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University of Washington
Abstract

Configuration Mixing of Quark States in Nucleons
and Other Baryons in the MIT Bag Model

by William Donald Hazelton

Chairperson of Supervisory Committee: Professor Lawrence Wilets
Department of Physics

The MIT bag model incorporates two of the main features of Quantum Chro-
modynamics (QCD), confinement of quarks in color singlet states, and asymptotic
freedom. Most prior studies using this model have been perturbative, and have con-
sidered limited subsets of possible excitations, such as pair creation from the three
quark ground state. However, there are many three quark excitations lower in energy
than the five particle states. We calculate the ground state configuration of baryons,
including all quark states up to a consistent energy cutoff, using the one gluon ex-
change (OGE) interaction. We study the p, n, £+, £~, -, and =° in a spherical
bag with a Fock space truncated at a succession of cutoffs, with the maximum cutoff
at 1.5 GeV above the three quark ground state. This allows many gqq (three quark)
and gqqqq (four quark plus anti-quark) states in the basis. As we raise the cutoff, the
strength of the strong coupling constant necessary to fit the A— N splitting decreases
from a value of a, = 2.2 with three valence quarks to a value of about a, = 1.4 at
the 1.5 GeV cutoff. We require a positive Casimir energy for stability, in agreement
with theoretical studies. This is opposite to the sign assumed for the original MIT
bag model.

Part of the motivation for this study stems from experiments at the Electron Muon
Collaboration (EMC), Stanford Linear Accelerator (SLAC), and the Spin Muon Col-
laboration (SMC) that indicate the nucleon spin attributable to the spin of quarks
is small. We find that configuration mixing may provide a partial explanation. Con-
figuration mixing leads to substantial probabilities for states with two P3/2 quark



excitations, as well as for various other basis states. This allows much of the nu-
cleon spin to be carried by quark orbital angular momentum. We calculate the spin
fractions carried by u, d, and s quarks. We find reasonable agreement with the exper-
imental measurements of the nucleon spin structure functions and the Bjorken sum
rule. For the MIT bag with configuration mixing, we find I'? = 0.141 — 0.148 and
I? — I ~ 0.141 — 0.147.
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Chapter 1
INTRODUCTION

The textbook picture of a nucleon® portrays a simple combination of three ground
state (s1/2) quarks. One d- (down) and two u- (up) flavor quarks make a proton, or
one u- and two d-flavor quarks make a neutron. The quarks carry spin and color
and combine to make an antisymmetric wave function that is invariant under any
rotation of color variables—the wave function must be a color singlet. Quantum
Chromodynamics, (QCD), the theory behind the strong interaction, describes gluons
as the carriers of force between quarks. The strong interaction prevents separation
of any single quark from a color singlet state. This leads to well defined nucleon
ground states®. However, there are an infinite number of other configurations made
of quarks, antiquarks, and gluons that can form color singlet states with the same
quantum numbers as the nucleon. These states should mix to some extent with the
three s;/2 quark state to form the nucleon ground state. Contributions from excited
quark states generally decrease as their energy increases, but the density of states
tends to increase with energy. This leaves open the question of how many basis
configurations should be included to get a reasonable approximation to the nucleon
ground state, or whether this is possible.

One way to address this question is to use a quark model to construct all confined

! Protons and neutrons are called nucleons. They are building blocks of nuclei at the center of
atoms. The nucleons are examples of baryons—half integral spin particles (Fermions) that interact
primarily by the strong interaction. (They also interact through the electromagnetic and weak
interactions, and by gravity.) Baryons are made primarily of three quarks. The other patticles
that interact strongly are mesons (like the pion or kaon). Mesons are integral spin particles
(Bosons) and each is made primarily of a quark and an antiquark. Together the mesons and
baryons are classified as hadrons.

2 The neutron does decay by the weak interaction to the proton with a lifetime of r = 882 &+ 2
seconds. The possible supersymmetric decay of the proton has not been observed: + > 1.6 x 1025
years.[1]



quark configurations below some energy cutoff (a truncated Fock space). Use of a
model is necessary to enforce confinement, since confinement based on QCD presum-
ably involves a multiplicity of graphs involving gluon loops. Direct calculation of
confinement by this type of expansion has not been demonstrated, and is probably
not currently feasible. When using artificial means to confine quarks to a region (a
bag), care must be taken to avoid duplication of effort when adding gluons. If two or
more gluons are introduced within the bag at one time, they can combine as a color
singlet. But the bag confinement mechanism also carries no color, so it is difficult to
separate these overlapping contributions. Perhaps the simplest way to avoid this type
of double counting is to restrict interactions to the one-gluon exchange (OGE) ap-
proximation and to build basis states from quarks and antiquarks only. Once a model
is chosen, one constructs all orthonormal color-singlet states below some energy cut-
off. The interaction Hamiltonian acting between these states is diagonalized to study
configuration mixing. This is repeated for different cutoffs to study convergence of
the ground state wave function.

1.0.1 Overview of this study

In this study, we use the static spherical MIT bag model, with (current) quarks
and antiquarks coupled by the OGE interaction. The spherical MIT bag utilizes
solutions to the Dirac equation for a spherical cavity with hard boundary conditions.
Interactions are calculated by doing a sum over gluon modes in the cavity. We work
in Coulomb gauge, so there are transverse electric and magnetic (TE and TM) and
Coulomb-type contributions. We diagonalize the interaction for successive cutoffs up
to 1.5 GeV above the qqq (three quark) ground state (2.725 GeV above the energy
zero).

There are many excited qqq configurations, and ¢999q configurations reached
through pair creation, that contribute below our highest cutoff. The qqq sector in-
cludes combinations of quark excitations ranging up to fz72, as well as some radial
excitations up ton = 3. There are 2727 normal ordered qqq configurations which com-
bine to make 467 orthonormal color-singlet states. The q9qqq configurations below
this cutoff include up, down, and strange pairs where a single quark or antiquark is
excited to a py/; or ps/; level to conserve parity. In this sector, 3828 normal ordered
configurations form 392 color-singlet states. Taken together, 6555 normal ordered



configurations form a basis of 859 color-singlet states (below the maximum cutoff)
with the same quantum numbers as the nucleon.

The OGE graphs are effectively four-point interactions involving two quark-gluon
vertices. At each vertex, the gluon may interact with a quark or antiquark, or it may
create or annihilate a quark pair. Our maximum cutoff allows at most one quark
pair in addition to the three initial quarks. Thus we have forward and backward
diagrams of four types. These types are: a) gluon exchange between quarks and/or
antiquarks, b) quark-gluon interaction followed by pair creation, c) quark-gluon in-
teraction followed by pair annihilation, and d) pair annihilation to a gluon followed

by pair creation.

In the OGE approximation, the QCD equations are linear in the gluon field
strength. Thus, other than carrying color indices, the equations are identical with
Maxwell’s equations. It is possible to solve for magnetic and electric fields from the
quark wave functions, and to use these to calculate interaction energies[5]. Working in
Coulomb gauge, we achieve the same results by calculating Coulomb (zero frequency)
terms and adding to them a mode sum(2, 71, 4] over TE and TM cavity modes. In
calculating the transverse OGE contributions, we consistently sum over the lowest
five gluon modes. A product of two quark-gluon vertex integrals is divided by an en-
ergy denominator for each transverse gluon mode, and for each time ordering. This
mode sum converges rapidly, generally to better than one part in ten thousand. We
calculate L = 1 — 4 (dipole through hexadecapole) TM and TE couplings between
states within our basis. The Coulomb terms couple for L = 0 — 4, with monopole
interactions making the most significant contribution. The Coulomb terms require
a six dimensional (r¢, r) integral over combinations of four quark wave functions
along with the Coulomb propagator. We include all couplings that link states within
our basis. But we also do several diagonalizations, including successive multipoles,

to further examine convergence.

Our approach to studying the nucleon ground state is model-dependent. Thus we
are unable to draw definitive conclusions about the true ground state of the nucleon.
Some of the model limitations include the rigid boundary conditions of the MIT
bag, the use of a spherical bag rather than one with a dynamical surface, use of the
(Coulomb gauge) OGE approximation, a Fock space truncated 1.5 GeV above the
999 ground state, restriction of basis states to those built from quarks and antiquarks



(but not gluons, interacting mesons, instantons, or ghosts), use of a shell model
approach which introduces spurious states (we do not do momentum projection),
and uncertainties in the choice of parameters and self-energy to use with the MIT
bag model. A further limitation will become apparent in our inability to carry the
energy cutoff as high as necessary to demonstrate fully convergent results.

We attempt to determine the sensitivity of our calculations to variation in param-
eters and to some model assumptions. We use two different choices for bag radii so
that ground state energies for other radii may be approximated by a linear fit. We
calculate results for m, = 0 MeV and my = 5 MeV. We also examine the effect of
including different amounts of the self-energy. The two approximations we try are:
1) the ‘minimal’ MIT bag prescription including only longitudinal electric (Coulomb)
self-energy terms where the quark remains in the same space-spin-color state, 2) and
a self-energy built from all Coulomb, magnetic, and electric graphs contributing to

OGE interactions below our cutoff.

Much of our motivation in conducting this study was to the calculate the con-
tribution of the strange sea to the nucleon spin and to other observables. But that
is only one small subset of excitations, and should not be considered in isolation.
For this reason, we chose to diagonalize the interaction over all possible quark states
(within the context of our model) below each cutoff. Our results indicate minimal
contribution from strange quarks to ground state properties for this model. However,
we are in reasonable agreement with experimental results for the proton and neutron
integrated structure functions, I'] and I'?, and with the Bjorken sum rule. As dis-
cussed in Ch. 6, we make two least squares fits to bag parameters and find values for
the MIT bag with configuration mixing of I — I'? = 0.141 or 0.147.

There are several observations that may be drawn from this study. There is sig-
nificant configuration mixing. This means that conclusions drawn from perturbation
theory are suspect. Previous perturbative fits to the mass spectra for baryons and
mesons required an uncomfortably large value for the strength of the strong coupling
constant a, = g,2/4w. The value a, = 2.2 was needed to reproduce the proper A — N
splitting. Our results for diagonalizing over the full model space indicate a value of
about e, = 1.4 is needed to achieve the proper splitting. In addition we find a depres-
sion of the nucleon ground state energy of about —580 MeV with the minimal MIT
self-energy, and about —437 MeV with the self-energy built from all vertices used



below cutoff. This is more negative than the Casimir contribution[54] Ec = —Z,/R
introduced in earlier fits to the mass spectra. There is reason to question the inclusion
of a Casimir term with negative sign on more fundamental grounds. The contribu-
tion was based on Casimir’s calculation[7] of vacuum fluctuations for a parallel plate
capacitor. A number of calculations[111, 115, 116, 117, 118] have shown the Casimir
term for spherical and rectangular cavities is positive rather than negative. The con-
tribution from quarks is small and negative, while the gluons make a much larger
positive contribution. Thus the sign utilized in the MIT bag model appears to be
incorrect[8]. Another problem with the Casimir term is that it makes the vacuum
unstable to decay. The traditional MIT Casimir energy for an empty bag is negative
and unbounded from below as the bag radius decreases. Thus an alternative mecha-
nism for lowering the nucleon ground state energy (necessary to achieve a proper fit

to the mass spectra) is welcome.

1.1 Historical overview

1.1.1 Origins of QCD

Electron beam experiments at SLAC[9] in the 1960’s showed excess hard scatter-
ing events from protons as one would expect for discrete scattering centers within
the proton. The scattering distribution as a function of angle and energy was scale
invariant, indicating the scattering centers were point-like[13, 14] (at least to the
resolution of the experiment). This was reminiscent of the 1897 discovery of the elec-
tron by J. J. Thomson[10], and of the nucleus by Rutherford[11] in 1911. However,
smaller constituents were not seen from proton scattering even when bombarded at
high energies. The final states consisted of combinations of photons, leptons (mem-
bers of the electron family), and more hadrons. There seemed to be an endless
supply of new hadrons waiting to be discovered. One view of the situation was that
perhaps there were no elementary particles—each particle might be a composite of
every other particle[12]. An alternative interpretation was offered by Bjorken[15]
and Richard Feynman[16]. They described hadrons as being built from unknown
constituents called partons. Electrodynamic processes were well understood to high
energies, so interactions between electrons and hadrons could be described in terms of
virtual photon interactions with partons. The early parton models assumed the par-



ton transverse momentum was bounded. The probability to observe high transverse
momentum fell exponentially with momentum.

In the 1960’s, Murray Gell-Mann[17, 18] and George Zweig[19] argued for the
existence of a few fundamental particles related by simple forces. The hadrons could
be arranged into families, called multiplets. They interpreted this as an approximate
realization of an SU(3)rravor[21, 22] symmetry® and proposed new particles, called
quarks by Gell Mann (and aces by Zweig), with flavors u, d, and s (up, down and
strange). Combining flavor and spin, essentially all the mesons and baryons could be
arranged into a few SU(6) multiplets[23, 24]. The u and d quarks have almost no
current! mass. The s quark is moderately heavy (see Table 1. 1).

Table 1.1: Light quark quantum numbers and current masses.

flavor charge I(JP) I, strangeness current mass[l]
v %e i(iN) 4+ 0 2 to 8 MeV
d -le L) -1 0  5tol5MeV
s —Lfe 03%) o —1 100 to 300 MeV
2 —%e &) -1 0 2 to 8 MeV
d se 3:G7) % 0 5 to 15 MeV
5 e 037y o - +1 100 to 300 MeV

During this same time period, there was rapid progress in the study of non-
Abelian field theories. Together these developments led to the birth of Quantum
Chromodynamics, or QCD[17, 18, 19]. It was modeled after Quantum Electrodynam-
ics (QED)(25, 26], the eminently successful quantum field theory of electrodynamics.
But QCD had a long incubation. Non-Abelian theories were first introduced by Yang
and Mills in 1954[27]. There were problems in understanding quantization, renormal-

3 Three much heavier flavors of quarks were later discovered: ¢, ¢, and b (charm, top and bottom)[1].
The c, t, and b quarks are not as well described within a flavor symmetry because of the large
differences in their masses.

4 Quark current masses are the masses of the renormalized QCD Lagrangian. They are not directly
measurable (and are somewhat model dependent) since quarks are confined within hadrons. We
utilize current masses defined in the context of the relativistic MIT bag model in this study.
Constituent masses are effective masses determined from non-relativistic model fits to particle
spectra. They are model dependent quantities, and have no direct relation to the masses in the
Lagrangian[20].



ization, and in finding approximate solutions to the field equations. QCD is a theory
of elementary particles (quarks and gluons), and it provided a natural explanation for
the scattering centers seen in the nucleon. This led to reinterpretation and modifica-
tion of the parton model[28]. QCD predicted the parton transverse momentum would
not fall exponentially, but as a power law. This introduced important logarithmic
corrections to tke parton model. This was tested experimentally, demonstrating that
QCD was predicting correct results. Many of the scaling relations developed in the
study of partons remain useful, with quarks and gluons accepted as the partons.

QCD is a Yang-Mills type of gauge theory invariant under SU(3)coLor[29, 30]
group transformations. (It was patterned after QED, which is invariant under a
change of phase—a U(1) symmetry.) The SU(3)coror group describes an exact
symmetry under interchange among three values of a new quantum number, called
color by Gell-Mann. The existence of a symmetry in the Lagrangian([31] leads to
conservation of color charges carried by the spin-1/2 quarks. The three quark colors
don’t mix with the three anti-colors carried by antiquarks. These symmetries are
classified respectively as SU(3) triplet, or 3, and anti-triplet, or 3, because of their
dimensions. The quarks are Fermions like the electrons of QED. As with photons in
electrodynamics, gauge invariance requires vector particles to couple to the Fermions.
The gluons in QCD are the analog of the vector photons of QED. Unlike photons,
(which carry no electric charge), the SU(3) coupling requires gluons to carry color
charge. A gluon interacting with a quark can change the quark color. Three colors
can be created, and three destroyed, but the interaction is traceless. The gluon charge
is classified in an SU(3) octet, or 8, representation because of the (32 — 1) values it

can assume.

It was difficult to understand the structure of hadrons. How could quarks be to-
tally trapped in a hadron, yet behave as essentially free point particles when probed
at high energy? These properties were called confinement and asymptotic freedom
respectively. Confinement requires a much stronger coupling constant than the cou-
pling of electromagnetism at large distances. But it changes to a relatively weak
coupling for short distances or high momenta. In QED, the small (essentially con-
stant) value of the coupling constant, o ~ 1/137, allows accurate calculations to be
made by perturbation expansion. QCD is quite successful for scattering predictions
at high energies (but doesn’t come close to the accuracies of QED). However, the



perturbative approach is essentially useless when considering processes dominated by
confinement at low energy. The coupling strength is of order one, so perturbative
expansions don’t converge for low-energy processes.

Renormalization group(32, 33] methods proved useful in studying the strong cou-
pling regime inaccessible to perturbation theory. Renormalization group theory in-
volves looking at the behavior of theories under a change of scale. For QCD, in
rescaling the momentum p — Ap, one can remove the A from Ap and put it inside
a dimensionless effective coupling constant g,(A). The coupling constant becomes
scale-dependent. 't Hooft[34], Politzer[35], Gross and Wilczek[36, 37] found that
QCD became asymptotically free at large momenta, g,(A — o0) ~ O(Ir))~! — 0.
This running of the coupling constant is another confirmation of QCD as the correct
theory of the strong interaction.

1.1.2 Confinement

Confinement proved more difficult to demonstrate explicitly. In 1962, Schwinger[39)]
showed that vector mesons could get a nonzero mass if the gauge theory had its
charges totally screened by vacuum polarization. In 1974 Kenneth Wilson[38] used
a similar mechanism to show soft (long-time-scale) confinement for strongly coupled
gauge fields quantized on a 4-d Euclidean lattice. He also showed there was a weak
coupling phase for small g,. He argued these behaviors should be separated by a
phase transition, and that this should generalize in a straight-forward manner to
non-Abelian theories. The mechanism preserved exact gauge invariance and treated
the gauge fields as angular variables. However, the lattice theory was not covariant,
and the cutoff precluded free point-like behavior for quarks.

Nielsen and Olesen[40] and Nambu[41] explained the confinement of quarks by
drawing attention to the parallel situation of lines of flux linking charges within
a superconductor. This requires associating the electric-type color fields of non-
Abelian SU(3) with the magnetic lines of flux which can not penetrate superconduct-
ing matter. As in a superconductor, flux is concentrated into tubes that carry energy
proportional to their length, and quarks form the analog of magnetic monopoles.
Mandelstam[42] showed that low energy quark states would be more or less spherical
as in bag models, whereas states of high angular momentum would form elongated
cavities as if connected by strings. This would provide a natural explanation for



Regge-trajectory behavior of hadronic excitations. This is where energy is asymptot-
ically proportional to the square of angular momentum of the states. Unlike Abelian
fields, non-Abelian fields can interact to shield a color charge using several other color
charges, instead of drawing an anti-color charge closer. This leads to anti-screening—a
color fluctuation seen at a distance may have vanishing imbalance at the center. This
leads to asymptotic freedom rather than the singular behavior of ordinary screened
charges at short distances.

Migdal[43] and Kadanoff{44] developed lattice-renormalization techniques for gauge
theories. Their bond-moving scheme allows recursive summation over bonds that are
decimated to generate successively coarser lattices. Each step involves changes in the
effective coupling constant(s). To the degree the Migdal approximation is accurate,
recursion in d/2 dimensions for nearest neighbor couplings behaves as recursion in d
dimensions for gauge theories. The 4-d gauge theory of strings and quarks where cou-
plings are strong can be studied in terms of the simpler 2-d nearest neighbor problem
if one assumes the gauge fields (and not the quarks) determine the phase transitions
of the system. (This is not necessarily a good assumption, as both strings and quarks
are near a phase transition as the lattice constant is taken to zero. Interference can
occur for phase transitions that occur essentially together, as in the Baxter system
where two Ising systems interact[44].)

Kadanoff studied the flow of the coupling of gauge theories during renormaliza-
tion. He demonstrated that confinement at large distances, and asymptotic freedom
at short distances are possible behaviors of a single theory. This occurs when the
coupling constant g, flows from infinity (confinement) to zero (asymptotic freedom)
as the lattice constant decreases. Any value of g, other than zero exhibits quark con-
finement, so there is no phase change for the 4-d system of quarks and links. Gross
and Wilczek[36, 37], and also Politzer[35], showed there would be no phase transition
in 4-d QCD if there are fewer than 17 flavors, and they derived a formula for running
of the QCD coupling constant.

1.1.8 Confined QCD models of hadrons

In 1967, Bogoliubov{45] introduced quarks within a spherical infinite square well po-
tential using spherical solutions to the (relativistic) Dirac equation[46, 47, 48]. The
square well was described as a ‘self-consistent’ approximation to the inter-quark po-
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tential. Although this model is perhaps over-simplified, it embodies features required
in a successful model of hadrons. Inside the bag, particles are free, consistent with
asymptotic freedom. The hard scalar potential determines the quark boundary con-
ditions and provides total quark confinement.

The MIT bag model

Later, without knowledge of Bogoliubov’s work, the MIT bag model was developed.
The MIT bag49, 53, 51, 52] is similar to Bogoliubov’s bag except that a constant, B
(with units of energy density) parameterizes a bag pressure. The bag is like a bubble
in the strongly coupled vacuum. The bag size and shape is determined by demanding
dynamical balance between bag pressure and quark and gluon field pressures. When
introducing the MIT bag model in 1974, Chodos, Jaffe, Johnson, Thorn and Weisskopf
proposed that “a strongly interacting particle is a finite region of space to which
fields are confined”. By adding the energy density B to the stress-energy tensor, they
claimed they achieved confinement in a Lorentz-invariant (but somewhat artificial)
way. The bag surface has no dynamical degrees of freedom, but they considered
classical shape deformations and oscillations including fission of bags. The color
fields carried by quarks requires the quarks to be arranged in color singlets within
the bags—anything else gives rise to infinite energy because of the effectively vanishing
dielectric constant outside the bag. Confinement leads to an unbounded spectrum of
quark modes and an infinitely rising Regge trajectory for the hadron spectrum.

DeGrand, Jaffe, Johnson, and Kiskis[54] used the MIT bag model to fit the mass
spectrum of ground state hadrons. In the process, they added several features to the
MIT model. A ‘Casimer’ term was added to include effects of zero-point fluctuations.
As noted previously, the sign of this term is controversial[8] because calculations show
the net contribution from quarks and gluons is positive. The term also makes the
vacuum unstable to decay in the presence of an empty bag unless a cutoff is employed.
(An empty bag could be created by surface fluctuations leading to pinching off of a
piece of a bag containing quarks and gluons.) However the Casimir term fulfilled
the need for a large negative energy contribution to get a good fit for the MIT bag
model to the hadron mass spectra. With configuration mixing, we find the need for
a negative Casimir term is eliminated.

The MIT bag had been shown to confine colored quarks, but interacting gluons
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had not been included previously. DeGrand et al. incorporated gluons by taking the
first order (a,) approximation to the QCD field equations. This one-gluon exchange
(OGE) approximation is linear in the gluon field strength. It includes a spin-spin and
color-color interaction between the quark currents. This approximation simplifies the
complexity arising from non-commutitivity of the color fields, and also removes three-
gluon and four-gluon interactions which arise in the full theory. This hyperfine type
of interaction was first proposed as a mechanism for mass splitting between hadrons
by De Rujula, Georgi, and Glashow[73], breaking the SU(6) symmetry of spin and
flavor. With these simplifications, each color field satisfies Maxwell’s equations. The
electric and magnetic fields must satisfy boundary conditions at the surface of the bag.
It is necessary to add a piece of the self-energy to satisfy the electric field boundary
condition and to preserve gauge invariance for the gluon. The approach taken was
to include only the part of the self-energy needed to meet these requirements. This
self-energy piece involves the longitudinal (radial) electric field contributions where
the quark remains in the initial state inside the self-energy loop. The full self-energy
includes a sum over all intermediate states within the gluon loop. The other self-
energy terms are considered to be included in renormalized values for the mass and
Casimir term. They tried including more self-energy terms, and found similar final
results (but it required major changes to the quark masses and Casimir term). The
non-Abelian group structure of the theory is not totally erased. All the color fields are
coupled by Gell-Mann'’s eight SU(3) color matrices (the A matrices). The gluons carry
this octet color, and must also be confined to the bag because of the vanishing value
of the vacuum dielectric. This is accomplished by adopting standard solutions[56] for
electromagnetic modes in a cavity, except that the fields carry color indices.

