A Study of Pollutant Formation from the Lean Premixed Combustion of Gaseous Fuel Alternatives to Natural Gas

Keith Boyd Fackler Jr.

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy

University of Washington
2011

Philip Malte, Co-Chair
John Kramlich, Co-Chair
Igor Novosselov

Program Authorized to Offer Degree:
Mechanical Engineering
Abstract

A Study of Pollutant Formation from the Lean Premixed Combustion of Gaseous Fuel Alternatives to Natural Gas

Keith Boyd Fackler Jr.

Co-Chairs of the Supervisory Committee:
Professor P.C. Malte
Department of Mechanical Engineering
Professor J.C. Kramlich
Department of Mechanical Engineering

The goal of this research is to identify how nitrogen oxide (NO\textsubscript{X}) emissions and flame stability (blowout) are impacted by the use of fuels that are alternatives to typical pipeline natural gas. The research focuses on lean, premixed combustors that are typically used in state-of-the-art natural gas fueled systems. An idealized laboratory lean premixed combustor, specifically the jet-stirred reactor, is used for experimental data. A series of models, including those featuring detailed fluid dynamics and those focusing on detailed chemistry, are used to interpret the data and understand the underlying chemical kinetic reasons for differences in emissions between the various fuel blends. An ultimate goal is to use these data and interpretive tools to develop a way to predict the emission and stability impacts of changing fuels within practical combustors.

All experimental results are obtained from a high intensity, single-jet stirred reactor (JSR). Five fuel categories are studied: (1) pure H\textsubscript{2}, (2) process and refinery gas, including combinations of H\textsubscript{2}, CH\textsubscript{4}, C\textsubscript{2}H\textsubscript{6}, and C\textsubscript{3}H\textsubscript{8}, (3) oxygen blown gasified coal/pet coke composed of H\textsubscript{2}, CO, and CO\textsubscript{2}, (4) landfill and digester gas composed
of CH₄, CO₂, and N₂, and (5) liquified natural gas (LNG)/shale/associated gases composed of CH₄, C₂H₆, and C₃H₈. NOₓ measurements are taken at a nominal combustion temperature of 1800 K, atmospheric pressure, and a reactor residence time of 3 ms. This is done to focus the results on differences caused by fuel chemistry by comparing all fuels at a common temperature, pressure, and residence time. This is one of the few studies in the literature that attempts to remove these effects when studying fuels varying in composition. Additionally, the effects of changing temperature and residence time are investigated for selected fuels. At the nominal temperature and residence time, the experimental and modeling results show the following trends for NOₓ emissions as a function of fuel type:

1. NOₓ emissions decrease with increasing H₂ fuel fraction for combustion of CH₄/H₂ blends. This appears to be caused by a reduction in the amount of NO made by the prompt pathway involving the reaction of N₂ with hydrocarbon radicals as the CH₄ is replaced by H₂.

2. For category 2 (the process and refinery blend) and category 5 (the LNG, shale, and associated gases), NOₓ emissions increase with the addition of C₂ and C₃ hydrocarbons. This could be due to an increased production of free radicals resulting from increasing CO production when higher molecular weight hydrocarbons are broken down.

3. For category 3 (the O₂ blown gasified coal/pet coke), NOₓ emissions increase with increasing CO fuel fraction. The reason for this is attributed to CO producing more radicals per unit heat release than H₂. When CO replaces H₂, an increase in NOₓ emissions is seen due to an increase in the productivity of the N₂O, NNH, and Zeldovich pathways.
4. For category 4 (the landfill gas) the addition of diluents such as CO₂ and N₂ at constant air flow produces more NOₓ per kg of CH₄ consumed, and N₂ is more effective than CO₂ in increasing the NOₓ emission index. The increase in emission index appears to be due to an enhancement of the prompt NOₓ pathway as the diluents are added and the mixture moves towards stoichiometric. In addition, the presence of CO₂ as a diluent catalyzes the loss of flame radicals, leading to less NOₓ formation than when an equivalent amount of N₂ is used as a diluent.

For a selected set of fuels, detailed spacial reactor probing is carried out. At the nominal temperature and residence time, the experimental results show the following trends for flame structure as a function of fuel type:

1. Pure H₂ is far more reactive in comparison to CH₄ and all other pure alkane fuels. This results in relatively flat NOₓ and temperature profiles; whereas, the alkane fuels drop in both temperature and NOₓ production in the jet, where more fresh reactor feed gases are present.

2. For category 2 (the Process and Refinery blends), H₂ addition increases reactivity in the jet while decreasing overall NOₓ emissions. The increased reactivity is especially evident in the CO profiles where the fuels blended with C₂H₆ and H₂ have CO peaks on jet centerline and CO emissions for pure CH₄ peaks slightly off centerline.

3. For category 3 (the O₂ blown gasified coal/pet coke), the temperature profiles for the gasification blend and pure H₂ are nearly identical, which is likely due to the high reactivity of H₂ dominating the relatively low reactivity of CO. Despite a small temperature difference, the addition of CO causes an increase in NOₓ production.
4. For category 4 (the landfill gas), the temperature profiles are virtually indistinguishable. However, the addition of diluent decreases reactivity and spreads out the reaction zone with the CO concentration peaking at 2 mm off of centerline instead of 1 mm. Diluent addition increases NO$_X$ production in comparison to pure CH$_4$ for reasons explained above.

5. For category 5 (the LNG, shale, and associated gases), the temperature profiles are all very similar. The increased reactivity of C$_2$H$_6$ is evident from looking at the CO profiles. Increased C$_2$H$_6$ promotes CO production on jet centerline which is indicative of the hydrocarbon material breaking down earlier in the jet.

At temperatures and residence times other than the nominal conditions, the experimental results show the following trends:

1. The NO$_X$ emissions from LPM combustion of pure CH$_4$, H$_2$, C$_2$H$_6$, and C$_3$H$_8$ are shown to vary linearly with residence time and in an Arrhenius fashion with temperature. This occurs because (1) more reaction time leads to more NO$_X$ formation, and (2) NO$_X$ formation is a strong, non-linear function of temperature.

2. The addition of both H$_2$ and C$_2$H$_6$ to a LPM CH$_4$ flame is effective at extending its lean blowout limit.

The results of both two and three dimensional CFD simulations are presented to illustrate the general flow, temperature, and species structure within the reactor. Since the two dimensional model is far more computationally efficient, it is employed to study various fuel mixtures with more sophisticated chemical mechanisms. The CFD results from the LPM combustion of H$_2$, H$_2$/CO, and CH$_4$ with NO$_X$ formation are presented.
A three dimensional CFD simulation is run for LPM CH$_4$ combustion that uses a global CH$_4$ oxidation mechanism. While this model does not predict intermediate radicals and NO$_X$, the CO contours and flow field can be used as guidelines to develop a chemical reactor network (CRN), which can incorporate detailed chemistry. In addition, this model runs quickly enough that it is a good way to initialize the temperature and flow field for simulations that do incorporate more complex chemistry.

The two dimensional model is used to illustrate the difference in combustion behavior between the various fuels tested. In particular, it illustrates the geometric locations of the super-equilibrium radical fields and shows where and through which pathways NO$_X$ is formed. The pathway breakdowns show good agreement with the CRN modeling results.

