ResearchWorks Archive
    • Login
    View Item 
    •   ResearchWorks Home
    • Dissertations and Theses
    • Atmospheric sciences
    • View Item
    •   ResearchWorks Home
    • Dissertations and Theses
    • Atmospheric sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Cirrus and water vapor transport in the tropical tropopause layer

    Thumbnail
    View/Open
    Dinh_washington_0250E_10071.pdf (33.92Mb)
    Date
    2012-08-10
    Author
    Dinh, Tra Phuong
    Metadata
    Show full item record
    Abstract
    Simulations of tropical-tropopause-layer (TTL) cirrus under the influence of a large-scale equatorial Kelvin wave have been performed in two dimensions. These simulations show that, even under the influence of the large-scale wave, radiatively induced dynamics in TTL cirrus plays an important role in the transport of water vapor in the vertical direction. In a typical TTL cirrus, the heating that results from absorption of radiation by ice crystals induces a mesoscale circulation. Advection of ice and water vapor by the radiatively induced circulation leads to the persistence of the cloud and upward advection of the cloudy air. Upward advection of the cloudy air is equivalent to upward transport of water vapor when the air above the cloud is drier than the cloudy air, and downward transport otherwise. In TTL cirrus, microphysical processes also contribute to transport of water vapor in the vertical direction. Ice nucleation and growth, followed by sedimentation and sublimation, always lead to downward transport of water vapor. The magnitude of the downward transport by microphysical processes increases with the relative humidity of the air surrounding the cloud. Moisture in the surrounding environment is important because there is continuous interactions between the cloudy and environmental air throughout the cloud boundary. In our simulations, when the air surrounding the cloud is subsaturated, hence drier than the cloudy air, the magnitude of the downward transport due to microphysical processes is smaller than that of the upward transport due to the radiatively induced advection of water vapor. The net result is upward transport of water vapor, and equivalently hydration of the lower stratosphere. On the other hand, when the surrounding air is supersaturated, hence moister than the cloudy air, microphysical and radiatively induced dynamical processes work in concert to induce downward transport of water vapor, that is dehydration of the lower stratosphere. TTL cirrus processes also depend sensitively on the deposition coefficient of water vapor on ice crystals. The deposition coefficient determines the depositional growth rate of ice crystals, hence microphysical and radiative properties of the cloud. In our simulations, larger values of the deposition coefficient correspond to less ice crystals nucleated during homogeneous freezing, larger ice crystal sizes, faster ice sedimentation, smaller radiative heating rate and weaker dynamics. These results indicate that detailed observations of the relative humidity in the vicinity of TTL cirrus and accurate laboratory measurements of the deposition coefficient are necessary to quantify the impact of TTL cirrus in the dehydration of the stratosphere. This research highlights the complex role of microphysical, radiative and dynamical processes in the transport of water vapor within TTL cirrus. It shows that under certain realistic conditions, TTL cirrus may lead to upward transport of water vapor, which results in moistening of the lower stratosphere. Thus it is not accurate to always associate TTL cirrus with stratospheric dehydration.
    URI
    http://hdl.handle.net/1773/20213
    Collections
    • Atmospheric sciences [312]

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    @mire NV
     

     

    Browse

    All of ResearchWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    @mire NV