The circadian rhythm in glucocorticoid secretion by the adrenal cortex was long considered to be a product and direct reflection of the circadian rhythm of ACTH secretion by the anterior pituitary. However, data have accumulated for several years indicating that changes in circulating ACTH cannot fully explain the adrenal rhythm, and under many conditions there is a dissociation between ACTH and glucocorticoids (1). The circadian rhythm in plasma glucocorticoid concentration is extremely robust, and in many species has a much greater amplitude than the ACTH rhythm (2). In rats after hypophysectomy, the corticosteroid rhythm persists and exhibits 3-fold differences in response to exogenous ACTH, depending on the time of day (3, 4); and in capuchin monkeys, markedly rhythmical cortisol secretion continues after ACTH suppression with dexamethasone (5). Additional findings of nycthemeral differences in adrenal responsiveness to ACTH (6, 7), the ability of a restricted feeding schedule to alter those rhythms (8), and the demonstration that innervation of the adrenal cortex via the splanchnic nerve plays a major role in regulation of circadian glucocorticoid secretion (2, 9) have all contributed to our understanding that stimulation of adrenal steroidogenesis is subject to a number of potent influences in addition to ACTH.

Circadian clocks, both the central rhythm generator in the suprachiasmatic nuclei of the hypothalamus and the peripheral oscillators that have been discovered in multiple mammalian tissues, regulate temporal output via interlocking transcriptional/translational feedback loops involving the core clock genes Per1-2, Cry1-2, Clock, and Bmal1, and their protein products (10, 13). In recent years the molecular machinery necessary for generation of circadian rhythms has been found in the adrenal cortex of rodents and primates, and the adrenal clock of capuchin monkeys maintains a circadian rhythm in vitro (11). These findings suggest that this molecular adrenal clock may also be among the modulators of the steroidogenic response to ACTH.

In this issue of Endocrinology, Torres-Farfan et al. (12) have demonstrated that in the capuchin monkey (Cebus apella) adrenal cortex, an antisense knockdown of the expression of the adrenal clock protein cryptochrome 2 (CRY2) blocks the adrenal’s steroidogenic response to stimulation by ACTH. Another recent study showed that expression of a different canonical clock protein, BMAL1, is necessary for steroidogenesis in the Y-1 immortalized mouse adrenocortical cell line (13). In addition, a transgenic mouse line in which a part of the BMAL1 coding region was expressed in an antisense orientation under tissue-specific control failed to express rhythms of corticosteroid synthesis and secretion when the animals were maintained in constant darkness.

Because steroidogenic cells store very little steroid, acute increases in secretion in response to a stimulus require rapid synthesis of new steroid, and the rate-limiting step of transfer of cholesterol across the mitochondrial membranes is dependent on de novo protein synthesis (14). Acute steroidogenesis was found to be accompanied by the synthesis of a phosphoprotein (15) that occurs much more rapidly than ACTH-elicited synthesis of steroidogenic enzymes. The protein was cloned and named steroidogenic acute regulatory protein (StAR) (16). In the aforementioned studies in which adrenal steroidogenic responses to ACTH were found to be dependent on clock proteins and in several other investigations of factors observed to modulate steroidogenesis, the effects were achieved at least partly by alteration of StAR transcription.

StAR is expressed only in steroidogenic tissues [adrenal cortex, testes, ovaries, placenta, and brain (17)] and mediates the transfer of mobilized cholesterol from the outer to the inner mitochondrial membrane, the site of the first enzymatic step in steroidogenesis, side chain cleavage of cholesterol to form pregnenolone. The clinical consequence of dysfunctional StARs resulting from gene mutations is congenital lipoid adrenal hyperplasia (18). The absence of functional StAR results in a roughly 85% loss of steroidogenesis that elicits compensatory ACTH secretion and subsequent cellular damage from massive accumulation in lipid droplets of esterified cholesterol that cannot be transported into mitochondria (14).
StAR seems an ideal site for simultaneous multifactorial modulation of steroidogenesis, not only because its synthesis represents the rate-limiting step, but because it has a transcription factor-rich promoter region that is under the regulation of a large number of transcription factors (19), and it can be regulated via multiple signaling pathways, including arachidonic acid metabolites, calcium messenger systems, chlorine ion channels, and extracellular signal-related kinases, as well as by cAMP pathways (20). In addition, there is a circadian rhythm in the expression of StAR in the adrenal cortex, but not in the testes in which circadian regulation is much weaker (13).

