This dissertation deals with three problems in Stochastic Analysis which broadly involve interactions, either between particles (Chapters 1 and 2), or between particles and the boundary of a C2 domain (Chapter 3). In Chapter ...
This thesis studies bootstrap percolation, a problem in probability, as well as several topics in the application of sums of squares to combinatorial optimization. In the chapter on percolation, we bound the critical ...
In this paper we study the special Lagrangian equation and related equations. Special Lagrangian equation originates in the special Lagrangian geometry by Harvey-Lawson [HL1]. In subcritical phases, we construct singular ...
This paper reviews the current state of the Lam-Williams conjectures on a multivariate Markov chain on the symmetric group S_n. We start with Lam's work on random core partitions which led to a remarkable Markov chain on ...
This thesis develops a theory of arithmetic Fourier-Mukai transforms in order to obtain results about equivalences between the derived category of Calabi-Yau varieties over non-algebraically closed fields. We obtain answers ...
In this thesis we introduce and study Brownian motion with or without drift on state spaces with varying dimension. Starting with a concrete such state space that is the plane with an infinite pole on it, we construct a ...
In this thesis we present three problems. The first problem is to find a good description of the number of fixed points of a 231-avoiding permutation. We use a bijection from Dyck paths to 231-avoiding permutations that ...
The positive semidefinite (psd) rank of a nonnegative <italic>p</italic> × <italic>q</italic> matrix <italic>M</italic> is defined to be the smallest integer <italic>k</italic> such that there exist <italic>k</italic> × ...
In 2007 Sami Assaf introduced dual equivalence graphs as a method for demonstrating that a quasisymmetric function is Schur positive. The method involves the creation of a graph whose vertices are weighted by Ira Gessel's ...
We define graded group schemes and graded group varieties and develop their theory. We give a generalization of the result that connected graded bialgebras are graded Hopf algebra. Our result is given for a broader class ...
In this thesis we develop the theory of Local Set Approximation (LSA), a framework which arises naturally from the study of sets with singularities. That is, we describe the local structure of a set A in Euclidean space ...
Inverse problems arise in various areas of science and engineering including medical imaging, computer vision, geophysics, solid mechanics, astronomy, and so forth. A wide range of these problems involve elliptic operators. ...
Rational pairs, recently introduced by Kollár and Kovács, generalize rational singularities to pairs (X,D). Here X is a normal variety and D is a reduced divisor on X. Integral to the definition of a rational pair is the ...
We classify all connected Hopf algebras up to p^3 dimension over an algebraically closed field of characteristic p>0 under the mild restriction such that in dimension p^3, we only work over odd primes p when the primitive ...
A crowning achievement of Number theory in the 20th century is a theorem of Wiles which states that for an elliptic curve E over <bold>Q</bold> of conductor N, there is a non-constant map from the modular curve of level N ...
We construct new examples of self-shrinking solutions to mean curvature flow. We first construct an immersed and non-embedded sphere self-shrinker. This result verifies numerical evidence dating back to the 1980's and shows ...
A conformally balanced tree is an embedding of a given planar map into the plane with constraints on the harmonic measure of its edges such that the resulting set is unique up to scale and rotation. Bishop (2013) showed ...
We study continuous processes indexed by a special family of graphs. Processes indexed by vertices of graphs are known as probabilistic graphical models. In 2011, Burdzy and Pal proposed a continuous version of graphical ...
In this thesis we do the first steps towards a non-Q-Gorenstein Minimal Model Program. We extensively study non-Q-factorial singularities, using the techniques introduced by [dFH09]. We introduce a new class of singularities, ...
Let <italic>k</italic> be a field and <italic>B</italic> either a finitely generated free <italic>k</italic>-algebra, or a regular <italic>k</italic>-algebra of global dimension two with at least three generators, generated ...