The main goal of the CFD modeling is to use the results of each model to develop Chemical Reactor Networks, CRNs, that are customized for a particular burner. The CRN can then be used to estimate the impacts due to fuel variation.
TABLE OF CONTENTS

List of Figures .. iii

List of Tables .. xi

Chapter 1: Introduction .. 1
 1.1 Overview .. 1
 1.2 Literature Review .. 3
 1.3 Organization .. 9
 1.4 Research Objectives .. 10

Chapter 2: Background and Review 11
 2.1 Gas Turbines .. 11
 2.2 Oxides of Nitrogen .. 11

Chapter 3: JSR Overview and Diagnostics 17
 3.1 Experimental Overview ... 18
 3.2 Heat Transfer through the JSR 20

Chapter 4: Chemical Reactor Network Development 27
 4.1 Grid, Fluid Dynamics and Heat Transfer Models 27
 4.2 CFD Modeling for CRN Development 30
 4.3 Development of the CRN .. 33

Chapter 5: Experimental and CRN Modeling Results 36
 5.1 Sample Probe Effects ... 37
 5.2 Reactor Scans .. 38
 5.3 The Effect of Temperature and Residence Time 47
 5.4 Blowout .. 50
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5 Available Chemical Mechanisms with NOx Formation Chemistry</td>
<td>54</td>
</tr>
<tr>
<td>5.6 CH<sub>4</sub> Modeling</td>
<td>60</td>
</tr>
<tr>
<td>5.7 Parameter Studies</td>
<td>66</td>
</tr>
<tr>
<td>5.8 NOx Entitlement</td>
<td>91</td>
</tr>
<tr>
<td>Chapter 6: CFD Modeling</td>
<td>105</td>
</tr>
<tr>
<td>6.1 The Eddy Dissipation Concept</td>
<td>105</td>
</tr>
<tr>
<td>6.2 H<sub>2</sub> Combustion</td>
<td>109</td>
</tr>
<tr>
<td>6.3 H<sub>2</sub>/CO Combustion</td>
<td>120</td>
</tr>
<tr>
<td>6.4 CH<sub>4</sub> Combustion</td>
<td>126</td>
</tr>
<tr>
<td>6.5 Summary of CFD Results</td>
<td>141</td>
</tr>
<tr>
<td>Chapter 7: Summary and Conclusions</td>
<td>143</td>
</tr>
<tr>
<td>7.1 Experiments</td>
<td>143</td>
</tr>
<tr>
<td>7.2 Modeling</td>
<td>144</td>
</tr>
<tr>
<td>7.3 Implications for the Gaseous Fuel Interchangeability Criteria (GFIC)</td>
<td>148</td>
</tr>
<tr>
<td>Appendix A: CO oxidation in the Sample Probe</td>
<td>161</td>
</tr>
<tr>
<td>A.1 Variable temperature CH<sub>4</sub> Combustion</td>
<td>161</td>
</tr>
<tr>
<td>A.2 CH<sub>4</sub> mixed with N<sub>2</sub></td>
<td>162</td>
</tr>
<tr>
<td>A.3 CH<sub>4</sub> mixed with CO<sub>2</sub></td>
<td>162</td>
</tr>
<tr>
<td>A.4 CH<sub>4</sub> mixed with H<sub>2</sub></td>
<td>163</td>
</tr>
<tr>
<td>Appendix B: Emission Index Vs. Correction to 15% O<sub>2</sub></td>
<td>165</td>
</tr>
<tr>
<td>Appendix C: Thermocouple Corrections</td>
<td>167</td>
</tr>
<tr>
<td>C.1 Convection</td>
<td>168</td>
</tr>
<tr>
<td>C.2 Radiation</td>
<td>169</td>
</tr>
<tr>
<td>Appendix D: 16 cc Reactor Scans</td>
<td>171</td>
</tr>
<tr>
<td>Appendix E: Parameter Studies</td>
<td>175</td>
</tr>
<tr>
<td>Appendix F: Temperature Variation</td>
<td>177</td>
</tr>
<tr>
<td>Appendix G: 64 cc JSR</td>
<td>179</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Diagram of Experimental Setup</td>
<td>18</td>
</tr>
<tr>
<td>3.2</td>
<td>Sampling locations within the JSR</td>
<td>19</td>
</tr>
<tr>
<td>3.3</td>
<td>Diagram illustrating the modes of heat transfer out of the JSR</td>
<td>24</td>
</tr>
<tr>
<td>3.4</td>
<td>One dimensional thermal circuit for the JSR</td>
<td>25</td>
</tr>
<tr>
<td>4.1</td>
<td>Grid used in Three Dimensional CFD simulations</td>
<td>28</td>
</tr>
<tr>
<td>4.2</td>
<td>Grid used in Two Dimensional CFD simulations</td>
<td>29</td>
</tr>
<tr>
<td>4.3</td>
<td>Profile of temperature from reactor centerline to wall, measured and predicted by CFD for CH$_4$ combustion for exit gas O$_2$ of 6.6% (mole %, dry)</td>
<td>31</td>
</tr>
<tr>
<td>4.4</td>
<td>Profile of CO from reactor centerline to wall, measured and predicted by CFD for CH$_4$ combustion for exit gas O$_2$ of 6.6% (mole %, dry)</td>
<td>32</td>
</tr>
<tr>
<td>4.5</td>
<td>CO and temperature contours by CFD for JSR fired on CH$_4$ computed by global chemistry. The nominal recirculation zone temperature is 1800 K.</td>
<td>32</td>
</tr>
<tr>
<td>4.6</td>
<td>Contours of stream function within the JSR (kg/s)</td>
<td>33</td>
</tr>
<tr>
<td>4.7</td>
<td>Chemical Reactor Network constructed from the calculated flow field within the CFD model</td>
<td>34</td>
</tr>
<tr>
<td>4.8</td>
<td>Axial velocity profiles for three locations along the height of the reactor</td>
<td>35</td>
</tr>
<tr>
<td>5.1</td>
<td>Temperature profile across the JSR for LPM CH$_4$ and H$_2$ combustion</td>
<td>38</td>
</tr>
<tr>
<td>5.2</td>
<td>NO$_X$ concentration profile across the JSR for LPM CH$_4$ and H$_2$ combus-</td>
<td>39</td>
</tr>
<tr>
<td>5.3</td>
<td>Temperature profile across the JSR for the Process and Refinery Fuel Blends</td>
<td>40</td>
</tr>
<tr>
<td>5.4</td>
<td>CO concentration profile across the JSR for the Process and Refinery Fuel Blends</td>
<td>40</td>
</tr>
<tr>
<td>5.5</td>
<td>NO$_X$ concentration profile across the JSR for the Process and Refinery Fuel Blends</td>
<td>41</td>
</tr>
</tbody>
</table>
5.6 Temperature profile across the JSR for the Gasified Coal/Petcoke blend with pure CH$_4$ and H$_2$ shown for reference ... 42
5.7 CO concentration profile across the JSR for the Gasified Coal/Petcoke blend with pure CH$_4$ shown for reference ... 42
5.8 NO$_X$ concentration profile across the JSR for the Gasified Coal/Petcoke blend with pure CH$_4$ and H$_2$ shown for reference ... 43
5.9 Temperature profile across the JSR for the Landfill and Digester Gases with pure CH$_4$ shown for reference ... 43
5.10 CO concentration profile across the JSR for the Landfill and Digester Gases with pure CH$_4$ shown for reference ... 44
5.11 NO$_X$ concentration profile across the JSR for the Landfill and Digester Gases with pure CH$_4$ shown for reference ... 44
5.12 Temperature profile across the JSR for the LNG, Shale, and Associated Gases with pure CH$_4$ shown for reference ... 46
5.13 CO concentration profile across the JSR for the LNG, Shale, and Associated Gases with pure CH$_4$ shown for reference ... 46
5.14 NO$_X$ concentration profile across the JSR for the LNG, Shale, and Associated Gases with pure CH$_4$ shown for reference ... 47
5.15 Variation of NO$_X$ concentration with reactor residence time for LPM CH$_4$ combustion. Temperature is held constant at 1800 K. 48
5.16 Variation of NO$_X$ concentration with reactor temperature for LPM CH$_4$ combustion. The residence time ranges between 2.6 and 2.8 ms for the data shown. ... 48
5.17 Net NO$_X$ production rate for CH$_4$, C$_3$H$_8$, C$_2$H$_6$, and H$_2$ combustion. ... 49
5.18 Experimentally determined blowout temperature for fuel compositions outlined in Table 5.1. ... 53
5.19 Experimentally determined blowout temperature for CH$_4$ mixed with increasing levels of H$_2$ and C$_2$H$_6$. Blowout for pure C$_3$H$_8$ is shown for reference. ... 54
5.20 Comparison of four different chemical mechanisms against experimental NO$_X$ data going from 1700 to 1800 K for LPM CH$_4$ combustion. ... 56
5.21 Effect that the size of the first PSR has on the overall predicted NO$_X$ emissions using the 3-element CRN. Data is for LPM CH$_4$ combustion at 1805 K. ... 57
5.22 Net NO$_X$ production rate for LPM CH$_4$ combustion showing both experimental and modeling results. ... 60
5.23 NO\textsubscript{X} production for LPM CH\textsubscript{4} combustion from each of the four pathways calculated for a series of temperatures from 2 different methods.