DeGrand, et al. made two separate (four parameter) fits to the masses of light
hadrons. Then they looked at predictions for magnetic moments, weak decay con-
stants, and charge radii. The first fit assumed zero mass for the u and d quark,
whereas the second fit assumed a value of 108 MeV for the u and d (current) masses.
They quote values of a. = 0.55 for the first fit, and a. = 0.75 for the second fit.
However, their definition for coupling constant was not standard, as they used the
color interaction ()2, rather than (%)2. Their numbers must be multiplied by four
to conform to current usage[70, 71]. Thus their first fit has o, = 4. = 2.2, and
the second fit has a, = 4a. = 3.0. Although the coupling does run[36, 37, 35, 34],
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growing as the relevant energy decreases, their couplings are uncomfortably large[72].

The equilibrium bag radius Ro for each particle was found by minimizing the
energy, with the minimum energy being the mass of the particle. Mesons and baryons
were modeled together using the same sets of parameters. In both fits, B, Z, and a;,
(bag constant, Casimir coefficient, and strong coupling constant) were adjusted to fit
masses of the w meson, the proton, and the A. Then the s quark mass was adjusted to
fit the energy of the Q. This involves SU(3)rravor symnietry breaking in making the
s mass heavier than the u and d masses. If o, was set to zero, the masses of mesons
would differ from baryons because they are made of two rather than three quarks.
However, the nucleon and A would be degenerate, and also.the = and p. Making
@, non-zero (turning on the color magnetic interaction) splits these energies. Since
the same mass was assumed for the u and d quark, there was no splitting between

neutron and proton.

Both fits gave quite good results for the ten hadron masses that they did not
use in setting parameters. The baryon decuplet fit was good, with equal spacing
between rows of the multiplet. The baryon octet has equal spacing, but the = mass
is approximately 30 MeV too small, and the £ — A splitting is half what it should
be. In the meson sector, the w and p are degenerate (they should differ by 13 MeV),
and the ¢ mass is 50 MeV too large. There are difficulties in the pseudo-scalar meson
sector. In the first fit, the K — = mass difference is about 210 MeV, (it should be
350 MeV). A small part of this arises because the K is about 2 MeV high, but the
7 mass is 280 MeV (experimentally it is 139 MeV). Recoil effects would lower the 7
mass, but the MIT bag model does not allow one to correct for recoil effects. For the
second fit with the masses of u and d at 108 MeV, there was no solution for the r
with R > 0. This was considered encouraging because the Goldstone nature of the
= makes it difficult to reconcile the x with the quark model. Although the mass fits
are slightly better with the first set of parameters, the average magnetic moments of
the octet baryons and g4/gv are worse. The prediction for the magnetic moments
for zero mass u and d is too small: 2M,u, = 1.9 vs. 2.6 experimentally. This is the
most serious discrepancy in the model predictions. The axial to vector coupling is
also small, with the first fit predicting g,/gv = 1.09 vs. 1.25 experimentally. Larger
masses improve this value, with of g4/gv = 1.25 for mR ~ 1[57, 58].

DeGrand and Jaffe[59] used the parameters derived from the first fit with a, = 2.2
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to calculate low-lying excitations of quarks and gluons in the MIT bag. There were
no free parameters left to fit in this study, so all results were predictions. The states
they considered had one quark excited to a p1/2 state, with the others in the s/,
ground state. Using Spin”*"% notation, the hadrons they modeled were ;™ and %‘
baryons as well as 0* and 1~ mesons. The spectrum they calculated suffered from two
defects: the states were too low in energy on average, and there were too many states.
In particular, excited non-strange baryon states were on average ~ 150 MeV too low.
Further modification of these results would be expected from inclusion of higher-order
gluon interactions. They attributed the extra states to excitation of the center of mass
of the system. In models using two body forces, such states are spurious and need
to be projected out. However in the MIT bag, confinement involves interaction of
the quarks with the bag, which acts as an external object. Thus there was no reason
to exclude these states. However surface oscillations include translational modes[60]
which are spurious. The present wave functions should be orthogonalized against
those spurious states. This would tend to push up the energy of the states. (It is
difficult in a relativistic theory to isolate the center of mass coordinates[61, 8]. The
center-of-energy operator is quite intractable[62, 63], although various approximate
momentum projection methods have been developed[64, 65, 66].)

Bowler, Hey, and Walters[67, 68] considered radial excitation of baryons formed
from three quarks in s/, states. They interpreted their results as a prediction of
the NP11 Roper resonances. Their masses were in fairly good agreement with =N
phase-shift analyses for these resonances. They also considered breathing modes for
the bag, concluding that their effect is small.

In the meson sector, Jaffe[69] used the MIT bag model to calculate effects of extra
quark pairs. The spectra and dominant decay modes of ‘cryptoexotic’ g9dq mesons
were calculated, with all quarks in s, /2 states. The lowest cryptoexotic particle was
correlated with known 0* meson resonances. Higher resonances were predicted to be
broad, but it was suggested some other states might be observable.

Donoghue and Golowich[70] used the same OGE mechanism to perturbatively
calculate effects of pair creation for the proton ground state. Tramsitions from the
s1/2 ‘valence’ gqq state to ggqqq states were calculated. They called the contribution
from additional pairs ¢ ‘sea’ states. Anti-quarks have opposite intrinsic parity as
quarks. Adding a pair requires compensating this by changing the orbital angular
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momentum of at least one quark (for example changing an s;/; quark or antiquark
state to a py/; or py/; state). In that study, only sy, and py/, states were considered,
but radial excitations of quarks were calculated. Four flavors of pairs were considered,
u, d, s, and ¢ (charm). The same parameters were used as found by DeGrand et al.
in their first fit with zero mass for the u and d quarks, and 279 MeV for the s quark.
In addition they used a value of 1.55 GeV for the ¢ quark. Their use of the coupling
a, = 2.2 led to prediction of large values for sea contributions. Their perturbative
probabilities for ui, dd, s3, and cZ sea configurations were respectively 0.360, 0.271,
0.167 and 0.020. They calculated the effects of the sea on hadron properties to be 20-
30 %. However the gluon propagator they started with gave several huge contributions
due to near cancelation of energies in the denominators for some gluon and quark
modes. (One term alone contributed -1.26 x 10°). They removed this behavior in a
rather ad hoc way by a modification to the bag boundary condition for the gluons.

In a similar study, Maciel and Paton{74] used confined perturbation theory([2, 71, 4]
(see below) and found values for the ¢g sea roughly six times smaller. They attributed
the difference to the ad hoc propagator choice of Donoghue and Golowich, and also
to a missing interference term in the prior work. They also considered the effects
of a b (bottom) quark with a mass of 4 GeV, and also the mixing if there were an
(unknown) ‘o quark’ with zero mass. Their parameters differed only slightly from
Donoghue and Golowich, with the s mass at 0.3 GeV and the ¢ mass at 1.5 GeV.
Their probabilities for ¢g contributions for u#, dd, 06, s3, cz, and bb were respectively
0.056, 0.040, 0.045, 0.045, 0.74 x 10~2, and 0.85 x 10~3.

Donoghue and Golowich tabulated (in their Table IL.) the perturbative probability
for a proton to include five particle states as a function of quark modes (including
spin) and flavor. They summed these expressions over all states to arrive at their
final results. They found that there was enhancement of probability where thete
were other quarks in the ¢ggqqq sector with the same flavor as the flavor of the q9q
pair. This arises from interference between amplitudes for pairing the § with any
of the other g of the same flavor. This results in a significant decrease in s3 or cz
scattering relative to u@ or dd, in addition to suppression from the larger energy
denominators. The calculation by Maciel and Paton shows similar results, taking
into account differences in their normalization and their correction to the work of
Donoghue and Golowich. However both studies leave out some interference terms, as
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they apparently squared terms before summing over all links to the gqq state. Pair
creation amplitudes involving an OGE exchange with a ¢gq quark having the same
flavor as others in the bag should interfere. This effect will be demonstrated in the
present study. This enhances the probability for emission of a gluon that creates a
pair from the u quark relative to the d quark in the proton. This effect can be seen
to be missing from Table II. of Donoghue and Golowich and from Table I. of Maciel
and Paton.

In 1979, Lee[2] introduced Feynman rules for QCD confined to a finite volume.
This is called confined perturbation theory{71, 4. His theory is applicable to any of
the Friedberg-Lee bag models (see below), as well as to the MIT bag. The Feynman
rules depend on the bag radius R (and on the dielectric constant of the vacuum,
which is effectively zero outside the MIT bag). At high four-momentum, this theory
reduces to ordinary QCD with no dependence on the bag radius. In Coulomb gauge,
the theory gives a prescription for perturbative calculation of gluon exchange between
quarks.

Close and Horgan[71, 4] developed and applied Lee’s confined perturbation the-
ory to the MIT bag model. This approach provides an alternative to calculating the
electric and magnetic field energies from the quark wave functions as was done previ-
ously for OGE. (A third alternative is to calculate interactions using a confined-tensor
Green’s function for transverse modes and a scalar Green’s function for longitudinal
modes(8, 75, 76].) In the confined perturbation approach, one first calculates quark
wave functions and then the currents. One solves for the transverse electric and mag-
netic (TE and TM) gluon modes that exist as discrete solutions in the bag. The vector
potential from these modes is expanded in vector-spherical harmonics. Depending on
time-ordering, the vector potential (or its complex conjugate) is integrated with a
quark current to get a vertex integral. The product of two vertex integrals is divided
by an energy denominator to calculate the contribution of one mode to a time-ordered
OGE graph. These terms are summed over gluon modes until adequate convergence
is reached. Typically the sum converges rapidly (to better than a part in 10* with five
modes). Finally, the longitudinal or Coulomb terms must be included. Lee calculated
the scalar Green’s function appropriate for the confined longitudinal gluon field. This
Green function must be integrated with four quark wave functions over six (re,rs)

dimensions.
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Close and Monaghan used this technique to calculate (dipole) results for arbitrary
mass sy/; and py/, quarks and antiquarks. They found agreement with the earlier MIT
bag[54] results. In addition to magnetic and electric types of quark-gluon vertices,
they also calculated three and four gluon vertices.

In 1984, Wroldsen and Myrhrer[5] calculated more extensive tables for OGE inter-
actions of sy3, p3/2, and py/> quarks in the MIT bag. They used the older approach,
calculating magnetic and electric fields. They presented numerical results for the
whole OGE graph, which are multiplied by a,/R and spin and color sums. (They
also calculated results for a chiral bag model. The chiral bag model assumes a pion
field is present in addition to the quarks in the MIT bag. Conservation of the axial
current determines the strength of the quark-pion coupling.) Wroldsen and Myrhrer’s
MIT bag results (as corrected by Umino and Myhrer[83]) have been useful in com-
parison to the results of this study, which were done by a different technique (using
confined perturbation theory).

In the mid 80s, Ushio and Konashi[77] and Ushio[78, 79] used confined pertur-
bation theory to calculate OGE corrections to ga/gv for weak semileptonic decay
processes. They found adjustments of 1% - 30%, depending on the decay process
considered. Experimentally[1], the value of g4 /gy = 1.2573 £ 0.0028 for decay of the
neutron, but the zeroth order MIT bag prediction is 1.09. There are problems in
matching g4 /gv for decays of many hadrons. Calculations were done for both sets of
parameters of DeGrand et al., except differences in bag radii were neglected between
particles. They found only about a 3% correction to the ga/gv ratio for n — p decay.
However the magnitude of g4/gv for £~ — n decay was increased by OGE effects to
agree with experiment[77].

In 1988, Myhrer and Thomas[81] examined the OGE corrections to the integrated
spin structure functions of the nucleons in the Bjorken sum rule[146]. They used
intermediate J = ; and 3 quark and antiquark states. They found a negative contri-
bution to the Bjorken sum rule for the neutron of less than 2%. This was about the
same size as the pionic correction in the chiral or cloudy bag model[82].

Other bag models

Umino and Myhrer[83], calculated masses of low-lying negative-parity excited A* and
L" using the chiral bag model. They diagonalized the interaction for J = 3 and
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2 states. They also tested a prescription to project out translational modes and
compared their results to the results of non-relativistic models[84].

Hggaasen and Myhrer[151, 86] used confined perturbation theory to look at SU(6)
violations and corrections to magnetic moments as calculated in the chiral bag model.
Without correction, the pionic contributions added to the chiral bag create a problem
for the ratio of proton and neutron magnetic moments. Experimentally u,/p, =
—1.46[1]. SU(6) additive quark models and the MIT bag predict a value of bo/tin =
—3/2, which is good. However, the chiral bag with pionic (isovector) contributions
destroys the good match. A fit indicates there should be a very small pion contribution
compared to the chiral bag prediction. Hfgaasen and Myhrer show that this ratio
can be restored to —3/2 for the chiral bag by including intermediate excited states
in the calculation of the nucleon magnetic moments. Inclusion of intermediate states
also helped explain why the magnetic moment of the =~ is more negative than the A.

Friedberg and Lee[87, 2] suggested physical properties of the vacuum were respon-
sible for confinement. They developed a new class of models to achieve confinement.
Their renormalizable-Lagrangian-based approach uses a scalar field interacting with
quarks in three spatial dimensions to create ‘montopological soliton’ solutions for
hadrons. The quasiclassical soliton behaves much as a gas bubble in a medium with
surface tension, pressure of the medium and gas, and a ‘thermodynamical’ gas en-
ergy. They demonstrated that the quasiclassical solution is a good approximation
to the quantum solution over a wide range of coupling constants. In limiting cases,
their model reduces to the Creutz version of the MIT bag model[51, 52] or the SLAC
bag model[88] developed by Bardeen and his collaborators. The hard-wall boundary
condition of the MIT bag, in this picture, is the limiting case of a bag with a smooth
transition from inside to outside. The scalar field attains its vacuum value outside
the bag. Quarks are excluded from the vacuum by a potential that depends on the
scalar field. The quark, gluon, and scalar fields are solved self-consistently.

One problem with the Friedberg Lee model is that the quark-scalar coupling
breaks chiral invariance (the coupling acts as an effective quark mass)[89, 8]. Chiral
symmetry is not exact, but it exerts an important influence on low energy hadron
properties. (Non-zero masses in the Lagrangian break Chiral symmetry. Thus small
u and d quark masses are required to achieve a good fit to nucleon properties).

The chromodielectric model[90, 91, 89] (CDM) is related to the Friedberg-Lee
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soliton model. There is no direct quark-scalar coupling, so the (massless) CDM
Lagrangian is chirally invariant. The CDM Lagrangian is a combination of the
QCD Lagrangian supplemented by a scalar field governing dielectric properties of
the medium. The scalar field is identified with the gluon condensate. Quarks acquire
a self-energy when they interact with gluons in the dielectric. This effective mass
increases without limit in the vacuum region. This leads to quark spatial confine-
ment. The equations have been solved numerically in the mean field approximation.
Chiral invariance is dynamically broken and this was interpreted as evidence of a
Nambu-Goldstone pion[89]. Color confinement is due to the self-energy and mutual-
interactions of quarks through one-gluon exchange. The self-consistent solutions that
have been found are illuminating. In addition to modeling individual hadrons, the
soliton bag has been used to model interactions between bags[92], nuclear and quark
matter[93, 94], and hadron dynamics[95] including color flux tubes[96]. For individual
bags, the confining scalar potential which results from this self consistent approach
is similar to the infinite step function of the MIT model[8]. This helps justify using
the simpler MIT model to explore hadron properties.



Chapter 2
QUARKS, GLUONS, AND THE MIT BAG MODEL

2.1 Introduction

It is generally accepted that QCD is the fundamental theory of the strong interaction.
QCD is a non-Abelian gauge field theory that describes interactions between quarks
and gluons. At low energies, the strong coupling becomes large, making a non-
perturbative approach necessary when confinement is the dominant feature of the
system of interest. We are studying nucleon ground state energies, where quarks
and gluons are confined to a region of space within a radius r, ~ 1 fm (10~'° m).
The non-perturbative approach we take is to utilize the static spherical MIT bag
model[49, 51, 52, 53] to confine quarks, and then diagonalize over all basis states
below some energy cutoff to find the ground state configuration mixing. The static
spherical MIT bag model is similar to Bogliubov’s original model[45], where solutions
of the Dirac equation are found for a spherical cavity. We use confined perturbation
theory[2] to calculate the OGE[54] interaction in Coulomb gauge. This includes
a color-charge interaction based on SU(3), a traceless unitary Lie group of three-
dimensions, where the group generators T, act as color charges.

2.1.1 QCD Lagrangian for quarks and gluons

Quark and gluon fields interact via the SU(3) color group as specified by the QCD
Lagrangian. Let ¢ be the wave function for a quark with mass m, which we may
think of as a three-component column vector indicating (red, green, or blue) color.
(Anti-quarks are described by a charge-conjugate wave function carrying three values
of anti-color.) We suppress indices for type of quark or antiquark. (The type includes
flavor, mode, and spin). The gluon gauge field, A7 has octet color, so the color label
a is summed over eight values corresponding to the eight 3x3 A matrices. We will
also suppress the gluon-mode indices.
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The QCD Lagrangian[97, 98] describing interaction between quarks and gluons is
. _ 1
L= 3 (iqPq—mig)— ;G Gow, (2.1)
types
where local gauge invariance requires the covariant derivative to be
P=(0"+ 19, 1. A%) 7, (2-2)

where ¢ = qu‘y° is the spinor adjoint, 4* are the Dirac matrices and g, is the quark-
gluon coupling strength. We use the standard representation,

o_(1 0 [ 0 e
re(20) = (27). o

where 1 is the 2x2 unit matrix and o are the Pauli matrices. The gluon field strength

tensor is

G* = 8" A% — " A* — g, fuc AP AY. (2.4)

The T, are the group generators of SU(3).

2.1.2 SU(3)

A non-Abelian Lie group with generators T, obeys
[Tas Tb] = ifabcTn (2-5)

with normalization tr (T,T;) = 8. The f,. are real numbers called the structure

constants of the group. SU(3) has eight generators, with

Aa

Ta=?9
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(0 1 0) (0 —i 0) (1 0 0)
M= |1 0 0, X=1]i 0o o], da= [0 -1 o[,
L0 0 o) L0 0 o) L0 0 0
(0 0 1) (0 0 —i) (0 0 o)
A4-— 0 0 0 3 As=—' 0 0 0 3 A6= 0 0 1 ’
\1 0 o) \i 0 0 \0 1 0
(0 0 o) (1 0 o) .
M= |0 0 =i, X= |0 1 o .
L0 i 0) \ 0 0—2)7§
(2.6)

The eight A, are 3x3 traceless Hermitian matrices often called the Gell-Mann matrices.

2.1.83 Symmetries and conserved currents

In 1918, Emmy Noether[31, 97] showed that for every symmetry of a Lagrangian,
there is a conserved current. Consider a Lagrangian that depends only on fields
#-(z) and their first derivatives. Its equations of motion are:

oc éoc

O 5o = 5o @1

If the Lagrangian has a symmetry so that it doesn’t change under an infinitesimal

variation 6¢,(z),

6L ]

BL($:) = L($s +86)) = L(4:) = 52684 + 7z

=% 5(8,8:) =0.  (2.8)

Using the equations of motion and simplifying,

o=a“[ L ]

6(6_“%5645’ (2.9)

~ The piece within square brackets must be constant. It is called a conserved current.

6L

»*= m‘:)'w.g (2.10)
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For QCD, invariance under rotation in color space leads to conserved color currents
for the quarks:

= _ A

Ja = 07" Taq =03 (2.11)

The coupling of the quark field to the gluon field through the covariant derivative is
unavoidable if one demands that invariance under a color rotation holds as a local
symmetry. With this assumption, the color current is conserved under arbitrary
(space-time dependent) color gauge rotations.

2.2 Static spherical MIT bag model

The OGE interaction we use is an approximation to the QCD Lagrangian where
only terms linear in the gluon field strength are kept. We utilize the fixed spherical
MIT bag model to study quarks and gluons interacting within a finite volume. The
MIT bag model used by DeGrand et al.[54] to fit the hadron mass spectrum has four
free parameters, B, a,', Zy, and m,. The bag constant, B, is an energy density
representing the pressure of the vacuum. The strong coupling constant, a, = g,2/4r,
is adjusted to give the correct A — N splitting. The coefficient of the ‘Casimir’ term,
Zo, was introduced to lower the ground state energy of the hadrons, and was justified
as representing a piece of the zero point energy. We find a significant depression of the
ground state energy with the introduction of a larger basis set of states than used by
DeGrand, et al., making a negative Casimir term unnecessary. This will be discussed
in more detail later. DeGrand et al. set the u and d quark masses, m, and mq, equal
to zero, and treated the s mass, m,, as a parameter. We make calculations using a
similar parameter set, but allow a, to change to keep the proper A— N splitting. We
include many more basis states than considered by DeGrand et al., and the value for
a, decreases significantly. In addition, we allow the u and d quark masses to differ
by five MeV. We also calculate results for several different choices of the self-energy,
and for several values of B, implying different bag radii R.

The bag radius, R, is not an independent parameter. It is found by balancing the
field pressure of quarks and gluons against the Bag pressure. A larger choice for B
results in a smaller value for R. .

! DeGrand et al. used ())? rather than (3)? as their color coupling, so their coupling constant, a,
must be multiplied by four to equal our a,, a, = 4a..
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The MIT bag energy (or particle mass) is
4
= ETBRS —Zo/R+ qu + EogE, (2.12)

where (J, are the frequencies of the quark modes in the bag. Eogg is the one-gluon
exchange energy including TE, TM, and instantaneous Coulomb contributions. It is
a hyperfine type of interaction between two quark currents which together introduce
spin-spin and color-color factors. Quark or antiquark wave functions can contribute
to the current, propagating forward or backward in time. Thus each vertex represents
a gluon scattering from a quark or an antiquark, or a gluon creating or destroying
a quark—antiquark pair. Different time orderings of the two quark-gluon vertices
correspond to forward or backward propagation of the gluon. (See figure 1.)

2.2.1 Dirac equation—spherical solutions for quarks

The Dirac equation is the equation of motion for independent relativistic spin-1/2
point-like particles. We use natural units where & = ¢ = 1.
The equation for quarks of current mass m is

19q/0t=He=[a-p+Pfm|qg=W,q, (2.13)

where (J, is the energy of a quark stationary state. & and 8 are a set of four anti-
commuting Hermitian matrices that form their own inverse (they are unitary). They

0 o 1 0
a(29). 5= (1 0). a

The B and o matrices are related to the v matrices by

may be written as

Y =8, v=pa. (2.15)

We need centrally symmetric solutions of the Dirac equation for -quarks to sat-
isfy the spherical boundary conditions. We write the Dirac equation in spherical

coordinates,

(.L),,q:f[q:[—iazr (a;i+%—gl{)+ﬂ5(r)+ﬂm]q. (2.16)
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where we introduce the Dirac quantum number «, with
i+ 4 = { ifj=1-1%
'-(]+§)= —(+1) ifj =[+§.
The operators j?, j., and K all commute with the Hamiltonian, with eigenvalues
7(7 +1), #, and —«, respectively. The orbital angular momentum and spin are not

separately conserved. We have included a spherically symmetric scalar potential,
S(r). For the spherical MIT bag of radius R,

0 for r <R,
S(r) = 2.18
(r) {M—»oo for r>R. ( )

This is equivalent to the boundary condition
—1y-fq=gq, at r=R. (2.19)

This boundary condition may be derived as the (M — oo) limit of the matching
condition for a field with mass m inside the bag, and a field of mass M outside the
bag[49].

The wave function for a quark may be written as a column vector of two-component

q=("',‘). (2.20)
q

For the wave function to satisfy the eigenvalue equation for K,

spinors, a bi-spinor;

(0-l+1)g*=—kq*, (e-l+1)¢'=xgqg’ (2.21)

We introduce indices for x and the z-component of angular momentum, u. The
eigenvalue requirements for « are satisfied by making the upper and lower components
proportional to V¥, and V£, respectively, where the spinor

YVe=3 <lp—mim|l}ju>yF "™ (2.22)

The <l p—m ; m | I3 ju > are Clebsch-Gordan coefficients[99], and x™ are two-
component Pauli spinors. The Vi, spinors combine spin and angular information to

satisfy
(- 1+1) Yt =—xY:. (2.23)
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We can now write the upper and lower parts of the single particle wave function in
terms of these spin-angular functions times radial functions. Thus we write

¢(r) = ( z.: (()’ ;’_ ) , (2.24)

where f(r) and g(r) are the radial functions (which also depend on ). The factor i
will allow f(r) and g(r) to be expressed as real functions.

