Now showing items 65-84 of 112

• #### Mathematical Aspects of General Relativity ﻿

(2006-09-08)
These notes can serve as a mathematical supplement to the standard graduate level texts on general relativity and are suitable for self-study. The exposition is detailed and includes accounts of several topics of current ...
• #### Mechanisms for facilitated target location and the optimal number of molecules in the diffusion search process ﻿

(American Physical Society, 2001-06-26)
We investigate the number N of molecules needed to perform independent diffusions in order to achieve bonding of a single molecule to a specific site in time t [subscript] 0. For a certain range of values of t [subscript] ...
• #### Minimal Fine Derivatives and Brownian Excursions ﻿

(Nagoya University, 1990-09)
Let f be an analytic function defined on D [is a subset of] [complex numbers] C. If [the derivative of the function f at the point x] has a limit when [the set] x [into the set] z [is an element of the set partial derivative] ...
• #### Neumann eigenfunctions and Brownian couplings ﻿

(Mathematical Society of Japan, 2004)
This is a review of research on geometric properties of Neumann eigenfunctions related to the "hot spots" conjecture of Jeff Rauch. The paper also presents, in an informal way, some probabilistic techniques used in the proofs.
• #### No triple point of planar Brownian motion is accessible ﻿

(Institute of Mathematical Statistics, 1996-01)
We show that the boundary of a connected component of the complement of a planar Brownian path on a fixed time-interval contains almost surely no triple point of this Brownian path.
• #### Non-intersection exponents for Brownian paths. Part I: Existence and an invariance principle ﻿

(Springer-Verlag GmbH, 1990)
Let X and Y be independent three-dimensional Brownian motions, X(0) = (0; 0; 0), Y (0) = (1; 0; 0) and let p [subscript]r = P(X[0; r] [intersected with] Y [0; r] = [empty set]. Then the "non- intersection exponent" [from] ...
• #### Non-intersection exponents for Brownian paths. Part II: Estimations and applications to a random fractal. ﻿

(Institute of Mathematical Statistics, 1990-07)
Let X and Y be independent two-dimensional Brownian motions, X(0) = (0; 0); Y(0) = ([epsilon]; 0), and let p([epsilon]) = P(X[0; 1] [intersected with] Y [0; 1] = [empty set], q([epsilon]) = {Y [0; 1] does not contain a ...
• #### Non-polar points for reflected Brownian motion ﻿

(Elsevier, 1993)
Our main results are (i) a new construction of reflected Brownian motion X in a half-plane with non-smooth angle of oblique reflection and (ii) a theorem on existence of some "exceptional" points on the paths of the ...
• #### Omittable lines ﻿

(2005)
Every finite family of (straight) lines in the projective plane, not forming a pencil, is well know to have at least one "ordinary point" –– that is, a point common to precisely two of the lines. A line of a family is ...
• #### On Brownian Excursions in Lipschitz Domains. Part II: Local Asymptotic Distributions ﻿

(Birkhäuser Boston, Inc., 1989)
In this paper, we continue the study initiated in Burdzy and Williams (1986) of the local properties of Brownian excursions in Lipschitz domains. The focus in part I was on local path properties of such excursions. In ...
• #### On domain monotonicity of the Neumann heat kernel ﻿

Some examples are given of convex domains for which domain monotonicity of the Neumann heat kernel does not hold.
• #### On minimal parabolic functions and time-homogenous parabolic h-transforms ﻿

(American Mathematical Society, 1999-03-29)
Does a minimal harmonic function h remain minimal when it is viewed as a parabolic function? The question is answered for a class of long thin semi-infinite tubes D [is an element of the subset of real numbers to the power ...
• #### On Neumann eigenfunctions in lip domains ﻿

(American Mathematical Society, 2004)
A "lip domain" is a planar set lying between graphs of two Lipschitz functions with constant 1. We show that the second Neumann eigenvalue is simple in every lip domain except the square. The corresponding eigenfunction ...
• #### On nodal lines of Neumann eigenfunctions ﻿

(Institute of Mathematical Statistics, 2002-06-03)
We present a new method for locating the nodal line of the second eigenfunction for the Neumann problem in a planar domain.
• #### On non-increase of Brownian motion ﻿

(Institute of Mathematical Statistics, 1990-07)
A new proof of the non-increase of Brownian paths is given.
• #### On the "hot spots" conjecture of J. Rauch ﻿

We will state several rigorous versions of J. Rauch's "hot spots" conjecture, review some known results, and prove the conjecture under some additional assumptions. Let us, however, first observe that the conclusion ...
• #### On the Robin problem in fractal domains ﻿

(2005)
We study the solution to the Robin boundary problem for the Laplacian in a Euclidean domain. We present some families of fractal domains where the infimum is greater than 0, and some other families of domains where it is ...
• #### On the time and direction of stochastic bifurcation ﻿

(Elsevier, 1998)
This paper is a mathematical companion to an article introducing a new economics model, by Burdzy, Frankel and Pauzner (1997). The motivation of this paper is applied, but the results may have some mathematical interest ...