The relationship of the adrenal circadian clock to StAR function in the adrenal cortex was demonstrated in the current study that showed that in capuchin monkey adrenal gland explants treated with CRY2 antisense probes, basal cortisol production was not affected, but ACTH-stimulated steroidogenesis was markedly inhibited (12). Control and CRY2 sense probes had no effect. Similarly, ACTH-induced increases in expression of StAR and 3β-hydroxysteroid dehydrogenase, which catalyzes the conversion of pregnenolone to progesterone, were blocked in CRY2 knockdowns.

In addition to these findings of the requirement of clock proteins for ACTH-induced steroidogenesis, several earlier studies have shown that factors related to sleep/wake cycles, energy balance, cardiovascular regulation, and immune function can also alter adrenal steroidogenic responses by influencing StAR transcription (Fig. 1). For example, Serón-Ferré and colleagues (21) demonstrated the presence of MT1 melatonin receptors in the capuchin adrenal cortex, and showed that melatonin inhibited ACTH- and dibutyryl-cAMP-stimulated cortisol production without affecting basal steroidogenesis. The cellular mechanism of the effect was not determined, but a similar action of melatonin on steroidogenesis in MA-10 mouse Leydig tumor cells stimulated by trophic hormones or dibutyryl-cAMP was due to the blockade of StAR expression, suggesting that a similar mechanism of action may occur in the adrenal cortex (22).

The adipocyte-derived hormone leptin has also been found to inhibit ACTH-induced steroidogenesis without affecting basal glucocorticoid production, at least in part by attenuating the increase in StAR mRNA in response to stimulation (23, 24). In addition, IL-10 knockout mice (IL-10−/−) have markedly greater glucocorticoid responses to acute immune and physiological stresses than wild-type mice (25); and in the Y-1 adrenocortical cell line, IL-10 inhibits ACTH-induced, but not basal, steroid production, at least in part by reducing the expression of StAR (26).

Additional factors have been shown to affect adrenal steroidogenesis via actions on StAR both in the presence and absence of ACTH. Adipocyte Wnt-signaling molecules (27) and orexins A and B (28), neuropeptides implicated in energy balance and sleep/wake control, up-regulate StAR transcription in human H2952R adrenocortical carcinoma cells, whereas group X-secretory phospholipase A2 has a negative effect in mouse Y-1 cells (29) (Fig. 1). In bovine adrenocortical cells, IGF-I stimulates and TGF-β and angiotensin II (Ang II) inhibit cortisol production and transcription of StAR (30, 31). Ang II appears to have a biphasic effect with short-lived stimulation, followed by a subsequent and virtually complete inhibition (31).

StAR may play a dominant role in regulating adrenal steroidogenesis by functionally integrating inputs from a variety of ligands activating several signaling pathways, but it is not the only mechanism for altering adrenocortical responsiveness to ACTH. Innervation of the rat adrenal cortex by the splanchnic nerve has been shown to be at least partially responsible for increases in rat adrenocortical responsiveness to ACTH at the time of the normal circadian peak of corticosterone synthesis and secretion. This effect occurs proximally to intracellular generation of cAMP, perhaps by alteration of blood flow to the adrenal or changes in ACTH receptor activity (2). Another locus at which adrenal responsiveness to ACTH appears to be modulated is the enzyme hormone sensitive lipase, which catalyzes the hydrolysis of cholesterol esters to make free cholesterol available to the steroidogenic pathway. The proopiomelanocortin product Lysγ2-MSH has no steroidogenic activity alone, but it has a marked potentiating effect on ACTH-induced steroidogenesis by activating hormone sensitive lipase (32, 33).

