ResearchWorks Archive
    • Login
    View Item 
    •   ResearchWorks Home
    • Faculty and Researcher Data and Papers
    • Mathematics, Department of
    • EPrint Collection - Mathematics
    • View Item
    •   ResearchWorks Home
    • Faculty and Researcher Data and Papers
    • Mathematics, Department of
    • EPrint Collection - Mathematics
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A counterexample to the "hot spots" conjecture

    Thumbnail
    View/Open
    paper66.pdf (127.8Kb)
    Date
    1999-01
    Author
    Burdzy, Krzysztof
    Werner, Wendelin
    Metadata
    Show full item record
    Abstract
    We construct a counterexample to the "hot spots" conjecture; there exists a bounded connected planar domain (with two holes) such that the second eigenvalue of the Laplacian in that domain with Neumann boundary conditions is simple and such that the corresponding eigenfunction attains its strict maximum at an interior point of that domain.
    URI
    http://hdl.handle.net/1773/2198
    Collections
    • EPrint Collection - Mathematics [112]

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    @mire NV
     

     

    Browse

    All of ResearchWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    @mire NV