5.24 NO\textsubscript{X} rate of production from each of the four pathways in the recirculation zone and turbulent flame brush elements of the CRN model outlined in Chapter 4.

5.25 O concentration in the Recirculation Zone and CH concentration in the Flame brush for the modeling results shown in Figure 5.22.

5.26 Measured NO\textsubscript{X} as EI versus mass fraction of N\textsubscript{2} or CO\textsubscript{2} diluent in fuel stream. Temperature is maintained constant at 1800 K.

5.27 Measured NO\textsubscript{X} as EI versus exit gas O\textsubscript{2} (mole %, dry). Temperature is maintained constant at 1800 K.

5.28 Measured NO\textsubscript{X} as (ppm, dry) versus exit gas O\textsubscript{2} (mole %, dry). Temperature is maintained constant at 1800 K.

5.29 NO\textsubscript{X} emission index predicted by CRN model: total and by four pathways. CH\textsubscript{4} diluted with N\textsubscript{2}.

5.30 NO\textsubscript{X} emission index predicted by CRN model: total and by four pathways. CH\textsubscript{4} diluted with CO\textsubscript{2}.

5.31 NO\textsubscript{X} production reported as emission index for each of the four mechanisms in each of the three reactor elements of the CRN model. O\textsubscript{2} concentration is 3.6% (dry mole fraction).

5.32 O atom concentration in the recirculation zone and PSB for both diluted fuels.

5.33 H-atom concentration in the recirculation zone and turbulent flame brush for both diluted fuels.

5.34 CH concentration within the Flame Brush for CH\textsubscript{4} diluted with both N\textsubscript{2} and CO\textsubscript{2}.

5.35 NO\textsubscript{X} concentration as a function of H\textsubscript{2} concentration in the fuel stream for a fuel mixture of CH\textsubscript{4} and H\textsubscript{2}. Combustion temperature is kept constant at 1800 K.

5.36 Volume of Turbulent Flame Brush as a function of H\textsubscript{2} concentration in the fuel stream. Combustion temperature is kept constant at 1800 K.

5.37 NO\textsubscript{X} rate of production from each of the four pathways in the recirculation zone and turbulent flame brush for H\textsubscript{2} mixed with CH\textsubscript{4}. Combustion temperature is kept constant at 1800 K.

5.38 CH and NNH concentration in the turbulent flame brush for H\textsubscript{2} mixed with CH\textsubscript{4}. Combustion temperature is kept constant at 1800 K.
5.39 CH, NNH, and N₂O concentration in the recirculation zone for H₂ mixed with CH₄. Combustion temperature is kept constant at 1800 K. ⁷⁹
5.40 O and H concentration in the recirculation zone for H₂ mixed with CH₄. Combustion temperature is kept constant at 1800 K. ⁷⁹
5.41 Possible CRN configurations .. ⁸¹
5.42 NOₓ concentration as a function of H₂ concentration in the fuel stream for a fuel mixture of CH₄ and H₂. Combustion temperature is kept constant at 1800 K. .. ⁸²
5.43 NOₓ concentration as a function of H₂ concentration in the fuel stream for a fuel mixture of H₂ and CO. Combustion temperature is kept constant at 1800 K. .. ⁸⁴
5.44 NOₓ production reported as a function of H₂ concentration in the fuel stream in the turbulent flame brush and the recirculation zone. Combustion temperature is kept constant at 1800 K. ⁸⁵
5.45 NOₓ production reported as a function of H₂ concentration in the fuel stream for each NOₓ formation pathway in the entire reactor. Combustion temperature is kept constant at 1800 K. ⁸⁵
5.46 Radical concentrations in the recirculation zone reported as a function of H₂ concentration in the fuel stream. Combustion temperature is kept constant at 1800 K. .. ⁸⁶
5.47 NOₓ concentration as a function of CO concentration in the fuel stream for a fuel mixture of CH₄ and CO. Combustion temperature is kept constant at 1800 K. .. ⁸⁷
5.48 NOₓ rate of production from each of the four pathways in the recirculation zone and turbulent flame brush for CH₄ mixed with CO. Combustion temperature is kept constant at 1800 K. ⁸⁸
5.49 O and H concentration in the recirculation zone for CO mixed with CH₄. Combustion temperature is kept constant at 1800 K. ⁸⁸
5.50 The volumes computed for the PSB as a function of C₂H₆ concentration in the fuel stream for a fuel mixture of CH₄ and C₂H₆ from both GRI-Mech 3.0 and C2-NOx. Temperature in the recirculation zone is kept constant at 1800 K. .. ⁹⁰
5.51 NOₓ concentration as a function of C₂H₆ concentration in the fuel stream for a fuel mixture of CH₄ and C₂H₆ from experiment and the three element CRN. Temperature in the recirculation zone is kept constant at 1800 K. .. ⁹⁰
5.52 NO\textsubscript{X} emissions data taken at various temperatures in the JSR and a curve representing the Leonard and Stegmaier data as a function of flame temperature.

5.53 Various data showing the effect that H\textsubscript{2} has on NO\textsubscript{X} formation in an LPM CH\textsubscript{4} flame at constant temperature. References are given in Table 5.4.

5.54 The effect of increasing heat loss/φ has on NO\textsubscript{X} emissions for LPM H\textsubscript{2} and CH\textsubscript{4} combustion. T = 1800 K.

5.55 Contribution from each pathway to total NO\textsubscript{X} production for LPM H\textsubscript{2} and CH\textsubscript{4} at a temperature of 1800 K for both 0 and 20% heat loss.

5.56 The effect of increasing heat loss/φ has on NO\textsubscript{X} emissions for other mixtures in our study. T = 1800 K.

5.57 The effect that the PSR volume has on NO\textsubscript{X} predictions in an adiabatic Bragg cell. AFT for both fuels is 1550 K. The NO\textsubscript{X} is reported for the exit of the Bragg cell.

