dc.contributor.author | Burdzy, Krzysztof | |
dc.date.accessioned | 2005-11-17T01:15:42Z | |
dc.date.available | 2005-11-17T01:15:42Z | |
dc.date.issued | 1989-07 | |
dc.identifier.citation | Burdzy, K. (1989). Cut points on Brownian paths. Annals of Mathematical Probability 17(3), 1012-1036. | en |
dc.identifier.uri | http://hdl.handle.net/1773/2162 | |
dc.description.abstract | Let X be a standard two-dimensional Brownian motion. There exists a.s. t [is an element of the set] (0; 1) such that X([0; t))[intersected with] X((t; 1]) = [empty set]. It follows that X([0; 1]) is not
homeomorphic to the Sierpinski carpet a.s. | en |
dc.description.sponsorship | Research partially supported by the NSF Grant DMS 8419377. | en |
dc.format.extent | 247772 bytes | |
dc.format.mimetype | application/pdf | |
dc.language.iso | en_US | |
dc.publisher | Institute of Mathematical Statistics | en |
dc.subject | Brownian motion | en |
dc.subject | cut points | en |
dc.subject | fractal | en |
dc.subject | random fractal | en |
dc.title | Cut points on Brownian paths | en |
dc.type | Article | en |