ResearchWorks Archive
    • Login
    View Item 
    •   ResearchWorks Home
    • Dissertations and Theses
    • Molecular and cellular biology
    • View Item
    •   ResearchWorks Home
    • Dissertations and Theses
    • Molecular and cellular biology
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Novel connections between DNA replication, telomere homeostasis and the DNA damage response revealed by a genome-wide screen for <italic>TEL1/ATM</italic> interactions in <italic>Saccharomyces cerevisiae</italic>

    Thumbnail
    View/Open
    Piening_washington_0250E_11600.pdf (1.856Mb)
    Date
    2013-07-25
    Author
    Piening, Brian Donald
    Metadata
    Show full item record
    Abstract
    Tel1p is the budding yeast ortholog of the mammalian tumor suppressor and DNA damage response (DDR) kinase ATM. However, <italic>tel1-δ</italic> cells, unlike <italic>ATM</italic>-deficient cells, do not exhibit sensitivity to DNA damaging agents, but do display shortened (but stably maintained) telomere lengths. Neither the extent to which ATM/Tel1p functions in the DDR nor the mechanism by which ATM/Tel1p contributes to telomere metabolism is well-understood. In this dissertation, I present our large-scale transcriptional profiling of normal and <italic>ATM</italic>-deficient lymphoblast cell lines in response to ionizing radiation (IR). From these results, we make the surprising observation that <italic>ATM</italic>-deficient cells exhibit no significant defects in IR-induced gene expression, which along with work from others suggests that significant redundancy exists in the DNA damage response, and may be an explanation for the relative DNA damage insensitivity in <italic>tel1-δ</italic> yeast cells. To address this question, I performed a comprehensive genome-wide screen for genetic interactions with <italic>tel1-δ</italic> that cause sensitivity to MMS and/or ionizing radiation, along with follow-up characterizations of the 13 interactions yielded by this screen. Surprisingly, many of the <italic>tel1-δ</italic> interactions that confer DNA damage sensitivity also exacerbate the short telomere phenotype, suggesting a connection between these two phenomena. Restoration of normal telomere length in the <italic>tel1-δ</italic> <italic>xxx-δ</italic> mutants results in only minor suppression of the DNA damage sensitivity, demonstrating that the sensitivity of these mutants must also involve mechanisms independent of telomere length. In support of a model for increased replication stress in the <italic>tel1-δ</italic> <italic>xxx-δ</italic> mutants, I show that depletion of dNTP pools through pre-treatment with hydroxyurea renders <italic>tel1-δ</italic> cells (but not wild-type) MMS-sensitive, demonstrating that under certain conditions, Tel1p does indeed play a critical role in the DDR.
    URI
    http://hdl.handle.net/1773/23380
    Collections
    • Molecular and cellular biology [179]

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    @mire NV
     

     

    Browse

    All of ResearchWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    @mire NV