Show simple item record

dc.contributor.advisorReid, Philip Jen_US
dc.contributor.authorRoberto, Michael Fen_US
dc.date.accessioned2014-10-13T20:01:33Z
dc.date.available2014-10-13T20:01:33Z
dc.date.submitted2014en_US
dc.identifier.otherRoberto_washington_0250E_13197.pdfen_US
dc.identifier.urihttp://hdl.handle.net/1773/26401
dc.descriptionThesis (Ph.D.)--University of Washington, 2014en_US
dc.description.abstractCurrent continuous flow reactor (CFR) development and optimization primarily involves the investigation of process parameters such as flow and temperature to optimize a reaction. The advantages of CFRs for stable production - including improved heat transfer, reproducible results, safety and cost considerations, and others - generally result in comparable or improved yield compared to batch chemistry. However, the translation of a reaction from batch to continuous flow may be significantly improved following the thorough investigation of a batch reaction with analytical instrumentation. In this work, the Swern oxidation of S-1-phenylethanol is optimized for continuous flow production via the combination of information discovered in batch and continuous flow validation methods. A model chemistry is investigated with Raman spectroscopy and chemometric modeling in continuous flow, demonstrating the capability of real-time monitoring conversion in a CFR. The Swern oxidation is investigated in batch using Raman spectroscopy, high performance liquid chromatography (HPLC), and gas chromatography tandem mass spectrometry (GC-MS), yielding new information about intermediate kinetics, product formation, and side-product decomposition pathways. A technique for rapidly determining steady state in a CFR is described, using the Swern oxidation as a model chemistry. Finally, the Swern oxidation of S-1-phenylethanol is optimized in a CFR using real-time quantitative Raman monitoring and the mechanistic information uncovered in the batch investigation. This improved CFR development and optimization pathway - a thorough investigation of batch, coupled with optimization of a reaction through understanding of a chemistry - offers significant advantages over the current paradigm, and is applicable to most CFRs.en_US
dc.format.mimetypeapplication/pdfen_US
dc.language.isoen_USen_US
dc.rightsCopyright is held by the individual authors.en_US
dc.subjectChemometrics; Continuous Flow; Process Analytical Technology; Raman; Spectroscopyen_US
dc.subject.otherAnalytical chemistryen_US
dc.subject.otherchemistryen_US
dc.titleTranslation of a Chemical Reaction from Batch to Continuous Flow via Process Analytical Technology and Chemometricsen_US
dc.typeThesisen_US
dc.embargo.termsOpen Accessen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record