Show simple item record

dc.contributor.authorBurdzy, Krzysztof
dc.date.accessioned2005-11-17T01:15:42Z
dc.date.available2005-11-17T01:15:42Z
dc.date.issued1989-07
dc.identifier.citationBurdzy, K. (1989). Cut points on Brownian paths. Annals of Mathematical Probability 17(3), 1012-1036.en
dc.identifier.urihttp://hdl.handle.net/1773/2162
dc.description.abstractLet X be a standard two-dimensional Brownian motion. There exists a.s. t [is an element of the set] (0; 1) such that X([0; t))[intersected with] X((t; 1]) = [empty set]. It follows that X([0; 1]) is not homeomorphic to the Sierpinski carpet a.s.en
dc.description.sponsorshipResearch partially supported by the NSF Grant DMS 8419377.en
dc.format.extent247772 bytes
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherInstitute of Mathematical Statisticsen
dc.subjectBrownian motionen
dc.subjectcut pointsen
dc.subjectfractalen
dc.subjectrandom fractalen
dc.titleCut points on Brownian pathsen
dc.typeArticleen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record