Simulations of giant planet migration in gaseous circumstellar disks

ResearchWorks/Manakin Repository

Search ResearchWorks


Advanced Search

Browse

My Account

Statistics

Related Information

Simulations of giant planet migration in gaseous circumstellar disks

Show full item record

Title: Simulations of giant planet migration in gaseous circumstellar disks
Author: Lufkin, Graeme, 1977-
Abstract: This work describes the construction, performance, analysis and results of smoothed-particle hydrodynamics simulations of gas disks around Sun-like stars. We provide a history of the Solar System and present the known extrasolar planets data. We simulate planet formation and evolution in a gaseous circumstellar disk using the program Gasoline, and describe its implementation of gravity and hydrodynamics. The construction of near-equilibrium gas disks is discussed. We describe the performance and analysis of a large suite of simulations of these disks. These are the first fully three-dimensional, self-gravitating, boundary-free simulations of planet migration. After placing already-formed planets in gas disks; the migration and accretion rates of the planets are measured. We find that planet migration is rapid and scales linearly with the total disk mass. Contrary to the prediction of a linear theory, planet migration is independent of the planet mass. Planets will form gaps in their disks, halting one form of migration, with a timescale that depends most sensitively on the disk mass. In addition, the results of previous simulations of giant planet formation via gravitational instability are confirmed. Additional planet formation triggered by the perturbation of an already-formed planet is found and explored.
Description: Thesis (Ph. D.)--University of Washington, 2004
URI: http://hdl.handle.net/1773/9698

Files in this item

Files Size Format View
3139505.pdf 5.235Mb PDF View/Open

This item appears in the following Collection(s)

Show full item record