Technical Report No. 88

ON THE EFFECTIVE CROSS-SECTION
OF THE ISAACS-KIDD MIDWATER TRAWL

by

Karl Banse and Darrelyn Semon

National Science Foundation
Grant No. G-14732
and
Office of Naval Research
Contract Nonr-477(10)
Project NR 083 012

Reference M63-37
August 1963

SEATTLE 5, WASHINGTON
ON THE EFFECTIVE CROSS-SECTION OF THE ISAACS-KIDD MIDWATER TRAWL

by

Karl Banse and Darrelyn Semon

National Science Foundation
Grant No. G-14732
and
Office of Naval Research
Contract Nonr-477(10)
Project NR 083-012

Reference M63-37
August 1963

RICHARD H. FLEMING
Chairman

Reproduction in whole or in part is permitted for any purpose of the United States Government.
TABLE OF CONTENTS

ABSTRACT .. 1
INTRODUCTION .. 1
METHODS .. 2
RESULTS AND DISCUSSION 4
ACKNOWLEDGMENT .. 5
REFERENCES ... 6
TABLE 1 ... 7
TABLE 2 ... 9
ABSTRACT

Catches taken by the 6-foot Isaacs-Kidd midwater trawl and by a quantitative high speed catcher are compared. The effective cross-section of the trawl in regard to adult *Euphausia pacifica* is a little over 1 m².

INTRODUCTION

Between 1956 and 1960, the Department of Oceanography, University of Washington, under the direction of Dr. William Aron, collected about 1200 samples with the modified Isaacs-Kidd midwater trawl in offshore and inshore waters of the northeast Pacific Ocean. A large amount of the material is Euphausiacea (Crustacea). Except in samples taken south of 39°N lat., *Euphausia pacifica* (maximum length 2.5 cm, Boden, Johnson and Brinton, 1955) constitutes a large percentage of the biomass. For quantitative studies, numbers of animals per unit volume of water must be known, but at present, there are no reliable figures for the volume of water strained by the trawl, even though the duration of the tows is known. To convert numbers of animals per minute of tow into numbers per m³ of water, we have tried to estimate the effective cross-section of the 6-foot trawl for adult *E. pacifica* by comparing trawl catches with those of a quantitative high speed catcher.

In its present form, the Isaacs-Kidd midwater trawl is constructed of three sections, each with a different size mouth opening and a different mesh size. The first section of the 6-foot trawl is made of 3-inch (7.62 cm) stretch mesh netting, the middle section of 3-inch
(7.62 cm) stretch netting lined with 1/2-inch (1.27 cm) bait netting, and the cod end of 1/8-inch (0.32 cm) nylon netting, with cross-sectional areas for the mouth openings of 2.94 m2, 1.26 m2, and 0.197 m2, respectively (Aron, 1962a). The front section will reliably retain only very large animals and the fine mesh of the cod end will retain animals of about 3 mm cross-section. However, the percentage of animals of intermediate size caught by each section is not known. There may be a funnelling effect towards the cod end, so that more of these animals are taken by the trawl than is to be expected from the mesh sizes of the sections, as suggested by Aron (1962a), or relatively large animals may be squeezed through the meshes due to the high towing speed.

METHODS

To determine the catching efficiency of the midwater trawl for *E. pacifica*, trawl catches from two cruises in inshore waters were compared with the number of *E. pacifica* per m3 of water established with a quantitative high speed catcher (Bary et al., 1958). A calibrated meter was fitted into the tail of the catcher so that the volume of water filtered could be calculated. An Atlas flow meter was installed for the cruise on 24 May, 1962, and a Japanese T.S.K. (Tsurumi-Seiki-Kosakusho Co., Ltd.) flow meter was used for the cruise on 24 September, 1962. The trawl was lowered open and retrieved open; the catcher was lowered open and closed before retrieving. Number of animals per m3 was determined by the catcher, and knowing the numbers caught per distance by the trawl, we were able to calculate the cross-sectional area of the trawl effective in catching *E. pacifica*.