Acute and circadian modulation of responsiveness to ACTH is clearly a prevalent and adaptable strategy for fine-tuning regulation of adrenal steroidogenesis, and glucocorticoid rhythms are potent in activating and synchronizing both peripheral and central oscillators (34). StAR, as the rate limiter of steroidogenesis receiving a multiplicity of inputs from a wide diversity of signaling pathways and transcription factors, plays a stellar role.

FIG. 1. Factors that have been reported to influence adrenocortical steroidogenesis by acting on StAR transcription. Green arrows indicate stimulation, red T-bars indicate inhibition. Thin lines denote effects demonstrated on ACTH-induced but not basal steroidogenesis. Thick lines denote actions in the presence and absence of ACTH. GX sPLA2, Group X secretory phospholipase A2; Wnts, Wnt-signaling molecules.

Acknowledgments

I thank Natalia Czajkiewicz for her graphic design expertise on Fig. 1.

Address all correspondence and requests for reprints to: Charles W. Wilkinson, Ph.D., Geriatric Research, Education and Clinical Center, S-182 GRECC, Veterans Affairs Puget Sound Health Care System, 1660 South Columbian Way, Seattle, Washington 98108. E-mail: wilkinso@u.washington.edu.

This work was supported by the U.S. Department of Veterans Affairs.

