Overview of Talk

- Challenges of Water Management

- Four Case Studies (each in three parts: problem, project, lessons)
 - Interstate/State (ACT-ACF “Tri-State” Water Wars)
 - State/Regional (Georgia Drought Plan)
 - Regional/Local (Lake Lanier Watershed Management)
 - Classroom/Community (Water Resources/Sustainability)

- Opportunities and Visions for the Center
Challenges for Water Management

• Water problems often require interdisciplinary and integrated solutions
• Water responsibilities (and funding) are fragmented among agencies
• Water expertise is scattered throughout academia
• Students lack hands-on experience with real-world water problems
• Water problems often develop slowly; lack of visibility
• Gaps develop between water research and application
• Benefits and costs are often difficult to quantify (and often neglected)
• Water issues are not confined to hydrologic, meteorologic, political, or socio-economic boundaries
• Prescriptions can be general but local context matters
• A crisis is often needed to catalyze interest in water problems
Tri-State Water Wars: Problem

- Water controversy among Georgia, Alabama, and Florida
- Lawsuit in early 1990s; Georgia proposed reallocation of more water from Lake Lanier (from hydropower to water supply)
- Determine allocation formulas (for the next 50 years in ACF)
- Main participants: Three Governors, Seven Commissioners, Federal Agencies (COE, EPA, FWS, NOAA, USGS,...), Southern Company, Atlanta Regional Commission, Lake Lanier Association, NGOs, academics, and a team of lawyers
- ACT-ACF Comprehensive Study
Tri-State Water Wars: Project

- Determine when and how allocations could be modified
- Downstream versus upstream users
 - Metro Atlanta: urban growth
 - Southern Georgia: agriculture
 - Alabama: future growth
 - Florida: flow regime / shellfish
- Concern: Atlanta growth and unconstrained water use
- “Share the pain” -- raised equity concerns
- Water quality not explicitly addressed
- Study: 15 years, hundreds of millions of $
Tri-State Water Wars: Lessons

- Stakeholders faithfully attended meetings, but concerns often not addressed
- Debate on which years to use as “normal”
- Need adaptive management -- not locked in for 50 years
- New representation brought in new issues:
 - FL: demand caps and minimum flows
 - GA: one or the other, but not both
- States telling other states what to do
- Technical-Policy issues (e.g., flow regime not flow rate)
- Kept extending deadlines
- Then fell apart -- going to Supreme Court
Georgia Drought Planning: Problem

- Drought most costly natural disaster in U.S.
- Georgia lacked state drought plan
- Local level plans had limited effectiveness
- Responsibility-shifting, complacency
- 1998-2002 worst drought on record
- Impacts > $1 billion/year
- Potential costs mitigated ~ $400 - $600 million/year
Georgia Drought Planning: Project

- Development of First State Drought Plan (funded by NSF, Ga Dept. Of Natural Resources), 2000-2003
- Worked directly with > 150 stakeholders, >30 agencies
- Main sectors: municipal, industrial, fish and wildlife, health, environmental, agricultural, hydropower, tourism
- Indicators: streamflows, groundwater levels, reservoir storage, precipitation (3, 6, 9, and 12 month anomalies)
- Triggers: implemented by climate division, linked with management actions; focus on outdoor water use restrictions

<table>
<thead>
<tr>
<th>Category</th>
<th>Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal/Wet</td>
<td>0.50-1.00</td>
</tr>
<tr>
<td>Near-normal/dry</td>
<td>0.35-0.50</td>
</tr>
<tr>
<td>Level 1</td>
<td>0.20-0.35</td>
</tr>
<tr>
<td>Level 2</td>
<td>0.10-0.20</td>
</tr>
<tr>
<td>Level 3</td>
<td>0.05-0.10</td>
</tr>
<tr>
<td>Level 4</td>
<td>0.00-0.05</td>
</tr>
</tbody>
</table>
Georgia Drought Plan: Lessons

- Surprisingly high level of stakeholder and agency participation
- Lack of funding, lack of mandate; didn’t really matter
- Preparing for drought while in a drought
- Coordination among agencies; clarified roles and responsibilities
- Vehicle for addressing water quality concerns
- Restrictions addressing relatively easy targets
- GA plan: sign to Florida and Alabama
- Drought plan prompted other activities (e.g., use of climate forecasts, development of statewide comprehensive water plan)
Lake Lanier Watershed Management: Problem

• Lake Lanier, Georgia. Major water supply source for Metro Atlanta
• Concerns about lake water quantity and quality
• Rapidly urbanizing area (Atlanta MSA 2000 pop. ~ 4 million; 40% increase since 1990; 60% increase expected by 2010)
• Multiple and often conflicting goals (navigation, hydropower, environmental, water supply, flood control, and recreation, fish and wildlife management)
• How best to manage the lake and watershed for the future?
Lake Lanier Watershed Management: Project

