ResearchWorks Archive
    • Login
    View Item 
    •   ResearchWorks Home
    • Dissertations and Theses
    • Industrial engineering
    • View Item
    •   ResearchWorks Home
    • Dissertations and Theses
    • Industrial engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Modeling Depression Progression Dynamics from Electronic Health Record

    Thumbnail
    View/Open
    Huang_washington_0250O_16200.pdf (2.240Mb)
    Author
    Huang, Jiaqi
    Metadata
    Show full item record
    Abstract
    To assess and monitor the progression dynamics of patients' depression severity conditions, Markov models are refined from other disease progression modeling methodologies to identify the characteristics and evolvement of disease severity state transitions among a cohort of patients. Explored in this thesis is an integrated evaluation approach on the Markov models with emphasis on their application of modeling depression progression dynamics. Using the Patient Health Questionnaire (PHQ) - 9 data from electronic health record, b-spline curving and k-means clustering methods convert individuals' irregular PHQ-9 measurements to complete longitudinal depression trajectories and group the entire dataset into custom subgroups. Multi-State Discrete Time Markov model (MSM), Hidden Markov model (HMM), Semi-Markov model (semi-M) and Hidden Semi-Markov model (HSMM) are applied to each of the five subgroups to model the depression progression dynamics and identify the characteristics of depression severity state transitions. Purpose served in this approach, including providing insights on long-term severity progression outcomes, can be demonstrated among measurements of stationary probability, expected first passage time, and the proportion of time in a depression state where appropriate computed from the subgroup-specific transition probability matrices based on four Markov models. The effectiveness and accuracy of the models are then further validated under bootstrap and cross validation.
    URI
    http://hdl.handle.net/1773/36726
    Collections
    • Industrial engineering [67]

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    @mire NV
     

     

    Browse

    All of ResearchWorksCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    @mire NV