Show simple item record

dc.contributor.advisorResende, Fernando
dc.contributor.authorJan, Oliver
dc.date.accessioned2017-08-11T22:55:48Z
dc.date.available2017-08-11T22:55:48Z
dc.date.submitted2017-06
dc.identifier.otherJan_washington_0250E_13024.pdf
dc.identifier.urihttp://hdl.handle.net/1773/40155
dc.descriptionThesis (Ph.D.)--University of Washington, 2017-06
dc.description.abstractThroughout this work, we report results for the oligomerization of ethylene over Ni-H in a packed bed reactor. We performed a parameterized study over temperature (30ºC-190ºC), pressure (8.5-25.6 bar), and weighted hourly space velocity (2.0-5.5 hr-1). We observed that the ethylene conversion increased with reaction pressure due primarily to the slower velocities at higher pressures. Increasing the temperature of the reactor led to the formation of larger oligomers and coke, but its effect on the conversion was small. The space velocity played an important role on ethylene conversion and product selectivity, with higher conversions observed at lower space velocities and higher selectivities to butene at higher space velocities. We also conducted a long experiment to determine the activity of the Ni-H catalyst over 72 hours-on-stream at 19.0 bar partial pressure of ethylene, 120ºC, and 3.1 hr-1 WHSV. We observed that catalyst deactivation occurred only during the startup period largely due to coke formation. Despite this initial deactivation, negligible coke formation occurred after 8 hours time-on-stream, as the conversion remained steady at 47% for the duration of the experiment. We also carried out oligomerization of ethylene using Ni-H in a laboratory-scale packed bed reactor for the synthesis of liquid hydrocarbons. We evaluated the effect of several process variables (temperature, pressure, weighted hourly space velocity, and nickel loading) on the liquid hydrocarbon/coke yield, ethylene conversion, and oligomeric product selectivity. Increases in pressure resulted in higher ethylene conversion, corresponding to a liquid yield of 12.4 wt.% with 5.7 wt.% coke. As the pressure increased, the selectivity towards octenes doubled alongside a decrease in butenes, which suggested that higher pressures promoted butene dimerization. Under the conditions studied, a minimum temperature of 120ºC was required to produce liquid hydrocarbons. The liquid yield increased with temperature, with 17 wt.% observed at 190ºC. Higher reaction temperatures led to the formation of odd-numbered oligomers primarily due to acid-catalyzed cracking reactions. In the range of space velocities tested, a moderate WHSV of 2.0 hr-1 resulted in a local maximum of 10.6 wt.% of liquid hydrocarbon yield. A moderate nickel loading of 3.4 wt.% also resulted in the highest liquid yield out of the three loadings tested (10.6 wt.%). The variation in nickel loading revealed the importance of having a synergistic balance of nickel and acid sites on the catalyst to maximize ethylene conversion and maintain high liquid hydrocarbon yield. Lastly, we used supercritical ethylene as both a solvent and as a reactant for ethylene oligomerization over two silica-alumina type catalysts: Ni-Hβ and Ni-Al-SBA-15. Specifically, the effect of pressure and temperature on the overall conversion and product selectivity were evaluated in the range from 0 to 65 bar and 30 to 120ºC. At subcritical conditions, the ethylene conversion reached a plateau of around 50%. By increasing the pressure past the critical point of ethylene, the conversion drastically increased to 71%. The increased conversion can be attributed to the solubility of certain oligomers, namely butene, in supercritical ethylene that promotes desorption from catalytic active site before further oligomerization. We also tested a mesoporous catalyst, Ni-Al-SBA-15 and observed conversion trends analogous to that of Ni-H. At supercritical conditions, ethylene oligomerization over Ni-Al-SBA-15 was more selective towards the butene product, with nearly 74 wt.% butenes observed. The catalyst activity increased with temperature from 30ºC to 120ºC. The experiment conducted at 30ºC showed very little activity and ethylene conversion, however it effectively heavy molecular weight species from the catalyst. This condition, albeit being not effective for ethylene oligomerization, could be implemented as an in-situ technique to regenerate the catalyst during process operation.
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.rightsnone
dc.subjectCatalysis
dc.subjectEthylene
dc.subjectHeterogeneous
dc.subjectOligomerization
dc.subjectZeolite
dc.subjectChemical engineering
dc.subjectMaterials Science
dc.subject.otherForestry
dc.titleHeterogeneous Catalytic Oligomerization of Ethylene
dc.typeThesis
dc.embargo.termsOpen Access


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record