Characterization of Stormwater Runoff from Residential Catchments

Amy M. Engstrom
Graduate Student
Civil and Environmental Engineering
Committee: Derek Booth and Rich Horner

CWWS Annual Review of Research
6 February 2004
Why Do We Care About Stormwater?

• Urbanization causes changes in runoff
 ▪ quantity: reduced infiltration capacity, increased impervious area, higher peak flows, greater runoff volumes
 ▪ quality: increase in concentrations of solids, chemicals, bacteria, other constituents

• Changes in runoff affect downstream natural systems
 ▪ habitat
 ▪ aesthetics
What Can We Do About Stormwater?

- **Education**
 - changes in behavior, knowledge of cause/effect of actions

- **Restoration**
 - physical stream channel modifications/enhancements

- **Mitigation**
 - Best Management Practices (BMPs)
 - Low-Impact Development (LID)
Stormwater Mitigation
An Example…
Natural Drainage Systems
A Mitigation Effort by Seattle Public Utilities (SPU)

• Individual projects:
 ▪ SEA Streets (Street Edge Alternatives)
 ▪ 110th Cascade
 ▪ Broadview Green Grid
 ▪ future projects

• Design elements:
 ▪ vegetated swales
 ▪ infiltration ponds
 ▪ native vegetation
SEA Streets
(Street Edge Alternatives)

• Re-design of one city block of existing right-of-way
 - traffic control, sidewalks
• Source Control
 - infiltration ponds
 - swales with native vegetation

Source: Seattle Public Utilities
Broadview Green Grid

- Re-design of multiple city blocks of existing right-of-way
 - traffic control, sidewalks

- Source control and “end-of-pipe” elements
 - infiltration ponds
 - swales with native vegetation
 - non-linear conveyance mimics natural systems

Source: Seattle Public Utilities
What About Performance?

- October 20th, 2003
 - 4.22 inches over 32 hours
 - long duration, low intensity, dry antecedent

- SEA Streets:
 - no discharge

- Broadview Green Grid:
 - construction not fully completed by 10/20/03, but some infiltration swales implemented
 - anecdotal evidence?
What Have We Learned?

• Implementation
 ▪ $/benefit ratio, public acceptance
• Design elements
 ▪ hydrologic effectiveness
 ▪ potential for water quality improvement (?)

How Are We Using What We’ve Learned Towards Future Projects?

• Working within constraints (political, etc.)
• Development of hydrologic model
 ▪ optimizing locations of design elements
Importance of water quality monitoring before and after implementation
Study Design
Water Quality Monitoring of Existing Pre-Construction Conditions

Projects Monitored:

1) Broadview Green Grid
 - 1 station, downstream point
 - time frame: October 2002 through March 2003

2) 120th Future Project
 - 2 stations, downstream point and upstream of existing grassy swale (paired study)
 - time frame: October 2002 through March 2004 (ongoing)
Study Design
Water Quality Monitoring of Existing Pre-Construction Conditions
Study Design
Water Quality Monitoring of Existing Pre-Construction Conditions

• Composite sampling over hydrograph (20 events):
 ▪ metals (Zn, Cu, Pb), total and dissolved
 ▪ solids (TSS and particle size distribution)
 ▪ nutrients (TN, TP, SRP)
 ▪ hardness
 ▪ pesticides/herbicides

• Grab sampling over first 1 hour of hydrograph (20 events):
 ▪ TPH
 ▪ e coli and fecal coliform
 ▪ pH and temperature
Preliminary Results

Water Quality Monitoring of Existing Pre-Construction Conditions

- comparison of metals concentrations to solids concentrations

\[y = 0.08x + 16.54 \]

\[R^2 = 0.13 \]
Preliminary Results

Water Quality Monitoring of Existing Pre-Construction Conditions

\[y = 0.23x + 4.88 \]

\[R^2 = 0.51 \]

-Comparison of metals concentrations to solids concentrations
Preliminary Results

Water Quality Monitoring of Existing Pre-Construction Conditions

- comparison between monitoring stations, paired study
Preliminary Results

Water Quality Monitoring of Existing Pre-Construction Conditions

- comparison between monitoring stations, paired study
Significance of Research

- Quantification of existing drainage system water quality
 - correlations between TSS/PSD and metals, nutrients in urban runoff
 - capabilities of existing system (paired study)
- Comparison to post-construction conditions
 - evaluation of design elements for water quality enhancement benefits
- Questions answered (?):
 - Can we effectively remove metals and nutrients by removing solids?
 - Can this reduce total pollutant loading?
Acknowledgements:

Center for Water and Watershed Studies
Derek Booth, Rich Horner

City of Seattle, Seattle Public Utilities (SPU)