Substituting this wave function into the spherical form of the Dirac equation, and
using[46] o, V¥ = —k V¥,

(@i =) =m) 1) 92 = [ (44 4 4], 290)]

dftr) , fr) ﬂf(r)] . (2.25)

dr r r -

(W, — §(r) +m) g(r) V¥, = [

We separate radial from angular variables, which gives the coupled radial equations
for f(r) and g¢(r),

W) 4 L o) + (Wi = S(r) = m) (r) = 0. (2.26)
Defining functions

up =r f(r), and u; =r g(r), (2.27)
the radial equations are combined to eliminate u,,

d?uy dS(r)/dr  du,

O = YW -5 m &

_ .y K(r+1) & dS(r)/dr
[(w., S(r) —m) = rW, =S tm u. (2.28)
For r < R, S(r) = 0, and the equation for u, simplifies to

d?u k+1

Tt (i - el (229)
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The solution that is finite at r =0 is

uyu=Nrj (\/w: - m? r) , (2.30)

where ji(z) are spherical Bessel functions. From the coupled radial equations for u,

and u,, we solve for u,,

1 d «
Uz = wq +1 (a? + ‘r‘) uy. (2.31)
Using the recurrence relations[101, 56] for spherical Bessel functions,
d . 1. ) [+1. .
501(z) = 232) = jua(2) = ———4i(2) + ji-a(2), (2.32)

we define I = [ — k/|x|. Then

LA L ke () 23

k] W,+m

Defining dimensionless variables

wg=RW,, and z, =R \/W?-m?=,/w? - (m R), (2.34)

we find solutions regular at » = 0 that satisfy the boundary equation at r = R. The

radial solutions are

f(r) = fu(r) = N ji(z,r/R),
K zq .-
g(r) :==gu(r) =N " @t mB) Ji(z,r/R), (2.35)

where [ is specified by &. For giveh R and m, these solutions form a tower of radial
modes for each value of x. The mode eigenvalues, z,, are found numerically as

solutions to the transcendental equation[59],
(wq + mR)fu(zq) + ¢ fu-1(z4) = 0. (2.36)

The normalization, determined by Jrag Er Y1) ¥(F) =1, is
Zq

T T T —
Ji(zg) B2/ 2w, (wy+x)+m R

Values for z, and w, for R=0.005 MeV~! and quark masses of 0, 5, and 279 MeV
are listed in Table 2.1.

(2.37)
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Table 2.1: Eigenvalues and frequencies for light quarks with R=0.005 MeV-! and
with the cutoff at 1.5 GeV above the gqq ground state. Some energy levels are not
used because they can not be combined with other quark states, conserving parity
and angular momentum, to generate multi-particle states below our cutoff (see Sec

4.3.8).
energy m=0 MeV m=5 MeV m=279 MeV
level £ J I n z w z w z w

1 —1 1 0 1 20428 2.0428 2.0547 2.0548 2.4878 2.8523
2 —2 2 1 1 32039 3.2039 3.2142 3.2143 3.6340 3.8926
3 1 3 1 1 38115 38115 3.8141 3.8142 3.9471 4.1864
4 -3 2 2 1 43273 4.3273 4.3367 4.3367 4.7407 4.9417
5 2 3 2 1 51231 5.1231 5.1249 5.1249 5.1276 5.4009
6 -1 2 0 2 53960 5.3960 5.3989 5.3980 5.5464 5.7192
7 —4 % 3 1 54295 5.4295 5.4382 5.4383 5.8276 5.9923
8 3 2 3 1 63711 6.3711 6.3725 6.3725 6.4439 6.5932
9 -5 % 4 1 not used

10 -2 2 1 2 6.7578 6.7578 6.7604 6.7605 6.8985 7.0381
11 1 3 1 2 70020 7.0020 7.0036 7.0036 7.0872 7.2232
12 4 I 41 not used

13 -6 251 not used

14 -3 3 2 2 not used

15 2 2 2 2 84076 8.4076 8.4088 8.4088 8.4736 8.5877
16 —1 2 0 3 85776 8.5776 8.5792 8.5792 8.6678 8.7793

2.2.2 Anti-quarks

Quarks time-evolve according to a frequency given by their energy, whereas antiquarks

time-evolve with a negative frequency,

t 8¢°(r, t)/0t = —W, ¢(r, ).

(2.38)
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A charge conjugate wave function is formed by having the charge conjugation operator
act on a time dependent quark wave function. This is given by

: . —g(r) o2 Y=
¢(r) = (¢¢)%(r) = “(r)) = , 2.39
(6) = (@2)°(F) = 7 (¢2(r)) (,- o yf,) (239)
where
Vit =3 <lp—mim|l}jp> o (1) "y "y, (2.40)
and
oy X™ = i(=1)""12 . (2.41)
Thus
o Yo =i(=1"V2Y <lp—mim|lLju> Yoy ™. (2.42)
Replacing m by ~m in the sum, we use[46]
<l —p-mim|l}ju>=(-1)*""<lpytml —m| I3jp>. (2.43)
The result of this is that
o Vi £ =ai(—1)ryoe, (2.44)

Since f(r) and g(r) are defined so that they are real, this makes the conjugate wave

function

(a£)°(F) = (1)t ( oAt ) : (2.45)

Up to a phase, the charge conjugate antiquark wave functions may be formed by
replacing —:f for g, —ig for f, —x for x and —u for x in the quark wave functions.
The opposite time evolution makes the radial equations for the antiquark become

B 4 L) 4 @y 4 () = m) ) =0,
PO 4 L2 () — (W4 () +-) () =0. (246

Thus the radial functions have the same regular solutions found previously, but with
the opposite sign for w = W R. (S(r) also changes sign, but it is zero inside the bag,
so this has no effect.)
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2.2.8 Quark and antiquark currents

If we let ¢2(z) and ¢;(z) represent wave functions of either quark or antiquark of type
1 and 2 at space-time point z, the color current is

(@) = Bl () (247)

The wave functions labeled 1 and 2 in the current may have different values of «, g,
radial mode z,, and color, and may be any combination of quark or antiquark, but
the initial and final flavor remains the same. Two currents and a gluon propagator
are integrated (over all space-time locations for each vertex) to calculate an OGE

interactions.

2.3 Confined gluons in Coulomb gauge

The gluon propagator couples one quark current at the space-time point z to another
current at the space-time point z’. The gluon propagator in Coulomb gauge[2] may
be separated into longitudinal and transverse parts.

2.3.1 Longitudinal gluon modes

The longitudinal propagator couples the two points at the same instant in time.
D (z,2') = §(t — ) bus G(r, '), (2.48)

where a and b are octet color indices. G(r,r') must be symmetrical in r and r.
The Green’s function satisfies —V2G(r,r’) = &3(r,r’) inside the sphere, and the
inhomogeneous Neumann boundary condition is

—7-VG(r,r) = A™! (2.49)

for r on the surface and r’ inside the bag, where # is normal to the surface and A is the
surface area of the bag. These conditions specify G(r,r’) up to an additive constant.
(Adding a constant would not change the results for a color singlet hadron[2].) For a
fixed spherical bag of radius R, the instantaneous confined Green’s function is

=1

. !
G(r,r') = (4r)! l:l" _1 7 + Z I;*-Tl (%) Pi(cos 0)] , (2.50)
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where 6 is the angle subtended by r and r’ as viewed from the origin.
The multipole expansion for the Green’s function inside the bag is

G(r,r') = LYoo (@) Yeol) +
r>

) { 1‘[ rr'
> ¥ (Ut [,,; st (E)] Yiom(@) Yin(®),  (251)

=1 m=-1

where the first term is the monopole part, and the I-sum is over higher multipoles. We
include terms through ! = 4 (hexadecapole) in our calculations. The monopole terms
give the largest contribution, with contributions from higher multipoles decreasing

rapidly with [.

2.3.2 Transverse gluon modes

The transverse part of the gluon propagator is calculated by doing a mode sum
over transverse quantum modes. The solution for magnetic and electric modes in a
fixed rigid spherical cavity may be expressed in terms of a scalar field satisfying the
Hembholtz wave equation[2, 100},

V3" + k@7 = 0. (2.52)
Solutions of this scalar equation are given by
it () = N7 ji(kr) Yim (). (2.53)
The TE modes are given by
kim(F) = V x (r OF1,), (2.54)
which satisfies the boundary condition
-;7[ r ji(kr) ]mn =0. (2.55)
The TM modes are given by

Apm(r) =V x [V x (r 874)]. (2.56)
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with boundary condition
Ji(kr)le=r = 0. (2.57)

The normalization constant N™ for r representing TE or TM is chosen so that
R
/0 PriAL P =1. (2.58)

The transverse Feynman propagator is

Dy (z,2") = 6as Y (2k)71 (2.59)

vkim

AL () ALz (¥) e 5-Y) fort > ¢/
A () AL () e =8 for t < ¢/

To evaluate the TE and TM gluon vector potentials, we express r¢ in terms of
vector spherical harmonics, using the formula[102]

[+1

tYi, = T 1Y1 wim(0,0) + Yl -1 m(0, ). (2.60)
The vector spherical harmonics are defined by
Yrim(0,6) =) <imlqll JM > Y™(6, d)eq, (2.61)
m.q

where the spherical unit vectors are defined in terms of Cartesian unit vectors,
e = -%(e, +1e;), e =e;, and e_;= %(e, —tey). (2.62)
The vector spherical harmonics are orthonormal in J, I, and M, with
L Y5000 6)Y 01100, 9) in(6) dB i = SiGSrere. (263)

We use the curl formulae[102]

V x (8() Yumn(0,9) =i + 22y g

V x ((I>(r) Y“m(g ¢)) =

l [+1 l+1
2l+1Yll+lm+l(_ - ) @ T Yu-lm,

z(——-

[+1

VX(Q(T)Yll—Im(03¢))=i($- : )@ A+1

Yiim. (2.64)
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and the spherical Bessel function recursion relation[56]

22() = gl Lita() = (U + Dia(2)l (265)
to substitute these in the expressions for the TE and TM gluon vector potential.
After lengthy but straight-forward simplification, the TE modes are found to
be[103, 4]
Afin(r) = =N ji(kr) Y VIU+1)Y 1im, (2.66)

with k for TE modes determined by the boundary condltxon of equation 2.54. The
TM modes are

l+1 I+1
Afm(r) = N™ k1 ‘[21:_ 1 (\/ -*I- Ji1(kr) Yiam -Jl+1(k7')Yu+1m) y (2.67)

with k for TM modes given by equation 2.57. The TE and TM radial equations
have discrete solutions rising without limit. We calculate the transverse modes by
doing a sum over the first five gluon eigenmodes in the cavity. This typically gives
convergence to better than one part in a thousand. With the transverse quark-
gluon vertex interaction given by j - AT, the transverse one-gluon exchange energy
contribution to the ground state ¢ in perturbation theory is

< n|Hrl¢ > . (2.68)

1

The intermediate states |n > include each of the multi-quark states up to our energy
cutoff plus one TE or TM gluon. This sum includes forward and backward propagat-
ing gluons, up to the fifth radial gluon mode. The interaction between two quarks
(and/or antiquarks) p and g, involving states 1, 2, 3, and 4 (with , j spatial indices)
is

A‘rt t(z)A;J(zl) + Ar t(z)A‘fJ ‘(zl)

wi+ k —wy w3+ k —wy

) T 34(3')
(2.69)

AET, = 9.,/ dz dz’]c12( )Z ab(

2.8.83 Color and spin sums

The longitudinal and transverse energy shift expressions include a sum over octet
colors a of < A\ J\; >, since each current includes a A matrix. Letting ¢, be the color
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of particle ¢n,, the color sum is

4/3 ifC4=C3 = C=q,
—2/3 if = = ¢,

< AafAe >=< e]Aales >< ey >= / rasae *a=a (2.70)
2 fog=c¢q # a=c,

0 otherwise.

Each current also carries angular momentum, resulting in a spin sum for each
OGE interaction. For transitions between J = 1/2 states, the spin sum is just the
expectation of < oi|o; >. For higher angular momenta, we construct a (2J + 1) by
(2J' + 1) table for each gluon multipole in the 7 - A interaction. We calculate these
spin sum tables by explicitly doing the angular integrals for each J, value for initial
and final (anti-)quark with each multipole of the vector potential. We then repeat
the calculations with the complex conjugate vector potential. One table entry is used
for each quark-gluon vertex in calculating the OGE interaction. Our approach gives
results equivalent to the multipole transition matrix (MTM) approach of Wroldsen
and Myhrer[5].

We compare our energy shift, AE, from our mode sums to the E*> — B? energies
calculated by Wroldsen and Myhrer{5], as corrected by Umino and Myhrer[83]. We
get the same results for the OGE interactions as they do, although our calculational
approach is quite different. We also agree with the vertex integrals calculated by
Close and Monaghan([4], where they used the mode sum approach that we adopt.



Chapter 3

MULTI-QUARK STATES

3.1 Introduction

We build our many-body basis states from the product of independent single con-
fined quark and antiquark wave functions. The OGE interaction involves pair-wise
coupling of quark and/or antiquark currents, as discussed in the previous chapter.
This includes a sum over time orderings of the two vertices in the interaction. The
many-body OGE interaction between basis states involves the sum over all pairings
of currents, with one current taken from each basis state.

There are several approximations implicit in this procedure. The interaction in
principle should act to- distort the single particle wave functions. It is also an ap-
proximation to take the many-body interaction as a sum of two-body interactions.
(Perturbative QCD includes three and four gluon vertices which are ignored in the
OGE approximation.) The OGE interaction assumes only one gluon is in the bag at
any time, which truncates the full theory, as does the assumption of an energy cutoff,
and also the use of a finite number of gluon modes in the mode sum.

If two or more gluons were included as part of the basis, they could combine as a
color singlet and would in principle be inseparable from the confinement mechanism
we already have assumed by imposing the bag boundary conditions. There is no
double counting if single gluons are allowed, since gluons carry octet color, and the
bag boundary condition is colorless. Our assumption that basis states are made only
of quarks and antiquarks is consistent with having at most one gluon in the bag at
a time, but it further restricts the theory. Before we turn on the gluon interaction,
the quark energies are given by the Dirac equation, with Hp given by Eq. 2.16.
The interaction of gluons with quarks is given by H; = j - A. This includes gluon
scattering off quarks, quark pair creation, and pair annihilation diagrams. Beginning
with a three-quark state with quantum numbers of a baryon, we have a Fock space
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that only includes states with odd numbers of particles.

Y = q9q + 99997 + 9999997 - - - - (3.1)

The OGE interaction links the three-particle sector to itself and with the five-particle
sector, but not directly to the seven-particle sector.

The Goldstone formula[104] gives the ground-state energy shift of a many body
system. He showed that disconnected diagrams cancel to all orders, and that the
energy shift is given by the sum over connected diagrams,

. = 1 ~\"
E - EO = (QOIH[ Z (HHI) IQO)connectedv (3'2)
0

n=0 — Hp
where Hy and H; are time-independent operators in the Schrodinger representation,
and Eg is the unperturbed multi-quark ground state energy. The even powers of
H; corresponding to odd n are included in diagonalization of the OGE interaction.
However, odd powers of H; =7 - A (for n even) lead to no overlap with the ground
state if the ground state is not allowed to contain gluons as well as quarks.

Our multi-quark states are like shell-model states built from localized single par-
ticle wave functions. This gives rise to problems with spurious center-of-mass energy
and spurious states in the excitation spectrum. It is difficult to provide a proper
correction for the MIT bag center-of-mass energy, as the expectation (5%) in the bag
is infinite since the upper and lower components of the Dirac equation are nonzero
just inside the bag boundary, and zero outside. Also, the center-of-mass operator
is not tractable in a relativistic theory[8]. Approximate methods using momentum
projection and boosts have been used quite successfully in soliton bag models[8, 65],
where the boundé.ry conditions are not as abrupt as with the MIT model.

In 1980, Donoghue and Johnson[125] introduced an “improved static bag model”
which identifies a specific form of momentum-space wave packet, associated with a
superposition of bag states, which allows first order center-of-mass corrections to be
made for the MIT model. The corrections were most significant in lowering the mass
of the bag model pion, but are smaller for the heavier baryons. To derive the wave
packet, they started with the vacuum to 7 matrix element,

(Ola(z)r"ysd(z)|7(p)) = iV2Fep*e™~. (3.3)
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They identified the unknown bag model pion wave packet ¢(p) as responsible for (the
time component of) this matrix element.

Ol d)in(e)s = i< [ Epe®=4(p). (34)
Using static bag wave functions, the left hand side is
(Ola(z}r°15d(2)Im(p)) s = iVE[u*(z) - P(z))], (3.5)

where u(z) and I(z) represent the upper and lower wave function components respec-

tively. Thus

$(p 2f/ Grpe Wi(2) - P(a)), (3.6)

where F is determined by normalization of ¢(p),
&p 3 2
-2w—p(27r) lé(p)[* = 1. 3.7)

In the limit m, — 0, Fr = 0.501/R. With a pion bag radius R, = 0.7 fm, this would
make F = 141 MeV, reasonably close to the experimental values(1] of fr+ = 130.7
MeV and f,o = 119 MeV.

The wave packet ¢(p) has the desirable feature of no discontinuity at the boundary,
since u*(z) —{*(z) — 0 as the bag surface is approached, making the (p?) expectation
finite. This expression for ¢(p) was also utilized for baryons, with corrections to da,
#, and (r?) calculated. However, we question the justification for extension of this
form of wave packet to the baryons, other than the convenience of making a finite (p?)
expectation, as the baryons are not linked to the vacuum by pseudo-scalar matrix
elements. However, in Ch. 6, we will discuss approximate corrections to observables
this model would imply if this form of wave packet was utilized.

Our goal is to diagonalize the OGE interaction among all many-body basis states
with quantum numbers of the proton, below some energy cutoff. The maximum
cutoff we consider is 1.5 GeV above the gqq ground state (where all quarks are in
the s1/2 state). Diagonalization effectively includes all iterations of the interaction.
The lowest eigenvalue corresponds to the shifted ground state energy in the presence
of the interaction. The associated eigenvector gives the configuration mixing. If we
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interpret Hy in the Goldstone formula to be the full OGE interaction, then the sum
in the Goldstone formula is equivalent to diagonalizing the matrix.

We want to construct orthonormal many-body basis states. To do this, we first
classify states by their symmetries. We use Young tableaux to construct template
wave functions corresponding to each symmetry type. In the gqq sector, each sym-
metry corresponds to a single template basis state. But in the ggqqq sector, up to
three distinct template basis states are possible for each symmetry. The template
basis states are orthogonalized exactly using a Grm-SCMdt approach. These
orthonormal templates for the different symmetry types are utilized to rapidly con-
struct all orthonormal quark (and antiquark) basis states. This is done by finding
the symmetry type of each multi-particle quark configuration, and plugging these
configurations into the corresponding types of templates for the wave functions to
generate the orthonormal states.

3.1.1 States below cutoff

To diagonalize the OGE interaction, we construct a complete set of orthonormal
states which preserves the nucleon quantum numbers, subject to our energy cutoff.
The cutoff determines the states we allow in our basis. We start with the nucleon,
and allow all multi-quark states with the nucleon quantum numbers up to the energy
of our cutoff. For other baryons, these same states (with one quark flavor and mass
substituted for another) are included, even though this makes a small increase in the
energy of the cutoff for these particles. The states must be color singlet with overall
Fermionic anti-symmetry. The z-components of angular momentum (p) of the quarks
forming each basis state must add to 1/2 and be aligned with the ground state nucleon
spin, and the parity of the state must be even. The parity of single-quark states is
(=1)}, so a gqq state must have an even number of odd-l excitations. An antiquark
has odd intrinsic parity, so a gqqqq state requires an odd number of odd-1 excitations
if it is to mix with the nucleon ground state. Quark flavors are conserved—pair
creation or annihilation must involve quark and antiquark of the same flavor. The
energy cutoff constrains the maximum quark excitation in the qgq sector to be far2
Radial excitations up to n = 3 are allowed for s, /2 quarks, and n = 2 excitations
-for p3/2, p1/2, and d3/; quarks with this cutoff. In the ggqqg sector, a single quark or
antiquark must be excited to a ps/; or py/; level to conserve parity, and these are the



38

highest excitations allowed by the cutoff.

Considering these constraints, there are 467 ways that three quark energies, u’s
and flavors may be combined to form gqq (non-color) basis configurations below the
1.5 GeV cutoff. This includes 442 cases where all three quarks have distinct non-
color quantum numbers (type 1), and 25 cases where two of the three quarks have
the same quantum numbers, except for color (type 2). In addition, there are 168
non-color basis configurations in the ggqqg sector. Of these, there are 69 cases where
all four quarks are distinct (type 3), 86 cases where two quarks are identical except for
color (type 4), 8 cases where three quarks are identical except for color (type 5), and
5 cases where there are two pairs of identical quarks, except for color (type 6). The
configurations which contribute significantly to the neutron ground state are listed in
Tables A.1-A.3, along with the energies of each configuration in units of 1 /R = 200
MeV. (This table is based on quark masses of m, =0, my = 5 MeV, and m, = 279
MeV.) _

We work in the m- (or u)-representation, and our basis states can also be used
to construct states with angular momentum (J) and isospin (I) different from the
nucleon. Thus the H matrix is in principle reducible to block diagonal form. However,
the eigenvectors found by diagonalizing the matrix do not mix states of different J or
L. Thus when we diagonalize the Hamiltonian acting on our basis states, some of the
eigenvectors correspond to nucleons, and some to A states. This allows us to easily
determine the A — N splitting. The A energy found by this method is not quite
correct as it exists in a bag with a bag radius R optimized for the nucleon rather
than the A. We will introduce an R-dependent linear correction to the A energy
to achieve a better estimate of the A — N splitting. To calculate the correction, we
calculate and diagonalize the matrix elements for two values of R. This allows us to
interpolate to a new radius for the A where it is in equilibrium with the same bag
constant B as used for the nucleon.

3.1.2 Symmetries

Quarks, being Fermions, must be antisymmetric under interchange. To form a baryon
from quarks (and antiquarks) as an antisymmetric singlet state, the color symmetry
and the symmetry of all other quantum numbers combined must correspond to conju-
gate Young diagrams[105]. We will make use of quite rigorous experimental evidence
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" that hadrons are only found as color singlets.

We first examine the case of three-quark configurations. There is only one inde-
pendent way to arrange three colors in an SU(3) singlet. The antisymmetric singlet is
represented by a Young diagram with three boxes arranged vertically. If we arrange
the colors in a definite order, introducing a minus sign for each color interchange, the
six antisymmetric terms collapse to a single normal-ordered term.

The Young diagram conjugate to three vertical boxes has three boxes arranged
horizontally. The other quantum numbers must combine symmetrically, correspond-
ing to the three horizontal boxes. These non-color quantum numbers are specified
in our spherically symmetric system by flavor, energy level and the z-component of
angular momentum, g, for each quark and/or antiquark. The energy level includes
information on the radial excitation, n, the Dirac quantum number, K, and it also

depends on the quark mass and bag radius.

The non-color symmetrization involves fewer configurations if more than one quark
has identical non-color quantum numbers. For example, with three objects, the sym-
metric combination of different objects involves six terms. But if two or three objects
are identical, the symmetric combination has three or one term respectively. Thus
we group quark configurations into symmetry types based on the number of identical
quarks (without respect to color).

We generate the wave functions symbolically by placing three different symbols to
represent colors into the color Young diagram, then expand by symmetrizing between
rows, followed by antisymmetrization on columns. The same type of procedure is
followed for the non-color variables, using as many symbols as there are particles with
different non-color quantum numbers. Then we take the direct product of color and
non-color symmetries to find the wave function. Many terms cancel and combine when
we bring all the terms into normal order. This procedure is repeated for all standard
and non-standard arrangements of variables in the Young diagram boxes. Many of
the states formed by this procedure are duplicates, but soon one finds states that
span the whole space for each choice of non-color symmetries. We then use Gramm-
Schmidt orthogonalization to generate orthonormal template states. By replacing
the template variables with the actual quark quantum numbers corresponding to
configurations of the same symmetry type, we generate all the orthonormal quark

states.
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In the gqq sector, a single template orthonormal state is found for each possible
symmetry type of non-color quantum numbers. For example, if all three quarks
have different quantum numbers, the template may be written as the normalized
symmetrization of variables (a,b,c). As described above, these templates are derived
by taking the direct product of color and non-color symmetries for each symmetry
type—all three quarks having different non-color quantum numbers, or two quarks
the same. The expansion is simplified by normal ordering in color, with a minus sign
for each quark exchange. For three quarks with distinct non-color quantum numbers
(type 1), the template state includes six normal-ordered configurations. If two quarks
have identical non-color quantum numbers (type 2), the template state is built from
three normal-ordered configurations. Only one configuration would describe the state
of three quarks with identical non-color quantum numbers. However, this is not a
possibility for hadrons where two quark flavors contribute to the wave function, as in

the case of the nucleon.

