Activation of Toll-like receptors by Burkholderia pseudomallei

ResearchWorks/Manakin Repository

Search ResearchWorks

Advanced Search


My Account


Related Information

Activation of Toll-like receptors by Burkholderia pseudomallei

Show full item record

Title: Activation of Toll-like receptors by Burkholderia pseudomallei
Author: West, T. Eoin; Ernst, Robert K.; Jansson-Hutson, Malinka J.; Skerrett, Shawn J.
Abstract: Background: Melioidosis, a lethal tropical infection that is endemic in southeast Asia and northern Australia, is caused by the saprophytic Gram-negative bacterium Burkholderia pseudomallei. Overall mortality approaches 40% yet little is known about mechanisms of host defense. Toll-like receptors (TLRs) are host transmembrane receptors that recognize conserved pathogen molecular patterns and induce an inflammatory response. The lipopolysaccharide (LPS) of Gram-negative bacteria is a potent inducer of the host innate immune system. TLR4, in association with MD-2, is the archetype receptor for LPS although B. pseudomallei LPS has been previously identified as a TLR2 agonist. We examined TLR signaling induced by B. pseudomallei, B. pseudomallei LPS, and B. pseudomallei lipid A using gain-of-function transfection assays of NF-?B activation and studies of TLR-deficient macrophages. Results: In HEK293 cells transfected with murine or human TLRs, CD14, and MD-2, heat-killed B. pseudomallei activated TLR2 (in combination with TLR1 or TLR6) and TLR4. B. pseudomallei LPS and lipid A activated TLR4 and this TLR4-mediated signaling required MD-2. In TLR2-/- macrophages, stimulation with heat-killed B. pseudomallei augmented TNF-a and MIP-2 production whereas in TLR4-/- cells, TNF-a, MIP-2, and IL-10 production was reduced. Cytokine production by macrophages stimulated with B. pseudomallei LPS or lipid A was entirely dependent on TLR4 but was increased in the absence of TLR2. TLR adaptor molecule MyD88 strongly regulated TNF-a production in response to heat-killed B. pseudomallei. Conclusion: B. pseudomallei activates TLR2 and TLR4. In the presence of MD-2, B. pseudomallei LPS and lipid A are TLR4 ligands. Although the macrophage cytokine response to B. pseudomallei LPS or lipid A is completely dependent on TLR4, in TLR2-/- macrophages stimulated with B. pseudomallei, B. pseudomallei LPS or lipid A, cytokine production is augmented. Other MyD88-dependent signaling pathways may also be important in the host response to B. pseudomallei infection. These findings provide new insights into critical mechanisms of host defense in melioidosis.

Files in this item

Files Size Format View
1471-2172-9-46.pdf 342.7Kb PDF View/Open

This item appears in the following Collection(s)

Show full item record