5.58 The effect that the PSR volume has on NO\textsubscript{X} predictions in an adiabatic Bragg cell. AFT for both fuels is 1800 K. The NO\textsubscript{X} is reported for the exit of the Bragg cell.

5.59 The effect that the PSR volume has on NO\textsubscript{X} predictions in an adiabatic Bragg cell. AFT for both fuels is 2100 K. The NO\textsubscript{X} is reported for the exit of the Bragg cell.

5.60 Predicted O atom concentration in the PSR as its volume is increased for both LPM H\textsubscript{2} and CH\textsubscript{4} combustion at an AFT of 1800 K.

5.61 Predicted O atom concentration vs. PFR residence time corresponding to the Bragg cell configuration with a PSR sized at blowout for both LPM H\textsubscript{2} and CH\textsubscript{4} combustion at an AFT of 1800 K.

5.62 Predicted NO\textsubscript{X} concentration vs. PFR residence time corresponding to the Bragg cell configuration with a PSR sized at blowout for both LPM H\textsubscript{2} and CH\textsubscript{4} combustion at an AFT of 1800 K.

6.1 1/τ* from reactor inlet to ceiling.

6.2 H\textsubscript{2} combustion, T = 1800 K. H\textsubscript{2} rate of destruction (kg/m3-s).

6.3 CH\textsubscript{4} combustion, T = 1800 K. CH\textsubscript{4} rate of destruction (kg/m3-s).

6.4 Profile of temperature from reactor centerline to wall, measured and predicted by CFD for H\textsubscript{2} combustion with NO\textsubscript{X} formation chemistry in two and three dimensions.
6.5 Profile of NO\textsubscript{X} concentration from reactor centerline to wall, measured and predicted by CFD for H\textsubscript{2} combustion with NO\textsubscript{X} formation chemistry in two and three dimensions. 110

6.6 Profile of temperature from reactor centerline to wall, measured and predicted by 2D CFD for H\textsubscript{2} combustion with and without a UDF. 112

6.7 Profile of NO\textsubscript{X} concentration from reactor centerline to wall, measured and predicted by 2D CFD for H\textsubscript{2} combustion with and without a UDF. 112

6.8 Contours of H predicted by CFD for H\textsubscript{2} combustion (mole fraction). 113

6.9 Contours of O predicted by CFD for H\textsubscript{2} combustion (mole fraction). 114

6.10 Contours of OH predicted by CFD for H\textsubscript{2} combustion (mole fraction). 114

6.11 Profile of NO\textsubscript{X} concentration from reactor centerline to wall, measured and predicted by CFD for H\textsubscript{2} combustion with NO\textsubscript{X} formation chemistry in two dimensions for each NO\textsubscript{X} pathway. 115

6.12 Contours of the rate of NO\textsubscript{X} production for the full GRI 3.0 mechanism with the Konnov4 modification. (kmole/m3-s). 116

6.13 Contours of the rate of NO\textsubscript{X} production for the full GRI 3.0 mechanism with the Konnov4 modification. (kmoles/m3-s). 116

6.14 Contours of the rate of NO\textsubscript{X} production from the Zeldovich pathway only (kmoles/m3-s). 117

6.15 Contours of the rate of NO\textsubscript{X} production from the N\textsubscript{2}O pathway only (kmoles/m3-s). 117

6.16 Contours of the rate of NO\textsubscript{X} production from the NNH pathway only (kmoles/m3-s). 118

6.17 Profile of temperature from reactor centerline to wall, measured and predicted by CFD for H\textsubscript{2} combustion with NO\textsubscript{X} formation chemistry in 2D. EDC limit is shown for comparison. 119

6.18 Profile of NO\textsubscript{X} concentration from reactor centerline to wall, measured and predicted by CFD for H\textsubscript{2} combustion with NO\textsubscript{X} formation chemistry in 2D. EDC limit is shown for comparison. 120

6.19 Profile of temperature from reactor centerline to wall, measured and predicted by CFD for 50%H\textsubscript{2}/50%CO combustion. T = 1800 K. 121

6.20 Profile of CO from reactor centerline to wall, measured and predicted by CFD for 50%H\textsubscript{2}/50%CO combustion. T = 1800 K. 122

6.21 Contours of CO predicted by CFD for H\textsubscript{2}/CO combustion (mole fraction). 123

6.22 Contours of H predicted by CFD for H\textsubscript{2}/CO combustion (mole fraction). 123

6.23 Contours of O predicted by CFD for H\textsubscript{2}/CO combustion (mole fraction). 124
6.24 Contours of OH predicted by CFD for H₂/CO combustion (mole fraction)

6.25 Profile of NOₓ from reactor centerline to wall, measured and predicted by CFD for 50%H₂/50%CO combustion. T = 1800 K.

6.26 Contours of NOₓ rate of production predicted by CFD for H₂/CO combustion (kmoles/m³-s).

6.27 Comparison the reduced mechanism against GRI Mech 3.0 and GRI Mech 3.0 with the Konnov modification against experimental NOₓ data going from 1708 to 1805 K for LPM CH₄ combustion.

6.28 Profile of temperature from reactor centerline to wall, measured and predicted by CFD for CH₄ combustion.

6.29 Contours of the rate of CH₄ destruction for the 3D finite rate/eddy dissipation model. (kg/m³-s)

6.30 Contours of the rate of CH₄ destruction for the EDC model at default conditions and at the EDC limit, and for the 3D finite rate/eddy dissipation model. (kg/m³-s)

6.31 Profile of CO from reactor centerline to wall, measured and predicted by CFD for CH₄ combustion.

6.32 Contours of H atom for CH₄ combustion from the reduced GRI 3.0 mechanism both with and without the UDF at the default EDC conditions and at the EDC limit. (mole fraction)

6.33 Contours of O atom for CH₄ combustion from the reduced GRI 3.0 mechanism both with and without the UDF at the default EDC conditions and at the EDC limit. (mole fraction)

6.34 Contours of OH atom for CH₄ combustion from the reduced GRI 3.0 mechanism both with and without the UDF at the default EDC conditions and at the EDC limit. (mole fraction)

6.35 Profile of OH from reactor centerline to wall, measured and predicted by CFD for CH₄ combustion.

6.36 Profile of NOₓ from reactor centerline to wall, measured and predicted by CFD for CH₄ combustion.

6.37 Profile of NOₓ concentration from reactor centerline to wall, measured and predicted by CFD for CH₄ combustion with NOₓ formation chemistry in 2D for each NOₓ pathway.

