Browsing Physics by Title
Now showing items 7493 of 133

Nanoscale imaging and spectroscopy of plasmonic systems, thermal nearfields, and phase separation in complex oxides.
(20120810)Optical spectroscopy represents a powerful characterization technique with the ability to directly interact with the electronic, spin, and lattice excitations in matter. In addition, through implementation of ultrafast ... 
Nanopore analysis of nucleic acids
(2007)Nanopore analysis of nucleic acids is a novel technique to study the physical properties of nucleic acids at the singlemolecule level. It also has the potential to be a central component of a fundamentally new DNA sequencing ... 
Neutron electric dipole moment from QCD sum rules
(1996)The electric dipole moments of nucleons (NEDM, $d\sb{N}$) are calculated using the method of QCD sum rules. Our calculations are based on the parity ($/\!\!\!P$) and time reversal ($/\!\!\!T$) violating parameter $\bar\Theta$ ... 
New techniques and first results toward measuring the 6S(1/2) to 5D(3/2) magneticdipole transition moment in Ba+
We report the final results from our firstgeneration attempt to measure the magneticdipole transition moment (M1) between the $6S_{1/2}$ and $5D_{3/2}$ manifolds in Ba$^{+}$. Knowledge of M1 is crucial for a paritynon ... 
NonRelativistic Holography from Horava Gravity
Holography is a powerful theoretical duality that relates quantum gravitational theories to nongravitational theories in one less dimension. The most explored example of this tool is the correspondence between general ... 
NonRelativistic Holography from Horava Gravity
Holography is a powerful theoretical duality that relates quantum gravitational theories to nongravitational theories in one less dimension. The most explored example of this tool is the correspondence between general ... 
A novel method for electron energy measurement: Cyclotron Radiation Emission Spectroscopy
A prototype spectrometer  the first of its kind  has been constructed at the University of Washington to demonstrate a new technique for βdecay studies called Cyclotron Radiation Emission Spectroscopy (CRES). The ... 
Nuclei as Probes of MesonNucleon Interactions at High and Low Energy
(20130723)This dissertation explores two main topics: 1) Color Transparency and quasielastic knockout reactions involving pions and &rho mesons; and 2) determination of the J/&psinucleon scattering amplitude and scattering ... 
Observation of the Nuclear Magnetic Octupole Moment of 137Ba+
Single trapped ions are ideal systems in which to test atomic physics at high precision, which can in turn be used for searches for violations of fundamental symmetries and physics beyond the standard model, in addition ... 
On the Determination of Elastic and Inelastic Nuclear Observables from Lattice QCD
(20131114)One of the overarching goals of nuclear physics is to rigorously compute properties of hadronic systems directly from the fundamental theory of the strong interaction, Quantum Chromodynamics (QCD). In particular, the hope ... 
Optical and Spin Properties of DefectBound Excitons in Semiconductors
The physical properties of semiconductor defects are highly relevant for future quantum technologies and current semiconductor device performance. Optical spectroscopy is a powerful tool for investigating a wide variety ... 
Optical Studies of Ultrathin WSe2
Truly twodimensional systems allow for examination of quasiparticle physics in the presence of strong Coulomb interactions resulting from reduced dielectric screening and under conditions of energy level quantization due ... 
Optical trapping of ytterbium atoms
(2003)This dissertation describes an experimental study on magnetooptical trapping (MOT) of ytterbium atoms. In particular, Doppler cooling and subDoppler cooling have been investigated and compared in the same atom, and ... 
Optoelectronic Properties of TwoDimensional Materials
Layered materials when thinned down to their monolayer limit exhibit remarkable properties owing to their twodimensional nature and strong electron confinement. In particular this class of materials displays strong optical ... 
The perturbative and nonperturbative QCD effects in the azimuthal distribution of hadron jets observed in muon deep inelastic scattering
(1997)Azimuthal asymmetry of hadron jets produced in deep inelastic muon scattering is studied for the first time. The data were collected at the experiment E665 at Fermilab during 19911992 using liquid hydrogen and deuterium ... 
Phase behavior of homopolymer/diblock blends
(1997)We study the micro and macrophase behavior of symmetric ABdiblock copolymers in binary and ternary blends with corresponding homopolymers in mean field theory and for weak to intermediate segregation. We employ the ... 
Precision Interferometry with BoseEinstein Condensates
This dissertation describes the creation of the first matterwave interferometer using ytterbium (Yb) atoms. Most of the experiments focus on a contrast interferometer geometry with a BoseEinstein condensate (BEC) as ... 
Probabilistic Neural Coding from Deterministic Neural Dynamics: mathematics and biophysics of adaptive single neuron computation
(20120810)The basic unit of computation in the nervous system is the transformation of input into output spikes performed by an individual neuron. The spiking response of the neuron to a complex, timevarying input can be characterized ... 
Radiative Models of Sagittarius A* and M87 from Relativistic MHD Simulations
(201107)The discovery that the magnetorotational instability (MRI) is likely the mechanism of angular momentum transport and accretion has led to rapid progress in the theory of black hole accretion. General relativistic MHD ... 
RealTime CoreHole Dynamics in Xray Spectroscopy
While experimental developments have enabled the study of corehole dynamics in Xray spectroscopy, theoretical methods for dynamical effects are still underdeveloped. Additionally, traditional theoretical methods are in ...