Environmental Flows for Rivers: Rationale, Theory, Progress, and Applications

Robert J. Naiman, Julian D. Olden, & Catherine Reidy Liermann

School of Aquatic & Fishery Sciences

UNIVERSITY OF WASHINGTON

and

T Beechie (NOAA) & C Conrad (USGS/TNC)
Environmental Flows (EFs) are also known as ‘Ecological Flows’ or ‘Environmental Water Allocations’. The water regimes of a river, wetland or coastal zone necessary to maintain the biophysical components, ecological processes and health of aquatic ecosystems, as well as the associated ecological goods and services.

Arthington et al. 2006
Objectives

• Rationale – Ecological needs for flow variability
• Scientific advances & challenges in determining environmental flows for Nature
What is ‘Special’ About Freshwaters?

- Topographic low points on the landscape
- Expand and contact rapidly
- Highly sensitive to climate variability
- Exceptional range of physiochemical conditions
- Hotspots of local productivity & biodiversity
- Strong surface-subsurface connections
Water Stress Changes to 2025

- 80% of future stress from population & development, not climate change
- Future distortions of the water cycle are inevitable
- Consequences for FWs substantial

Modified from Vörösmarty et al. 2000
Water & Societal Interfaces

- 50% of available water (31% of total FW) already appropriated for human use
- Global population will increase 30-35% in 30 yrs; accessible water will increase < 10%
- 1000 Tons of water = 1 Ton grain
- Human appropriation of water will be 70% of that available in 30 yrs: What about environmental requirements?
Water & Societal Interfaces - 2

• Year 2025: Global population needs the equivalent of an additional 24 Nile Rivers or 110 Colorado Rivers for irrigated crops

• ~250 rivers flow through two or more countries

• Populations in water stressed countries (<1700 m³/person/yr) increases 6-fold (0.5 to 3.0 B). Most are food importers
One consequence of the ubiquitous ‘use and control’ of Freshwaters is an increase in water conveyance and retention structures.
Effect of Upstream Dams on Discharge of the Hanford Reach of the Columbia River

Discharge (cms)

Mean Daily Change (cms)

Water Year Water Year

Stanford et al. 1996

L’index de population concerne des vertébrés, sur la base de 555 esp terrestres, 267 esp marines et 323 esp d’eau douce dans le monde.
Freshwaters: Priority Foci

• Sustained leadership in assessment and monitoring
• Quantifying flow requirements of FW species & ecosystems
Environmental Flow: Quantifying the Hydrologic Requirements of FW Species & Ecosystems
Why is the Determination of Environmental Flows so Important?

The life histories, distributions and relative abundances of freshwater & riparian organisms are intimately linked to flow regimes, as are system-scale processes, ... over ecological and evolutionary time scales
Biodiversity and Natural Flow Regimes

Principle 1
Channel form
- Habitat complexity
- Patch disturbance

Biotic diversity

Principle 2
Life history patterns
- Flowers & seeds
- Growth strategy

Principle 3
Lateral connectivity
- Longitudinal connectivity

Principle 4
Natural regime discourages invasions

Bunn & Arthington 2002
Progress in Environmental Flows

- Major research & environmental groups banded together, globally and locally
- International meetings on E-Flows
- The Brisbane Declaration
 <www.riversymposium.com>
- Website:
 <www.iucn.org/themes/wani/flow/main.html>
- New publications:
 - Arthington, McClain, Naiman & Nilsson, Freshwater Biology 2008
 - Poff, et al. 2008. ELOHA
The ELOHA Method

ENVIRONMENTAL PROCESSES

- Hydrologic Foundation
 - Baseline Hydrographs
 - Developed Hydrographs
- Stream Hydrologic Classification
- Degree of Hydrologic Alteration
- Local and Regional Water Use and Availability

SOCIAL PROCESSES

- Implementation
- Environmental Flow Standards
- Acceptable Levels of Ecological Risk
- Expert Opinion
- Societal Values

Monitoring

Ecological Foundation

- Biotic Data and Indices
- Flow: Ecology Relationships by Class
- Flow: Ecology Responses by Hydrologic Class

Scientific Recommendation

Poff et al. 2008
The Scientific Process

In general, there are four scientific steps:

1. Build a “hydrologic foundation” of streamflow time series for both undeveloped and developed conditions;
2. Classify rivers into “hydrologic types” using streamflow time series that represent undeveloped conditions;
3. Estimate the degree of hydrologic alteration, based on comparisons between undeveloped and developed conditions;
4. Develop flow-ecology response curves for each hydrologic type by associating degrees of hydrologic alteration with changes in ecological condition.
Current Water Management

• **Minimum instream flows** provide perennial streams with base flows (that sometimes vary seasonally) to preserve wildlife, fish, scenic, aesthetic, and other environmental and navigational values.

• **The Instream Flow Incremental Methodology (IFIM)** is considered the best available tool for setting minimum instream flows and predicting how available fish habitat changes in response to streamflow.

• While IFIM provides an ecologically-based benchmark for regulatory base flows, there is a critical need – at the regional scale – to further the understanding and tools available for ecologically sustainable water management.
Ecologically Sustainable Water Management

- **Critical considerations:**
 - Grounded in mechanistically-based, science that explicitly recognizes the ecological need for hydrologic variability
 - Founded on long-term ecosystem health, rather than single species management
 - Applicable at a regional scale, i.e., to many streams and rivers simultaneously, as opposed to a case-by-case manner
 - Applicable across an array of types of flow alteration, from modified land use to river regulation by dams, and across a wide range of available data and scientific capacity
 - Useful regardless of stage of water resource development and historical status of instream flow protection
Collectively, we must discover how to position FW research so that it makes a fundamental difference in the science and in the applications underpinning sustainable management of water resources.
In the end we conserve only what we love, we love only what we understand, and we understand only what we are taught

Baba Dioum, Assemblée Générale de l’IUCN, Delhi 1968
END