Show simple item record

dc.contributor.authorBurdzy, Krzysztof
dc.contributor.authorChen, Zhen-Qing
dc.contributor.authorMarshall, Donald E.
dc.date.accessioned2005-10-17T17:28:28Z
dc.date.available2005-10-17T17:28:28Z
dc.date.issued2005-08-16
dc.identifier.citationMathematische Zeitschriften
dc.identifier.urihttp://hdl.handle.net/1773/2138
dc.description.abstractConsider an open set D [is an element of the set] R [The set of Real Numbers] [superscript]d, d [is greater than or equal to] 2, and a closed ball B [is a proper subset of] D. Let E[superscript]xT[subscript]B denote the expectation of the hitting time of B for reflected Brownian motion in D starting from x [is an element of the set] D. We say that D is a trap domain if sup[subscript]x E[superscript]xT[subscript]B = [infinity]. We fully characterize simply connected planar trap domains using a geometric condition. We give a number of (less complete) results for multidimensional domains. We discuss the relationship between trap domains and some other potential theoretic properties of D such as compactness of the 1-resolvent of the Neumann Laplacian. In addition, we give an answer to an open problem raised by Davies and Simon in 1984 about the possible relationship between intrinsic ultracontractivity for the Dirichlet Laplacian in a domain D and compactness of the 1-resolvent of the Neumann Laplacian in D.en
dc.description.sponsorshipNational Science Foundation (NSF)en
dc.format.extent315390 bytes
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherSpringer-Verlag GmbHen
dc.subjectReflecting Brownian motionen
dc.subjectNeumann Laplacianen
dc.subjectHitting timeen
dc.subjectSobolev spaceen
dc.subjectConformal mappingen
dc.subjectHyperbolic distanceen
dc.subjectIntrinsic ultracontractivityen
dc.subjectParabolic Harnack principleen
dc.titleTraps for Reflected Brownian Motionen
dc.typeArticleen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record