Browsing Mathematics by Issue Date
Now showing items 4160 of 91

On special Lagrangian equations
(20140224)In this paper we study the special Lagrangian equation and related equations. Special Lagrangian equation originates in the special Lagrangian geometry by HarveyLawson [HL1]. In subcritical phases, we construct singular ... 
LamWilliams Markov chains on symmetric groups
(20140224)This paper reviews the current state of the LamWilliams conjectures on a multivariate Markov chain on the symmetric group S_n. We start with Lam's work on random core partitions which led to a remarkable Markov chain on ... 
Combinatorial Laguerre Series
(20140224)We develop a method for counting words subject to various restrictions by finding a combinatorial interpretation for a product of weighted sums of Laguerre polynomials. We describe how such a series can be computed by ... 
On Particle Interaction Models
(20140224)This dissertation deals with three problems in Stochastic Analysis which broadly involve interactions, either between particles (Chapters 1 and 2), or between particles and the boundary of a C2 domain (Chapter 3). In Chapter ... 
The Positive Semidefinite Rank of Matrices and Polytopes
The positive semidefinite (psd) rank of a nonnegative <italic>p</italic> × <italic>q</italic> matrix <italic>M</italic> is defined to be the smallest integer <italic>k</italic> such that there exist <italic>k</italic> × ... 
Path algebras and monomial algebras of finite GKdimension as noncommutative homogeneous coordinate rings
This thesis sets out to understand the categories QGr A where A is either a monomial algebra or a path algebra of finite GelfandKirillov dimension. The principle questions are: \begin{enumerate} \item What is the structure ... 
Grothendieck Duality on Diagrams of Schemes
The Du Bois complex and Du Bois singularities, which extend results of Hodge theory to singular complex varieties, can be defined in terms of a cubical hyperresolution. In this dissertation I further develop the language ... 
Heat Kernel Estimates for Markov Processes Associated with TimeDependent Dirichlet Forms
In this paper, timeinhomogeneous stablelike processes are investigated. We establish the relation between the transition operators and timedependent parabolic equations, as well as upper heat kernel estimates. 
Toward the compactification of the stack of Lie(G)forms using perfect complexes
To establish geometric properties of an algebraic stack, one can find a compactification. This method has been successfully employed to find irreducible components for example of the moduli stack of curves [DM69], vector ... 
Arithmetic Properties of the Derived Category for CalabiYau Varieties
This thesis develops a theory of arithmetic FourierMukai transforms in order to obtain results about equivalences between the derived category of CalabiYau varieties over nonalgebraically closed fields. We obtain answers ... 
The regularity of Loewner curves
The Loewner differential equation, a classical tool that has attracted recent attention due to SchrammLoewner evolution (SLE), provides a unique way of encoding a simple 2dimensional curve into a continuous 1dimensional ... 
Inverse BoundaryValue Problems on an Infinite Slab
In this work, we study the stability aspect of two inverse boundaryvalue problems (IBVPs) on an infinite slab with partial data. The uniqueness aspects of these IBVPs were considered and studied by Li and Uhlmann for the ... 
Interacting particle systems with partial annihilation through membranes
This thesis studies the <italic>hydrodynamic limit</italic> and the <italic>fluctuation limit</italic> for a class of interacting particle systems in domains. These systems are introduced to model the transport of positive ... 
Eigenvalue fluctuations for random regular graphs
One of the major themes of random matrix theory is that many asymptotic properties of traditionally studied distributions of random matrices are <italic>universal</italic>. We probe the edges of universality by studying ... 
The Grothendieck Groups of Module Categories over Coherent Algebras
Let <italic>k</italic> be a field and <italic>B</italic> either a finitely generated free <italic>k</italic>algebra, or a regular <italic>k</italic>algebra of global dimension two with at least three generators, generated ... 
Classification of connected Hopf algebras up to primecube dimension
We classify all connected Hopf algebras up to p^3 dimension over an algebraically closed field of characteristic p>0 under the mild restriction such that in dimension p^3, we only work over odd primes p when the primitive ... 
Local Set Approximation: Infinitesimal to Local Theorems for Sets in Euclidean Space and Applications
In this thesis we develop the theory of Local Set Approximation (LSA), a framework which arises naturally from the study of sets with singularities. That is, we describe the local structure of a set A in Euclidean space ... 
Conformal welding of uniform random trees
A conformally balanced tree is an embedding of a given planar map into the plane with constraints on the harmonic measure of its edges such that the resulting set is unique up to scale and rotation. Bishop (2013) showed ... 
Elliptic Inverse Problems
Inverse problems arise in various areas of science and engineering including medical imaging, computer vision, geophysics, solid mechanics, astronomy, and so forth. A wide range of these problems involve elliptic operators. ... 
Graded group schemes
We define graded group schemes and graded group varieties and develop their theory. We give a generalization of the result that connected graded bialgebras are graded Hopf algebra. Our result is given for a broader class ...