Show simple item record

dc.contributor.advisorTorii, Keikoen_US
dc.contributor.authorPeterson, Kylee M.en_US
dc.date.accessioned2013-07-25T17:46:29Z
dc.date.available2015-12-14T17:55:54Z
dc.date.issued2013-07-25
dc.date.submitted2013en_US
dc.identifier.otherPeterson_washington_0250E_11975.pdfen_US
dc.identifier.urihttp://hdl.handle.net/1773/23349
dc.descriptionThesis (Ph.D.)--University of Washington, 2013en_US
dc.description.abstractThe plant epidermis is a critical interface between the atmosphere and internal plant tissues, which allows plants to succeed on land by restricting their exposure to the environment. Stomata, closable pores on the plant surface bounded by specialized guard cells, are an integral part of epidermal function. By controlling water loss and carbon dioxide uptake, stomata regulate global carbon and water cycles. Stomata undergo a complex course of development involving cell-cell signaling and sequential action of master regulatory transcription factors, making stomata a suitable system for studying widely applicable developmental processes necessary for tissue and organ development. This dissertation presents an examination of molecular characteristics, gene function, and protein dynamics in stomatal lineage cells, including preliminary results of manipulating cell fate during stomatal development. We performed molecular profiling of the stem-cell-like stomatal precursor, the meristemoid, by enriching cell types through synthetic mutations. This uncovered new genes involved in stomatal development as well as molecular commonalities with the main plant stem-cell niches at the shoot and root apices. A novel gene, <italic>POLAR</italic>, was found to localize asymmetrically in dividing stomatal-lineage cells. Also uncovered through meristemoid profiling was a transcription factor, HOMEODOMAIN GLABROUS 2 (HDG2), which is highly expressed in stomatal lineage cells and sufficient to convert internal leaf cells to stomata when ectopically expressed. Loss of function in <italic>HDG2</italic> hinders stomatal development after initiation and causes aberrant stomata; further loss of its close relative <italic>AtML1</italic> magnifies the effect. To further investigate the role of transcription factors in stomatal development, we used time lapse microscopy to observe protein dynamics of stomatal regulators in germinating cotyledons. Cell-cell signaling in the cotyledon was perturbed using laser ablation of stomatal-lineage cells, and preliminary results indicate that cell fate was thus affected. Cotyledon time lapse revealed an unexpected developmental sequence indicating possible epidermal prepatterning, so we employed an embryo time lapse technique to discover that both regulatory genes and signaling components were active in the embryo, indicating that stomatal development begins during embryonic development. This work demonstrates that stomatal development exemplifies crucial developmental processes and provides novel insight into how cell fate is dynamically specified by tissue-level regulation, cell-cell signaling, and cell-autonomous molecular mechanisms in plants.en_US
dc.format.mimetypeapplication/pdfen_US
dc.language.isoen_USen_US
dc.relation.haspartMovie_2-1.avi; video; .en_US
dc.relation.haspartMovie_2-2.avi; video; .en_US
dc.relation.haspartMovie3-1.mov; video; .en_US
dc.relation.haspartMovie3-2.mov; video; .en_US
dc.relation.haspartMovie3-3.mov; video; .en_US
dc.relation.haspartMovie4-1.mov; video; .en_US
dc.relation.haspartMovie4-2.mov; video; .en_US
dc.relation.haspartMovie4-3.mov; video; .en_US
dc.relation.haspartMovie4-4.mov; video; .en_US
dc.relation.haspartMovie5-1.mov; video; .en_US
dc.relation.haspartMovie5-2.mov; video; .en_US
dc.relation.haspartDataset2-1.xls; spreadsheet; .en_US
dc.relation.haspartDataset2-2.xls; spreadsheet; .en_US
dc.relation.haspartDataset2-3.xls; spreadsheet; .en_US
dc.relation.haspartDataset2-4.xls; spreadsheet; .en_US
dc.relation.haspartDataset2-5.xls; spreadsheet; .en_US
dc.relation.haspartDataset2-6.xls; spreadsheet; .en_US
dc.rightsCopyright is held by the individual authors.en_US
dc.subjectArabidopsis; epidermis; protein dynamics; stomatal development; transcriptomeen_US
dc.subject.otherDevelopmental biologyen_US
dc.subject.otherPlant biologyen_US
dc.subject.otherMolecular biologyen_US
dc.subject.otherbiologyen_US
dc.titleStem cells and fate control in plant stomatal developmenten_US
dc.typeThesisen_US
dc.embargo.termsDelay release for 1 year -- then make Open Accessen_US


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record