A cruise to Puget Sound was made aboard the M.V. BROWN BEAR on 24-25 May, 1962 (Cruise BB 307). Between 2142 and 0159 hours PST, six hauls at about 10 m were taken with the high speed catcher and five with
the midwater trawl at a speed of about 5.7 knots, for periods of 11-15 minutes each (Table 1). The ship turned 180° after each haul in order to sample in approximately the same water. A bathythermograph was attached to the catcher to determine the maximum depth reached by the gear, and a depth-distance recorder was attached to the trawl.

Since the numbers of Euphausiacea caught during this cruise were low, another night cruise to Saanich Inlet, British Columbia, on board the M.V. HOH was made on 24-25 September, 1962 (Cruise HH 2, Table 1). Five-minute tows were made between 2130 and 0036 hours PST. Eight hauls in alternating pairs were taken with the catcher and seven with the midwater trawl, the ship turning 180° after each haul. Depths were estimated from wire angles and length of wire payed out, and time was recorded with a stopwatch.

The quantities of Euphausiacea caught by the trawl in Saanich Inlet on Cruise HH 2 were so large that they had to be subsampled on board ship. The coefficient of variation of subsampling sample No. 8 five times was ± 6.2%. In the laboratory, the catches were allowed to stand in graduated cylinders for at least one hour before settling volumes were recorded. The midwater trawl samples or subsamples for HH 2 were divided with the Folsom splitter (McEwen et al., 1954), the adults of E. pacifica in aliquots of not less than 100 ml were counted, and the total number of animals per haul was calculated. The entire sample taken with the high speed catcher on both cruises was counted for adult E. pacifica. The number of animals per 100 m³ of water was calculated for the samples from the catcher, whereas for the trawl, the number of animals captured per 100 m travelled was determined (Table 1). Mean values are given in Table 2.
RESULTS AND DISCUSSION

By taking the mean value for animals per 100 m caught by the trawl and dividing by the mean of the number of animals per 100 m³, as determined by the catcher (Table 2), we obtained the effective cross-sectional area of the midwater trawl, in respect to adult *Euphausia pacifica*. The values were 1.081 m² for Cruise BB 307, and 1.297 m² for Cruise HH 2 (1.633 m² without the very large catch by haul No. 11). The average for both cruises was 1.189 m², not significantly different from the area of the opening of the middle section, 1.26 m². It is suggested that a possible funnelling effect of the front section of the trawl is compensated for by loss of animals through the 1/2-inch (1.27 cm) bait netting which lines the second section of the trawl.

The available data are inadequate to warrant a detailed statistical analysis. In particular, the number of hauls is small, and too few animals were collected with the catcher on Cruise BB 307. Furthermore, for Cruise HH 2, the numbers of *E. pacifica* per 100 m caught by the midwater trawl decreased with successive hauls, whereas for the catcher samples, this was not so. No explanation can be given. Therefore, only the trend of the data is presented here.

Many repeated trials could improve the precision of the gear comparison. However, the conversion factor would hold only for adult *Euphausia pacifica*. It would be strictly valid even for this species only when the behavior of the animals, which may change from season to season, does not influence the catch rate. This is not known. Furthermore, when collections were made by the Department, the distance travelled by the trawl through the water was not controlled, and only the duration of the haul and the ship's engine revolutions were recorded. Wind and
waves change the resulting speed of the ship; in addition, the trawl may fish through water which moves at speeds different from those at the surface. Thus, we believe that it is inadvisable to expend further effort in finding a better conversion factor for our previous midwater trawl collections, but new collections should be made with improved gear. However, the Isaacs-Kidd midwater trawl in its present form appears to be well suited for sampling a wide range of nekton, as pointed out by Aron (1962b). If the distance travelled by the gear is measured, the trawl samples should be comparable. To obtain quantitative collections, the trawl must be constructed of a single mesh size, chosen according to the interests of the investigator. Only then is it useful to attach a flow meter. For studying deep water, it is advisable to install an opening-closing device and a depth recorder.

ACKNOWLEDGMENT

The study was supported by Grant No. G-14732 of the National Science Foundation, and by Contract Nonr-477(10), Project NR 083-012 with the Office of Naval Research. The authors are indebted to these agencies for their support, to Dr. Brian M. Bary of the University of British Columbia for the loan of his high speed quantitative catcher, and to the many Department colleagues and ships' crews for help at sea.
REFERENCES

Aron, W. I.