- Community Values and the Long-Term Ecological Integrity of Rapidly Urbanizing Watersheds: EPA Water and Watersheds Grant
 - Identify stakeholder concerns
 - Model lake ecological process
 - Develop ecological indicators for stakeholder concerns
 - Generate scenarios; Design policies
- Worked with Lake Lanier Association (~2,000 members);
 Upper Chattahoochee River Basin Group (~200 members);
 Water and ecology scientists
- Conducted presentations, workshops, focus groups, surveys
- How science can inform decision-making
- How stakeholder concerns can guide scientific inquiry
Lake Lanier Watershed Management: Lessons

- Different assessments of problem
 - Stakeholders -- wastewater treatment plant discharges
 - Decision-Makers -- development along lake
 - Scientists -- non-point source pollution
- Political framing of scientific issues
- Stakeholder concerns about research
- Trust, communication essential
- Support needed for watershed programs
- Interdisciplinary work just doesn’t “happen”
Water Resources Education: Problem

Educational needs for students of water resources:
- Real-world, hands-on experience
- Interdisciplinary problem solving
- Applying classroom knowledge to practice
- Learning “how to learn” (not just “what to learn”)
- Working with the public and decision-makers
- Communication skills -- writing, public speaking, interactions
- Understanding water from data collection to analysis to results
- Understanding water as part of water/ecological cycle
- Understanding societal context of science and engineering
Water Resources Education: Projects

• Problem-Based Learning: Sustainable Development Course
 • Students developed campus sustainability projects
e.g., water conservation, pollution prevention, xeriscaping,
stormwater management, integrated pest management, …
 • Students worked with decision-makers, implemented projects
 • Sustainability became central principle of campus master plan

• Service Learning: Water Resources Course
 • Students worked with water agencies, industries, and community organizations to address current water problems
 • Linked with K-12/minority educational outreach program
Students gained real-world experience and professional skills
Students also acquired interdisciplinary problem-solving knowledge
Community and agencies benefited from students’ work
Students motivated; felt they could “make a difference”
Students learned that implementation is not automatic
Institutional inertia can be strong; adoption and change take time
Need to work with decision-makers; develop trust and credibility
Need to demonstrate benefits and cost savings; precedents
Opportunities and Visions for the Center

- Strengths and Comparative Advantages of the Center
- Sustaining and Building upon Strengths of the Center
- Goals, Activities, and Future Directions
Strengths and Comparative Advantages of the Center

- Involvement with Agencies, Industries, Organizations, and the Public
- Research Addressing Current Problems
- Outreach and Education
- Strong Links Between Science and Application
- Interdisciplinary and Collaborative Work
- Comprehensive Resource for Water Information
- Training Students; Feeder to Professional Community
- Social Capital
- History of Accomplishments
Sustaining and Building Upon the Strengths of the Center

- Scientific Focus
- Relevance to PNW Problems and Issues
- Education, Outreach, and Partnerships
- Funding Opportunities
Scientific Focus

- Ecological function of urban streams
- Effects of urbanization
- Forest resources management
- Fish habitat protection and restoration
- Land use/land cover change
- Stormwater management
- Water resources and water quality assessments
- Biological, physical, and chemical processes in aquatic systems
Relevance to PNW Problems and Issues

- Urban Growth
- Environmental Management and Sustainability
- Fisheries
- Forests
- Endangered Species
- Water and Natural Resources Management
- Climate Change and Climate Variability
Education, Outreach, and Partnerships

- Research Applications to Current Problems
- Graduate Student Assistantships and Traineeships
- Graduate Student Theses and Dissertations
- Undergraduate Involvement
- Summer Projects
- Publications, Information, and Resources
- Training, Internships, Service Activities
- Innovative, Interdisciplinary Courses
- Partnerships (within and outside UW):
 - Prism, Earth Initiative, Program on Climate Change, …
 - Agencies, Industries, Foundations, Academia, Organizations, the Public ..
Funding Opportunities

Obtain Federal Funding (large multi-year grants)
- NSF - NEON (National Ecological Observatory Network)
- NSF - STC (Science and Technology Centers)
- NOAA - Coastal Zone Management
- NOAA - Water Resources Program (new)
- Other agencies

Continue Local Funding/Support

Use Funding for Ongoing and Expanded Activities in Research, Education, Outreach, and Problem-Solving
Goals, Activities, and Future Directions

• Generate International Recognition and Reputation
• Support Research and Application to Problem-Solving
• Bring Visibility to Departments, Schools, UW, and State
• Foster Interdisciplinary, Practice-Based Research and Education
• Promote Educational Outreach and Technology Transfer
• Enhance Student Recruitment, Financial Support, and Training
• Provide Greater Resources to Faculty
• Obtain Long-Term Sustained Funding Sources