6.38 Contours of the rate of NOₓ production from the reduced GRI 3.0 mechanism (kmoles/m³-s).
6.39 Contours of the rate of NO\textsubscript{X} production from the prompt pathway only (kmole/m3-s). 138
6.40 Contours of the rate of NO\textsubscript{X} production from the N\textsubscript{2}O pathway only (kmole/m3-s). 138
6.41 Contours of the rate of NO\textsubscript{X} production from the Zeldovich pathway only (kmole/m3-s). 139
6.42 Contours of the rate of NO\textsubscript{X} production from the NNH pathway only (kmole/m3-s). 139
6.43 Contours of NO\textsubscript{X} producing species within the JSR for CH\textsubscript{4} combustion from the reduced GRI 3.0 mechanism (mole fraction). 140
A.1 CO concentrations as a function of temperature for CH\textsubscript{4} combustion . 161
A.2 CO concentrations as a function of O\textsubscript{2} concentration in the exhaust for CH\textsubscript{4} mixed with N\textsubscript{2} combustion 162
A.3 CO concentrations as a function of O\textsubscript{2} concentration in the exhaust for CH\textsubscript{4} mixed with CO\textsubscript{2} combustion 163
A.4 CO concentrations as a function of H\textsubscript{2}\% in the fuel stream for CH\textsubscript{4} mixed with H\textsubscript{2} combustion 164
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table Number</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Summary of gas composition used in this study</td>
<td>2</td>
</tr>
<tr>
<td>2.1</td>
<td>Summary of US EPA NO\textsubscript{X} emissions standards for electricity producing gas turbines from 2006.</td>
<td>14</td>
</tr>
<tr>
<td>3.1</td>
<td>Inputs and results from first law balance on the reactor</td>
<td>22</td>
</tr>
<tr>
<td>3.2</td>
<td>Measured and Calculated temperatures, thermal resistances, and heat loss from the thermal model illustrated by Figures 3.3 and 3.4</td>
<td>25</td>
</tr>
<tr>
<td>4.1</td>
<td>Reaction steps and global rates for the CH\textsubscript{4} oxidation mechanism developed by Nicol. Units are: kmoles, m3, and K.</td>
<td>31</td>
</tr>
<tr>
<td>5.1</td>
<td>Fuel Composition for 16cc reactor Blowout Studies</td>
<td>52</td>
</tr>
<tr>
<td>5.2</td>
<td>The chemical times computed for each mechanism by Equation 5.5 and the corresponding PSR volume.</td>
<td>58</td>
</tr>
<tr>
<td>5.3</td>
<td>Major Reactions of NO\textsubscript{X} formation</td>
<td>61</td>
</tr>
<tr>
<td>5.4</td>
<td>A summary of experimental conditions for the data shown in Figure 5.53</td>
<td>94</td>
</tr>
<tr>
<td>5.5</td>
<td>Composition of Fuels shown in Figure 5.56</td>
<td>97</td>
</tr>
<tr>
<td>C.1</td>
<td>R-Type TC wires used in the present study</td>
<td>167</td>
</tr>
<tr>
<td>D.1</td>
<td>100% CH\textsubscript{4}</td>
<td>171</td>
</tr>
<tr>
<td>D.2</td>
<td>Mix 1</td>
<td>171</td>
</tr>
<tr>
<td>D.3</td>
<td>Mix 2A</td>
<td>172</td>
</tr>
<tr>
<td>D.4</td>
<td>Mix 2B</td>
<td>172</td>
</tr>
<tr>
<td>D.5</td>
<td>Mix 2C</td>
<td>172</td>
</tr>
<tr>
<td>D.6</td>
<td>Mix 3</td>
<td>172</td>
</tr>
<tr>
<td>D.7</td>
<td>Mix 4A</td>
<td>173</td>
</tr>
<tr>
<td>D.8</td>
<td>Mix 4B</td>
<td>173</td>
</tr>
<tr>
<td>D.9</td>
<td>Mix 4C</td>
<td>173</td>
</tr>
<tr>
<td>D.10</td>
<td>Mix 5A</td>
<td>173</td>
</tr>
</tbody>
</table>
D.11 Mix 5B .. 174
D.12 Mix 5C .. 174
E.1 Parameter Studies .. 176
F.1 Temperature Variations for Pure Fuels 178
G.1 A summary of the experimental tests conducted on the 64 cc JSR .. 179
G.2 Mixture 0 ... 180
G.3 Mixture 1 ... 180
G.4 Mixture 2 ... 180
G.5 Mixture 3 ... 181
G.6 Mixture 4 ... 181
G.7 Mixture 5 ... 181
G.8 Mixture 6 ... 182
G.9 Mixture 7 ... 182
G.10 Mixture 8 ... 182
G.11 Mixture 9 ... 183
G.12 Mixture 10 .. 183
G.13 Mixture 11 .. 183
G.14 Mixture 12 .. 184
ACKNOWLEDGMENTS

I wish to express extreme gratitude for both of my Co-advisors Professors Philip C. Malte and John C. Kramlich. They have provided guidance, wisdom, encouragement, and support, without which, this work could not be completed. The personal meetings and discussions on scientific theory as well as experimental technique have been essential in producing the high quality work shown in this thesis. Dr. Igor Novosselov has provided invaluable knowledge and experience relating to the numerical aspects of this work.

I wish to thank Kevin Soderlund and Eamon McQuade in the Mechanical Engineering machine shop for their patience and knowledge in regards to the fabrication and design of necessary experimental components. I would like to thank Wanwisa Kisalang, Maria Hopper, Sue Chen and everyone in the ME front office for their guidance and support in all of the administrative issues encountered in this research. I would like to thank fellow graduate students for their intellectual support, comic relief, and above all: friendship. In particular, Megan Karalus, Shazib Vijee, and Brian Polagye have provided unparalleled support in this work. Throughout my time spent at the University of Washington, my friends and colleagues have really helped make the experience special, productive, and rewarding.

The financial support for this project has come from two main sources. The Department of Mechanical Engineering at the University of Washington has provided financial support through teaching assistantships. In addition, financial support was provided by the California Energy Commission through the University of California at Irvine, where Marla Mueller serves as the Technical Project Officer at the California
Energy Commission, and Professor Vincent McDonell is the Project Manager at UC Irvine.

There are many people outside of the University of Washington that have provided exceptional love, friendship, and moral support. I wish to express the utmost gratitude to my many good friends, and above all to my loving sister and parents.
DEDICATION

To my sister and parents.
Chapter 1

INTRODUCTION

1.1 Overview

Lean-premixed (LPM) combustion technology is utilized in state of the art gas turbines to provide extremely efficient power generation with low emissions. Traditionally, natural gas has been used almost exclusively in LPM combustion. While extensive research on natural gas-fueled LPM combustion has been reported, much less research has been conducted on the use of alternatives to natural gas for LPM combustion devices. In the future, gas turbines will be run with a variety of fuel compositions ranging from syngases with high H\(_2\) content to landfill and digester gas, which are mainly composed of CH\(_4\), CO\(_2\), and N\(_2\). Alternative fuel blends will have a wide range of heating values, flame speeds, and chemical composition. It is important to study the behavior of these fuels under LPM conditions to maximize performance efficiency, while minimizing the overall emissions. In order to use alternative fuels effectively, knowledge must be gained pertaining to the expected emissions at comparable combustion temperatures as well as the relative resistance to blowout.

The range of fuel compositions studied in this work is shown below in Table 1.1. It is the goal of this research to study fuel blends that will typify the composition of future fuels. Five fuel categories are studied: (1) pure H\(_2\), (2) process and refinery gas, including combinations of H\(_2\), CH\(_4\), C\(_2\)H\(_6\), and C\(_3\)H\(_8\), (3) oxygen blown gasified coal/pet coke composed of H\(_2\), CO, and CO\(_2\), (4) landfill and digester gas composed of CH\(_4\), CO\(_2\), and N\(_2\), and (5) liquified natural gas (LNG)/shale/associated gases composed mainly of CH\(_4\), C\(_2\)H\(_6\), and C\(_3\)H\(_8\). The baseline fuel for which all blends are
compared is CH₄. In addition to the blends outlined in Table 1.1, it is of both academic and general interest to perform parameterized studies within each fuel blend. Parameterized studies allow one to track differences that arise from variations in composition. As an example, we study mixtures of H₂/CH₄ that have limited application (e.g., 80/20). However, the study of this fuel blend provides useful chemical kinetic information that helps generalize the results of other more practical mixtures.

