Show simple item record

dc.contributor.authorQin, Li-Xuanen_US
dc.contributor.authorBeyer, Richard P.en_US
dc.contributor.authorHudson, Francesca N.en_US
dc.contributor.authorLinford, Nancy J.en_US
dc.contributor.authorMorris, Daryl E.en_US
dc.contributor.authorKerr, Kathleen F.en_US
dc.date.accessioned2009-12-15T21:04:38Z
dc.date.available2009-12-15T21:04:38Z
dc.date.issued2006en_US
dc.identifier.citationQin L, Beyer R, Hudson F, et al. Evaluation of methods for oligonucleotide array data via quantitative real-time PCR. BMC Bioinformatics. 2006;7(1):23.en_US
dc.identifier.other10.2202/1544-6115.1009en_US
dc.identifier.urien_US
dc.identifier.urihttp://hdl.handle.net/1773/15535
dc.descriptionen_US
dc.description.abstractBackground: There are currently many different methods for processing and summarizing probelevel data from Affymetrix oligonucleotide arrays. It is of great interest to validate these methods and identify those that are most effective. There is no single best way to do this validation, and a variety of approaches is needed. Moreover, gene expression data are collected to answer a variety of scientific questions, and the same method may not be best for all questions. Only a handful of validation studies have been done so far, most of which rely on spike-in datasets and focus on the question of detecting differential expression. Here we seek methods that excel at estimating relative expression. We evaluate methods by identifying those that give the strongest linear association between expression measurements by array and the "gold-standard" assay. Quantitative reverse-transcription polymerase chain reaction (qRT-PCR) is generally considered the "gold-standard" assay for measuring gene expression by biologists and is often used to confirm findings from microarray data. Here we use qRT-PCR measurements to validate methods for the components of processing oligo array data: background adjustment, normalization, mismatch adjustment, and probeset summary. An advantage of our approach over spike-in studies is that methods are validated on a real dataset that was collected to address a scientific question. Results: We initially identify three of six popular methods that consistently produced the best agreement between oligo array and RT-PCR data for medium- and high-intensity genes. The three methods are generally known as MAS5, gcRMA, and the dChip mismatch mode. For medium- and high-intensity genes, we identified use of data from mismatch probes (as in MAS5 and dChip mismatch) and a sequence-based method of background adjustment (as in gcRMA) as the most important factors in methods' performances. However, we found poor reliability for methods using mismatch probes for low-intensity genes, which is in agreement with previous studies. Conclusion: We advocate use of sequence-based background adjustment in lieu of mismatch adjustment to achieve the best results across the intensity spectrum. No method of normalization or probeset summary showed any consistent advantages.en_US
dc.description.sponsorshipNational Institute of Agingen_US
dc.language.isoen_USen_US
dc.rightsCopyright owned by the authors.en_US
dc.titleEvaluation of methods for oligonucleotide array data via quantitative real-time PCRen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record