Bary, B. M., J. G. de Stefano, M. Forsyth, and J. van den Kerkhof

Boden, B. P., M. W. Johnson, and E. Brinton

McEwen, G. F., M. W. Johnson, and Th. R. Folsom
Table 1

Settled volumes of Euphausiids and numbers of adult *Euphausia pacifica* caught by high speed catcher and midwater trawl for Cruises BB 307 and HH 2

<table>
<thead>
<tr>
<th>Cruise No.</th>
<th>Haul No.</th>
<th>Gear</th>
<th>Depth (m)</th>
<th>Speed of Tow (knots)</th>
<th>Time (min)</th>
<th>Volume of Sample (ml)</th>
<th>Total No. of Euphausia pacifica Aliquot Euphausia pacifica Counted (no/100 m³)</th>
<th>Adult Euphausia pacifica (no/100 m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BB 307</td>
<td>1</td>
<td>CAT</td>
<td>13-10</td>
<td>5.7</td>
<td>13</td>
<td>15</td>
<td>17 Total</td>
<td>131</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td>10</td>
<td>5.7</td>
<td>14</td>
<td>7</td>
<td>12 "</td>
<td>172</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td>10</td>
<td>5.7</td>
<td>11</td>
<td>35</td>
<td>42 "</td>
<td>193</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
<td>13</td>
<td>5.7</td>
<td>12</td>
<td>38</td>
<td>63 "</td>
<td>253</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td></td>
<td>10</td>
<td>5.7</td>
<td>11</td>
<td>10</td>
<td>14 "</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td></td>
<td>10</td>
<td>5.7</td>
<td>13</td>
<td>38</td>
<td>87 "</td>
<td>133</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>MWT</td>
<td>9</td>
<td>5.7</td>
<td>15</td>
<td>1,450</td>
<td>8,512 1/64</td>
<td>322</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
<td>10</td>
<td>5.7</td>
<td>11</td>
<td>350</td>
<td>1,714 1/8</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td></td>
<td>10</td>
<td>5.7</td>
<td>14</td>
<td>400</td>
<td>2,656 1/16</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td></td>
<td>10</td>
<td>5.7</td>
<td>13</td>
<td>400</td>
<td>3,008 1/16</td>
<td>131</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td></td>
<td>10</td>
<td>5.7</td>
<td>13</td>
<td>775</td>
<td>4,896 1/32</td>
<td>214</td>
</tr>
<tr>
<td>HH 2</td>
<td>2</td>
<td>CAT</td>
<td>9</td>
<td>4.25</td>
<td>5</td>
<td>50</td>
<td>398 Total</td>
<td>4,020</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td>8</td>
<td>4.25</td>
<td>5.08</td>
<td>60</td>
<td>475 "</td>
<td>4,210</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
<td>8</td>
<td>4.25</td>
<td>5</td>
<td>40</td>
<td>300 "</td>
<td>3,090</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td></td>
<td>8</td>
<td>4.25</td>
<td>5</td>
<td>50</td>
<td>385 "</td>
<td>3,770</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td></td>
<td>8</td>
<td>4.25</td>
<td>5.5</td>
<td>35</td>
<td>255 "</td>
<td>4,250</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td></td>
<td>8</td>
<td>4.25</td>
<td>5.58</td>
<td>80</td>
<td>1,232 "</td>
<td>12,200</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td></td>
<td>8</td>
<td>4.25</td>
<td>5</td>
<td>45</td>
<td>293 "</td>
<td>3,710</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td></td>
<td>8</td>
<td>4.25</td>
<td>5</td>
<td>60</td>
<td>457 "</td>
<td>4,660</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>MWT</td>
<td>9</td>
<td>4.20</td>
<td>5.17</td>
<td>3,800</td>
<td>67,338 1/87</td>
<td>10,040</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td>8</td>
<td>4.20</td>
<td>5.25</td>
<td>3,700</td>
<td>61,974 1/99</td>
<td>9,099</td>
</tr>
</tbody>
</table>
Table 1 (cont'd)

