URBAN NON-POINT SOURCE IMPACTS ON SEATTLE AREA STREAM PHOSPHORUS TRANSPORT

Michael T. Brett, Sara E. Stanley, Benjamin O. Brattebo, Micaela Ellison & Giorgios Arhonditsis

Department of Civil & Environmental Engineering, Box 352700, University of Washington, Seattle, WA 98195.
How much does phosphorus transport differ in Seattle area urban and forest streams?

SCALES: Long term (decadal), seasonal (monthly), inter-annual (daily), and event based (hourly).
Lake Washington in the Past
(and the Future?)

Eutrophication
&
Surface WQ
Land Cover

- forested urban
- grass shrub urban
- paved urban
- forested
- grass shrub crops
- water
Seasonal Fluctuations in Stream Constituent Concentrations

Total & Soluble Reactive Phosphorus
- TP
- SRP

Nitrate & Ammonium
- NO₃
- NH₄

TSS and Turbidity
- TSS
- Turbidity

SRP:DIN ratio
- Summer: 48
- Winter: 133
Percent Urban Enrichment

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Units</th>
<th>Average Forested</th>
<th>Average Urban</th>
<th>Percent Enrichment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Phosphorus</td>
<td>µg/l</td>
<td>32.3</td>
<td>67.8</td>
<td>109%</td>
</tr>
<tr>
<td>Soluble Reactive P</td>
<td>µg/l</td>
<td>13.1</td>
<td>33.4</td>
<td>154%</td>
</tr>
<tr>
<td>Total Nitrogen</td>
<td>µg/l</td>
<td>1065</td>
<td>1412</td>
<td>33%</td>
</tr>
<tr>
<td>Nitrate</td>
<td>µg/l</td>
<td>840</td>
<td>1088</td>
<td>29%</td>
</tr>
<tr>
<td>Ammonium</td>
<td>µg/l</td>
<td>13.7</td>
<td>24.8</td>
<td>81%</td>
</tr>
<tr>
<td>Turbidity</td>
<td>NTUs</td>
<td>1.71</td>
<td>3.01</td>
<td>77%</td>
</tr>
<tr>
<td>Total Susp. Solids</td>
<td>mg/l</td>
<td>4.33</td>
<td>5.90</td>
<td>36%</td>
</tr>
</tbody>
</table>
Seattle forest streams have 150% more DIN than typical forest streams.

Seattle urban streams have about 50% as much phosphorus as typical agricultural streams.

Seattle urban streams have about 35% as much nitrogen as typical agricultural streams.
Averaged Change in SRP Concentrations for the most urban Seattle area streams (Thornton, Juanita, McAleer, Lyon, Forbes, Kelsey)

Urban stream SRP concentrations

\[y = -0.86x + 1747 \]

Urban stream nitrate concentrations

\[y = -9x + 18950 \]

\[r^2 = 0.31 \]

36% decline in SRP
15% decline in NO\(_3\)

WHY: BMPs, human behavior, catchment surface disturbance?
An Annual Time Series of Stream Phosphorus Transport

- Issaquah - Forest
- North - Mixed
- Swamp - Mixed
- Thornton - Urban

- Daily TP
- Weekly SRP
- Daily TSS
Objective: to collect a high resolution stream phosphorus concentration database in order to develop statistical time series models of stream phosphorus transport.

Model structure:
- Seasonal term
- Spikeness term
- Antecedent term
- Rainfall term
Overall TP varied by ± 50% from week to week

SRP varied by ± 20% from week to week

SRP was on average 48% of TP
Soluble reactive phosphorus times series

Issaquah Creek
- Predicted
- Observed

North Creek
- $r^2 = 0.85$

Swamp Creek
- $r^2 = 0.79$

Thornton Creek
- $r^2 = 0.63$
Total phosphorus times series

- **Issaquah Creek**
 - Observed: blue line
 - Predicted: red line
 - $r^2 = 0.49$

- **North Creek**
 - Observed: blue line
 - Predicted: red line
 - $r^2 = 0.55$

- **Swamp Creek**
 - Observed: blue line
 - Predicted: red line
 - $r^2 = 0.53$

- **Thornton Creek**
 - Observed: blue line
 - Predicted: red line
 - $r^2 = 0.38$
Phosphorus transport during storm events over a range of land use conditions
Study sites

• Four watersheds
 – Agriculture, 392 ha
 – Urban, 123 ha
 – Forested, 497 ha
 – Suburban, 197 ha

• All sampling sites were within Green-Duwamish River watershed
Forested Stream

- Flow (L/s)
- Tot. Diss. P (µg/L)
- Cond. (µS/cm)
Urban Stream

- Flow (L/s)
- TSS (mg/L)
Urban Stream

- Flow (L/s)
- TSS (mg/L)
- Tot. P (µg/L)
Urban Stream

Time (hrs)

- Flow (L/s)
- Tot. Diss. P (µg/L)
- Cond. (µS/cm)
Agricultural Stream

- Flow (L/s)
- Tot. P (µg/L)
- Tot. Diss. P (µg/L)
Agricultural Stream

- Flow (L/s)
- TSS (mg/L)
- Tot. P (µg/L)
- Tot. Diss. P (µg/L)
- Cond. (µS/cm)

Time (hrs)
Summary:

- It is easy to characterize the between and within stream TDP dynamics
Summary:

- It is easy to characterize the between and within stream TDP dynamics
- It is generally agreed that TDP is nearly 100% bioavailable
Summary:

- It is easy to characterize the between and within stream TDP dynamics.
- It is generally agreed that TDP is nearly 100% bioavailable.
- Variation in stream particulate P concentrations is very difficult to predict.
Summary:

- It is easy to characterize the between and within stream TDP dynamics.
- It is generally agreed that TDP is nearly 100% bioavailable.
- Variation in stream particulate P concentrations is very difficult to predict.
- The bioavailability of PP has been previously reported to vary from <10% to >80%.
Summary:

- It is easy to characterize the between and within stream TDP dynamics
- It is generally agreed that TDP is nearly 100% bioavailable
- Variation in stream particulate P concentrations is very difficult to predict
- The bioavailability of PP has been previously reported to vary from <10% to >80%

Therefore:
We need to know how the bioavailability of the PP fraction varies with land use and flow conditions in Seattle Area streams!
We need to know how the bioavailability of the PP fraction varies with land use and flow conditions in Seattle Area streams!

See Micaela Ellison’s poster