By similar construction, four quarks may be combined with an antiquark to form
a gqqqq color singlet, with a conjugate symmetry for the non-color quantum numbers.
As before, each quark color is mapped to a single box. The anti-color is expressed in
the color space as two boxes arranged vertically representing antisymmetrization of
the two colors complementary to the anti-color. These six boxes may be arranged as
a color singlet only by forming boxes two columns wide by three boxes high. Three
standard arrangements for this color Young diagram may be formed by numbering the
boxes in standard order. If this was the only wave function symmetry, there would
be 3% = 9 ways[106] to construct the color wave function for four quarks and one
antiquark. However, the non-color symmetries place constraints on the form of the
wave function. We must take the direct product of color and non-color symmetries
to define the possible wave functions, and we find there are 1-3 wave functions for
each qgqqq configuration, depending on symmetry type.

For ¢qqqq configurations, the conjugate Young diagram for non-color symmetries
is given by boxes three wide by two high. Taking the direct product of color and non-
color symmetries, the number of orthonormal states that are generated depends on
the symmetry type of the non-color quantum numbers. Three template orthonormal
states may be formed if all four quarks are distinct in the non-color quantum num-
bers (type 3). These three states are built from 36 normal-ordered configurations.
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There are two template orthonormal states when two of the four quarks are identical
(type 4). These two states are built from 15 normal-ordered configurations. One
template state is built from three normal-ordered configurations if three of the four
quarks are identical (type 5). If there are two pairs of quarks with identical non-color
quantum numbers (type 6), a single template state is built from six normal-ordered
configurations. This exhausts the possibilities consistent with the Pauli exclusion
principle.

Normal ordering still involves a sign change for every quark exchange. The color,
being anti-symmetric, introduces a sign change for interchanges between quarks of
different color, but not for quarks of the same color. But the conjugate non-color
symmetry has an anti-symmetric column for every symmetric color row representing
quarks of the same color. This brings in the sign changes where necessary to make
all quarks odd under interchange.

Applying the templates described above to the list of ¢gqq and ¢q99q non-color
configurations, we find a total of 859 orthonormal states involving 6555 normal or-
dered configurations within the Fock space truncated 1.5 GeV above the qqq ground

state.



Chapter 4

NUCLEON CONFIGURATION MIXING AND GROUND
STATE ENERGIES

We diagonalize the matrix of OGE interactions between ortho-normal basis states
to calculate the non-perturbative ground-state energy and configuration mixing for
the proton and neutron. We do this for various choices of model parameters, beginning
with the first parameter set of DeGrand et ¢l.[54], who made several fits to the
hadron mass spectra using the MIT bag model. We examine the effect of varying the
quark masses, the bag radii, the self-energy prescription, and the energy cutoff, which
determines the number of basis states in our matrix. We also examine other parameter
cuts, where we vary the maximum gluon multipole in the OGE interactions, and we
examine the errors in truncating the mode sum after different numbers of terms.

4.1 Assembly of the OGE interaction matrix

Much of our computation is done symbolically so we can verify that our OGE inter-
actions (which include color and spin sums) are coming out correctly, and to allow for
substitution of interactions using different parameters without having to start from
the beginning. We also use our symbolic intermediate results as a starting point to
calculate ground state properties of other baryons besides the nucleons. To do this,
we substitute one quark flavor for another in the symbolic expressions to calculate
results for the p, n, £+, ¥~, =% and =~. All these particles are built from two quarks
of one flavor, and a third quark of a different flavor. These results will be presented in
a subsequent chapter. We do not calculate mass and mixing for £° and A particles in
this study, as their wave functions have different structures. They contain u, d, and s
flavors, so they would require different sets of basis states patterned only after types
1, 3, and 4 template wave functions, where at most two quarks could have identical
non-color quantum numbers in the ¢qqqq sector.

Although our matrix is ultimately formed from OGE matrix elements between or-
thonormal color-singlet states, it is expedient to first calculate the OGE interactions
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between all normal-ordered (non-color-singlet) multi-quark configurations. This elim-
inates redundant calculations where the same multi-quark configuration contribute
to as many as three different orthonormal states. After finding all multi-quark con-
figurations, we organize them by type. (The most important configurations are listed
in Tables A.1 - A.3). We only have to calculate the normal ordered configurations
that are in the union of configurations making up the orthonormal quark template
states of each type. For example, each type 5 gqqqg configuration forms three or-
thonormal color-singlet states, built respectively from 30, 30, and 18 normal-ordered
configurations. Taking the union of these configurations, there are 36 normal-ordered
configurations to calculate. These 36 configurations exhaust all possible color assign-
ments of four quarks (with distinct non-color quantum numbers) and one antiquark
to make configurations with no net color. (In this case, all possible assignments are
trivially consistent with the Pauli principle). We label each antiquark by the two
colors complementary to its anti-color, just as we used the two color representation
for an anti-color when considering the Young symmetries. Each gqqqg configuration
fills a 3 by 2 table (two positions for each of three colors), where the two positions
labeling the antiquark must have different colors. The configurations are arranged
in normal order by sorting the six positions into normal color order, then by sorting
the entries within each color, introducing a minus sign for every quark exchange. All
configurations where two quarks have the same quantum numbers including color are

automatically excluded.

We represent each OGE interaction between two configurations by four symbols, a
color factor, and a sign. The first symbol is a character string representing the gluon
parity (combining information about the gluon type and multipole), the first quark’s
flavor and time path, along with its initial and final energy levels, and the second
quark’s flavor and time path, with its initial and final energy levels. The time path
information tells if the gluon couples to a quark, an antiquark, or creates or destroys
a pair. The second and third symbols represent spin-sum values, which depend on
the gluon angular momentum and the angular momentum changes for the two quark
currents, respectively. Each spin sum symbol is a character string indicating emission
or absorption of the gluon (which depends on the time ordering), the particle/anti-
particle character of initial and final quark, the initial and final angular momenta of
the quark current, and the initial and final z-components (us) of angular momentum.



The fourth symbol and sign represent the normal-ordered multi-quark configuration
which results from normal ordering the quarks after two of them are subjected to the
interaction. This symbol includes the type of non-color configuration (ranging from
1-5), the number of the non-color multi-quark configuration within that type (ranging
from 1-442), and the number of the color configuration for that type (ranging from
1-36). Finally, the color sum is determined by the initial and final colors of the two
quark currents. It is calculated by summing over the eight A matrices sandwiched
between these colors, as given in Eq. 2.70.
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4/3 . -4/3 = ~2/3% + /5
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Figure 4.1: Color sums for quark-quark and quark-antiquark OGE interactions

Color interactions involving antiquarks can be calculated in several equivalent
ways. In the anti-color representation, the color factors of Eq. 2.70 can be used for
each vertex except that a minus sign is introduced at each anti-particle vertex[98].
This is like the substitution e — —e used when calculating a vertex involving a
positron rather than an electron in QED. Equivalent results are achieved by sum-
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ming over all interactions involving the two colors complementary to the anti-color,
using Eq. 2.70 without the minus sign. We use a sign convention where the two
complementary colors which are substituted for the anti-color are arranged in cyclic
order before normal ordering (which may introduce a minus sign). See Figure 4.1.
This allows simple calculation of interactions in the gqqqg sector where quarks and
antiquarks are normal ordered into six slots, two slots for each color. The antiquark
takes up two slots of different color, with each entry treated as an interacting color.
However, interactions between the two antiquark entries are self-interactions, which
we calculate separately.

We next calculate numerical values for the vertex integrals, spin sums, and Coulomb
Green’s functions integrated between quark currents. We do the angular integrations
by expanding the quark currents and gluon vector potentials in spherical harmonics.
We use standard expressions[102] for the angular integrals over three Yi,,s, evaluating
them in terms of three-j symbols. For each multipole and time ordering of the TE
and TM vector potential, we do the angular integrals, substituting all values for
(the z-component of angular momentum) for each wave function contributing to the
currents. We extract the spin sum tables, indexed by the angular momenta, u's and
time orderings from the ratio of these vertex integrals integrated over the angular
variables. This reduces the number of numerical radial integrals required for different
combinations of u’s that enter into the two currents for each OGE interaction. In
doing the numerical radial part of the vertex integrals, we set z =1/2, and use the
spin-sum factors to account for the angular-momentum changes. '

To calculate the radial integrals, we first find the eigenvalues and normalizations
for the gluons (Eqs. 2.58, 2.57, and 2.54) and quark modes (Eqgs. 2.37, 2.36, and
2.34) for all combinations of quark mass, bag radius, and allowed x. These are
substituted in the equations for the currents and vector potentials to calculate the
TM and TE [j - A vertex integrals and in the integrals over the currents with the
Coulomb propagator, using Eqgs. 2.48 and 2.51. The Coulomb terms are four-point
functions, so require iteration through all combinations of the wave functions on four
legs consistent with conservation of the quantum numbers, as well as iteration over
mass combinations and Coulomb multipoles. The vertex integrals require less work
as each one involves only two wave functions, TE or TM multipoles from 1-4, and a
single quark mass for each flavor.
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These pieces are combined and substituted for each symbolic expression in the
calculation of the OGE interaction between quark configurations. The symbolic ex-
pressions are used repeatedly for each multipole order, but have different entries in
each case. If the parity changes between initial and final wave functions in each quark
current, the vertex symbol represents a TM mode sum of gluons if the multipole is
odd, or a TE mode sum if the multipole is even (and vise versa if the parity does
not change). Given a multipole, the spin sums are looked up from tables we cal-
culated for each gluon time ordering, indexed by the u’s of initial and final quarks
for each current. There are different spin sum tables for the different graphs having
different time ordering of the quark lines. The spin sums multiply the vertex element
symbol which also depends on time ordering through the energy denominators. For
each multipole, the vertex element symbol equals a Coulomb term added to a sum
(over five gluon modes) of the product of two vertex integrals, each with different en-
ergy denominators. This is done separately for forward and backward time-ordered
graphs. Energies in the denominators are measured from the gqq ground state energy.
(See Appendix C for an example of how matrix elements are calculated.) Symbols
representing the final configurations are utilized to avoid huge sparse matrices, as
there are 6555 normal ordered configurations. For each projection of a configuration
onto a final color-singlet state, these symbols are assigned the weights derived from
generating the orthonormal template wave functions. Then weighted combinations of
initial configurations allow generation of all OGE interactions between orthonormal
color-singlet states.

The four graphs corresponding to interactions between quarks or antiquarks, pair
creation, pair annihilation, and annihilation followed by creation are combined one
multipole at a time. This is done so that we can examine the effect of truncating as
a function of multipole. The multipoles are then summed together. The self-energy
(using one of several prescriptions) is added to the energy of each color-singlet state
for each diagonal matrix element. Finally this matrix is diagonalized to find the
energies and configuration mixing of the lowest states.

4.2 Model assumptions

We examine the sensitivity of our calculations to different model assumptions. The
model parameters are the bag constant B, strong coupling constant a;,, the coefficient
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Zg of the Casimir term Ec = Zy/R (we assume a positive sign for Z,), and the quark
masses. We will use m, = 0, mqy = 5 MeV, and m, = 279 MeV or 300 MeV.
We fit the bag parameters to reproduce experimental values for the neutron mass
and the A — N splitting for several values of the bag constant and strange quark
mass. This allows us to see what range of predictions are possible from the MIT bag
model. We predict masses of other ground and excited state octet baryons. We also
look at predictions for magnetic moments, g4/gv, charge radius, and other particle
properties. The configuration mixing we find also has implications for observables
that have not been measured. We make a fit to the Casimir energy term, which
turns out to be positive rather than negative as in the MIT model. Thus we agree
with theoretical calculations{111, 116, 117] for the sign, but not the magnitude, of the
Casimir term, as discussed below. These calculations include a quadratic divergence
that can only be canceled by a contact term of the form ~ FR, where F is a constant
and R is the bag radius. We make a second fit to the hadron mass spectrum assuming
Zo fixed at the theoretical (positive) value for the Casimir energy, allowing the new
parameter F to vary. This turns out to be unsuccessful, as a negative value for B is
required, making the bag unstable.

4.2.1 Quark masses, bag constant, and self-energy prescriptions

We diagonalize the OGE interaction with several choices for quark masses, bag radii
and self-energy prescriptions, as well as with different energy cutoffs. By doing cal-
culations for several bag radii, we can interpolate to a suitable bag radius for each
particle to make them all consistent with a given value of B. Our first parameter set
is similar to the parameters found in the first fit to hadron masses by DeGrand et
al.[54], with m, = 0, mq = 5 MeV (rather than DeGrand’s m; = 0), m, = 279 MeV,
and B'/4=145 MeV (which makes the nucleon bag radius R=.005 MeV~1). We start
with their value for the strong coupling, a, = 2.2, which they found gave the correct
A — N splitting. However, they only included s;/; gqq quark states in their basis.
When we truncate our Fock space to include only s, /2 999 quark states, our results
agree with the A — N splitting they found. However, as we raise the cutoff to include
more states in our basis, we find the A — N splitting increases rapidly at first, then
tends to level off as the energy cutoff is raised to 1.5 GeV above the ggq ground state.
The A — N splitting is increased by about 50%. The value is somewhat uncertain
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because of dependence on precisely where the energy cut is made (See figure 4.2).

The self-energy would be infinite if all quark and gluon modes were included in
the self-energy diagrams. Traditionally[54, 59], MIT calculations have only included
a small subset of these diagrams. These previous papers included only the self-energy
diagrams necessary to satisfy the MIT boundary conditions (Coulomb contributions
to make the electric field tangential at the bag surface), and then only diagrams where
the quark remained in the same state. It was argued that a substantial fraction of the
self-energy was absorbed in renormalization of the quark masses. However, DeGrand
et al. stated that a more consistent procedure would be to calculate the whole self-
energy and perform the required renormalization. We call including only the diagrams
necessary to meet the boundary conditions the minimal MIT prescription. We find
that with this prescription, the ground-state energy does not appear to converge
as the energy cutoff is raised and more states are added to the bag. Thus we are
motivated to consider a more self-consistent approach to the self-energy. We repeat
our calculations including a self-energy constructed from all vertices used in the OGE
diagrams up to a given cutoff. We find that this does not solve the problem with
convergence of the ground-state energy. It does reduce the size of the (positive)
Casimir term toward the theoretical value, and reduces the value for m,, but has
little effect on the fits to the hadron mass spectrum.

4-2.2 Adjustment of a, to maintain A — N splitting

With three valence s;/, quarks, the OGE interaction requires a large value for the
strong coupling constant, a, = 2.2, to account for the A — N splitting. By including
more states in our basis, we have to reduce the value of the strong coupling constant
to keep the A — N splitting at the proper value. We find a value for a, = 1.3636
with the cutoff at 1.5 GeV above the gqq ground state gives the same splitting as
a, = 2.2 when the cutoff only includes the gqq s,/; ground state. The value of the
A — N splitting is found to be 308 MeV before making a correction for bag radius of
the A. The A and N eigenvalues are found by matrix diagonalization with elements
calculated for several bag radii, R=0.005 MeV-! and R=0.0045 MeV-!. The nucleon
and A require different bag radii to be consistent with a given bag constant B. The
higher energy of the A relative to the nucleon requires a larger bag (which lowers
the configuration mixing energy somewhat) for the bag pressure to be in equilibrium
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with the field pressure. As discussed in Ch. 5, with the neutron radius at R, =
0.005 MeV~! = 0.987 fm, the A° radius is R0 = 0.0055 MeV~! = 1.082 fm. We use
the asymptotic dependence of the energy on bag radius to interpolate to the proper
radius for the A, (and all other baryons).

DeGrand et al. (in their first fit to hadron masses and other properties), found a A
radius of R=0.00548 MeV~! compared to the nucleon radius of R=.005 MeV~!. The
larger radius reduces the A mass (proportional to 1/R for massless u and d quarks).
Their masses for the proton and A were 938 MeV and 1236 MeV respectively, making
a 298 MeV splitting. We find almost identical results to DeGrand et al. for the A
corrected to have the same bag constant as the nucleon. When the nucleon radius
is R=0.005 MeV~!, the bag constant is B'/4 =145.8 MeV. Keeping B constant, we
find the A radius is R=0.00547 MeV ™!, almost identical to DeGrand et al.’s result.
Experimentally(1], the proton and neutron masses are 938.27 MeV and 939.56 MeV
respectively, and the A mass is 1230 to 1234 MeV (x1232 MeV). We have adjusted
@, until our radius-adjusted masses match the experimental A — N splitting.

The trend toward smaller values of the strong coupling constant is good. For
three valence (s;/;) quarks, a value of a, = 2.2 is needed to reproduce the A — N
splitting. By the same measure, a value of a, ~ 1.4 is needed at our maximum cutoff.
(We choose quite precise values for a, in matching the A — N splitting for our series
of parameter fits so that we have a consistent basis for comparison between them.
However, as noted before, there is considerable uncertainty in the proper value for
@, based on the variation we see in the splitting as we make successive cutoffs.) The
value of a, depends on the energy scale u of interactions, running asymptotically
as{123]

_ar [ 28 in[ln(u/A%] . (In’[ln(s?/A%)]
@elk) = G A [1 A2 la(ui A7) ”’( I (4?/A%) )] (1)

where 8o = 11 — 2ny, B = 51 — 1—;’-n £, with ny the number of quark flavors below the
energy scale u.

Numerous measurements({123] have been made of a, at different scales with a, (M. z)
0.117 4 0.005. Using terms through second order in inverse powers of In(x), we
run down from measurements at slightly less than 2 GeV to the ~ 1 GeV scale
of the nucleon, using three quark flavors. From this we arrive at an estimate of
as(1 GeV) ~ 0.5 & .08. The value for a, we determined based on matching the
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A — N splitting is consistent with not having reached convergence for the ground
state energy. Based on the trend of figure 4.3, the value needed for a, in the MIT
bag model would drop further if higher values for the cutoff were chosen. Another
factor that contributes to the larger-than-measured value for a, in our model is that
we attribute all the A — N splitting to OGE exchange effects, whereas part of the
splitting could arise from interactions of the nucleons with a pion cloud and from
interactions with multiple gluons that we have not included in our model.

4.2.83 Confinement in the spherical bag and the MIT Casimir term

The process of confinement of the quarks and gluons to a finite volume gives rise to
zero-point quantum effects. Usually we neglect sums over zero modes, canceling this
first of many infinite quantities by matching it with a counter term. But a cavity gives
rise to a finite shift in the zero-point, or Casimir, energy. This offset is calculated by
considering the perturbation of the zero modes by the confining region.

Inclusion of the negative Casimir term in the MIT bag model allowed for modeling
of confined particles in agreement with their observed masses. DeGrand et al.[54] fit
the hadron spectrum quite well with Ey = —Z3/R = —1.38/R. In hindsight, the
expression used for the Casimir energy, Ec = —Zy/R was not fully justified. It was
added because of the need to lower the energy to fit the hadron mass spectrum,
and was justified by DeGrand et al. as the finite part of the zero-point energy from
the quarks and gluons. The problem with this term is that the contribution to a
spherical cavity from the Casimir term is positive, rather than negative. It was
shown by Boyer[111, 112] that the Casimir force for a spherical conducting shell is
outward, instead of inward as with a parallel plate geometry. Another problem is that
the MIT Casimir term with Eq = —Zy/R (where Z; is positive) is unbounded from
below as R—0. One could imagine fluctuations of the bag surface, with fission-like
processes leading to a cavity containing no quarks. With nothing inside to keep the
bag from collapsing, it could decay with an infinite gain in energy[8]. A cutoff could
be introduced to prevent this, but then renormalization would directly depend on the
cutoff.

We find that configuration mixing from OGE provides a natural mechanism for
lowering the energy of strongly interacting particles, allowing for introduction of a
Casimir term of the proper sign.
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The Casimir energy[7] can be calculated as the difference in zero-point energy
caused by a conductive shell or a body with dielectric or magnetic permeabilities
differing from the free-space values. At short distances, quantum fluctuations of
polarizable bodies give rise to attractive van der Waals forces. Retardation effects
influence interactions over longer distances. In the limit of large polarizabilities, ma-
terials behave as conductors with the quantum fields excluded from the bodies[108].

In 1948, Casimir[7] calculated the force between two infinite conductive parallel
plates separated by a vacuum, and found it to be attractive. The calculations involve
finding the difference in number of modes inside and outside the region of interest,
where the normal modes contribute £ = 3, Fhwi to the zero-point energy of the
radiation field. (Here we show powers of  and c). Typically, a cutoff A is introduced,
with o = 3 3 hiwexp™/*. Physically, conductivity tends to fall off at high frequen-
cies, and presumably high frequencies of the order of A and higher contribute equally
to modes inside and outside the region, so the infinite terms cancel. Neglecting edge
effects, for plates of area A and separation L, Casimir found the zero-point energy to
be

2 2
Fo = 3n*hcAL—~ — %hcAi _ X hed (4.2)

x4 X720 L3
The first two terms are divergent for short wavelengths, as A — 0, and are propor-
tional to the volume and area of the region respectively. The divergent parts should
cancel with the contribution of quantum fluctuations of the fields outside. The third
term contributes to a net attractive force[119] that is measurable and finite,

2, A
F=—ohers. (4.3)

Experimental agreement with this force was demonstrated in 1948[109)].

Casimir suggested[110] this could provide a physical mechanism to account for the
stability of the electron, with an attractive Casimir force balancing the outward clas-
sical Coulomb force of the semi-classical Abraham-Lorentz model of the electron[56).
The argument was that if the Casimir force for a spherical shell of charge with ra-
dius @ was Eq = —C(hc/2a), then the Coulomb force on the shell would balance if
C = €?/he. As an order of magnitude estimate, the parallel plate result was used,
with the area A set to wa?, with the plates a distance a apart. This makes a Casimir
energy AE ~ —0.09%ic/2a. This was suggestive of a more fundamental relation, as the
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Casimir constant C with this crude approximation was within an order of magnitude
of the value of the fine structure constant .

In 1968, Boyer[111] calculated the Casimir forces on a conducting spherical shell,
finding the sign of the zero-point energy to be positive rather than negative as antici-
pated by Casimir. He found AE ~ 0.09%c/2a, which is of about the same magnitude,
but of opposite sign, as that postulated by Casimir. Thus Casimir’s intriguing model

of the electron was invalidated.

The MIT bag model includes contributions from quarks as well as gluons, so it is
necessary to look at the zero point contributions of the Fermions as well as the vector
Bosons. If the net result for the zero point energy is positive rather than negative, it
also presents difficulties for the MIT bag model, in that the MIT Casimir term was
introduced with a negative sign, Ey = —Z/R.

In general, the ground state energy is renormalized by subtracting various (infi-
nite) counter terms. As shown below, one expects that there should be contact terms
proportional to polynomials of the bag radius. One is left with finite contributions
including volume[49, 50, 54], and possibly surface[119] and/or a term proportional to
the bag radius{107], H' = BV + 0 A+ FR. The volume term may be absorbed in the
bag constant B. -

Quantum field fluctuations in the presence of curved boundaries tend to be plagued
with quadratic as well as quartic divergences in 1 /A as the cutoff is taken to zero[113,
114, 116]. In the electrodynamic case for a spherical shell calculated by Boyer, there is
a cancelation of divergent contributions from internal and external fields and between
TE and TM modes. The quartic divergences can be absorbed into a redefinition of
the energy associated with the bag constant ~ BV. The quadratic divergence cannot
be absorbed by any term normally used in the MIT bag model. This energy requires
a counterterm of the form ~ FR, and there seems to be no reason not to include it in
the model. No divergent contributions arise from the zero-point energy of the form
~ cA.