<table>
<thead>
<tr>
<th>Cruise No.</th>
<th>Haul No.</th>
<th>Gear</th>
<th>Depth (m)</th>
<th>Speed of Tow (knots)</th>
<th>Time (min)</th>
<th>Volume of Sample (ml)</th>
<th>Total No. of Euphausia pacifica</th>
<th>Aliquot Counted</th>
<th>Adult Euphausia pacifica (no/100 m3) (no/100 m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HH 2</td>
<td>5</td>
<td>MWT</td>
<td>7</td>
<td>4.20</td>
<td>5.08</td>
<td>3,100</td>
<td>40,052</td>
<td>1/68</td>
<td>6,078</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5,427</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HH 2</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Total number obtained from counting aliquots of subsamples A through E
Table 2

Mean values, range of values, standard deviations and coefficient of variation for the high speed catcher (numbers of *Euphausia pacifica* / 100 m³) and for the midwater trawl (numbers of *Euphausia pacifica* / 100 m).

<table>
<thead>
<tr>
<th>Cruise</th>
<th>Gear</th>
<th>Mean</th>
<th>Range</th>
<th>Standard Deviation</th>
<th>Coefficient of Variation</th>
</tr>
</thead>
<tbody>
<tr>
<td>BB 307</td>
<td>CAT</td>
<td>160</td>
<td>177</td>
<td>± 60.84</td>
<td>38%</td>
</tr>
<tr>
<td>BB 307</td>
<td>MWT</td>
<td>173</td>
<td>232</td>
<td>± 95.86</td>
<td>55%</td>
</tr>
<tr>
<td>HH 2</td>
<td>CAT</td>
<td>5,010</td>
<td>9,110</td>
<td>± 2945.00</td>
<td>59%</td>
</tr>
<tr>
<td>HH 2</td>
<td>MWT</td>
<td>6,198</td>
<td>6,188</td>
<td>± 2321.00</td>
<td>36%</td>
</tr>
</tbody>
</table>
DEPARTMENT OF DEFENSE

1 Director of Defense Research & Engineering
 Attn: Coordinating Committee on Science
 Pentagon
 Washington 25, D. C.

NAVY

2 Office of Naval Research
 Geophysics Branch (Code 416)
 Washington 25, D. C.

 Office of Naval Research
 Washington 25, D. C.
 1 Attn: Biology Branch (Code 446)
 1 Attn: Surface Branch (Code 463)
 1 Attn: Undersea Warfare (Code 466)
 1 Attn: Special Projects (Code 418)

1 Commanding Officer
 Office of Naval Research Branch
 495 Summer Street
 Boston 10, Massachusetts

1 Commanding Officer
 Office of Naval Research
 207 West 24th Street
 New York 11, New York

1 Commanding Officer
 Office of Naval Research Branch
 The John Crearar Library Building
 35 West 33rd Street
 Chicago 16, Illinois

1 Commanding Officer
 Office of Naval Research Branch
 1000 Geary Street
 San Francisco 9, California

1 Commanding Officer
 U. S. Navy Mine Defense Laboratory
 Panama City, Florida

1 Commanding Officer
 Office of Naval Research Branch
 1030 East Green Street
 Pasadena 1, California

10 Commanding Officer
 Office of Naval Research Branch
 Navy #100, Fleet Post Office
 New York, New York

1 Contract Administrator Southeast Area
 Office of Naval Research
 2110 "G" Street, N. W.
 Washington 7, D. C.

6 Director
 Naval Research Laboratory
 Attn: Technical Services
 Information Officer
 Washington 25, D. C.

(Note: 3 copies are forwarded by this addressee to the British Joint Services Staff for further distribution in England and Canada)

8 Hydrographer
 U. S. Navy Hydrographic Office
 Washington 25, D. C.
 Attn: Library (Code 1640)

1 U. S. Navy Branch
 Hydrographic Office
 Navy 3923, Box 77
 F. P. O.
 San Francisco, California

1 Chief, Bureau of Naval Weapons
 Department of the Navy
 Washington 25, D. C.
 1 Attn: PASS
 1 Attn: RU-222
NAVY

1. Office of the U. S. Naval Weather Service
 U. S. Naval Station
 Washington 25, D. C.

1. Chief, Bureau of Yards & Docks
 Office of Research
 Department of the Navy
 Washington 25, D. C.
 Attn: Code 70

1. Commanding Officer & Director
 U. S. Navy Electronics Laboratory
 San Diego 52, California
 Attn: Code 2201
 Attn: Code 2420