Table 1.1: Summary of gas composition used in this study

<table>
<thead>
<tr>
<th>Category</th>
<th>Source</th>
<th>H₂</th>
<th>CO</th>
<th>CH₄</th>
<th>CO₂</th>
<th>N₂</th>
<th>C₂</th>
<th>C₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>High H₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Range in Field</td>
<td>90 - 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nominal Fuel</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alternative Fuel</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Process and Refinery</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Range in Field</td>
<td>25 - 55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nominal Fuel</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alternative Fuel 1</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alternative Fuel 2</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alternative Fuel 3</td>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Gasified Coal/Pet coke</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Range in Field</td>
<td>35 - 40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nominal Fuel</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No Alternatives</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Landfill and Digester Gas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Range in Field</td>
<td>35 - 65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nominal Fuel</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alternative Fuel 1</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alternative Fuel 2</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>LNG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Range</td>
<td>75 - 95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>See below</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Shale Gas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Range</td>
<td>82 - 97</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>See below</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Associated Gas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Range</td>
<td>75 - 95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>See below</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>LNG/Shale/Associated Gases</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nominal Fuel</td>
<td>95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alternative Fuel 1</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alternative Fuel 2</td>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alternative Fuel 3</td>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This study focuses on the formation of NOₓ in LPM combustion devices with an emphasis on the effects of varying fuel composition. Additionally, the effects of
reactor residence time and post-flame combustor temperature are also investigated for a selected set of fuels. An atmospheric pressure jet-stirred reactor (JSR) is the research tool used in this study, and both experimental and modeling results are presented for LPM combustion within this combustor. In addition to the study of emissions, the effect that fuel composition has on the resistance to lean blowout is also investigated.

1.2 Literature Review

A general overview of prior research in the area LPM combustion of gaseous fuel alternatives to natural gas is presented in the following section.

1.2.1 CH$_4$ mixed with C$_2$ and C$_3$ hydrocarbons

Although most LPM combustion research has focused on natural gas, or CH$_4$ in particular, there has been a fair amount of research conducted on higher molecular weight hydrocarbons such as C$_2$H$_6$ and C$_3$H$_8$ and mixes of CH$_4$ with these hydrocarbons. The relative abundance of research is because natural gas blends can contain relatively high concentrations of these components. Flores et al. [1] investigated the influence of high concentrations of C$_2$H$_6$ and C$_3$H$_8$ in a commercial microturbine, and found that the presence of the higher-hydrocarbons results in a considerable increase in NO$_X$ emissions when the fuels are burned at constant equivalence ratio. Malte et al. [2] used an atmospheric pressure JSR to study OH and NO$_X$ formation from various fuels under LPM combustion at a constant measured flame temperature of 1700 K. Under lean conditions, they found that both C$_3$H$_8$ and C$_2$H$_2$ produces more NO$_X$ than CH$_4$ when burned at constant measured flame temperature. Marks et al. [3] studied the effects of adding both C$_2$H$_6$ and C$_3$H$_8$ to a LPM CH$_4$ flame in three different industrial boilers operating at atmospheric pressure and found that the addition of these higher hydrocarbons increases NO$_X$ emissions when compared on both constant Wobbe index and thermal loading. Spangelo et al. [4] observed more than a 50%
increase in NO\textsubscript{X} emissions switching from CH\textsubscript{4} to C\textsubscript{3}H\textsubscript{8} in a partially premixed swirl burner operated at constant thermal loading. Corr et al. [5] studied LPM combustion of both CH\textsubscript{4} and C\textsubscript{2}H\textsubscript{4} in a JSR and found that for both fuels the NO\textsubscript{X} emissions decrease with increased reactor loading (shorter residence time) and CH\textsubscript{4} combustion produces about 75% of the NO\textsubscript{X} that C\textsubscript{2}H\textsubscript{4} does when burned at the same measured flame temperature. Littlejohn et al. [6] performed LPM combustion experiments in an atmospheric pressure dump combustor fed with a low-swirl injector (LSI). As opposed to the traditional high-swirl injector (HSI), the LSI does not induce a center recirculation zone [7]. They found that both C\textsubscript{2}H\textsubscript{6} and C\textsubscript{3}H\textsubscript{8} produce more NO\textsubscript{X} than CH\textsubscript{4} at constant adiabatic flame temperature. Lee [8] investigated emissions from the LPM combustion of both prevaporized-liquid and gaseous hydrocarbon fuel alternatives to natural gas and found that NO\textsubscript{X} emissions increase linearly with fuel C:H ratio. In a similar study, Rutar et al. [9] investigated the LPM combustion of methanol, methane, ethane, ethene, propane, n-butane, and toluene and report similar results to those obtained by Lee. Thus, the clear trend of the literature is that fuels containing higher molecular weight hydrocarbons tend to produce more NO\textsubscript{X} than fuels containing only CH\textsubscript{4}. This appears to hold whether the fuels are burned at the same flame temperature, or the same thermal loading.

1.2.2 CH\textsubscript{4} mixed with H\textsubscript{2}

In the last couple of decades there has been much interest in the addition of H\textsubscript{2} into CH\textsubscript{4} for use in LPM combustion devices. The work generally focused on experiments at atmospheric pressure where LPM CH\textsubscript{4} flames are mixed with H\textsubscript{2} in order to extend the lean blow out limits. This results in lower temperatures which reduces NO\textsubscript{X} emissions [10], [11], [12], [13]. There have been experiments that have attempted to isolate the chemical effect of H\textsubscript{2} addition by holding equivalence ratio, adiabatic flame temperature, or thermal loading constant. Interestingly, the results vary and the trends appear to be dependent on the geometry or operating conditions of the
experiment or simulation.

There are many researchers that have found that H\textsubscript{2} addition into CH\textsubscript{4} has little to no effect on NO\textsubscript{X} emissions. Schefer et al. [14] compared the emissions of LPM combustion of pure CH\textsubscript{4} to a mixture composed of 45% H\textsubscript{2}/55% CH\textsubscript{4} in a lab scale, high-swirl, dump combustor and found no apparent effect on NO\textsubscript{X} emissions when the mixtures both had equal adiabatic flame temperatures. Xie et al. [15] studied NO\textsubscript{X} formation in a LPM opposing jet-stirred reactor with minimal heat loss for both pure H\textsubscript{2} and pure CH\textsubscript{4} combustion and found that there is virtually no difference in the NO\textsubscript{X} emissions between the two pure fuels when compared at equal measured gas temperature. Ren et al. [16] investigated the effect of mixing CH\textsubscript{4} reforming products into a LPM CH\textsubscript{4} flame in a single-jet stagnation-flow configuration. They found that at constant equivalence ratio, the addition of H\textsubscript{2} caused no change in NO\textsubscript{X} emissions moving from 0% H\textsubscript{2} to 25% H\textsubscript{2} mixed into CH\textsubscript{4}. Sequiera et al. [17] studied the effect of adding both H\textsubscript{2} and/or CO to a LPM CH\textsubscript{4} flame in an atmospheric dump combustor fed with an LSI, which is similar to the device used by Littlejohn et al. [6]. They found that for a fixed adiabatic flame temperature and air flow rate, the NO\textsubscript{X} emissions are insensitive to fuel composition. Morris et al. [18] studied the effects of adding up to 12% H\textsubscript{2} to natural gas in a LPM dry-lox-NO\textsubscript{X} (DLN) annular can combustor manufactured by the General Electric Company and found that at constant firing temperature the H\textsubscript{2} addition has no effect on NO\textsubscript{X} emissions.