In addition to the divergent pieces, finite contributions to the zero-point energy
have been calculated for Fermions[118, 116] and vector Bosons[114, 115, 118, 116] in
a spherical geometry. Including the quadratic divergence, each vector particle (gluon)
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contributes to leading order in the asymptotic expansion

1 41 1
B~ 7 (-3w +3) 4
and each Fermion (quark) contributes
1 /11 1
Ee~ iz (3w~ m)- (4.5)

Although the finite part of the quark contribution is negative, it is much smaller
than the gluon contribution. Results for gluons have also been calculated in a cubical
geometry using image charges[120]. The energy shift is again positive, and within a
few percent of the spherical value for equal volumes. For 8 gluons (with octet color)
and N quarks, the Casimir energy for a spherical volume is

Bo~ o (3% ~) *rE (Cow+Y): (45)
Although the divergent terms from quarks and gluons have opposite sign, they could
only cancel if N = 32, but N must be a multiple of three (colors). We will use
N =9 as we have three quark flavors in our model. Numerically, the finite part of
the zero-point energy is positive, with

E) = =2 (4.7)

This provides us with the basis for making a fit to a modified form of the MIT
bag model, with the usual bag energy but including the new counter term F, H' =
BV + FR + %. We find this parameterization is not successful; because of the
magnitude of lowering of the ground state energy due to configuration mixing, it
leads to negative values for B and unstable bags. (Adding a surface counter-term
does not improve the situation because it must be negative to make B positive, and
this would lead to unstable deformations of the bag surface.) With the minimal MIT
prescription for the self-energy, we find the energies due to configuration mixing of
the neutron at R=.005 MeV~! and R=.0045 MeV~! to be -581 MeV and -647 MeV
respectively. Asymptotically, one expects the energy to go as 1/R for R — 0, and
as a constant for B — oo. A fit to the neutron energy of configuration mixing gives
Ecym ~ —15.72—2.826/ R with the minimal MIT self-energy. Stability is reached only



with a positive Casimir term with coefficient greater than about 5.5. If we eliminate
the new counter-terms, a fit to the neutron mass for a, =1.3636 using the minimal
MIT self-energy gives B'/* =145 MeV (making R=.005 MeV) and the Casimir term
becomes Eg = 6.45/R. With the more complete self-energy built from all vertices
used in OGE diagrams below cutoff, we find the same value of B (at the same bag
radius), but the Casimir term is reduced to Eq = 5.72/R.

Thus with our cutoff at 1.5 GeV above the gqq ground state, we require a positive
Casimir term considerably larger than the theoretical value to achieve stability for
the particles. If we plot the ground state energy due to configuration mixing vs.
the cutoff, we see that the ground state energy has apparently not converged (see
figure 4.3). If we had included running of the coupling constant in our calculations,
it would slightly diminish contributions from higher energy states. Our calculations
provide no indication of when or if convergence would be reached at higher cutoffs.
Perhaps it may be argued that trying to pin down the energy zero is pointless, as it
can always be shifted by a trivial renormalization.

In spite of these problems, configuration mixing leads to significant lowering of
the ground state energy, providing a negative contribution to the energy needed to
match the hadron mass spectrum. This removes the phenomenological requirement

for a Casimir term of the wrong sign.

4.3 Configuration mixing

The OGE interaction causes substantial mixing of states, especially in the gqq sector.
The proton and neutron have similar compositions if one interchanges d for u quarks.
However, there are small differences because of the 5 MeV difference in mass between
d and u in our calculations.

The gqq state where all three quarks are in the s, /2 ground state consists of two
color singlet states. These combine to make two states, one with the symmetry of
the nucleon, and one with the symmetry of the A. The lowest state found after
configuration mixing contains none of the state with A symmetry, and consists of
about 48% of the valence nucleon ground state. The remaining 52% of the lowest
configuration-mixed state consists of a 26% contribution from the gqq basis states
with two excitations to the ps/; level, 7% with two excitations to the ds/z level,
and 6% with two p3/2 and one ds/, excitation. There are various smaller excitations
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contributing in the gqq sector. The ¢qqqg sector collectively accounts for less than
4% of the configuration mixing. Within this sector, the largest contribution comes
from ui and dd pairs where one of the quarks is excited to a ps/; level. These states
account for 1.9% of the mixing. These states are classified into categories and plotted
in Fig.s 4.4 and 4.5 for the neutron. The mixing is very similar for the proton. Plots
for the A* may be found in Appendix B.

The information on configuration mixing is plotted in two adjacent figures for
each particle, in Parts 1 and 2. In the lower half of the figure, single quark (filled
circle) and antiquark (open circle) energy levels are plotted, along with energies for
the multi-quark states (diamond-star). The energy level diagrams shown from left to
right correspond to categories of multi-quark states (labeled a-t and A-J for qqq states,
and K-T for gqqqq states) contributing to the configuration mixing. The number of
states within each category is listed below each energy level diagram. (The states
contributing significant probability to each category are listed in Appendix A.) The
legend to the right on the lower half of the figure identifies the single-particle energy
levels. The upper half of the figure shows the probabilities summed over states for
each category. Bar graphs show contributions from monopole, monopole plus dipole,
-+ -, monopole through hexadecapole plotted directly above the energy level diagram
for quarks of each category. At the top, the full monopole through hexadecapole
contribution is tabulated numerically for each category.

4.3.1 Why is less than half of the nucleon probability accounted for by three S1/2
quarks?

The simple textbook model[14] of a hadron assumes three quarks in the s, /2 ground
state. However, in an interacting system, the ground state is lowered by mixing in
higher states, and our system is strongly interacting.

In the MIT bag, the OGE interaction is typically used to split the hadron masses,
with the coupling strength a, determined by matching to the A— N splitting. Keeping
the A— N splitting constant while increa.sing the cutoff and simultaneously decreasing
@, has the effect of decreasing the amount of the three s, /2 quark contribution. If
the coupling constant is weaker, there is less mixing for any particular excited state,
with the mixing decreasing in first order as a?. However, the number of states tends
to balloon as the cutoff is raised (see Fig. 4.8).
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We need a much smaller coupling (a, = 1.3636) to match the A — N splitting
with our 1.5 GeV cutoff on states than is needed for three s;/; quarks (a, = 2.2). Our
value is still larger than the experimental value of (a,(1GeV) ~ 0.5), indicating that
we have not converged because we have not included enough states. The coupling
would also decrease if part of the A — N splitting was accounted for by some other
mechanism, such as through pion interactions. In this scenario, a; would be smaller
and the amount of configuration mixing would decrease.

4.3.2 Why are ezcitations higher than J = 1/2 allowed in a spherical MIT bag?

Often only s/, and py/, excitations[53, 70, 119] (sometimes with higher radial excita-
tions) are considered in the spherical MIT bag because higher J values would involve
a non-spherically symmetric field pressure that would not be balanced by a uniform
bag pressure B. However, solutions for any J are easily constructed that satisfy the
spherical quark boundary condition —i¥ - #(z) = ¥(z) at r = R (contrary to a
statement by Donoghue and Golowich, 1977[70]). The boundary condition which is
of concern is —g;zz(z)gb(z) = 2B at r = R. Spherical bag solutions that satisfy the
bag pressure on average and that satisfy the first boundary condition for any J may
be constructed if the boundary is fixed. If it is not fixed, the boundary would move
in response to differential pressure if a single state of higher J was put into the bag.
But we are not faced with this situation.

In our case, the Hamiltonian has spherical symmetry, so we generate a spherically
symmetric superposition of many states that contribute to the ground state. For each
energy level and value of J, all m; values contribute to different states with proper
coefficients to maintain this symmetry. Thus the field pressure of the quarks may
be balanced locally with the bag pressure at the surface, in agreement with both the
quark and the bag pressure boundary conditions.

4.3.3 Why are three quark states much more probable than states with an eztra quark
pair?

Several factors contribute to the large mixing in the gqq sector relative to the 99997
sector. Excited gqq states enter at a lower energy than the gqqqq states, generally
have smaller energy denominators, and have more OGE transitions coupling them to
the three s;/; quark state. In the gqq sector, states below the cutoff include quark
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excitations that range up to f7,, or radial excitations up to n = 3. However, in the
99999 sector, parity requires one quark or antiquark be excited to a py/; or ps/, state
in the gqqqq sector, and the 1.5 GeV cutoff allows no higher excitations. Coupling
these states to the lowest gqqg state requires that a gluon annihilate the antiquark
with a like-flavor quark. In addition, there is considerable loss from the ggqqq sector
seen from diagonalizing the interaction due to interference effects as compared to first
order perturbative results we calculate using the same matrix elements. This will be
discussed in more detail later.

4.3.4 What enhances probabilities for states with two identical excitations?

We find the probability for states with two quarks excited to the same energy to be
much greater in general than for other states of comparable energy. About 26% of
the nucleon probability is due to states with one quark left in the s, /2 state with two
quarks excited to the p3/; level (category f). This is the lowest energy excitation,
so it has the most enhancement from a smaller energy denominator. States with
two ds/; excitations (category n) are also enhanced. The states with two 8172 states
(category k) may be enhanced, but their contribution is surprisingly small compared
to category f. This will be examined below.

The mechanism of enhancement seems to be constructive interference due to both
quark-gluon vertices being identical, along with reciprocal transitions in m causing
the product with the elements from the spin-sum tables to add coherently. Besides
maintaining constructive phases, the squared matrix elements (that vary in size) sum
to a larger amplitude than the product of uncorrelated elements, even if all terms
are positive. In first-order perturbation theory, these amplitudes for transitions to
orthonormal states are squared and summed to get the probabilities for each category.
Matrix diagonalization effectively sums perturbative results to all orders.

4.3.5 Why do p3; ezcitations dominate over py/, ezcitations?

When categories f and k are compared, we see that the contribution to the nucleon of
states with two p3/; excitations is about 32 times larger than the contribution from
states with two p,/, excitations. Some difference is to expected because the energy
required to excite the ps/; level is about 2/3 of that required to excite the p, /2 level.
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(See Table 3.1). Also, category f includes 11 states, whereas category k includes 5
states. However, these factors do not explain the large difference.

The difference is primarily due to the fact that the Coulomb dipole contribution
for two s1/; to ps/ transitions is large (0.4309) compared to the Coulomb dipole
contribution of two s1/; to py/; transitions (0.0651), and it is also large compared to
the electric OGE terms. As shown in Appendix C, this results in a matrix element
for double sy, to ps/, transitions about 3.5 times larger than the s, /2 to p1/2 matrix
element. Squares of these elements contribute to first order perturbation theory, so
this provides a factor of about 12.5:1 that we should expect. Dipole contributions
from diagonalization are in the ratio ~ 15 : 1, and we have more p3/; than p, /2 States.
The ps/, states also have significant quadrupole and octopole contributions, making
the overall ratio of p3/; to p1/2 probabilities about 33:1.

4.3.6 Why are u pairs more probable than d, and d more probable than s pairs in

our proton ground state?

The u# vs dd part of our model prediction may seem incorrect based on two simple
arguments. It is clear that s5 pairs should be suppressed because the s quark is
massive. But the d and u quarks do not differ enough in mass to make much difference.
The two arguments are based on pion physics and on the Pauli exclusion principle.
We demonstrate that constructive interference enhances probabilities for ui pairs in
spite of suppression of the number of states due to the Pauli principle.

Pion physics provides a simple mechanism for dominance of d quarks over # quarks
in the sea. The 7% is made of a u and d, whereas the 7~ is made of a d and 4.
Since there are more valence u quarks than d quarks in the proton, dd pairs are
more frequently stabilized by forming a x+ than are u# pairs stabilized by forming a
7~. Low-mass pions have been modeled with some success[54, 125] in the MIT bag.
But this physics is missing from our model because of difficulties in incorporating
interacting or overlapping bags. However, pions as quark-antiquark pairs have been
used to dress the nucleon and A in the soliton bag model[127, 128]. Pions modeled
as elementary particles[129] have also been introduced into the soliton bag, and have
been coupled to the MIT bag to form the Cloudy Bag Model[131] to satisfy the partial
conservation of axial current (PCAC).

The Pauli exclusion principle allows the s quark of an s3 pair to be in any state,
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dd pairs are somewhat suppressed, whereas ui pairs are suppressed more because
the quarks are not able to enter the same states held by like-flavored valence quarks.
Indeed, below our cutoff we have 79 orthonormal color singlet states that include ui
pairs, 109 states with dd pairs, and 204 states with s3 pairs.

In 1977, Field and Feynman[124] used a similar argument as a likely explanation
for an apparent dominance of d quarks over i sea quarks inferred from electron-proton
scattering at low but nonzero z, where z is the momentum fraction carried by a quark
of a high-momentum hadron. They also said the number of % and d must became
equal as z —0. However, there should be a difference between the sea created in
the process of a hard collision of a lepton with a hadron and the sea associated with
the ground-state nucleon. The de Broglie wavelength of a 1 GeV electron is 1 fm.
When electrons are scattered off protons at much higher energies, the electrons probe
individual partons (quarks or gluons). Here the Pauli principle suppresses sending
the scattered quark and the quark of the quark-antiquark pair into the same state,
but spectator quarks would largely be ignored.

In contrast to hard scattering, configuration mixing is dominated by low energy
processes which cause coherent enhancement of interactions when a quark pair sees
other quarks of the same flavor in the bag. This effect dominates over the suppression
of states by the Pauli principle, causing a greater probability for ui than dd pairs
in the proton. Nucleon ground state configuration mixing in the MIT bag of radius
R=0.005 MeV~! ~1 fm is dominated by the lowest energy magnetic and electric gluon
modes, with energies 2.744/R=549 MeV and 4.493/R=899 MeV, having de Broglie
wavelengths 2.25 fm and 1.38 fm respectively. A similar situation holds for low energy
quark-antiquark pairs. They feel the presence of all other partons in the bag, and
coherence effects become important. An antiquark does not have to be annihilated
with the same quark with which it was created, although both quarks must match
the antiquark flavor. This greatly increases the number of interactions available for
quark-antiquark pairs when other quarks of the same flavor are present, and these
interactions are responsible for the increase in probability of these states.

Many diagrams interfere in the process of creating and annihilating a pair when
the pair flavor is carried by other quarks. A quark pair created by one octet color
of gluon may be annihilated by another color gluon (in which case the new quark
annihilating with the antiquark must be of different color than the quark left behind
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from the pair). Even in first order perturbative diagrams, where a sy/; gqq state
scatters to ¢gqqq and back to the same gqq state, the multipoles and type (magnetic
or electric) of the two gluons participating in creation and annihilation may differ.
Another possibility is that the m; may change for the quark that emits a gluon that
creates a pair without any change in the m; value for the quark that absorbs the
gluon from annihilation. All these possibilities are consistent with conservation of
parity, angular momentum, and color singlicity.

Donoghue and Golowich([70] attempted a perturbative calculation of pair creation
for the proton in which they included s/, and py/; states with various radial exci-
tations, as well as four flavors. Their Table II lists the spin overlap of five-quark
states with the proton. The table includes formulae showing effects of spin-flip vs
non-spin-flip of the valence quark (and the interference term) in terms of u, d, and s
pairs. Each row in the table indicates whether the scattered valence quark is in the
ground state, and if it is in the same state as the sea quark. Maciel and Paton[132]
made a correction for an omission of an interference term between non-spin-flip and
spin-flip in the paper of Donoghue and Golowich. However, neither paper includes
interference effects that depend on the flavor of the quark emitting the gluon that
creates the pair. This turns out to be important because the amplitude for annihi-
lation of the pair includes the possibility for annihilation of this quark when it is of
the same flavor as the pair. Also, if a valence quark spin flips during pair creation,
another quark spin can flip. The sea quark can carry the spin if another quark with
the same flavor as the sea quark is annihilated. The result is that scattering prob-
abilities depend on the flavor of the quark creating the gluon which makes a pair.
Appendix D shows our symbolic results when we restrict our states to the two energy
levels, s1/2 and py/2, and calculate the overlap of ¢gqqg configurations with the proton
dipole contributions. As an example of the interference effects depending on initial
flavor, we compare the coefficients for dipole electric scattering from a u quark vs a d
quark where the initial quark changes from energy level 1 to 3 (s, /2 to p1s2) creating
a dd pair (with both quark and antiquark in the s, /2 state), then scattering back by
another dipole electric transition to the initial flavor of quark. The coefficient when
the initial quark is a d quark is 4, whereas it is 6.8889 for an initial u quark. These
interference effects are not included in Table II of Donoghue and Golowich{70] or Eq.s
2.1 of Maciel and Paton[132].
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4.3.7 Why are quark-antiquark sea probabilities much smaller than those calculated
previously by perturbative methods?

Donoghue and Golowich{70] calculated sea probabilities using a, = 2.2 using the spin
overlap functions (with which we differ as stated above) and a gluon propagator (they
modified the boundary conditions in an ad hoc manner because they got extremely
large energy denominators for some modes). They only included s, /2 and py/, states
for the quarks and antiquarks. Numerically their perturbative probabilities for va-
lence, ui, dd, s3, and cé are in ratios 1 : 0.360 : 0.271 : 0.167 : 0.020 for the proton.
Their ration for @/d = 1.33 whereas our ratio is a/d =1.23.

Maciel and Paton(132] made a correction in the paper of Donoghue and Golowich.
(We find they also did not include all interference terms.) They also used @, = 2.2
with only s1/, and py/, states, but used confined perturbation theory[71, 4] like we
use. (This approach does not seem to have problems with unusually large energy
denominators.) They found probabilities for valence, ui, dd, 83, and cc in the ratios
1:0.056 : 0.040 : 0.045 : 0.007.

To compare our results with those above, we first do a perturbative calculation
using two weighted rows of our matrix corresponding to the valence neutron wave
function. We did not calculate results for the ¢ quark. Including excitations to py/;
or ps/; states with a, = 1.3636, we find probabilities for valence, uii, dd, s5 in the
ratios 1 : 0.078 : 0.063 : 0.025. For comparison purposes, we scale our perturbative
results by o?, substituting o, = 2.2 instead of our a, = 1.3636. This would make
our perturbative ratios 1 : 0.203 : 0.164 : 0.065. The contributions from Pa/2 states
dominate our results, with p;/, states accounting for about 20% of the perturbative
probability. Our ratios for including only p,/; states are about 1 : 0.042 : 0.034 :
0.022. Thus our perturbative results are much smaller than those of Donoghue and
Golowich, but comparable to the results of Maciel and Paton.

Our configuration mixing results show much smaller contributions. There the uti,
dd, s3 probabilities are 0.017, 0.015, and 0.007. These are about 4.5 times smaller
than the perturbative elements, even though the same matrix elements were used in
the perturbative calculation. When viewed as a function of multipole contribution,
the probabilities are decreasing rather than increasing, as more of the valence 999
sector is shifted to the states with two P3/2 excitations. The results seem to be partly
from destructive interference between transitions to the P12 states from s,/, states
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and py/; states. Also much of the probability is shifting to states inaccessible by
perturbation theory.

4.3.8 Why are some energy levels unused?

The g72, gos2, k1172, and ds/2 levels are not used in generating any configurations
below our cutoff, even though single particle energy levels above them are used. This
results from conservation of parity, and the requirement for conservation of angular
momentum. If the cutoff were higher, combinations of states involving these levels

would be seen.

4.3.9 What about interactions of higher multipole?

Since our highest angular momentum state in use is fz/2, the triangle rule only allows
up through hexadecapole transitions. Thus we have included all transitions consistent

with our basis states.

4.3.10 What states would enter if we continued to raise our cutoff?

We chose a maximum cutoff 1.5 GeV above the s,/; gqq ground state. If the cutoff
is raised further, there are states entering with two ¢g pairs, or qqqqqdq states, in
addition to many more excitations of the types we have considered.

If considered one parameter at a time, configuration mixing decreases for states
with higher excitations by almost every measure. The mixing probabilities are drop-
ping rapidly as functions of the gluon multipole order, the quark radial mode number,
the quark angular momenta, the orbital angular momenta, and the number of parti-
cles in the state. The number of terms included in the mode sum for gluons appears
adequate. As discussed in Sec. 4.3.4, there is more mixing of states where two quarks
are excited to a level with higher J and thus where many u combinations are allowed.
This tends to make the graph of ground-state energy vs cutoff have periodic jumps.
The size of these jumps is decreasing in general with increasing cutoff. By comparing
Figs. 4.3 and 4.8, it is apparent that the jumps occur whenever the density of states
is at a local maximum. The contribution of a state to the ground state configuration
mixing energy decreases steadily with the energy of the state, but the increasing den-
sity of states as a function of cutoff counteracts this trend. Thus when all excitation
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mechanisms are taken together, the graph of energy vs cutoff does not appear to con-
verge by the time we reach our maximum cutoff. In figure 4.8, we plot the increasing
density of states as a function of state energy (with artificial Gaussian weighting of
width 100 MeV).

4.8.11 Summary

In this chapter, fits to the nucleon masses and the A -~ N splitting have allowed us
to determine values for the MIT bag parameters under the assumption that the up,
down, and strange quarks have masses m, = 0, my = 5 MeV, and m, = 279 MeV
or 300 MeV respectively. We found that with our 1.5 GeV cutoff, configuration
mixing in the MIT bag requires much smaller values for the strong coupling constant,
as = 1.3636, at R=0.005 MeV~! ~ 1 fm, than was needed for the standard three
valence quark bag with a, = 2.2[54]. Our bag constant B/ x146 MeV is almost
identical to the BY/4 =145 MeV value of DeGrand et al.. We found a positive value
for the sign of the Casimir contribution to the bag energy in agreement with the
calculation of Boyer[111] for a spherical geometry. This is in contrast to the negative
sign calculated for the Casimir term in a plane-parallel geometry. DeGrand et al.
introduced a negative Casimir term based on the known plane-parallel solution and
their assumption that the Casimir contribution would be qualitatively similar in the
spherical bag geometry. The negative offset required phenomenologically by DeGrand
et al. is not needed with our larger basis of states since configuration mixing leads
to significant lowering of the ground state energies of the particles.
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Figure 4.2: A — N splitting vs. energy cutoff with a, = 2.2 (grey) and a, = 1.3636
(black). The OGE interaction Hamiltonian is diagonalized for a succession of energy
cutoffs set just above the thresholds where new basis states enter, continuing up to 1.5
GeV above the ggq ground state. Each vertical line corresponds to the A — N splitting
found by taking the energy difference of the two lowest states with quantum numbers
of the nucleon and Delta, found by diagonalizing over the basis states included below
each cutoff. The lowest cutoff with a, = 2.2, where only s,/, quarks are included,
corresponds to the results of DeGrand et al., but the splitting becomes about 50%
larger than it should be as the cutoff is raised to the maximum. With the strong
coupling reduced to a, = 1.3636, the splitting approaches the correct size as the
cutoff is raised and additional basis states are added beyond the gqq ground state.
Note that there is about 10% uncertainty in the value for the splitting based on its
variation as a function of precisely where the energy cut is made.
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Figure 4.3: Neutron configuration mixing energy vs. cutoff with two forms for the self-
energy. As the cutoff energy is increased, more basis states mix into the configuration,
and the energy of configuration mixing continues to drop. This may be an indication
that we have not reached convergence with our cutoffs at 1.5 GeV, or it may indicate
something is missing from from the model (such as contributions from gluons that
we have not included in our basis). Instead, the data points appear to convergence
toward a line headed steadily downward. The lower (gray) data points show the
configuration energy vs cutoff for the minimal MIT self-energy. The upper (black)
data points show results for the self-energy where all vertices are included below
cutoff. The best-fit lines have about the same slope for the full self-energy as with
the minimal MIT self-energy. Inclusion of intermediate states where the quark color
and spin change but the energy level doesn’t change raises the configuration energy
for the full self-energy. This overcomes the lowering of the configuration energy from
first-order perturbative shifts where the intermediate quark energy changes. This is
described further in Ch. 5. For both forms of the self-energy, the continual downward
trend of the data is problematic.
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category shown in the upper part of the figure.
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Figure 4.8: Density of color singlet basis states vs basis state energy. As the cutoff
is raised, more basis states can mix into the configuration. The density of states is
plotted using an arbitrary Gaussian weighting of width 100 MeV to smooth rapid
variations.



Chapter 5
FITS TO THE OCTET BARYON MASSES

The MIT bag model has parameters B, Zy, and a,, plus the quark current masses.
Working with three quark flavors, we have kept the u quark mass at 0, but have
allowed the d and s quarks to take on other values. Thus we have five parameters in
our model. We initially set the d quark mass to approximately reproduce the p — n
mass difference. For any value of the bag constant B, we can then adjust a, and
Zo to reproduce the A — N splitting and the n mass. This leaves us with a two
dimensional space where we can vary B and the strange quark mass m,. We make
three sets of calculations, altering B and m, by about 10% in succession so that we
can interpolate our results to other parameter values. For each of the three parameter
sets, we calculate masses, bag radii, and other observables for the p, n, £—, £+ =-,
and =0 particles for two forms of the self-energy. We use these calculations to make

best fits to the hadron masses for both forms of the self-energy.