1. Commanding Officer & Director
 U. S. Naval Civil Engineering Laboratory
 Port Hueneme, California
 Attn: Code L54

1. Code 3145
 Box 7
 Pt. Mugu Missile Range
 Pt. Mugu, California

1. Commander, Naval Ordnance Laboratory
 White Oak, Silver Spring, Maryland
 Attn: E. Liberman, Librarian

1. Commanding Officer
 Naval Ordnance Test Station
 China Lake, California
 Attn: Code 753
 Attn: Code 508

1. Commanding Officer
 Naval Radiological Defense Laboratory
 San Francisco, California

Chief, Bureau of Ships
Department of the Navy
Washington 25, D. C.

1. Commanding Officer
 U. S. Navy Mine Defense Laboratory
 Panama City, Florida

1. Officer in Charge
 U. S. Navy Weather Research Facility
 Naval Air Station, Bldg. R-48
 Norfolk, Virginia

1. Commanding Office
 U. S. Navy Air Development Center
 Johnsville, Pennsylvania
 Attn: NADC Library

1. Superintendent
 U. S. Naval Academy
 Annapolis, Maryland

2. Department of Meteorology & Oceanography
 U. S. Naval Postgraduate School
 Monterey, California

1. Commanding Officer
 U. S. Navy Underwater Sound Laboratory
 New London, Connecticut

1. Commanding Officer
 U. S. Naval Underwater Ordnance Station
 Newport, R. I./Ad3 (WS.D.) wsd. 5600/1

AIR FORCE

1. Hdqtrs., Air Weather Service (AWSS/TIPD)
 U. S. Air Force
 Scott Air Force Base, Illinois

1. AFCRL (CRZF)
 L. G. Hanscom Field
 Bedford, Massachusetts

ARMY

1. Army Research Office
 Office of the Chief of R&D
 Department of the Army
 Washington 25, D. C.
ARMY

1 U. S. Army Beach Erosion Board
5201 Little Falls Road, N. W.
Washington 16, D. C.

1 Director
U. S. Army Engineers Waterways
Experiment Station
Vicksburg, Mississippi
Attn: Research Center Library

1 Laboratory Director
Bureau of Commercial Fisheries
Biological Laboratory
Bldg. 74, Wash. Navy Yard Annex
Washington 25, D. C.

1 Laboratory Director
Bureau of Commercial Fisheries
Biological Laboratory
450-B Jordan Hall
Stanford, California

Bureau of Commercial Fisheries
U. S. Fish & Wildlife Service
Post Office Box 3830
Honolulu 12, Hawaii
1 Attn: Librarian

1 Director
National Oceanographic Data Center
Washington 25, D. C.

OTHER U. S. GOVERNMENT AGENCIES

1 Office of Technical Services
Department of Commerce
Washington 25, D. C.

10 Armed Services Technical
Information Agency
Arlington Hall Station
Arlington 12, Virginia

2 National Research Council
2101 Constitution Avenue
Washington 25, D. C.
Attn: Committee on Undersea Warfare
Attn: Committee on Oceanography