Disclosure Summary: The author has nothing to disclose.
References

1. Borstein SR, Engelard WC, Ehrhart-Bornstein M, Herman JP 2008 Disso-
ciation of ACTH and glucocorticoids. Trends Endocrinol Metab 19:175–180
2. Ulrich-Lai YM, Arnhold MM, Engelard WC 2006 Adrenal splanchnic inner-
vation contributes to the diurnal rhythm of plasma corticosterone in rats by
modulating adrenal sensitivity to ACTH. Am J Physiol Regul Integr Comp
Physiol 290:R1128–R1135
hyphopituitary rats with multiple heterotopic pituitary transplants. Na- 	ure 215:876–877
4. Ottenweller JE, Meier AH 1982 Adrenal innervation may be an extrapituitary
mechanism able to regulate adrenocortical rhythmicity in rats. Endocrinology
111:1334–1338
HG, Valenzuela GJ, Seron-Ferré M 2008 Circadian cortisol secretion and circa-
dian adrenal responses to ACTH are maintained in dexamethasone suppressed
capuchin monkeys (Cebus apella). Am J Primatol 70:93–100
1979 Daily rhythms in adrenal responsiveness to ACTH. Am J Physiol
235:R210–R218
adrenocorticotropic hormone varies diurnally. Endocrinology 109:70–75
8. Wilkinson CW, Shinsako J, Dallman MF 1979 Daily rhythms in adrenal re-
sponsiveness to adrenocorticotropic hormone are determined primarily by the time of
feeding in the rat. Endocrinology 104:350–359
9. Dijkstra I, Binnekeade R, Tilders FJ 1996 Diurnal variation in resting levels of
adrenocortosterone is not mediated by variation in adrenal responsiveness to
adrenocorticotropic hormone but involves splanchic nerve integrity. Endocrinology 137:
540–547
F, Valenzuela GJ, Seron-Ferré M 2008 Clock gene expression in adult primate
suprachiasmatic nuclei and adrenal: is the adrenal a peripheral clock responsive to
melatonin? Endocrinology 149:1454–1461
12. Torres-Farfan C, Abarzua-Catalan L, Valenzuela FJ, Mendez N, Richter HG,
Valenzuela GJ, Seron-Ferré M 2009 Circadian clock protein Clock expression is critical
for adrenocorticotropic hormone stimulation of cortisol production in the capuchin
monkey adrenal. Endocrinology 150:2717–2722
W, Kim H, Cho S, Lee KH, Kim K 2008 Adrenal peripheral clock controls the
autonomous circadian rhythm of glucocorticoids by causing rhythmic steroid
production. Proc Natl Acad Sci USA 105:20970–20975
14. Miller WL 2007 Steroidogenic acute regulatory protein (StAR), a novel mi-
 tochondrial cholesterol transporter. Biochem Biophys Acta 1771:663–676
15. Pon LA, Hartigan JA, Orme-Johnson NR 1996 Acute ACTH regulation of
adrenal corticosterone biosynthesis. Rapid accumulation of a phosphoprotein.
J Biol Chem 271:13309–13316
16. Clark BJ, Wells J, King SR, Stocco DM 1994 The purification, cloning, and
expression of a novel leptin-induced homologous mitochondrial protein in
17. Bicknell KA, Harmer SC, Yangson S, Lawkoow W, Bicknell AB 2009 Regulation of adre-
ocorticotropic (ACTH), angiotensin II, transforming growth factor-β, and
insulin-like growth factor I of bovine adrenal cell steroidogenesis capacity and
expression of ACTH receptor, steroidogenic acute regulatory protein, cyto-
chrome P450c17, and 3β-hydroxysteroid dehydrogenase. Endocrinology 141:
559–1607
18. Pedersen RC, Brownie AC 1987 Gamma 3-melanotropin promotes mitochon-
drial cholesterol accumulation in the rat adrenal cortex. Mol Cell Endocrinol
50:149–156
nuclei of the amygdala exhibit opposite diurnal rhythms of expression of the
clock protein Period2. Proc Natl Acad Sci USA 102:4180–4184
regulating steroidogenesis and steroidogenic acute regulatory protein express-
ion: more complicated than we thought. Mol Endocrinol 19:2647–2659
Valladares LE, Torrealba F, Valenzuela GJ, Seron-Ferré M 2003 mt1 Mela-
tonin receptor in the primate adrenal gland: inhibition of adrenocorticotropic
stimulated cortisol production by melatonin. J Clin Endocrinol Metab 88:
450–458
22. Wu CS, Leu SF, Yang HY, Huang BM 2001 Melatonin inhibits the expression of
steroidogenic acute regulatory protein and steroidogenesis in MA-10 cells.
J Androl 22:245–254
23. Cherradi N, Capponi AM, Gaillard RC, Jaffrelot P 2001 Decreased expres-
sion of steroidogenic acute regulatory protein: a novel mechanism participat-
ing in the leptin-induced inhibition of glucocorticoid biosynthesis. Endocri-
nology 142:3302–3308
Direct inhibitory effects of leptin on the neonatal adrenal and potential con-
25. Smith EM, Cadet P, Stefano GB, Opp MR, Hughes JR TK 1999 IL-10 as a
mediator in the HPA axis and brain. J Neuroimmunol 100:140–148
26. Kolditz-Zivanovic N, Tu H, Juelich TL, Rady PL, Tylor SK, Hudnall SD,
Smith EM, Hughes TK 2006 Regulation of adrenal glucocorticoid synthesis by
interleukin-10: a preponderance of IL-10 receptor in the adrenal zona fascicu-
latata. Brain Behav Immun 20:460–466
27. Schinner S, Willenburg HS, Krause D, Schott M, Lamounier-Zepter V, Krug
AW, Ehrhart-Bornstein M, Bornstein SR, Scherbaum WA 2007 Adipocyte-
derived products induce the transcription of the StAR promoter and stimulate
aldoosterone and cortisol secretion from adrenocortical cells through the Wnt-
28. Valladares LE, Torrealba F, Valenzuela GJ, Sero´n-Ferre´M 2003 mt1 Melato-
tonin receptor in the primate adrenal gland: inhibition of adrenocorticotropic
stimulated cortisol production by melatonin. J Clin Endocrinol Metab 88:
450–458
29. Manna PR, Wang XJ, Stocco DM 2003 Involvement of multiple transcription
factors in the regulation of steroidogenic acute regulatory protein gene ex-
pression. Steroids 68:1125–1134