)

Fama-MacBeth Procedure, Fama & MacBeth (1973)

Least Absolute Deviations

Least Median Squares

Median Absolute Deviation about the Median

Knez & Ready (1997)

Results on Data and Methods of this Dissertation

Robust AIC

Robust Cross-Sectional Regressions

Robust Cross-Sectional Model Selection using RAIC

Methods using the MM-Estimator

Robust Fama-MacBeth Procedure

Robust Time Series Averages and T-Statistics using the MM-Estimator
Classical Time Series Averages and T-Statistics
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