5.1 Mass splitting of the neutron and proton

Isospin symmetry is broken for the proton and neutron because of the difference of u
and d quark masses in the QCD Lagrangian, and also because of the electromagnetic
interaction. Experimentally, the neutron is heavier that the proton by about 1.3 MeV.
In our calculations, we split the u and d mass degeneracy by setting m, =0 and my =5
MeV. We made calculations of the configuration mixing energy at several bag radii
(corresponding to different values of B), with the strange mass either at m, =279
MeV or 300 MeV. (See Appendix E for tables showing results for the minimal MIT
self-energy prescription and for the self-energy including all vertices used in our OGE
calculations.) These values are used to calculate the equilibrium energies and bag
radii for the particles at two values of B and for two values of m,. These results
are shown in Table 5.1 for the minimal MIT self-energy, and Table 5.2 for the “full”
self-energy, which includes all vertices used in calculating OGE diagrams up to the
cutoff. Table 5.3 shows best fits for both forms of the self-energy when B and m, are
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allowed to vary. Each choice for parameters requires recalculation of the TE and TM
vertex integrals, Coulomb Green’s function integrals, energy denominators for the
OGE diagrams, and re-diagonalization of the interaction matrices for each particle.
The 5 MeV difference between my and m, gives rise to a difference in nucleon
masses of about m, — m, =2.03 MeV at B4 =146 MeV, with R, =0.005 MeV-!
and a, =1.3636. Maintaining the A® —n mass difference constant at 294 MeV, an
increase of the bag constant to BY/4 =158 MeV decreases the neutron radius by 10%
to R, =0.0045 MeV~! and changes the nucleon mass splitting to m,, —m, =2.89 MeV.
Classically, if we modeled the proton as a uniform charge distribution in a bag with
radius R = 0.985 fm, there would be an electromagnetic contribution to the mass of
émi, ~ 3e*/R ~ %akc/R ~ 2L 197 MeV fm/(.985 fm) ~ 0.88 MeV, reducing the
splitting between the nucleons. However, the quark charges are point-like, and the
Coulomb self-energy included in the calculation of the uniform distribution diverges
for the point-like charges. We ignore the Coulomb self-energies, and calculate the
Coulomb mutual interaction between quarks uniformly distributed within a sphere.
For purposes of this calculation, we use the valence quark wave functions for the

proton, substituting u «+ d for the neutron wave function.
1
¢p=%[2(uTqul)s—(“Tul dT)s —(uluTdTl)s], (5.1)

were the subscript S denotes symmetrization.
With charge 2e for u and —3e for d, the mutual interaction is zero for the valence

quark model of the proton, since

/Iz.—z,l (§ §+§(; 3(3))“hc/| =0 (52)

For the neutron, the mutual interaction is negative, with

1,1, 2,1, 2,1 1 2ahc
= (U +3e+5ep) ehe [ o =225 69)

Thus for a bag radius of R = 0.005 MeV~!, the Coulomb mutual interaction lowers
the energy of the neutron by 0.584 MeV relative to the proton. A better estimate of
the electromagnetic energy would include using the actual charge distribution in the
Coulomb term and one-photon exchange interactions between quark states, similar
to our OGE calculation.
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We now estimate the one photon exchange contribution to the electromagnetic
energy, where we approximate the (unconfined) photon propagator by the (confined)
gluon propagator. We must also substitute a,(%"- . i\{-a'; - 0;) by (gio; - gjo;). We
begin by calculating the lowest order OGE contribution to the nucleon. The OGE
energy shift for three s;/, valence quarks has equal contributions from forward and
backward time ordered graphs (with energy denominators 1 /(Eo—E,) = (—1/k) and
gluon normalization 1/v/2k). The magnetic dipole vertex interaction between s, /2
quarks is Hy = [, 7 - A= I, /v/2k (where k = 2.74 for the lowest gluon mode and
the lowest mode vertex integral has the value If, = 1.15). The formula for the OGE
energy shift becomes

%A A —(If1)?
AE(OGE) = Z; E(E' 2 a; - UJ) ; k—2 (5.4)
The sum over gluon modes has a value of —0.176. For a baryon, (5.; . 1\21) = —%,

and (o0; - ;) = —1 for a spin 1/2 nucleon. Thus (ignoring higher gluon modes) the
OGE energy shift for a nucleon composed of three valence quarks (with a, = 2.2 and
R =0.005 MeV~1) is

AE(OGE) =3 (2,—025 -;)(-1)(-0.176)MeV = —155MeV. (5.5)

The factor of 3 is from the sum over quark pairs with i < J, and does not include
self interactions (with i = j). This is about half the A — N splitting. The A energy
is raised instead of lowered since the ~1 spin expectation for the nucleon is replaced
by +1 for the spin 3/2 A. There also is a small decrease in splitting associated with
the need for a larger A radius than nucleon radius to keep both in equilibrium with
the same value for B. To first order, inclusion of self-energies offsets the NV and A by
equal amounts in the same direction.

The corresponding electromagnetic calculation differs between proton and neutron
since the u and d quarks have different electromagnetic charges, in contrast to having
the same form for the color interaction between different quark flavors.

With charge Ze for u and —Le for d, the charge weighted spin expectation for the

proton is

%Z(qt'ai " Q%) =

%2
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Ir.2 2 1, 2 2 1 2 9 1 17
(il 2 i e 2 21 222 e\ L, ]
2“(6 [4(3+3+3) t3-3-3) +(-3+3 3)]) Thai (5.6)

The unrestricted sum over quarks ¢ and j times % includes self interactions and

replaces the factor of 3 in the OGE calculation. Similarly, the valence neutron gives
a contribution of

%Z(q‘m’ “ QjOj)n = ;a. (5.7)

The difference between proton and neutron for this splitting is 5/18 a. Thus the
splitting due to one photon exchange (O4E) with a confined photon propagator is
approximately

AE(O1E) = —2(=0.176)MeV = —0.071MeV. (5.8)

Bickebdller et al.[126] calculated the effects of OGE with a confined and an unconfined
gluon propagator in the soliton bag model. They found that confinement increases
the color-magnetic energy by about 50% due to enhanced gluon field strength in the
bag. If we assume a similar correction applies to our calculation of the electromag-
netic one photon exchange, we need to reduce AE(O+E) to about 2/3 of the value
calculated above. With this assumption, we combine the 0.584 MeV splitting from the
Coulomb interaction and the 2(—0.071) MeV splitting from O4E interactions. Thus
the electromagnetic interaction makes the proton about 0.537 MeV heavier than the
neutron. Since experimentally the n is heavier than the p by 1.3 MeV, this requires
an OGE splitting of about 1.8 MeV.

In contrast to a reduced splitting due to classical electromagnetic effects, Goldman
et. al[121] argues that the nucleon mass splitting should increase due to finite elec-
tromagnetic corrections to the quark gluon vertex functions. He did not discuss what
appears to be a larger contribution arising from the Coulomb interaction. He focuses
on a correction to the effective strength of the strong interaction proportional to the
square of electric charge that increases as one moves toward the infrared. Comparing
two color singlet states with the same isospin structure, the state with more u quarks
should have the mass decreased due to greater binding of u than d quarks.

The MIT bag model we use does not include important effects due to the pion
cloud surrounding the nucleons. Pions should account for a portion of the nucleon
masses and for some of the A — N splitting. Chiral perturbation theory in leading
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order indicates there should be a combined QED and QCD contribution[122] of ém ~
(mqg — my)/(mq + m,) m2/m, ~(a few MeV) to the nucleon mass splitting.

The u vs d mass difference (and electromagnetic effects) split the masses of the £’s
and the =’s as well as the nucleons. The splitting is larger for (X* — £~) than for the
nucleons or (Z° — =~) because the T’s differ by replacing two d for u quarks, whereas
the nucleons and cascades differ by replacing one d for a u quark. We calculate the
masses of these baryons using the orthonormal states generated for the nucleon, but
replacing one quark mass for another. In our fits to the data, we include corrections
for each particle’s electromagnetic Coulomb and OvE contributions as outlined above.

5.2 Mass splitting of the N and A

In the section above, we calculated the A — N splitting for three s, /2 valence quarks
in order to motivate the calculation of the electromagnetic splitting between n and p.
We now examine the A — N splitting arising from configuration mixing where more
states are included in the basis. As described in the previous chapter, we adjust a, to
get the right A? —n splitting. It takes several iterations to get this correct, since the
A° needs a different radius than the nucleon to be consistent with the bag constant
chosen for the n, and the radius correction changes the A°® energy. The A? — n
splitting is plotted in Fig. 4.2 as a function of cutoff. The graph shows the splittings
for all cutoffs ranging from a cutoff of 0 (with only three s/, valence quarks) to the
cutoff at 1.5 GeV above the three valence quark state. The graph also shows that
the three quark state with o, = 2.2 has the same splitting as the configuration with
1.5 GeV cutoff and o, ~ 1.4.

The matrix we diagonalize for configuration mixing is formed from the sum of
the OGE and self-energy matrix elements proportional to a, plus energies of each
orthonormal state along the diagonal which are independent of a,. We choose an
initial value for a, and diagonalize the matrix for the neutron at R=0.005 MeV-!
and repeat this for R=0.0045 MeV~!. The lowest two eigenvalues in each matrix
correspond to the n and A? for those two radii. We assume solutions of the form

Mdiag = Mo + hdad (5.9)

R

over a short range in R. We determine my and m, for the n and separately for the
A® by fitting the eigenvalues at the two radii. We chose this form for the mass since
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massless quark energies are proportional to 1/R, and quarks with mass go as 1/R
plus a constant (with E, = §,/z2 + m2R?). The eigenvalues z, are dimensionless
solutions of the Dirac equation in the bag. The OGE matrix elements have similar

asymptotic behavior.
We equate the experimental neutron mass m&#* = 938.566 to the MIT bag energy,

VA
Mezpt = Maiag + i;—xR“B + 5 (5.10)
We set the derivative of this equation equal to zero,
- 4 02 Z
O—mr+;R B ik (5.11)

and solve these equations for B and Z to find the minimum energy at a given radius
value.

The radius and mass of the A are then calculated using the same equations, but
with B and Z fixed at the values determined by the n. We check to see if we have the
correct A® —n splitting, adjusting @, and re-diagonalizing the matrix if the splitting

is incorrect.

5.3 Octet mass splittings as functions of m, and B and the self-energy

The s quark is much heavier than the u or d quark; it is primarily responsible for
mass splittings between the nucleons and X’s and the £’s and =’s. We calculate the
masses for six members of the baryon octet—all cases where two valence quarks have
one flavor and the third quark has a different flavor. These outer members of the
octet include the nucleons (proton and neutron), =+, £~, =°, and the =~. We also
calculate masses and radii for the first excitations, the At, £*=, T*+ === apd =*°
using the same values for B and Z. _
We began by choosing a bag radius R, for the neutron. Using Eq. 2.12 for the
total MIT energy, we minimized the energy for the neutron to determine the bag
constant B and Casimir energy. We then solve for the masses and bag radii of all the
other particles using the same two equations. The proton has essentially the same
radius as the neutron, since the ground state energy is only slightly lower than that
of the neutron. The ¥’s and =’s and all the excited states require larger bag radii
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to maintain the same value for B. (B is assumed to be a property of the strongly
coupled vacuum, and should remain constant.)

We choose three sets of parameter values for our calculations. The parameter sets
involve orthogonal 10% variations of m, and B. For each value of B, a different o,
is needed to retain the correct A? — n splitting. However, we also need calculations
with the same a, at different radii to determine the functional dependence of the
ground state energy on radius. Thus, we calculate and diagonalize the matrix for two
bag radii, for two values of the strange quark mass and with two values of a, at each
radius (See Appendix E). We repeat these calculations using two different self-energy
expressions.

In our first parameter set, we assume a bag constant B'/4 =146 MeV (which
makes a neutron radius of R=0.005 MeV~! ~0.987 fm) and a strange quark mass
ms =279 MeV. This is the same as in the first parameter set of DeGrand et al.[54].
However, we found it necessary to adjust the strong coupling a, from 2.2 to 1.3636
in order to maintain the same A — N splitting with our larger set of basis states.
We extend this calculation to include the £’s and =’s. The second parameter set
has a radius that is 10% smaller. Choosing B4 =158 MeV, the neutron radius is
R=0.0045 MeV~! ~0.888 fm. We keep the strange mass the same at m, =279 MeV.
The third parameter set is with the original radius R=0.005 MeV~! ~0.987 fm, but
with m,; =300 MeV. From these results, we can extrapolate to combinations for the
strange quark mass and bag radius where the fit to the baryon mass spectrum is
optimized.

The first form for the self-energy we use corresponds to the choice by the MIT
model builders(54] to include only the minimum self-energy required to satisfy the
MIT bag boundary conditions. In the OGE approximation, the gluon fields satisfy
Maxwell’s equations for each color component. When these fields are confined within
the bag, the electric and magnetic components must satisfy the boundary conditions,

#-E* =0,
#x B* =0, (5.12)
where a is the color index. The B field satisfies the boundary conditions, but E

field does not, unless a portion of the self-energy terms are added in. The self-energy
graphs required are those where electric-type gluons form a loop with the quark, and
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the quark state remains the same throughout the process.

The second form of the self-energy we use is where we allow all intermediate
spins, colors, and energy levels for the quark states within both magnetic and electric
self-energy loops consistent with the Coulomb, electric and magnetic vertices used
in the OGE calculations up to a given cutoff. We find similar mass splittings for
both choices of self-energy, but the more complete form of the self-energy requires a
smaller (positive) Casimir term.

The more complete expression for the self-energy increases the ground state energy
relative to the minimal MIT prescription. At first this is surprising because from
first-order perturbation theory one expects the energy to be lowered by contributions
from intermediate states inside the self-energy loop that are higher in energy than the
quark energy outside the loop. However this effect is small in comparison to the new
self-energy terms where the quark remains at the same energy level but changes color
inside the self-energy loop. There is a color factor of 2 when the quark changes to one
of two other colors. In contrast to the OGE exchange diagrams, there is no minus sign
due to quark exchange in normal ordering since the final state remains in normal color
order. Thus the color factor of # with no coIor change of intermediate quark state for
the minimal MIT self-energy cha.nges to 12 with the full self-energy. There are also
sums over intermediate spins which are also positive. These positive contributions
to the self-energy overwhelm the negative first-order perturbative corrections to the
self-energy.

In most other respects, the properties we find for the two forms of self-energy are
very similar. The effects can be absorbed in renormalization of the model parameters.
We find a smaller positive value for the Casimir term and also for my, both of which
are moving in the right direction. However, it was not obvious from the outset that
a new self-energy and renormalization of bag parameters including moderate cha.ng&s
in m, would result in all the baryons retaining similar splittings.

5.4 Best fits to the baryon mass spectrum

We use the minimal MIT self-energy, and let m, and B vary to determine two least-
squared fits to the baryon mass spectrum. We then adjust B to reproduce the proton
mean square charge radius and let m, vary to determine a second best fit. These
results are shown in table 5.3, where our two fits are compared with experimental
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values[l] and with the results of DeGrand et al.[54]. We weight the squared errors in
isospin partners by a factor of 10 over the squared errors between nucleons, £’s and
Z’s.

The best fit for varying both B and m, is with m, = 287.7 MeV and B4 =
139.3 MeV, which makes Ec = +6.87/R and a, =1.43. The neutron bag radius is
R=.0053 MeV~! = 1.041 fm. The unweighted RMS error in fitting the twelve masses
is 17.2 MeV with seven degrees of freedom. Five parameters (a,, B, Z, m,, and my)
are considered to be adjustable in this model, although we have not varied mq.

Our second fit uses BY/* = 126.6 to fit the proton mean square charge radius,
with m, varied to fit the mass spectrum. This makes m, = 286.6, Ec = +7.97/R
and a, =1.60. The unweighted RMS error in fitting the masses is 16.3 MeV, which is
actually better than where we varied both B and m,, but the weighted fit is worse.
There is a problem with the masses of the X’s, in that the X+ is heavier than the
L~ when we interpolate to these larger bag radii. With these parameter values, the
neutron bag radius is R=.00599 MeV~! = 1.183 fm.

We repeat these calculations for the self-energy built from all vertices used in OGE
diagrams below the cutoff. These results are shown in Fig. 5.4. The mass fits are
about the same, although using the full self-energy requires some renormalization of
parameters. With the full self-energy, a smaller positive Casimir term is required, and
also a smaller value for m, is needed. Both of these trends are in the right direction.

In comparison, DeGrand et al.[54] had an RMS error of 26.7 MeV when consid-
ering only the hadron masses they fit (with four degrees of freedom after excluding
four for setting parameters. If we calculate errors for only those baryons included in
both data sets, our RMS error is 22.6 MeV for the minimal MIT self-energy and 23.1
MeV for the full self-energy, while DeGrand et al.’s is 37.0 MeV using valence quark
wave functions and perturbation theory calculations for the hadron masses.

With the A~ N splitting held constant, the £ and = baryons masses can be shifted
higher either by increasing the strange mass, or to a lesser extent, by increasing the
bag radius. However, it doesn’t seem possible to bring all particle masses into full
agreement simultaneously with experimental values.

In summary, we have interpolated from the baryon mass spectra calculated with
three parameter sets and two self-energy prescriptions to determine values in B vs
m, space that optimizes the fit to experimental masses. Table 5.3 shows the best
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fits with the minimal MIT self-energy and with the self-energy built from all vertices
contributing to the OGE graphs allowed below the cutoff.
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Table 5.1: Bag radii and masses for ground and first excited state baryons with several
choices for the MIT bag parameters using the minimal MIT self energy. Electromag-
netic corrections are included. These results are used to linearly extrapolate to other
values for the strange quark mass and bag radii. The bag radius must be adjusted
for each particle to achieve a consistent value for B, the bag constant.

Part- | Exper- MIT Bag With 1.5 GeV Cutoff using linear MIT Bag of
icle | iment[]] fits to particle radii based on Table E.1. DeGrand et al.[54]
BY/4 =145 MeV BY4=157 MeV BY4=145MeV | B4 = 145 MeV
Ec =+6.446/R Ec=+45679/R Ec = +6.445/R Ec =-1.84/R
m, = 279 MeV m, = 279 MeV m, = 300 MeV m, = 279 MeV
my = 0 MeV m, = 0 MeV my = 0 MeV m, = 0 MeV
mg = 5 MeV mg =5 MeV mg =5 MeV mg = 0 MeV
a, = 1.3636 a, = 1.2433 a, = 1.3636 o, = 2.2
M R M R M R M R M
(MeV) [ (fm) (MeV) (fm) (MeV) (fm) (MeV) | (fm) (MeV)
n 939.6 | 0.987 939.6 0.888 939.6 0.987 939.6
p 938.3 10.984 938.0 0.885 937.2 0.984 937.2 | 0.987 938
- 1197.4 | 0.983 1161.6 0.884 1157.0 0.982 1178.9
o+ 1189.4 | 0.965 1155.0 0.866 1144.7 0.965 1167.1 |0.977 1144
=" 1321.3 | 0.978 1324.3 0.878 1318.4 0.978 1354.0
=0 1314.9 } 0.982 1319.9 0.883 1315.5 0.982 1351.0 | 0.969 1289
A° 1233.7 | 1.082 1233.3 0.973 1233.3 1.082 1233.4
At 1234.9 | 1.080 1233.3 0.971 1232.5 1.080 1232.5 ] 1.081 1233
3= 1387.2 [ 1.076 1378.6 0.967 1378.1 1.076 1390.9
=t 1382.8 | 1.068 1376.2 0.959 1372.8 1.068 1385.5! 1.071 1382
=" 1535.0 | 1.069 1520.0 0.961 1519.1 1.069 1544.4
==0 1531.8 | 1.071 1516.0 0.963 1515.8 1.071 1541.2 | 1.064 1529
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Table 5.2: Ground and first excited state energies and bag radii for baryons with
several choices for the MIT bag parameters with the self-energy constructed from all
OGE graphs contributing to diagrams below the cutoff. Electromagnetic corrections
are included. These results are used to linearly extrapolate to other values for the
strange quark mass and bag radii. The bag radius must be adjusted for each particle
to achieve a consistent value for B, the bag constant.

Part- | Exper- MIT Bag With 1.5 GeV Cutoff using linear MIT Bag of
icle | iment[1] fits to particle radii based on Table E.2. DeGrand et al.[54]
BY/4 =145 MeV B!/* =157 MeV B!Y4=145MeV | BY* = 145 MeV
Ec=+5.12/R  Ec =+501/R  Ec =+5.72/R Ec =—184/R
m, = 279 MeV m, = 279 MeV m, = 300 MeV m, = 279 MeV
my = 0 MeV my = 0 MeV my = 0 MeV my = 0 MeV
mg = 5 MeV mg =5 MeV mg =5 MeV myg =0 MeV
a, = 1.332 a, = 1.215 a, = 1.332 a, = 2.2
M R M R M R- M R M
(MeV) | (fm) (MeV) (fm) (MeV) (fm) (MeV) | (fm) (MeV)
n 939.6 | 0.987 939.6 0.888 939.6 0.987 939.6
p 93831098 9364 0.887 936.3 0.98 936.2 | 0.987 938
- 1197.4 1 0.983 1195.1 0.884 1190.0 0.983 1214.3
It 1189.4 | 0.971 1186.5 0.871 1177.5 0.971 1202.5 | 0.977 1144
=" 1321.3 [ 0.984 1391.7 0.884 1385.3 0.984 1425.5
=0 1314.9 | 0.988 1386.5 0.889 1381.5 0.988 1421.6 | 0.969 1289
A° 1233.7 | 1.082 1232.5 0.974 1233.5 1.082 1232.6
At 1234.9 | 1.081 1230.3 0.973 1231.2 1.081 1230.1 | 1.081 1233
3= 1387.2 | 1.076 1418.4 0.968 1418.1 1.076 1433.1
o=t 1382.8 | 1.073 1412.5 0.963 1410.8 1.073 1426.0 | 1.071 1382
=" 1535.0 | 1.075 1591.5 0.966 1591.2 1.075 1620.1
=0 1531.8 | 1.077 1586.3 0.969 1586.9 1.077 1616.0 | 1.064 1529
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Table 5.3: Weighted least squares fits to baryon masses with the minimal MIT self-
energy. Columns 1 and 2 list the baryons and gives experimental values for the
masses. Column 3 and 4 show bag radii and masses where B and m, are allowed to
vary, using linear interpolation between configuration mixing calculations. In the fit,

we weight the errors in isospin splitting with a factor of ten over the errors between
rows in the baryon multiplet. The unweighted RMS fit to the masses is 17.2 MeV
with seven degrees of freedom. Columns 5 and 6 show results where B is set to
reproduce the proton mean square charge radius and m, is allowed to vary to fit the
baryon mass spectrum. The unweighted RMS fit to the masses is 16.3 MeV with
seven degrees of freedom, but extrapolation to the larger bag radius reverses the ¥
masses. Column 7 and 8 show the radii and masses calculated by DeGrand et al.
using perturbation theory with three s/, valence quarks.

Part- | Exper- | Vary B and m;, Set B, vary m, to Valence MIT
icle | iment[l] [ to fit masses. fit p charge radius | DeGrand et al.[54]
BY/4 = 139.3 MeV  B'/4 = 126.6 MeV B/4 = 145 MeV
Ec = +687/R Ec =+197/R Ec = -184/R
m, = 287.7 MeV m, = 286.6 MeV m, = 279 MeV
my = 0 MeV my = 0 MeV my = 0 MeV
myg = 5 MeV myg = 5 MeV myq = 0 MeV
a, = 1.430 a, = 1.603 a, =2.2
M R M R M R M
(MeV) | (fm) (MeV) (fm) (MeV) | (fm) (MeV)
n 939.6 | 1.042 939.6 1.184 939.6
938.3 | 1.039 938.1 1.181 939.3 | 0.987 938
- 1197.4 | 1.038 1171.4 1.180 1177.0
T+ 1189.4 | 1.020 1165.8 1.162 1179.8 | 0.977 1144
=" 1321.3 | 1.034 1339.9 1.177 1346.8
=0 1314.9 | 1.037 1335.3 1.179 1339.9 | 0.969 1289
A° 1233.7 | 1.143 1233.3 1.298 1233.3
At 1234.9 | 1.141 1233.4 1.296 1234.6 | 1.081 1233
3= 1387.2 | 1.137 1384.0 1.292 1384.1
) Danns 1382.8 | 1.129 1382.0 1.284 1386.3 | 1.071 1382
= 1535.0 | 1.129 1530.7 1.283 1530.6
==0 1531.8 { 1.131 1526.6 1.285 1525.5 | 1.064 1529




Table 5.4: Weighted least squares fits to baryon masses with the self-energy built
from all vertices contributing to OGE diagrams below cutoff. Columns 1 and 2 list
the baryons and gives experimental values for the masses. Column 3 and 4 show
bag radii and masses where B and m, are allowed to vary, using linear interpolation
between configuration mixing calculations. In the fit, we weight the errors in isospin
splitting with a factor of ten over the errors between rows in the baryon multiplet.
The unweighted RMS fit to the masses is 19.0 MeV with seven degrees of freedom.
Columns 5 and 6 show results where B is set to reproduce the proton mean square
charge radius and m, is allowed to vary to fit the baryon mass spectrum. The un-
weighted RMS fit to the masses is 16.0 MeV with seven degrees of freedom, but the
extrapolation to the larger bag reverses the £ masses. Column 7 and 8 show the radii
and masses calculated by DeGrand et al. using perturbation theory with three S1/2

valence quarks.

