ResearchWorks Archive

A boundary Harnack principle in twisted Hölder domains

Show simple item record Burdzy, Krzysztof Bass, Richard F. 2005-11-18T18:05:57Z 2005-11-18T18:05:57Z 1991-09
dc.identifier.citation Bass, R.F. & K. Burdzy. (1991). A boundary Harnack principle in twisted Hölder domains. Annals of Mathematics, 134(2), 253-276. en
dc.description.abstract The boundary Harnack principle for the ratio of positive harmonic functions is shown to hold in twisted Hölder domains of order [alpha] for [alpha is an element of the set](1/2, 1]. For each [alpha is an element of the set] (0, 1/2), there exists a twisted Hölder domain of order [alpha] for which the boundary Harnack principle fails. Extensions are given to L-harmonic functions for uniformly elliptic operators L in divergence form. en
dc.description.sponsorship Research partially supported by NSF grants DMS–8822053 and DMS–8901255. en
dc.format.extent 196885 bytes
dc.format.mimetype application/pdf
dc.language.iso en_US
dc.publisher Annals of Mathematics en
dc.subject boundary Harnack principle en
dc.subject Hölder domains en
dc.subject twisted Hölder domains en
dc.subject conditioned Brownian motion en
dc.subject h-processes en
dc.subject harmonic functions en
dc.subject Harnack principle en
dc.title A boundary Harnack principle in twisted Hölder domains en
dc.title.alternative Boundary Harnack principle en
dc.type Article en

Files in this item

This item appears in the following Collection(s)

Show simple item record

Search ResearchWorks

Advanced Search


My Account