Show simple item record

dc.contributor.authorBergstrom, Carl T.en_US
dc.contributor.authorPritchard, Jonathan K.en_US
dc.date.accessioned2004-11-04T05:02:49Zen_US
dc.date.accessioned2007-06-13T19:58:22Z
dc.date.available2004-11-04T05:02:49Zen_US
dc.date.available2007-06-13T19:58:22Z
dc.date.issued1998-08en_US
dc.identifier.citationBergstrom, C. T. and J. K. Pritchard. 1998. Genetics 149:2135-2146en_US
dc.identifier.issn0016-6731en_US
dc.identifier.urihttp://hdl.handle.net/1773/2009en_US
dc.description.abstractSeveral features of the biology of mitochondria suggest that mitochondria might be susceptible to Muller’s ratchet and other forms of evolutionary degradation: Mitochondria have predominantly uniparental inheritance, appear to be nonrecombining, and have high mutation rates producing significant deleterious variation. We demonstrate that the persistence of mitochondria may be explained by recent data that point to a severe “bottleneck” in the number of mitochondria passing through the germline in humans and other mammals. We present a population-genetic model in which deleterious mutations arise within individual mitochondria, while selection operates on assemblages of mitochondria at the level of their eukaryotic hosts. We show that a bottleneck increases the efficacy of selection against deleterious mutations by increasing the variance in fitness among eukaryotic hosts. We investigate both the equilibrium distribution of deleterious variation in large populations and the dynamics of Muller’s ratchet in small populations. We find that in the absence of the ratchet, a bottleneck leads to improved mitochondrial performance and that, over a longer time scale, a bottleneck acts to slow the progression of the ratchet.en_US
dc.format.extent194445 bytesen_US
dc.format.mimetypeapplication/pdfen_US
dc.language.isoen_USen_US
dc.publisherGeneticsen_US
dc.titleGermline bottlenecks and the evolutionary maintenance of mitochondrial genomesen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record