Part- | Exper- | Vary B and m, Set B, vary m, to Valence MIT
icle | iment[l] [ to fit masses. fit p charge radius | DeGrand et al.[54]
BY4 = 1435 MeV  BY4 = 126.7 MeV B1/4 = 145 MeV
Ec = +4.80/R Ec =+5.91/R Ec = -1.84/R
m, = 242.9 MeV m, = 239.4 MeV m, = 279 MeV
my, = 0 MeV my = 0 MeV m, = (0 MeV
mg =5 MeV mg = 5 MeV mg = 0 MeV
a, = 1.365 a, = 1.577 a, =2.2
M R M R M R M
(MeV) | (fm) (MeV) (fm) (MeV) | (fm) (MeV)
939.6 | 1.002 939.6 1.183 939.6
) 938.3 | 1.001 936.8 1.182 937.0 | 0.987 938
- 1197.4 | 0.998 11629 1.179 1169.0
T+ 1189.4 | 0.986 1160.4 1.169 1174.1 | 0.977 1144
=" 1321.3 | 0.999 1334.6 1.182 1340.6
=0 1314.9 | 1.003 1326.9 1.184 1330.2 | 0.969 1289
A° 1233.7 | 1.098 1232.2 1.296 1230.3
At 1234.9 | 1.097 1230.5 1.295 1228.9 | 1.081 1233
¥ 1387.2 | 1.092 1393.2 1.290 1391.3
-+ 1382.8 | 1.089 1389.6 1.291 1390.4 | 1.071 1382
=" 1535.0 | 1.091 1542.4 1.291 1538.1
==0 1531.8 | 1.093 1535.2 1.291 1529.1 | 1.064 1529




Chapter 6
NUCLEON OBSERVABLES

We utilize the nucleon ground state configurations that we found by matrix di-
agonalization to calculate various measurable nucleon properties. These observables
include the charge radii, magnetic moments, the ratio of axial to vector currents
(g9a/gv), and the spin fractions carried by different flavors of quarks. We calculate
these observables for values of B and m, corresponding to the best fits to baryon
masses for the minimal MIT self-energy and again using the self-energy constructed
from all vertices used in OGE interactions below the 1.5 GeV cutoff.

The observables we consider are two-quark field (single particle) operators of the

form,

(0) = [ @zb(z)00(2), (6.)

where (z) is a linear combination of orthonormal ggq and 99999 states determined
by matrix diagonalization. These operators are not purely diagonal. In addition to
contributions weighted by the probability for each orthonormal state, there are also
contributions from the operator linking different quark states to create new multi-
quark states that are in the basis. If the new state has the same number of particles
as the initial state, the operator must not change the parity of the particle and the
m; values must remain the same. There are also contributions if the operators link
9qq amplitudes to ggqqq amplitudes by annihilating a quark and an antiquark from
the gqqqq sector[70]. For gqgq < gqqqq transitions, the quark and antiquark that are
annihilated must have the same flavor and opposite m; values. To conserve parity,
the orbital angular momenta of quark and antiquark must differ by an odd integer,
since the antiquark has opposite intrinsic parity to the quark. Since the 99949G sector
includes only s,/2, p3/2, and py /2 states below the cutoff, this means either the quark
or antiquark must be p3/; or p;/; while the other is s, /2- Since the operators carry no
color, they can only annihilate a pair that forms a color singlet, leaving a color singlet
qqq state behind that is within the basis. Thus, the operators can not annihilate a
quark-antiquark pair directly created by a gluon, as then it would have to carry octet
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color. However, in contrast to perturbative calculations, the nucleon observables
have small contributions from annihilation of s3 pairs. The basis is complete (below
the cutoff) and includes states requiring several OGE exchanges to link them to gqq

states.

To calculate these gqqg «+ ¢qqqq cross-term contribution to two-quark field ob-
servables, we need the projection of the qqqqqd states where a particular quark and
antiquark form a color singlet onto ggqqq basis states that are in the same category.
These are readily calculated for each type of multi-quark state using our template
states. These numbers are then multiplied by the operator expectation value acting
on the quark-antiquark pair and by the amplitudes for the corresponding gqqqd and
qqq states determined by the eigenvectors found in diagonalizing the matrix.

6.1 Charge radii of the baryons

Electron-nucleon scattering is used to determine the charge radii of the nucleons. The
charge radius can be determined from the slope of the electric or magnetic form factors
as a function of Q% at Q% = 0. Measurements of the neutron charge radius have been
based on scattering of slow neutrons on atomic electrons and by elastic and quasi-
elastic electron-deuteron scattering. The neutron charge radius(133, 134, 136, 137] has
been determined to be negative with dFy,/dQ?|g2—0 = (—0.17£0.03) - 10~2 fm?2. The
calculations are sensitive[137, 136] to assumptions made in different treatments for p-
exchange contributions. There are also problems with analytically continuing spectral
functions and uncertainties in knowledge of the deuteron wave function. Derivation
of the proton charge radius from measurements is somewhat easier, although there
are still unresolved differences in the fits. For example, several fits[138, 136] to the
proton charge radius give similar values, with rg, = ra;, = 0.84 £ 0.01 fm[136],
or rgp, = 0.88 + 0.03 and ra, = 0.84 £ 0.03. One best fit to ep scattering results
has determined the proton charge radius to be 0.862(12) fm[144], consistent with the
results above. However, an older best fit is incompatible with the stated uncertainties,
with a much smaller value[145] for the proton radius at r = 0.805(11) fm. In our
comparisons, we list the 0.862 value, corresponding to (r2) = 0.743(.021).

In the MIT bag, the mean square charge radius is given by
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() = [ Prrviey, (6.2)

where Q is the quark electric charge matrix. (See Table 1.1.)

The mean square charge radii for the baryons are listed in Table 6.1 for the
parameter values found from best fits to the baryon masses. Our proton mean square
radius found from the best fit to baryon masses where we vary B and m, is small at
(r2) = 0.594. We also made a fit with a smaller value of B to give the correct value
of the proton charge radius, while varying m, to fit the masses. The charge radii
are readily increased by lowering B without significant damage to the mass fits. We
found very small non-diagonal contributions to (rg), with gqqq < ¢qqqg transitions
contributing about 0.2%, and ¢qq < qqq contributions of about —1%. By comparison,
DeGrand et al.[54] found a value of (r2) = 0.517 in their fit to the baryon spectrum
using valence quarks. Donoghue and Golowich[70] found a value of (r2) = 0.64, of
which 0.12 came from their large perturbative sea amplitudes.

For a given value of B, our proton charge radius is larger than the valence MIT
result. This is because about 25% of the nucleon probability involves states with two
p3/2 quark excitations, and the magnitude of the expectation for the squared radius
of p3/2 states is 17% larger than the squared radius for s1/2 states. But the increase
in size is not as large as what one might expect. We also see a positive value for the
neutron charge radius. The explanation in both cases is the same. Over 80% of the
probability for two ps/, quark excitations in the nucleon involves excitation of one
u and one d quark, rather than the 2/3 ratio one might expect. This interference
effect can be understood by considering the fraction of intermediate states where both
excited quarks have the same m; value in a neutron. We ignore the isospin breaking
due to quark mass differences and the spin sums (which are flavor independent) and
only consider the color and flavor. Since both quarks have different color, they either
keep the same colors with a color factor of —%, or they change color with a color
factor of 2 multiplied by a factor of (—1) when they are returned to normal order.
Thus the probability for excitation of two d quarks to the same m; is proportional to
the square of the sum, or &. For a u and a d excitation of this type, the intermediate
states are distinguishable because of the different flavors, with both ud and du color
orderings. The probabilities are proportional to the squares of 2 and —% for direct and
exchange of color interactions, making a total probability proportional to %. This



88

suppresses the number of excited dd’s compared to excited ud’s. For intermediate
states involving a given pair of two excited quarks with different m; values, there
are twice as many configurations where different flavors are excited as configurations
where the same flavors are excited. Thus for the proton, the charge radius is decreased
because of the excess number of p3/, d quarks. For the neutron, this means there are
too few excitations of two d quarks to balance excited u quarks, and the mean square
charge radius becomes positive.

Donoghue and Golowich found a small negative charge radius for the neutron,
with (r2) = —0.007, in comparison to the experimental value of —0.117 % 0.002 fm.
As mentioned above our result is positive, with (r2) = 0.013. In our calculations, the .
g99 +* qq9qq transitions were negative (at —0.00018 fm?), but negligible in comparison
to the positive contribution arising from the larger fraction of u than d quarks having
p3/2 excitations.

The magnitudes of the calculated charge radii are easily modified to have larger
values by choosing a smaller value for B. In column 4 of Table 6.1, we decrease B to
B'/* = 126.6 MeV to match the experimental value for the proton mean square charge
radius. However, in this model, it does not seem possible to adjust parameters to
make the neutron charge radius negative. The negative contribution that does arise

from extra ¢q pairs is small in comparison to the positive contributions.

6.2 Magnetic moments

The quark magnetic moments along the z-axis are given by
P | R =
Fo=3 [ & (e x$7Qw), (6.3)
bag
If the nucleon wave function is approximated by three s, /2 valence quarks, the
non-color part is given by the symmetric direct product of mixed symmetries in spin

and isospin. Thus the valence proton and neutron magnetic moments are expressed
in terms of u and d magnetic moments as

pp = (12p —3pa)/9, and pn = (124 — 3p,)/9. (6.4)

If the u and d valence quarks have equal mass, u,/u, = —2. For sy/2 quarks, Eq. 6.3
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may be integrated analytically to yield

_ R 4w, +2m,R-3 and ___R dwg +2myR -3 (6.5)
Fe = 9207 — 2, + muR’ P = 18 %2 — 90y + maR ‘

The experimental value for the proton magnetic moment is g, = 2.79 n.m., where a
nuclear magneton (n.m.) is ek/(2m,). The experimental value was fit quite closely
by the parameter choices of Chodos et al.[53], with their value of y, = 2.6 n.m., but
a large bag radius is required to equal the experimental value. Close[14] shows that
a bag radius of 1.5 fm is required for zero mass quarks, and a larger radius is needed
if the light quarks are heavier. In the successful fit to hadron masses by Degrand et
al.[54], they needed a larger value for B'/4 and thus a smaller value for the bag radius,
R=0.005 MeV~! = 0.99 fm. With zero-mass quarks, y, is proportional to R. This
makes y, = 1.9 n.m., which is significantly smaller than the experimental value. This
is the most serious discrepancy of the fit given by the first parameter set of DeGrand et
al.. However, they predicted ratios of magnetic moments for other hadrons compared
to the proton magnetic moment quite successfully, using the hadron radii from their
fit to the hadron masses. These ratios are compared with current experimental values
and with results from our calculations in Table 6.3.

Our calculations using our first best fit to the baryon masses does not improve
on the results of DeGrand et al. for the magnetic moments. Qur results are still
smaller than the experimental values by a factor of 2/3. When we increase our
bag radii to fit the proton mean square charge radius, our magnetic moments are
closer to experimental values, but still too small. (See Table 6.2, columns 6 and
7.) The ratios of our baryon magnetic moments to proton magnetic moment are
fair. The ratio we calculate for the neutron to proton magnetic moment is u,/u, =
—0.696, compared to —0.684 experimentally, and —2/3 for the valence MIT bag. In
perturbative calculation of the quark sea, Donoghue and Golowich found significant
(~ 30%) contributions to the magnetic moments from quark pair creation. This
increased the magnitude of the nucleon magnetic moments to within about 12% of
the experimental values. We predict sea contributions that are much smaller than
those of Donoghue and Golowich, with our total sea probability at about 4%. In
comparison, Donoghue et al.[70] give perturbative probabilities of 36% for u, 27.1%
for d, and 16.7% for s quarks. If we sum these probabilities and renormalize the wave
function, the sea probability of Donoghue and Golowich would be 44%, or about
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twelve times our sea probabilities.

We find the baryon magnetic moments are primarily given by diagonal contribu-
tions of the quark magnetic moments, weighted by the squared amplitude for each
quark state. However, gqq < gqq transitions increase the magnitude of the moments
by about 5%, and ¢qq < qqqqq transitions add about another 1%. This does not
improve the fit to experimental data because of the large amplitudes for excited P3/2
states. The p3/, states with m; = 1/2 have magnetic moments only about 60% of the
size of sy/; states. (Stretched ps/, states have magnetic moments about 36% larger
than s,/, states, but this is more than overcome by alignment of s1/2 states to sum
to the same m s value for the state.)

There are several approaches to improving magnetic moments over the values
given by the naive MIT model. As noted above, a larger bag radius would improve
the magnetic moments. Alternatively, Donoghue and Johnson[125] introduced center
of mass corrections that assumed a special form of wave packet where (p?) is not
infinite, as is usually the case for the MIT bag. This led to fairly large corrections
for the magnetic moment, raising it from 2.1 n.m. to 2.5 n.m.. However, their choice
of wave packet seems to have little justification, except perhaps for pions, where the
derivation of the wave packet is based on the amplitude to create a pion from the

vacuum.

6.3 Axial currents and the baryon spin fraction carried by quarks

The contribution of quark spins to the spin of the nucleon may be inferred from
deep inelastic scattering of polarized leptons on spin polarized targets. Results
from the Electron Muon Collaboration (EMC)[139, 140], Stanford Linear Accelerator
(SLAC)[141}, and the Spin Muon Collaboration (SMC)[142] have been interpreted[139)
as showing that valence quark spins make a very small contribution to the nucleon
spin. The experiments measure assymetries in the virtual photoabsorption cross sec-
tions, o1/2 and 03/2, where the angular momentum projection of the virtual photon
plus nucleon system along the incident lepton direction is 1/2 or 3/2 respectively.
These assymetries may be expressed in terms of spin structure functions. The spin
structure function of interest is

a(@) = 3 T eHlat (=) - 47 (@) (66)
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where ¢} (z) (¢ (z)) is the momentum distribution of quark i with spin parallel
(anti-parallel) to the nucleva, ¢; is the quark charge, and z is the momentum fraction
carried by the quark.

Ellis-Jaffe[147] and Bjorken{146] derived sum rules relating the structure functions
to other observables. The Bjorken sum rule is derived using light-cone algebra for the
electromagnetic and weak coupling to quark currents. Using the operator product
expansion, (OPE)[38], the integrated structure function for a baryon (labeled by B)
in terms of quark fields is

Pla = ./01 dzgla(l’) =(B1 IZ%Q?IZ")%‘Y,‘![)'B Nx(1—-ar)=
2 [%Au(Qz) +3Ad(Q%) + S‘;As(Qz)] x (1 — a,/x), (6.7)

where (1 — a,/7) comes from radiative corrections[148], and a, is also a function of
Q2. The Bjorken sum rule states that the difference in proton and neutron structure
functions integrated over all momenta is related to the ratio of axial to vector coupling
constants, g4/gv, measurable from nucleon beta decay.

D(p) — T(n) = £oa/gv(L ~ a/), (63)

It is not possible to perform experiments over the full range of z, so experimental
results must be extrapolated to make an estimate of I} and I'*. The experiments
have been performed at different values of Q?, with an average of 2 GeV? at SLAC-
E142[141], 5 GeV? and 10 GeV? at SMC[142], and 10 GeV? for E80/E130[143] and
EMCJ[139, 140]. At SMC, with Q2 = 10GeV?, Adeva et al. found

1
I2(Q2) = /0 &z, Q%)dz = 0.136 +0.011 £0.011, (SMC at 10 GeV?). (6.9)

They combined their results with those from E80/E130 and EMC, running the values
in Q2. They found

I7(10 GeV?) = 0.142 £ 0.008 + 0.011 (Combined SMC, E80/130 and EMC).
(6.10)
for all proton data. .
There are some uncertainties in comparing the experimental results with those of
quark models where Q* = 0. However, our results from configuration mixing are in
reasonable agreement with the experimental values for I'?. (See Table 6.3).
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We find

I7(~ 1 GeV?) =0.148 (Our fit varying B and m,),
f(~ 1 GeV?) =0.141 (Our fit matching p charge radius). (6.11)

Without corrections for evolution of @2, our results close to experimental values for
I'2(10 GeV?).
To test the Bjorken sum rule, the SMC group fit I'}, I'?, and I'¢ at 5 GeV? to find,

'Y —I'T =0.163 £0.017 (n data from E142, p data from SMC at 5 GeV?).
(6.12)

when using neutron data or
'Y —TT = 0.204 + 0.029 (d, p data from E142, SMC at 5 GeV?).  (6.13)

based on extrapolation from deuteron and proton data. They include a theoretical
estimate based on the Bjorken sum rule including corrections up to third order in o,
with

I'f —I'T =0.185 +0.004 ( Theory at Q* =5 GeV?2.) (6.14)
Higher twist effects become more important at low Q?2, leading to about 2% effects

depending on the model used.
Our results for the Bjorken sum rule are

I —I'T =0.147 (Our fit with minimal MIT self-energy),
I —-TI?=0.141 (Our fit with more complete self-energy). (6.15)

Our values are below the 0.204 + 0.029 experimental value for proton plus deuteron
data and in agreement with the 0.163+0.017 value based on neutron and proton data.
If we take o, &2 0.5 at the nucleon energy scale of 1 GeV, with g4/gv = 1.257[1], the
Bjorken sum rule with vertex corrections gives a value of I} — I'? = 0.176, which is
also slightly larger than the value we calculated.

Our value for the neutron based on configuration mixingis I'f(~ 1 GeV?) = 0.001.
Experimental values of I'?(2 GeV?) = —0.022 + 0.011 have been estimated from
scattering of Q% = 2 GeV? electrons on polarized He at E142[141], and I'*(5 GeV?) =
—0.069 + 0.025 based on proton and deuteron results at Q® = 5 GeV=.
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The Ellis-Jaffe sum rule assumed As = 0 and is violated by the experimental
results[142]. Using current values for a, = 0.25 + 0.002 in the range of Q2 used for
the EMC experiments, the Ellis-Jaffe sum rule is[149]

rf =0.175£0.18 (Ellis-Jaffe sum rule). (6.16)

Comparing this with the SMC[142] results, the sum rule is violated by two standard
deviations. Our results are in agreement with the Ellis-Jaffe sum rule. With F =
(Au — As)/2 = 0.354 or 0.359, and D = (Au — 2Ad + As)/2 = 0.530 or 0.537, the
Ellis-Jaffe sum rule for the proton is I} = £(9F — D)(1 — a,/7) = 0.148 or 0.141,
equivalent to the values for I'} and I'? in Table 6.3.

The spin fractions we calculate for u, d, and s quarks are listed in Table 6.3 for the
various particles. We find the sum of quark spins AY = Au+Ad+As = 0.506 or 0.461
for the neutron, and 0.532 or 0.502 for the proton. This is below the valence MIT bag
model result of 0.65 and above the SMC estimate of AT = 0.22+0.10+0.10[142]. The
spin contribution from strange quarks is negative, but negligible with As = —0.0001.
Many fits to experimental data have utilized a significant negative strange quark
contribution to the nucleon spin, with As = —0.12 £ 0.04 + 0.04 found by the SMC
collaboration[142]. Fits[150, 151] to the values of Au, Ad, and As typically utilize
the EMC or other experimental data in conjunction with two other equations based
on weak and hyperon decays and SU(3) flavor symmetry. For example, Mulders
and Pollock[150] use the formula Au — Ad = g4/gy = 1.257, which is apparently
just the SU(3) flavor-symmetric formula for the Bjorken sum rule without radiative
corrections. The second formula used comes from low energy hyperon decays, with
Au + Ad — 2As = 0.58 + 0.05.

Comparing our values for the proton with these expressions, our value for ga/gv =
Au —~ Ad = 0.884 or 0.852. The MIT valence value for g4/gv is 1.09. Both are well
below the experimental values for g4/gyv = 1.257. As noted above, including a factor
of (1 —a,/x) times g4 /gv for radiative corrections improves our result. For a, = 0.5,
our value for g4/gv would be about 1.06. We would need a value of a, = 0.92 to
fit the experimental value. (We have been using a much larger value of the strong
coupling to match the A — N splitting, with a, = 1.4 inside the bag.) Another
approach for correcting the small value of g4/gv is to modify the MIT bag to be the
chiral bag model. This involves matching the axial vector current at the bag surface
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with a pion field outside the bag[151]. Our quark spin values are consistent with the
formula for hyperon decay, with Au + Ad —2As = 0.532 to 0.502, compared[150] to
the experimental values of 0.58 + 0.05.

In summary, our charge radii and magnetic magnetic moments are small for the
parameter fits where both B and m, were varied. Decreasing B to match the proton
mean square charge radius gave somewhat better magnetic moments, but they are
still small. Our values for I'} and I'T agree with current experimental results. About
50 - 54% of the proton spin is carried by the quark spin, with the remainder accounted
for by orbital angular momentum of the quarks. We have not included gluons in our
basis states, so cannot make an estimate of the angular momentum they carry. The
contribution from strange quarks is negligible.
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Table 6.1: Mean square charge radii for baryons with several choices for the MIT
bag parameters. Columns 1 and 2 list the particles and give experimental values
for the mean square charge radii for the nucleons. Columns 3 and 4 give the mean
square charge radii based on configuration mixing calculations using the minimal
MIT self-energy. Column 3 is based on the best fit to hadron masses, varying B and
m,. Column 4 is with B chosen to reproduce the proton mean square charge radius.
Column 5 lists the results of DeGrand et al.’s[54] perturbative calculation using three
s1/2 quarks. Column 6 is from Donoghue and Golowich’sDonoghueG77 perturbative
calculation with quark pair creation.

Part- Exper- Vary B and m, Set B, vary m, to | DeGrand | Donoghue,
icle | iment [135, 136] | to fit masses.  fit p charge radius. | et al[54] | et al[70]
BY/4 =139.3 MeV  B!/4 = 126.6 MeV B/4 = 145 MeV
Ec = +6.87/R Ec = +797/R Ec = -1.84/R
m, = 287.7T MeV m, = 286.6 MeV m, = 279 MeV
my = 0 MeV my = 0 MeV myg = 0 MeV
mqg =5 MeV mg = 5 MeV mg = 0 MeV
a, = 1.430 a, = 1.603 a, =22
fm?(error) (fm?) (fm?) | (fm?) (fm?)
n —0.117(.002) 0.016 0.023 0 -0.007
p 0.743(.021) 0.594 0.743 0.533 0.64
- -0.587 -0.738
pIng 0.599 0.755
= -0.553 -0.695
=0 0.066 0.088
A° 0.012 0.019
At 0.701 0.867
== -0.676 -0.841
=t 0.719 0.893
=" -0.633 -0.787
==0 0.072 0.094
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Table 6.2: Magnetic moments of baryons with several choices for the MIT bag param-
eters using the minimal MIT self-energy. We show values for the baryon magnetic
moments and also the ratio of baryon magnetic moments to proton magnetic mo-
ment. These values are based on parameters found from in the fit to particle masses
by varying B and m, and also from setting B to fit the proton charge radius and

varying m, to fit the baryon masses.