There is research showing that NO\textsubscript{X} emissions decrease when H\textsubscript{2} is added to CH\textsubscript{4} and other hydrocarbons in general. Delattin et al. [19] performed experiments in an atmospheric pressure primary zone swirl-stabilized combustor on various LPM fuel mixtures simulating both wet and dry partially reformed natural gas. There are several methods that are used to reform natural gas. Whichever method is employed, the process involves breaking down CH\textsubscript{4} into a fuel blend composed of H\textsubscript{2}, CO, and varying concentrations of CO\textsubscript{2}. In the study performed by Delattin et al. [19], the dry blends were composed of 20% and 40% H\textsubscript{2}, respectively, with the majority of
the remaining fuel composed of CH$_4$ with small traces of CO and CO$_2$. They found that the flame area, shape and position of flames mixed with high reformate content are significantly different than for a pure CH$_4$ flame. In addition, they found that at constant equivalence ratio the reformate mixtures show both lower NO$_X$ and CO emissions. Malte et al. [2] studied the combustion of a 50/50 mixture of H$_2$ and CO in the same study cited above. They found that the reformate mixture produces less NO$_X$ than all of the hydrocarbon fuels when burned at constant measured flame temperature. Although the effect of mixing H$_2$ into a LPM C$_3$H$_8$ flame is not explored in the current study, there are a handful of past studies that have explored the emissions differences between the two fuels. Anderson [20] looked into the effect of mixing up to 44% H$_2$ into a LPM C$_3$H$_8$ flame stabilized with a flameholder. At constant adiabatic flame temperature it was found that the flames mixed with H$_2$ produce less NO$_X$. Engleman et al. [21] burned pure C$_3$H$_8$, H$_2$, and CO premixed in a single jet-stirred reactor and measured the flame temperature. Their data show that the H$_2$ flame produces considerably less NO$_X$ than the C$_3$H$_8$ flame when compared at equal measured temperature. Other researchers running experiments with porous burners have found that the addition of H$_2$ slightly reduces NO$_X$ emissions when run at constant thermal loading [22] and equivalence ratio [23] and significantly reduces NO$_X$ emissions when run at constant adiabatic flame temperature [24].

There are studies that show NO$_X$ emissions increase when H$_2$ is added to CH$_4$. Lee et al. [25] performed lean premixed atmospheric pressure experiments in a model gas turbine combustor manufactured by GE and found that at constant loading (based on the LHV of the fuel), pure H$_2$ produces more NO$_X$ than pure CH$_4$. Therkelsen et al. [26] studied the effects of fuel and air premixing and the effect of 0-100% H$_2$ addition into a LPM CH$_4$ flame burned in a commercially available gas turbine combustor operated at 4 atm. They found that mixture uniformity has a strong effect on NO$_X$ emissions with higher emissions correlating with poorer premixing. They also found that H$_2$ addition significantly increases NO$_X$ emissions when run at constant thermal...
loading. Daniele et al. [27] burned four different syngas mixtures in LPM mode in a
generic, high pressure, turbulent jet combustor. They compare NO\textsubscript{X} emissions of a
20%H\textsubscript{2}/20%CO/60%CH\textsubscript{4} mixture to fuels composed of just H\textsubscript{2}/CO and H\textsubscript{2}/CO/N\textsubscript{2}. At constant adiabatic flame temperature, the NO\textsubscript{X} emissions from the H\textsubscript{2} rich fuels
are significantly higher than those produced from the fuel with large CH\textsubscript{4} composition
for all pressures that were studied. Cheng et al. [28] studied the effect of mixing up to
100% H\textsubscript{2} into a LPM CH\textsubscript{4} flame fired in an industrial scale dump combustor, fed with
an LSI, at pressures between 2 and 8 atm. They found that the NO\textsubscript{X} emissions do
increase slightly for fuels with increasing H\textsubscript{2} percentage. Beerer [29] studied the NO\textsubscript{X}
emissions from the LPM combustion of both pure CH\textsubscript{4} and a blend of 10% CH\textsubscript{4}/90%
H\textsubscript{2} in flare quarl combustor fed with an LSI at pressures between 3 and 5 atm. He
found that the high H\textsubscript{2} blend produced significantly more NO\textsubscript{X} than pure CH\textsubscript{4} at
constant adiabatic flame temperature for all pressures investigated.

Some researchers have found that the NO\textsubscript{X} trend depends on how their experiment
or simulation is run. Coppens et al. [30] ran experiments with premixed CH\textsubscript{4} flames
mixed with up to 35% H\textsubscript{2} stabilized on a perforated plate burner at atmospheric
pressure. For flames at constant equivalence ratio, they found that H\textsubscript{2} addition has
little effect on NO\textsubscript{X} emissions in the lean regime, while mixes of CH\textsubscript{4}/H\textsubscript{2} produce less
NO\textsubscript{X} while operating in rich mode. Hu et al. [31] numerically studied the effect of 0
to 100% H\textsubscript{2} addition in LPM laminar CH\textsubscript{4}/air flames and found the same trends as
Coppens et al. Kim et al. [10] studied the effect of H\textsubscript{2} addition into a LPM CH\textsubscript{4} flame
in an atmospheric pressure swirl stabilized flame with varying swirl intensity. The
addition of H\textsubscript{2} was found to shift the reaction zone upstream causing an increase in the
concentration of OH radicals and an increase in NO production at constant adiabatic
flame temperature. This effect was found to be the largest at the lowest swirl angle
investigated of 30\degree; however, as the swirl angle is increased to 60\degree there is no apparent
effect of H\textsubscript{2} addition on NO\textsubscript{X} formation. Guo et al. [32] numerically studied the effects
of H\textsubscript{2} addition in lean counterflow CH\textsubscript{4}/air premixed flames using the GRI-Mech 3.0.
They found that for LPM CH$_4$ flames at constant equivalence ratio, the addition of the reformate gas reduces NO$_X$ emissions near stoichiometric conditions; whereas, the addition of reformate gas increases NO$_X$ emissions at ultra-lean conditions. Griebel et al. [33] have performed experiments in a generic high-pressure combustor operating between 5 and 14 bar with pure CH$_4$ and 20% H$_2$ mixed into an LPM CH$_4$ flame. For very lean equivalence ratios ($\Phi = 0.43$), it was found that there is almost no difference in NO$_X$ emissions between the pure CH$_4$ and the H$_2$ mix. They found that at richer conditions ($\Phi = 0.5$) the H$_2$ mix shows no pressure effect and produces higher NO$_X$ emissions for all pressures investigated. The pure CH$_4$ flame was found to produce slightly less NO$_X$ as pressure is increased.

Thus, the replacement of CH$_4$ by H$_2$ leads to apparently inconsistent results, with NO$_X$ sometimes increasing, sometimes staying nearly constant, and sometimes decreasing. This suggests that other factors may be influencing the NO$_X$ trends.

Among several ways to compare emissions data, researchers have decided to correlate NO$_X$ emissions with equivalence ratio, adiabatic flame temperature, or thermal loading (based on the LHV), etc. Correlating NO$_X$ emissions to constant adiabatic flame temperature seems to be the most correct because of the high temperature sensitivity of the Zeldovich pathway to NO$_X$ formation. It should also be noted that when an LPM CH$_4$/H$_2$ flame is held at constant equivalence ratio and the H$_2$ content of the fuel is increased, the adiabatic flame temperature of the flame also increases. In fact, for an equivalence ratio of 0.6, an H$_2$ flame has an adiabatic flame temperature that is more than 150 degrees K hotter than a CH$_4$ flame.

