Insight into the Local Solvent Environment of Biologically Relevant Iron-nitroysl Systems through Two-Dimensional Infrared Spectroscopy
Author
Brookes, Jennifer Faith
Metadata
Show full item recordAbstract
Iron-nitrosyl systems, particularly in the form of heme proteins, with their iron metal active sites play an important role in biological systems. Heme proteins act as storage, transporters, and receptors for nitric oxide (NO), a signaling molecule that is important in immune, nervous, and cardiovascular systems of mammals. By better understanding the local environment of the active site of NO binding heme proteins we can gain insight into disease in which the NO pathways have been implicated. This is an important step to being able to develop pharmaceuticals targeting NO pathways in humans. Sodium nitroprusside ((SNP, Na2[Fe(CN)5NO]2H2O) is investigated as a model system for the active site of nitric oxide binding heme proteins. Using two-dimensional infrared spectroscopy (2D IR) to obtain dephasing dynamics of the nitrosyl stretch (NO) in a series of solvents we are able to better understand the local environment of the more complicated metalloproteins. Rigorous line shape analysis is performed by using nonlinear response theory to simulate 2D IR spectra which are then fit to experimental data in an iterative process to extract frequency-frequency correlation functions (FFCFs). The time scales obtained are then correlated to empirical solvent polarity parameters. The analysis of the 2D IR lineshapes reveal that the spectral diffusion timescale of the NO in SNP varies from 0.8 – 4 ps and is negatively correlated with the empirical solvent polarity scales. We continue to investigate NO binding of metalloproteins through 2D IR experiments on nitrophorin 4 (NP4). NP4 is a pH-sensitive NO transporter protein present in the salivary gland of the blood sucking insect Rhodius prolixus which undergoes a pH sensitive structural change between a closed and open conformation allowing for the storage and delivery of NO. The two structures are observed spectroscopically as two distinct pH-dependent NO frequencies at ~1904 and ~1917 cm-1. We obtain FFCFs by globally fitting experimental 2D IR spectra to signals calculated using a third-order nonlinear response formalism. The open conformation has frequency-frequency correlation timescales of ~1 ps and ~100 ps under both acidic and basic conditions. The closed conformer has pH dependence with fast time scales of 3.0 ps (pH 5.1) and 1.4 ps (pH 7.9) with a static component present under both conditions. The dephasing dynamics of NP4 can be correlated to the local solvent environment within the distal pocket providing quantitative confirmation to the presence and absence of water molecules in two conformers under both pH conditions.
Collections
- Chemistry [339]