Show simple item record

dc.contributor.advisorHouze, Robert Aen_US
dc.contributor.authorRasmussen, Kristen Lanien_US
dc.date.accessioned2015-02-24T17:30:40Z
dc.date.available2015-02-24T17:30:40Z
dc.date.submitted2014en_US
dc.identifier.otherRasmussen_washington_0250E_13907.pdfen_US
dc.identifier.urihttp://hdl.handle.net/1773/27396
dc.descriptionThesis (Ph.D.)--University of Washington, 2014en_US
dc.description.abstractIdentifying common features and differences between the mechanisms producing extreme convection near major mountain ranges of the world is an essential step toward a general understanding of orographic precipitation on a global scale. The overarching objective of this dissertation is to understand and examine orographic convective processes in general, while specifically focusing on systems in the lee of the Andes Mountains. Diagnosing the key ingredients necessary for generating high impact weather near extreme topography is crucial to our understanding of orographic precipitating systems. An investigation of the most intense storms in 11 years of TRMM Precipitation Radar (PR) data has shown a tendency for squall lines to initiate and develop east of the Andes with a mesoscale organization similar to storms in the U.S. Great Plains (Rasmussen and Houze 2011). In subtropical South America, however, the topographical influence on the convective initiation and maintenance of the mesoscale convective systems (MCSs) is unique. The Andes and other mountainous terrain of Argentina focus deep convective initiation in the foothills of western Argentina (Romatschke and Houze 2010; Rasmussen and Houze 2011). Subsequent to initiation, the convection often evolves into propagating MCSs similar to those seen over the U.S. Great Plains sometimes producing damaging tornadoes, hail and floods across a wide agricultural region (Rasmussen and Houze 2011; Rasmussen et al. 2014b). The TRMM satellite was designed to determine the spatial and temporal variation of tropical and subtropical rainfall amounts and storm structures around the globe with the goal of understanding the factors controlling the precipitation. However, the TRMM PR algorithm significantly underestimates surface rainfall in deep convection over land (Nesbitt et al. 2004; Iguchi et al. 2009; Kozu et al. 2009). When the algorithm rates are compared to a range of conventional Z-R relations, the rain bias tends to be worse in storms with significant mixed phase hydrometeors, such as graupel and hail, that are similarly affected by assumptions in the TRMM PR algorithm (Rasmussen et al. 2013). A quantitative approach that mitigates this bias using TRMM PR data was developed and employed to investigate the role of the most extreme precipitating systems on the hydrological cycle in South America (Rasmussen et al. 2014c). Results from this study indicate that ~95% of the accumulated warm season precipitation in La Plata Basin in subtropical South America is contributed by echoes structurally related to MCSs and their life cycle. From a hydrologic and climatological viewpoint, this empirical knowledge is critical, as the type of runoff and flooding that may occur depends on the specific character of the convective storm and precipitation reaching the surface, and has broad implications for the hydrological cycle in this region. Numerical simulations conducted with the NCAR Weather Research and Forecasting (WRF) model extends the observational analysis and provides an objective dynamical evaluation of storm initiation, development mechanisms, dynamics (Rasmussen and Houze 2014), and microphysics (Rasmussen et al. 2014d). The capping inversion in the lee of the Andes (Rasmussen and Houze 2011) is important in preventing premature triggering in the simulations. The impingement of the South American Low Level Jet on foothills and low mountains to the east of the main Andes range triggers extremely deep and intense convection. The simulated mesoscale systems closely resemble the storm structures seen by the TRMM satellite as well as the overall shape and character of the storms shown in GOES satellite data (Rasmussen and Houze 2014; Rasmussen et al. 2014d). Sensitivity studies removing and/or reducing various topographic features have shown the profound influence of the terrain on the initiation and upscale growth of the subsequent MCSs. The extreme vertical extent of the Andes tends to keep the South American storms tied to the topography during upscale organization and development longer than similar storms east of the Rocky Mountains in the U.S. and is related to enhanced lee cyclogenesis, flow deformation, and wake effects (Rasmussen and Houze 2014). From this research, an original conceptual model for convective storm environments leading to convective initiation was developed for subtropical South America.en_US
dc.format.mimetypeapplication/pdfen_US
dc.language.isoen_USen_US
dc.rightsCopyright is held by the individual authors.en_US
dc.subjectconvective systems; lightning; precipitation; severe storms; South America; thunderstormsen_US
dc.subject.otherAtmospheric sciencesen_US
dc.subject.otherEnvironmental studiesen_US
dc.subject.otherHydrologic sciencesen_US
dc.subject.otheratmospheric sciencesen_US
dc.titleOn the nature of severe orographic thunderstorms near the Andes in subtropical South Americaen_US
dc.typeThesisen_US
dc.embargo.termsOpen Accessen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record