ResearchWorks Archive

Machine learning as massive search

Show simple item record Segal, Richard B en_US 2009-10-06T16:47:42Z 2009-10-06T16:47:42Z 1997 en_US
dc.identifier.other b40847135 en_US
dc.identifier.other 39306117 en_US
dc.identifier.other Thesis 46271 en_US
dc.description Thesis (Ph. D.)--University of Washington, 1997 en_US
dc.description.abstract Machine learning is the inference of general patterns from data. Machine-learning algorithms search large spaces of potential hypotheses for the hypothesis that best fits the data. Since the search space for most induction problems grows exponentially in the number of features used to describe the data, most induction algorithms use greedy search to minimize search cost. Greedy search is a polynomial-time algorithm that achieves its efficiency by exploring only a tiny fraction of all hypotheses. While greedy search has good performance, it often misses the best hypotheses.This thesis proposes massive search as an alternative to greedy search. Massive search aggressively searches as many hypotheses as possible in the time available. Since massive search explores a larger portion of the hypothesis space, it is less likely to miss good hypotheses. This thesis develops a massive-search algorithm for rule learning called Brute. Experiments with Brute show that massive search is both practical and effective. Brute can completely search the hypothesis spaces of most benchmark problems in only a few minutes. Brute learns better rules than greedy search on 13 of 18 databases, while performing equally well on the remaining five. We demonstrate massive search's wide applicability by extending Brute to handle data-mining and classification problems with comparable results. en_US
dc.format.extent ix, 164 p. en_US
dc.language.iso en_US en_US
dc.rights Copyright is held by the individual authors. en_US
dc.rights.uri en_US
dc.subject.other Theses--Computer science and engineering en_US
dc.title Machine learning as massive search en_US
dc.type Thesis en_US

Files in this item

This item appears in the following Collection(s)

Show simple item record

Search ResearchWorks

Advanced Search


My Account