Making Sense From Measurements: Statistical Advances That Viold More

Statistical Advances That Yield More, But Demand More

Loveday L. Conquest Steve Rentmeester

UW School of Aquatic & Fishery Sciences

Overview

- Review Traditional Sample Designs
- Discuss Recent Advances
 - Ranked Set Sampling
 - Multiple-Panel Sampling
- "Visual Sample Plan" Software
- Conclusions

Sampling--Why Do We Care?

- Good estimates
- Reasonable standard error
- Generalization of results
- Reasonable cost

Environmental Pictaction Information Washington, DC 20460 **ŞEPA** Guidance on Choosing a Sampling Design for Environmental **Data Collection** for Use in Developing a Quality Assurance Project Plan EPA QA/G-5S

TABLE OF CONTENTS

				Page
1.	INTE	RODUCTION		1
	1.1	WHY IS SELECTING AN APPROPRIATE SAMPL	ING DESIGN	
		IMPORTANT?		1
	1.2	WHAT TYPES OF QUESTIONS WILL THIS GUID	DANCE ADDRESS:	t2
	1.3	WHO CAN BENEFIT FROM THIS DOCUMENT?		3
	1.4	HOW DOES THIS DOCUMENT FIT INTO THE EI	PA QUALITY SYST	TEM?4
	1.5	WHAT SOFTWARE SUPPLEMENTS THIS GUIDA	ANCE?	5
	1.6	WHAT ARE THE LIMITATIONS OR CAVEATS T	O THIS DOCUME!	NT? 5
	1.7	HOW IS THIS DOCUMENT ORGANIZED?		
2.	2.1	RVIEW OF SAMPLING DESIGNS	2.4.1	Judgmental Sampling
	2.2	SAMPLING DESIGN CONCEPTS AND TERMS .		
	2.3	PROBABILISTIC AND JUDGMENTAL SAMPLIN		01 1 D 1 0 11
	2.4	TYPES OF SAMPLING DESIGNS	242	Simple Random Sampling
		Z.4.1 Jangson and Samples of Company	2.7.2	Simple Random Samping
		2.4.2 Samés Random Samésares		
		2.4.3 Stratefact Sumplies		
		2.4.4 Systematic and Card Sampling	242	Ctratified Compline
		2.4.5 Radical Scit Sampling	Z. 4 .3	Stratified Sampling
		2.1.6 Adaptive Cluster Sampling		1 6
		2.4.7 Composite Sampling		
			0 1 1	0 1 1 0 1 0 1
3.	THE SAMPLING DESIGN PROCESS		744	Systematic and Grid Sampling
	3.1	OVERVIEW	—	Systematic and Stra Sampring
	3.2	INPUTS TO THE SAMPLING DESIGN PROCESS		
	3.3	STEPS IN THE SAMPLING DESIGN PROCESS.		
	3.4	SELECTING A SAMPLING DESIGN	2.4.5	Ranked Set Sampling
4.		GMENTAL SAMPLING		1 0
	4.1	OVERVIEW		27
	4.2	APPLICATION		27
	4.3	BENEFITS		28
	4.4	LIMITATIONS		28
	4.5	IMPLEMENTATION		28

Judgmental Sampling

- Allows one to use biological/physical process knowledge to choose a 'representative' sample of units
- But, <u>NO</u> standard error/confidence interval estimates result

Simple Random Sampling

- "Sampling 101"--the first thing we learn!
- All samples of size "n" equally likely
- Standard errors obtainable
- Not so good in heterogeneous environments
- Not so good with small sample sizes

Stratified Sampling

- Useful in heterogeneous environments
- Randomly sample within each stratum, then combine estimates at the end
- Unequal sample sizes can account for stratum variability and cost
- Strata must be well defined

Sampling Issues

- Small sample sizes in a heterogeneous environment
- Sampling for both status and trend simultaneously
- Accounting for spatial and temporal correlation

Let's look at an approach that incorporates judgment:

- Want "some small, some medium, some large"--a representative sample!
- Stratify on the ranks of the data
- Useful when measurement is costly (so final sample size is small) but guesses are cheap

