The effect of LiDAR digital elevation model resolution on stream network prediction and computational requirements

Adam Mouton & Peter Schiess
University of Washington
Current Stream Layer
Inaccuracy
Problem

Increased protection afforded to stream networks

No clear information about geographic extent for streams

Data quality does not support the necessary detail for:

- strategic planning
- operational planning
- etc.
Stream Definition

All segments of natural waters within the bankfull widths of defined channels which are either **perennial streams** (waters that do not go dry any time of a year of normal rainfall) or are physically connected by an **above-ground channel system** to downstream waters.
Where Streams Begin

(Tarboton 2003)
Where Streams Begin

WAC 222-16-030 and 222-16-031 defines perennial flow for our site at 52 acre source area.
Questions

• Does an increase in resolution improve stream channel determination?
• Can stream types be determined more accurately using LiDAR datasets?
• Should a new algorithm be developed for identifying perennial streams?
Research Topics

- Flow Directions Utilized
- Effects of Resolution on Flow Direction
- Flow Direction Comparison
- Perennial Stream Classification
Flow Direction Algorithms

Block Centered

<table>
<thead>
<tr>
<th></th>
<th>12</th>
<th>11</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>10</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>7</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Edge Centered

<table>
<thead>
<tr>
<th></th>
<th>10</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

D8

- [Diagram of D8 with values]

MFD

- [Diagram of MFD with values]

Dinf

- [Diagram of Dinf with value 304 degrees]

DEMON

- [Diagram of DEMON with value 304 degrees]
Topography Sources

The Flow Direction Algorithm is tested on:

- 2m Pixel Size LiDAR Grid
- 6m Pixel Size LiDAR Grid
- 10m Pixel Size LiDAR Grid
- 10m USGS DEM Grid
Site of Interest in Red
D8 on DEM (2 m)
D8 on DEMs (2m – blue, 6m – red)
D8 on DEMs (2m -- blue, 6m -- red, 10m -- green)
Flow Direction Convergence

- D8 and Demon Converge with increasing resolutions

<table>
<thead>
<tr>
<th>Basin Convergence (ha)</th>
<th>Demon vs D8</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-m LiDAR DEM</td>
<td>5.0</td>
</tr>
<tr>
<td>6-m LiDAR DEM</td>
<td>6.8</td>
</tr>
<tr>
<td>10-m LiDAR DEM</td>
<td>9.1</td>
</tr>
<tr>
<td>10-m USGS DEM</td>
<td>30.4</td>
</tr>
</tbody>
</table>

- Dinf and MFD do not converge with each other or D8 and Demon
Perrenial Stream Classification
Model Development
Perennial Heads

- Field Locate Perennial Initiation Points (PIP)
- Uses D-8 raster flow direction processes
- Binomial Linear Regression (50 ft spread)

- Algorithm uses:
 - Basin Size
 - Percent Slope
 - Precipitation

- Algorithm could not use:
 - Downstream Gradient, Site Class, Forest Density
DNR Hydro Layer vs. Perennial, Class 1-44'
LiDAR DEM (D8 - 6m)

'Perennial, Class 1-44'

Green Points are field checked Perennial Stream Heads
Potential errors in calculated stream lengths and buffer areas based on DNR and LiDAR-derived stream data

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Length (km)</th>
<th>Buffer Area (ha)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNR Hydro Layer</td>
<td>68</td>
<td>240</td>
</tr>
<tr>
<td>based in part using USGS 7.5'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LiDAR Streams (6-m)</td>
<td>362</td>
<td>860</td>
</tr>
</tbody>
</table>

* Uniform 30-m buffer for both datasets for Perennial flow
The change in distance between modeled and field-verified stream head location at a given resolution
The range in distance between modeled and field-verified stream head location using different models.
Conclusion

- An increase in resolution improved stream channel determination.
- Stream types can be determined more accurately using LiDAR datasets.
- A new algorithm does not need to be developed for identifying perennial streams because computationally demanding flow algorithms (DEMON) don't vary from simple flow algorithms (D8).
Questions?
Road Influence with Increased Resolution
Road Effects -- 2-m Uncorrected
Road Effects -- 2m LiDAR Corrected
Fish Stream Determination
Model Development
Fish Location

Cooperative Monitoring, Evaluation, and Research Group (CMER)

Determines End of Fish Points (EOFP)

- D-8 raster flow direction processes
- Algorithm uses:
 - Elevation
 - Down slope gradient
 - Basin Size
 - Precipitation
Physical Constraints on trout distribution in the Cascade Mountains (2003)

Determines fish habitat location

- Based on physical constraints
- Algorithm uses:
 - Downstream Gradient
- Grade > 13% = fish barrier (100 meters mean)
Predicted Fish Habitat
Barriers define in the field

- Gradient Model
- Fish Barriers
- CMER Model
 End of Fish
- Waterfalls
- Culvert (Road)
- DNR Hydro
 End of Fish

Distance (ft) vs. Elevation (ft) graph
Predicted Fish Habitat Gradient

Barriers define in the field

Legend
- Culvert
- Stream Segment
- Predicted Perennial Flow
- Gradient Model
- Roads
Predicted Fish-Bearing Streams using different techniques

<table>
<thead>
<tr>
<th>Dataset for Fish-Bearing</th>
<th>Length (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNR Hydro Layer</td>
<td>18.0</td>
</tr>
<tr>
<td>CMER Model</td>
<td>22.4</td>
</tr>
<tr>
<td>Gradient Model</td>
<td>14.5</td>
</tr>
</tbody>
</table>

- Using the Gradient Model, fish-bearing streams decrease 24% from the DNR Hydro layer.
- The CMER Model potentially overestimates fish-bearing streams by 54% when compared to the Gradient Model.
Acknowledgement

I am grateful to Peter Schiess for giving me the opportunity to take on this project and truck through it as desired and Finn Krogstad for his ability to handle a bombardment of questions. Thank you to David Montgomery and Steven Burges for advising me on the ways of hydrobiology and then some; Luke Rogers and Phil Hurvitz for early GIS advice; Hans-Erik Anderson for LiDAR pre-processing; Bob McGaughey for various advice; David Tarboton and Theodore Endreny for question regarding resolution and modeling; and Julie Forcier for grammatical help. Can't forget Capstone 2005 which is composed of Adam Baines, Lou Beck, Ben Carlson, Mark Williams, Sara Wilson, Edwin Wong, and Amy Hawk for their assistance during field collection. The Washington State DNR provided the financial support for this study and then some more.
Stats on the PIP Model

The final Linear Regression model for PIP used fewer variables than expected. The final model selected Basin Size using D8, Percent Slope, and Precipitation. Downstream gradient, forest density, elevation, and site class could not be used to create the equation for determining stream head locations based on a 0.05 significance level. The Hosmer-Lemeshow chi-square statistic for this model was 10.262 and the -2 Log likelihood statistic was 80.130. Self-classification accuracies for this model were 77.4% for perennial flow and 88.7% for non-perennial flow.

For further information email me at amouton@u.washington.edu