Part- Exper- Vary B and m; Set B, vary m, to DeGrand,
icle iment [1] to fit masses. fit p charge radius. etal. [54]
BY/4=139.3MeV  BY4=12.6 MeV | Bl/4= 145 MeV
Ec = +6.87/R Ec =+797/R Ec =—184/R
m, = 287.7 MeV m, = 286.6 MeV m, = 279 MeV
m, = 0 MeV my = 0 MeV my = 0 MeV
mg = 5 MeV mg = 5 MeV mg = 0 MeV
a, = 1.430 a, = 1.603 a, =22
p(om) £ pom) £ p(om) o | #(om) o
-1.913 -0.684 | -1.304 -0.696 -1.456 -0.699 | -1.264 -0.667
2.793 1.000 | 1.872 1.000 2.085 1.000 | 1.895 1.000
X~ | -1.160 -0.415]| -0.586 -0.313 -0.644 -0.309 | -0.68 -0.36
T+ 2.458 0.880 | 1.736  0.927 1.848 0.886 1.84 0.97
=" | -0.651 -0.223 | -0.377 -0.202 -0.396 -0.190 | -0.44 -0.23
=0 | -1.250 -0.448 | -1.075 -0.574 -1.189 -0.570 | -1.06 -0.56
A° -0.006 -0.003 -0.004 -0.002
At 0602 0.321 0.642 0.308
== -0.556 -0.297 -0.597 -0.286
=+ 0677 0361 0.772 0.370
== -0.502 -0.268 -0.536 -0.257
=0 0.109 0.058 0.136 0.065




97

Table 6.3: Quark spin fractions for baryon configurations with several choices for
the MIT bag parameters using the minimal MIT self-energy. Spin fractions and spin
structure functions are shown for the baryons based on parameters used in fitting the
baryon mass spectrum by varying B and m,, and also for B set to match the proton
charge radius where m, is varied to fit the masses.

Part- Vary B and m, Set B, vary m, to
icle to fit masses. fit p charge radius.
Bl/4 = 139.3 MeV BY/4 = 126.6 MeV
Ec = +6.87/R Ec = +71.97/R
m, = 287.7 MeV m, = 286.6 MeV
my = 0 MeV my = 0 MeV
mg =5 MeV mg = 5 MeV
a, = 1.430 a, = 1.603

Au Ad As | Y Au Ad As I,
n -0.162 0.668 -0.0001 0.001 | -0.153 0.614 -0.0001 0.0002
p 0.708 -0.176 -0.0002 0.148 | 0.677 -0.175 -0.0002 0.141
- [-0.006 0.648 -0.155 0.026 | -0.008 0.606 -0.144 0.024
T+ 0.688 -0.023 -0.195 0.141 | 0.621 -0.029 -0.160 0.128
=" 0.014 -0.179 0.756 0.035 | 0.017 -0.169 0.705 0.034
=0 |-0.164 0.057 0.688 0.005 ! -0.159 0.069 0.632 0.004
A° 0.168 0.447 -0.0002 0.062 | 0.154 0.433 -0.0001 0.058
AT 0.356 0.192 -0.0003 0.090 | 0.333 0.182 -0.0003 0.084
¥*= | 0.013 0.311 0.229 0.033 | 0.017 0.278 0.222 0.031
=+ | 0.361 0.050 0.173 0.093 | 0.344 0.055 0.143 0.087
= 0.021 0.188 0.360 0.035| 0.026 0.174 0.328 0.034
=0 0.155 0.085 0.507 0.067 | 0.140 0.104 0.499 0.065




Chapter 7
CONCLUSION

We have calculated configuration mixing for quarks in the ground-state nucleon, as
well as for other octet baryons. We used the spherical MIT bag model, diagonalizing
the one gluon exchange (OGE) interaction linking all orthonormal color-singlet states
below a cutoff of 1.5 GeV above the three quark ground state.

The basis space includes three quarks states with excitations up to fz/2, or with
radial excitations up to n = 3. It also includes five particle states where u, d, or s
quark anti-quark pairs are created, with any single particle in a p3/; or py state.
Forward and backward graphs of four types contribute to the OGE interaction. We
calculate the matrix elements using confined perturbation theory, including monopole
through hexadecapole gluon contributions. There are Coulomb contributions, as well
as transverse electric and magnetic contributions for which we do a mode sum over
the first five modes. All together, there are about 10° OGE contributions between the
6555 normal-ordered configurations which contribute to the 859 orthonormal color-
singlet basis states of the matrix we diagonalize.

A number of interesting results follow from our calculations. We find there is an
enhanced probability for creation of quark pairs with the same flavor as other quarks
in the bag. It is often argued that these states should be suppressed by Pauli blocking,
but constructive interference effects overcome the Pauli blocking. In the gqq sector,
interference effects increase the number of dissimilar flavored quarks that are both
excited when two quarks are excited to the same energy level. For example, about
80% of the probability for states with two p3/2 quark excitations that contribute to
the nucleon ground state have one u and one d quark excited to the ps/; level, rather
than the 2/3 ratio one might expect.

Configuration mixing leads to significant lowering of the ground state energy, and
provides an alternative to lowering of the MIT bag energy via the Casimir term.
This is significant in several respects. The Casimir term incorporates zero-point
fluctuations. In the past, a slab geometry was assumed to simplify calculation of
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the Casimir term for the MIT bag, with the Casimir energy given by E. = —Z3/R.
However, calculations by other people for a spherical geometry indicates the Casimir
term should have the opposite sign as found with a plane parallel geometry. Thus
the sign of the Casimir term used to lower the bag energy is brought into question.
Another problem with the form of the Casimir term traditionally used for the MIT
bag is that it makes an empty bag unstable to decay, with an unbounded energy
depression as the bag radius is decreased. This type of situation could arise if bag
surface fluctuations pinched off a region containing no quarks.

We have made calculations for different choices for u, d, and s quark masses,
and for different bag radii. This allows extrapolation to other parameter values.
We also compare different prescriptions for the self energy. Since many of the initial
computational steps are done symbolically, we have extended the calculations beyond
the nucleons to the £’s and =’s where two quarks have the same flavor but the third
flavor is different. We fit the mass spectrum of the octet baryons by adjusting values
for quark masses and the bag constant.

The strong coupling constant necessary to achieve the proper A — N splitting is
reduced from a, = 2.2 used in earlier MIT bag studies to a value of about a, = 1.4 at
the maximum cutoff. (Although the coupling runs to larger values at low energy, the
value of a; = 2.2 is clearly too large, based on fits from scattering at higher energies.)
The coupling that is required decreases as we raise the cutoff, including successively
larger basis sets in the space we diagonalize. There is a substantial amount of config-
uration mixing, with three s/, quark states accounting for about 48% of the nucleon
ground state probability at the maximum cutoff. The next largest contributor is from
two quarks excited to a ps/; level, which contribute about 26% to the probability. The
four-quark plus anti-quark contribution arising from pair creation is found to be quite
small, at about 4%. As a result of this, the spin contribution from strange quarks is
found to be negligible. We find the fraction of proton spin attributable to quark spin
is about 50 - 53%. This is less than the MIT bag result without configuration mixing,
which predicts about 65%. We also agree quite well with experimental values[140, 142]
for the integrated spin structure functions for the nucleons, with I'} = 0.141 — 0.148.
The SMC result[142] is I'f = 0.136 £0.011 £0.011 at Q* = 10 GeV?. For the Bjorken
sum rule, we find I} —I'? = 0.141 - 0.147, compared to SMC and E142 for n data of
Y —TI't =0.163 £ 0.017.
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NON-COLOR QUARK AND ANTI-QUARK
CONFIGURATIONS CONTRIBUTING TO PROTON
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Table A.1: Classification, energy, and probability of quark (non-color) configurations
contributing to the proton ground state, using the MIT prescription for the quark self
energy. Only states with significant probabilities are listed. The bag radius, R=.005
MeV-!. The quark masses are m, =0, my = 5 MeV, and m, = 279 MeV. The No.
and Cat. columns list the multi-quark number and category.

No. Cat. Type States Non-Color Configuration Energy Probability

1 a2 1 1 ditsurisuiiy 0. 1582 %107
2 a 2 1 dl’i'si,UI 123*'";1 isi, 0. 3.165 10!
27 f 1 1 diigUripUilpy 2319 1.835 «10-2
28 f 1 1 dilyuriptily 2319 1451 «10-2
20 f 1 1 dilyuripuily 2319 1514 +10°
3 f 1 1 didpUuiiguily 2321 7477 «1072
31 f 1 1 didgUrigUily 2321 4485 +1073
2 f 1 1 diripuibyuily 2321 565 #1072
3 f 1 1 dilpuriguily 2321 6.597 41073
M f 1 1 dilguiburty 2321 3.952 +1072
I f 1 1 dilgUrisuriy 2321 4.683 «10°
3 f 1 1 didpuibguirdp, 2321 2.341 #1072
3 f 2 1 diigUiiguiiy 2319 1.322 41072
B g 1 1 didguriguilpy 2919 2.239 +1073
3 g 1 1 diigUiipurip, 2919 6.925 «10°
0 g 1 1 dilguripuity 2919 2277 #1073
4 g 1 1 dilyuiipuri, 2919 2319 «10-3
45 g 1 1 dilgUrisuidp, 2921 1.723 #10-3
46 g 1 1 dilpurisuily 2928 1.709 +10-3
18 k 1 1 dipuitguily 3528 2.885 #1073
110 k 1 1 dilpuiiguri, 3528 4376 103
133 0 1 1 drisuriduiidg 4564 1877 «10-°
134 n 1 1 drisguriguidd, 4564 3.041 5103
135 0 1 1 diftguiridUidd; 4564 2.373 £10-3
133 0 1 1 drigUil, Uiy 4566 1.498 x10-2
140 n 1 1 driguitguildg 4566 1.279 «10-?
42 n 1 1 diriuibs Ui ¥y 4566 1.072 +10~2
44 n 1 1 didduibsyuiddy, 4566 8.803 +10-3



112

Table A.2: Classification, energy, and probability of quark (non-color) configurations
contributing to the proton ground state, using the MIT prescription for the quark
self energy. Only states with significant probabilities are listed. The bag radius is
R=.005 MeV~1. The quark masses are m, = 0, my = 5 MeV, and m, = 279 MeV.
The No. and Cat. columns list the multi-quark number and category.

No. Cat. Type States Non-Color Configuration Energy Probability
146 n 1 1 didyuitsuiidy  4.566 7.036 10~

48 n 1 1 dituib,urid 4566 5.434 +10-°
49 n 2 1 ditspuirldguild 4564 1719 #1073
209 s 1 1 diifpurisus i; 6.77 2.544 +10~3
211 s 1 1 dirifjuriguilf; 677 2.280 #1073
213 s 1 1 d i U by U i 6.77 2.045 +10~3
215 s 1 1 dirifiuriguilf; 677 1811 +1073
217 s 1 1 ditffurigurlf; 677 1589 +107°
219 s 1 1 diffiurigurify 677 1.379 +10°3
21 s 1 1 d iU sy Urif; 6.77 1.181 #10~3
225 t 1 1 diripuripuity 4603 4.896 +10-3
226 ¢t 1 1 diripUilpUidy 4603 3.982 «10-°
27 t 1 1 diripuiipuiidg 4.603 1.461 +10~3
222 ¢t 1 1 diripuripUiby 4603 1.032 «10-°
20 t 1 1 diipuiipuildg 4603 3.586 +1073
281 t 1 1 diipuripuiid 4.603 3.187 x10-3
234 t 1 1 dilpuidpuridg 4603 1.761 10~
235 ¢ 1 1 dilpuiipurddy 4603 4.301 +10-3
29 t 1 1 dilpUripUrid 4603 429 *10-°
240 t 1 1 didduiipuily 4604 7.234 41073
241 ¢ 1 1 difduripuip 4.604 2.307 «10~3
243 t 1 1 dilduripUilp 4604 3.948 +10°3
244 t 1 1 diidg Urdp Ut ipy 4.604 1.157 *10~3
245 ¢ 1 1 diddguiripUity 4604 1429 +10-3
246 t 2 1 diriduiipuilp 4604 8576 +10~3
247 ¢ 2 1 diidguiipuilp 4604 352 «10-°
248 t 2 1 difdyuripUity 4604 1.741 +10-3
219 C 1 1 duripuripUiidy 5202 1.695 +10-3



113

Table A.3: Classification, energy, and probability of quark (non-color) configura tions
contributing to the proton ground state, using the MIT prescription for the quark
self energy. Only states with significant probabilities are listed. The bag radius is
R=.005 MeV~!. The quark masses are m, = 0, my = 5 MeV, and m, = 279 MeV.
The No. and Cat. columns list the multi-quark number and category.

No. Cat. Type States

281
382
384
386
390
469
482
491
503
506

ARARRRTmmmQOQ

1

OV W W W W = e e

1

=N N N O e e e e

Non-Color Configuration
dl%&l'ip{dl Mi
dl"ff;&l ip}’u.l idy
dl'i’f;'U:I ipi,‘u,l id;
dl‘i’f}'l.ld Qpi'l‘h idi
dr‘ff%lh !‘p*’l.tl 4dy
dl‘b}ﬂl‘b§U1 fsp U ipiﬁl‘is}
d1‘§s§U1 ip*‘lh s U §s§@_1'§s}
U1 *S}UI ip%dl'b&dl‘b&d_l‘ksi,
dl *sk dripi’lh *3&'":1 *S}dl isi,
dl'ip%’UI i’si,'U.I *3}'&1 isi,'l.-l,l 4'3}

Energy Probability

5.202
6.828
6.828
6.828
6.828
5.269
5.269
5.245
5.247
5.271

1.027 *10—3
2.848 *1073
1.687 *10-3
1.097 *10-3
1.008 *10~3
2.116 *10~3
1.084 =10°3
2.662 =103
1.088 #1073
1.225 103
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Figure B.1: Composition of A* ground state for a, = 1.3636 (Part 1 of 2). The basis
states are combined into categories, with probabilities for each category shown in the
upper part of the figure.
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Figure B.2: Composition of A+ ground state for a, = 1.3636 (Part 2 of 2). The basis
states are combined into categories, with probabilities for each category shown in the
upper part of the figure.



Appendix C
EXAMPLES OF MATRIX ELEMENT CALCULATIONS

We illustrate the procedures used in calculating matrix elements by considering
several OGE graphs involving quark transitions between s/, and ps/; or p; /2 states.
Our results agree with examples provided by Close and Monaghan(4] who also worked
in Coulomb gauge using techniques similar to ours, and with the examples of Wroldsen
and Myhrer[5], as corrected by Umino and Myhrer{83], using colored electric and
magnetic fields in Lorentz gauge to calculate the OGE matrix elements.

. Let V¥, represent the quark-gluon vertex elements for quark transitions between
the energy levels m and n with gluon eigenvalue k. We label quark states S1/2> P3/2s
P12, --- as 1,2,3, ---. We will use notation where M, D, Q, O, and S stand for
monopole, dipole, quadrupole, octopole, and hexadecapole, and e, m, and c stand for
electric, magnetic, and Coulomb Green’s function terms.

For purposes of comparison with previous calculations[4, 5, 83], we first calculate
AE;; with energy denominators using the initial energy of quarks i and j as the zero
of energy. In this case, it is the sum of energies 1 and 3. Following this, we calculate
AFE?;, the OGE element between quarks ¢ and j with spectator quarks, assuming for
purposes of this example that the spectator is a m=0 quark in the s;/; state. Here
the zero of energy in the energy denominators is set at the energy of three sy/; quarks.

We take as a first example the dipole transitions of quark i making transitions
from level 1 (w; = 2.043) to 3 (ws = 3.812) and quark j making a transition from
level 3 to 1. Orbital angular momentum changes by one unit, so the quark parity
changes and the quark gluon vertex elements are of electric dipole type, with electric
gluon eigenvalues ke; = 4.493, k., = 7.735, - - -. Summing over forward and backward
graphs and (the first five) gluon modes, we have '

al - - 1 .
AEP[1,3,3,1] = ﬁ(ﬂx - a2) (A1 - Ag) [z 2T(D:f1331 + Diyam) + Dcml] =
k e

o 1 Vka Vkvk
X, . o At - A 13731 13 Y31 )
R(al 02)( 1 2) [§2kc (ke+w3—wl +ke-w3+wl +
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L, @605 ©1)
With V; = —1.284, the first five electric modes contribute

Df fan + Diyam =

(—1.284)(1.284) + (higher modes) =

Qs , .
GG da) (4.493)7 — (3.812 — 2.043)?
%(a’i - G2)(A1 - Az)(—0.0967 — 0.00015 — 0.0000045 — 0.0000006 — 0.0000001) (C.2)

The Coulomb greens function is integrated with the quark currents using r5, r
variables over the bag volume. Its value is

Dasn = %(o'i - 33) (A1 - A2)(0.0651). (C.3)

Factoring out spin and color factors, these results sum to —0.032 in agreement (up
to a phase) with the Coulomb gauge calculation of Close and Monaghan(4]. Working
in Lorentz gauge with electric and magnetic fields, Wroldsen and Myhrer calculated
dipole electric and dipole magnetic terms of —0.115 and 0.083 times a,/R and spin
and color sums. These sum to —0.032, which is identical to our results.

In doing our ground state calculations for AFEZ,
calculated with the energy zero given by the state with three quarks in the s, /2 state,
in contrast to the calculations above for AE/,
sum of the two initial quark energies. Now each energy denominator is the difference

all energy denominators are
which used an energy zero equal to the

of the intermediate state energy including spectators and the s, /2 999 energy zero.
With the same diagram as above, assuming that there is singlem =0 s, /2 spectator,

ABEP(1,3,3,1] = 22461 - ) (b - 2a) [5(DEusn + Do) + Dassn| =

R (01 a2)(A1 - Ag) [‘2' (§ Fo F %3 — O +§ k. +

/bag Jts(2)Gp(z, z) jgl(z’)] (C4)

The Coulomb contribution remains as before, so

[1 3 3 1] = —(0’1 0’2)(A1 Ag) *x
[(—0.0637 — 0.00012 — 0.0000038 — 0. 0000005 0. 00000012) + (0.0651)] =
E(a1 - G2} - A2)(—0.00118). (C.5)
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This dipole element turns out to be quite small because of the cancelation between
the transverse and Coulomb contributions. As can be seen from this example, the
choice of energy zero in the energy denominator can have a significant effect on the
matrix element.

Now we examine the matrix elements responsible for excitation of two Py1/2 states
from two initial s,/; states, with a m =0 8172 spectator. This is of interest because
of the small contribution to the nucleon ground state of pairs of excited P12 states
(less than 1%) compared to psy, states (about 25%). For double p, /2 excitations,

s, [L3] A2 1 1
EOD[l 2,1,2] = (0{2 o °'£2 2])(AI - A2) [E(Dfnzu + belzu) + Dc1212 =

w0 )

k\2 2
(e y )“’/bagff,(z)co(z,z')fmz') -

etwr—wr  Thktw—uw ]
T sl ag) e
[(0.0068 + 0.000042 + 0.0000036 + 0.0000007 + 0.00000020) + (0.4309)] =
%(&'?'%’ -FE (0 - 0,)(0.4377) .(C.6)

If we ignore the details of the spin sums, we see the matrix element for Sy1/2 to
P3/2 is about 3.5 times larger than the s, /2 to py/2 matrix element. Squares of these
elements contribute to first order perturbation theory, so this provides a factor of
about 12.5:1 that we should expect. Dipole contributions from diagonalization are in
the ratio ~ 15 : 1, and we have more p3/2 than p,/; states. The P3/2 states also have
significant quadrupole and octopole contributions, making the overall ratio of ps/; to
p1/2 probabilities about 32:1.



Appendix D

PERTURBATIVE DIPOLE OVERLAP BETWEEN
VALENCE PROTON STATE AND FIVE PARTICLE
STATES INVOLVING ONE P/, EXCITATION
SHOWING INTERFERENCE EFFECTS.

Here notation is such that (for example) Ded13dd11 represents the dipole electric
(forward + backward + Coulomb) term where a d quark changes from energy level 1
($1/2) to 3 (p1/2) and emits a gluon to form a dd pair with both quark and antiquark

at energy level 1.

Plgqq — 9999q] :=
a?(4 * Ded13dd11% + 4 « Ded135s112 +

2.88889 * Ded13uull® + 6.88889 + Deul3dd11® +
8 * Deul35s11% + 13.55556 * Deul3aull? —
1.33333 * Ded13dd11 + Dmd11dd13 +

4 * Dmd11dd13? + 3.33333 + Dmd11dd312 +
4+ Dmd115513% + 4 «+ Dmd115s312 —
0.88889 * Deul3Uull * Dmdlluul3 +

4 * Dmd11uul3? + 2.88889 * Dmdllau3l? —
0.88889 * Ded13ddl11 * Dmulldd13 +
5.33333 * Dmd11dd13 * Dmulldd13 +
6.66667 * Dmulldd13® +

4.44444 * Dmd11dd31 * Dmul1dd31 +
4.66667 + Dmulldd31® +

5.33333 * Dmd115s13 * Dmul13s13 +
6.66667 + Dmull3s13? +



5.33333 * Dmd113s31 * Dmullss3l +
6.66667 * Dmul15s31% —

2.22222 + Deul3uull * Dmullaul3 +
5.33333 * Dmdl114ul3 * Dmulluul3 +
6.66667 * Dmullaul3? +

8 * Dmd114u31 * Dmullau3l +
11.3333 * Dmullau3l?)

121

(D.1)



Appendix E

CONFIGURATION MIXING FOR DIFFERENT
PARAMETER SETS AND SEVERAL SELF-ENERGY

PRESCRIPTIONS

Table E.1: Configuration mixing energy for ground and first excited state energies
for baryons with several choices for the MIT parameters, using the minimal MIT
self-energy prescription. We determine the dependence of particle energies on the
bag radius, then determine the B and Casimir parameters required for the neutron
to be in stable equilibrium. This is repeated for both bag radii. The bag radius is
then adjusted for each particle to achieve a consistent value for B and the particle

masses are determined as shown in table 5.1,
R =10.987 R =0.888 R =0.987 R =0.987 R =0.888

m, =279 MeV m, =279 MeV m, =300 MeV m, =279 MeV m, = 279 MeV

my = 0 MeV my = 0 MeV my, =0 MeV my; = 0 MeV my = 0 MeV

mg = 5 MeV mg =5 MeV mg =5 MeV mg = 5 MeV mqg = 5 MeV

a, = 1.3636 a, = 1.3636 a, = 1.3636 a, = 1.2433 a, = 1.2433
Particle (MeV) (MeV) (MeV) (MeV) (MeV)
n -580.596 -646.525 -580.412 -496.767 -553.408
P -582.640 -649.418 -583.302 -498.807 -556.287
- -359.718 -426.971 -342.214 -279.152 -337.222
s+ -365.046 -437.568 -352.754 -284.431 -347.930
=" -196.759 -265.551 -166.891 -115.729 -175.514
=0 -200.224 -267.702 -168.970 -119.237 -177.474
A° -272.219 -303.790 -271.877 -219.317 -245.076
At -273.416 -305.919 -274.004 -220.505 -247.224
) Do -129.947 -164.029 -117.448 -75.306 -103.634
-t -133.864 -170.913 -124.368 -79.259 -110.740
=" 9.766 -26.921 34.301 66.419 35.364
==0 7.325 -28.483 32.747 63.911 33.851
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Table E.2: Configuration mixing energy for ground and first excited state energies
for baryons with several choices for the MIT parameters, with the self-energy built
from all vertices contributing to OGE graphs below the cutoff. We determine the
dependence of particle energies on the bag radius, then determine the B and Casimir
parameters required for the neutron to be in stable equilibrium. This is repeated
for both bag radii. The bag radius is then adjusted for each particle to achieve a
consistent value for B, and the particle masses are determined as shown in table 5.2.

R = 0.987 R =0.888 R = 0.987 R =0.987 R =0.888
m, =279 MeV m, =279 MeV m, =300 MeV m, =279 MeV m, = 279 MeV
my = 0 MeV my = 0 MeV my = 0 MeV my = 0 MeV my = 0 MeV
mg = 5 MeV myg = 5 MeV mg = 5 MeV mg = 5 MeV mgqg =5 MeV

a, = 1.3323 a; = 1.3323 a, = 1.3323 a, = 1.215 a, = 1.215
Particle  (MeV) (MeV) (MeV) (MeV) (MeV)
n -435.648 -485.581 -435.667 -362.616 -404.441
p -439.307 -489.491 -439.567 -366.161 -408.271
s -181.320 -232.490 -162.109 -112.049 -155.255
s+ -188.894 -243.682 -172.936 -119.482 -166.578
=- 15.469 -35.381 49.268 83.280 40.220
=0 11.288 -38.373 46.329 79.084 37.464
A° -128.017 -143.550 -127.916 -84.904 -95.708
A+ -130.923 -146.769 -131.114 -87.674 -98.853
ne- 54.914 37.018 69.587 98.791 85.489
o=+ 48.601 29.220 62.083 92.526 77.379
o 227.680 209.133 256.282 272.185 258.138
=0

224.305 206.788 253.948 268.770 255.903
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