Ranked Set Sampling

Randomly Select Sets

Set 1	25	50	100
Set 2	100	75	75
Set 3	50	125	25

Ranked Set Sampling

Randomly Select Sets

Set 1	25	50	100
Set 2	100	75	75
Set 3	50	125	25

Rank Sets and Select Pools

Set 1	25	50	100
Set 2	75	75	100
Set 3	25	50	125

Ranked Set Sample

- "Set size" = 3; final sample size = 3
- To increase sample size:
 - Increase set size
 - Repeat entire process (cycles)
- Generate estimate and variance (standard error)

Ranked Set Sampling: Examples

- Mean pool size in Oregon salmon streams (Mode et al. 1999)
- Height and diameter of spruce trees (Patil et al. 1994)
- Shrub phytomass in an oak forest (Martin et al. 1980)

Ranked Set Sampling: Summary

- Stratifying on the ranks of the data
- RSS costs less than SRS for given level of precision
- Software, cost models available (Mode et al., 1999, 2002; Buchanan et al., 2004, Environmetrics)

How to take care of both status and trend in the same sampling design.

Multi-panel Sampling Design

THE OREGON PLAN for Salmon and Watersheds

Sampling Design and Statistical Analysis Methods for the Integrated Biological and Physical Monitoring of Oregon Streams

Report Number: OPSW-ODFW-2002-07

http://oregonstate.edu/dept/statistics/epa_program/docs/ntmondesign070302F.pdf

Multi-panel Sampling Design: Context

- Monitoring for both status and trend
 - -Status: spatial coverage (sites)
 - -Trend: temporal coverage (times)
- Can accomplish both with this design!

Multi-panel Sampling Design--What is a panel?

- Panel = set of sites with a revisit period
- Panels chosen to reflect spatial patterns

Multi-panel Sampling Design

Simplified Rotating Panel Design:

Reproduced from: Firman, J.C. and Jacobs, S.E. 2003. A Survey Design for Integrated Monitoring of Salmonids. Oregon Department of Fish and Wildlife

Multi-panel Sampling Design

Slightly More Complicated Panel Design:

Reproduced from: Firman, J.C. and Jacobs, S.E. 2003. A Survey Design for Integrated Monitoring of Salmonids. Oregon Department of Fish and Wildlife

ODFW Integrated Monitoring Design:

Modified from: Firman, J.C. and Jacobs, S.E. 2003. A Survey Design for Integrated Monitoring of Salmonids. Oregon Department of Fish and Wildlife

Multi-panel Sampling Design

Panel designs are usually based on a 3-5 year rotation.

ODFW's design adopted a three-year rotation to coincide with the three-year life cycle for coho salmon.

Multi-panel Sampling Design

In ODFW study a panel consisted of:

- ~ 79 Habitat Sites
- ~ 41 Spawning Sites
- ~ 13 Juvenile Sites

Multi-panel Sampling Design: Summary

- Useful when both spatial and temporal coverage required
- Accounts for temporal correlation at a site and spatial correlation among sites
- Requires all sites be known to define the panels

"Visual Sample Plan" Software

- Uses site maps and interactive questions to determine # samples, cost, sampling locations
- User imports a site map
- Spatial sampling, but not set up for stream networks
- http://dqo.pnl.gov/vsp

Visual Sample Plan (VSP)

http://dqo.pnl.gov/vsp

Visual Sample Plan (VSP)

Modified from: http://dqo.pnl.gov/vsp

Conclusions

- Sampling approaches take into account complex and connective nature of stream networks
- Computationally complex estimates, but better attention to spatial and temporal correlation
- Requires more up front collaboration between biologists and quantitative folks

Acknowledgements

EPA Cooperative Agreement CR82-9096-01 (STAR)

Program on Designs and Models for Aquatic Resource Surveys, Don Stevens, Director Oregon State University

Web Sites

- www.epa.gov/quality/qa_docs.html
- dqo.pnl.gov/vsp
- oregonstate.edu/dept/statistics/epa_pro gram/docs/

FINITO