1 Commanding Officer
U. S. Coast Guard
Oceanographic Unit
P. O. Box 271
La Jolla, California

1 Commandant (OFU)
U. S. Coast Guard
Washington 25, D. C.

1 Director
Coast & Geodetic Survey
U. S. Department of Commerce
Washington 25, D. C.
Attn: Office of Oceanography

1 U. S. Geological Survey
Washington 25, D. C.
Attn: James Trumbull

1 Director of Meteorological Research
U. S. Weather Bureau
Washington 25, D. C.

2 Library, U. S. Weather Bureau
Washington 25, D. C.

2 Director, Bureau of Commercial Fisheries
U. S. Fish & Wildlife Service
Department of Interior
Washington 25, D. C.

1 U. S. Bureau of Commercial Fisheries
Fish & Wildlife Service
P. O. Box 271
La Jolla, California

RESEARCH LABORATORIES

2 Director
Woods Hole Oceanographic Institution
Woods Hole, Massachusetts

3 Project Officer
Laboratory of Oceanography
Woods Hole, Massachusetts

1 Director
Narragansett Marine Laboratory
University of Rhode Island
Kingston, Rhode Island

1 Bingham Oceanographic Laboratories
Yale University
New Haven, Connecticut
RESEARCH LABORATORIES

1 Gulf Coast Research Laboratory
 Post Office Box
 Ocean Springs, Mississippi
 Attn: Librarian

1 Chairman
 Department of Meteorology & Oceanography
 New York University
 New York 53, New York

1 Director
 Lamont Geological Observatory
 Torrey Cliff
 Palisades, New York

1 Director
 Hudson Laboratories
 145 Palisades Street
 Dobbs Ferry, New York

1 Great Lakes Research Division
 Institute of Science & Technology
 University of Michigan
 Ann Arbor, Michigan
 Attn: Dr. John C. Ayers

1 Dr. Harold Haskins
 Rutgers University
 New Brunswick, New Jersey

1 Director
 Chesapeake Bay Institute
 Johns Hopkins University
 121 Maryland Hall
 Baltimore 18, Maryland

1 Mail No. J-3009
 The Martin Company
 Baltimore 3, Maryland
 Attn: J. D. Pierson

1 Mr. Henry D. Simmons, Chief
 Estuaries Section
 Waterways Experiment Station
 Corps of Engineers
 Vicksburg, Mississippi

1 Oceanographic Institute
 Florida State University
 Tallahassee, Florida

1 Director, Marine Laboratory
 University of Miami
 #1 Rickenbacker Causeway
 Virginia Key
 Miami 49, Florida

1 Nestor C. L. Granelli
 Department of Geology
 Columbia University
 Palisades, New York

2 Head, Department of Oceanography
and Meteorology
 Texas A & M College
 College Station, Texas

1 Director
 Scripps Institution of Oceanography
 La Jolla, California

1 Allan Hancock Foundation
 University Park
 Los Angeles 7, California

1 Department of Engineering
 University of California
 Berkeley, California

1 Head, Department of Oceanography
 Oregon State University
 Corvallis, Oregon

1 Director
 Arctic Research Laboratory
 Barrow, Alaska

1 Dr. C. I. Beard
 Boeing Scientific Research Laboratories
 P. O. Box 3981
 Seattle 24, Washington

1 Head, Department of Oceanography
 University of Washington
 Seattle 5, Washington

1 Geophysical Institute of the University of Alaska
 College, Alaska
RESEARCH LABORATORIES

1 Director
Bermuda Biological Station
for Research
St. Georges, Bermuda

1 Department of Meteorology
and Oceanography
University of Hawaii
Honolulu 14, Hawaii
Attn: Dr. H. M. Johnson

1 Technical Information Center, CU-201
Lockheed Missile and Space Division
3251 Hanover Street
Palo Alto, California

1 University of Pittsburgh
Environmental Sanitation
Department of Public Health Practice
Graduate School of Public Health
Pittsburgh 13, Pennsylvania

1 Director
Hawaiian Marine Laboratory
University of Hawaii
Honolulu, Hawaii

1 Dr. F. B. Berger
General Precision Laboratory
Pleasantville, New York

1 Dr. J. A. Gast
Oceanography
Humboldt State College
Arcata, California

1 Department of Geodesy & Geophysics
Cambridge University
Cambridge, England

1 Applied Physics Laboratory
University of Washington
1013 NE Fortieth Street
Seattle 5, Washington

1 Documents Division - ml
University of Illinois Library
Urbana, Illinois

1 Laboratory Director
Biological Laboratory
Bureau of Commercial Fisheries
Building 74, Naval Weapons Plant
Washington 25, D. C.

1 Advanced Research Projects Agency
Attn: Nuclear Test Detection
Office
The Pentagon
Washington 25, D. C.

1 New Zealand Oceanographic
Institute
Department of Scientific and
Industrial Research
P. O. Box 8009
Wellington, New Zealand
Attn: Librarian

1 President
Osservatorio Geofisico
Sperimentale
Trieste

1 Advanced Undersea Warfare
Engineering
Advanced Electronics Center
General Electric Company
Ithaca, New York