Show simple item record

dc.contributor.authorBurdzy, Krzysztof
dc.contributor.authorBass, Richard F.
dc.date.accessioned2005-11-16T17:24:23Z
dc.date.available2005-11-16T17:24:23Z
dc.date.issued1999-01
dc.identifier.citationBurdzy, K. & R. Bass. Cutting Brownian paths. In Memoir AMS, 137(657). Providence, RI: American Mathematical Society, 1999.en
dc.identifier.urihttp://hdl.handle.net/1773/2159
dc.description99 pages.en
dc.description.abstractLet Z [subscript] t be two-dimensional Brownian motion. We say that a straight line L is a cut line if there exists a time t [is an element of the set] (0, 1) such that the trace of {Z [subscript] s : 0 [is less than or equal to] s < t} lies on one side of L and the trace of {Z [subscript] s : t < s < 1} lies on the other side of L. In this paper we prove that with probability one cut lines do not exist. This provides a solution to Problem 8 in Taylor (1986).en
dc.description.sponsorshipResearch partially supported by NSF grant DMS-9322689.en
dc.format.extent547503 bytes
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherAmerican Mathematical Societyen
dc.relation.ispartofseriesMemoirs AMS;vol. 137 number 657
dc.subjectPlanar Brownian motionen
dc.subjectcut linesen
dc.subjectcut pointsen
dc.subjectexceptional setsen
dc.subjectTaylor’s problemen
dc.subjectBessel processesen
dc.subjectconditioned Brownian motionen
dc.subjectconesen
dc.subjectrandom walksen
dc.subjectwedgesen
dc.subjectpoints of increaseen
dc.subjectconvex hullen
dc.titleCutting Brownian Pathsen
dc.typeArticleen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record