1.2.3 Landfill Gas

The use of landfill gas in LPM combustion systems is of interest for future gas turbine systems. Landfill gas is the product of the decomposition of municipal waste from landfills. Similar in composition to landfill gas, digester gas is the product of anaerobic digestion of organic material from waste-water treatment plants. The composition
of either gas varies depending on the feedstock; however, landfill gas is primarily composed of CH$_4$ and CO$_2$ with up to 15% N$_2$ and trace contaminants [34]. Qin et al. performed tests in an LPM stagnation flow experiment at atmospheric pressure and found that the addition of CO$_2$ to a LPM CH$_4$ flame increases the total NO$_X$ emissions per mass of CH$_4$ consumed [35]. Some recent research has focussed on the effects of exhaust gas recirculation (EGR), where the oxidant stream is diluted with with products of combustion, namely: CO$_2$, N$_2$, H$_2$O, and O$_2$ [36], [37], and [38]. Røkke et al. studied the effects of adding diluent to both LPM and diffusion flames at atmospheric pressure. In the LPM mode, they found that mixing was sufficient enough that it did not matter whether the diluent was injected into the fuel or oxidant stream. They also found that the addition of both N$_2$ and CO$_2$ decreased NO$_X$ emissions; however, the flame temperature was not held constant [37]. ElKady et al. looked at the addition of 35% EGR to an LPM CH$_4$ flame at 10 atm and found that the EGR addition decreased NO$_X$ emissions at constant flame temperature [36]. Li et al. studied the effect of varying both EGR percentage and pressure and found that at constant flame temperature, EGR increases NO$_X$ formation at pressures below 5 atm, while EGR reduces NO$_X$ emissions at pressures above 5 atm [38].

1.3 Organization

The dissertation is organized into the following chapters:

- Chapter 2 provides general overview of LPM combustion in industrial gas turbines, and the basic concepts of NO$_X$ formation follows this discussion.

- Chapter 3 presents the experimental setup.

- Chapter 4 discusses the development of a chemical kinetic model that is used to interpret the experimental data.
• In Chapter 5, the major experimental findings as well as modeled interpretation of the data are presented.

• CFD modeling results for LPM H_2, H_2/CO, and CH_4 combustion with NO_X formation are presented in Chapter 6.

• A summary of the results are reported in Chapter 7.

1.4 Research Objectives

The general objectives of our research are summarized below.

1. Experimentally determine the emissions differences between fuel blends and use the numerical tools to quantify, interpret, and develop general mechanistic understandings for the reasons behind the differences in NO_X emissions.

2. Develop modeling tools including CFD and chemical reactor models to accurately characterize the experimental results obtained from the JSR.

3. Extend these tools for use in other industrial and experimental combustors.

4. Use the experimental and modeling results to help develop a set of Gaseous Fuel Interchangeability Criteria or a methodology based on selected fuel properties that can aid both turbine manufacturers and operators to develop and run gas turbines on gaseous fuel alternatives to natural gas.
Chapter 2

BACKGROUND AND REVIEW

2.1 Gas Turbines

Over the past couple of decades, natural gas fired combined cycle combustion turbines have become a leading technology for new power generation projects. Over this time period, gas turbine technology has made significant progress. Stringent rules on NO\textsubscript{X} emissions have forced manufacturers to make considerable technological advances.

Gas turbine designs first emerged in the 1930’s when it was decided that the piston engine had reached a technological limit as the engine of choice for aircraft propulsion [39]. The vast success of gas turbines for aircraft propulsion motivated manufacturers in both America and Europe to develop similar machines for utility applications in the 1950’s. As opposed to their aircraft counterparts, industrial gas turbines were designed with less importance placed on weight and size and more emphasis placed on long, reliable operability, fuel economy, and low emissions [40].

2.2 Oxides of Nitrogen

Oxides of nitrogen (NO\textsubscript{X}) is nomenclature used to signify the sum of nitric oxide (NO) and nitrogen dioxide (NO\textsubscript{2}). These two species are easily interchanged in combustion systems and in the environment, so from a regulatory sense their sum is treated as a single pollutant.

2.2.1 Formation of NO\textsubscript{X}

In order to develop suitable NO\textsubscript{X} control methods, the mechanism of NO\textsubscript{X} formation in combustion must be understood. There are five major NO\textsubscript{X} formation pathways:
(1) Zeldovich [41], (2) N₂O [42], (3) NNH [43], (4) prompt [44], and (5) the oxidation of fuel bound nitrogen [45]. Since the fuel bound nitrogen pathway is only of concern where fuel-bound nitrogen is present, it will be neglected in the present study because our target fuels are free of bound nitrogen.

Many processes require combustion to occur at temperatures exceeding 1800 K. Zeldovich NOₓ becomes the principal NOₓ formation route above this critical temperature. The formation of Zeldovich NOₓ occurs under high temperature combustion processes via the following three reactions:

\[
\begin{align*}
O + N₂ & \Leftrightarrow NO + N \\
N + O₂ & \Leftrightarrow NO + O \\
N + OH & \Leftrightarrow NO + H
\end{align*}
\]

First, an O atom combines with N₂ to form NO and an N atom. The N atom combines with O₂ to produce another NO molecule and an O atom. The third reaction is added because it is an equally important route for N atoms oxidizing to NO molecules. This reaction also produces H radicals which are important for producing more O radicals through the following chain branching reaction.

\[
H + O₂ \Leftrightarrow O + OH
\]

The reaction rate constants are a strong, exponential function of temperature, and above 1800 K this mechanism becomes an important contributor to NOₓ emissions from most practical combustion equipment. The Zeldovich reaction mechanism is linked to the combustion chemistry through O₂, OH, and O. If the majority of the NO formation occurs at a sufficiently long enough time after fuel combustion has completed, N₂, O₂, and O concentrations can be assumed to be at equilibrium, and N atoms can be assumed to be in steady state. If it is also assumed that NO concentration is far from equilibrium, i.e. the NO levels remain small as in LPM combustion,
the reverse Zeldovich rates can be neglected and the NO formation rate can be written as in Equation 2.5, where $k_{N_{1,f}}$ is the forward rate constant of Equation 2.1; $[O]_{eq}$ and $[N_{2}]_{eq}$ are the equilibrium concentrations of O-atom and N$_2$, respectively [46].

$$\frac{d[NO]}{dt} = 2k_{N_{1,f}}[O]_{eq}[N_{2}]_{eq} \tag{2.5}$$

The above equilibrium assumption, however, is not valid within turbulent flame zones followed by short residence time post-flame zones as is the case within the experiments carried out in this study, principally due to non-equilibrium radical behavior in active combustion regions [46]. We will show that the simplified NO$_X$ formation rate cannot be applied to NO$_X$ formation within this study, and the other formation pathways are equally important both due to the low temperature combustion studied (below 1800 K) and the super-equilibrium radical concentrations.

The nitrous oxide mechanism was originally proposed by Malte and Pratt [42] to explain NO$_X$ formation in high-intensity, lean, premixed combustion. N$_2$O produces NO as shown in Equations 2.6 through 2.11.

$$N_2 + O + M \Leftrightarrow N_2O + M \tag{2.6}$$
$$N_2O + O \Leftrightarrow N_2 + O_2 \tag{2.7}$$
$$N_2O + O \Leftrightarrow NO + NO \tag{2.8}$$
$$N_2O + H \Leftrightarrow N_2 + OH \tag{2.9}$$
$$N_2O + OH \Leftrightarrow N_2 + HO_2 \tag{2.10}$$
$$N_2O + H \Leftrightarrow NO + NH \tag{2.11}$$

N$_2$O is principally formed by Equation 2.6, while NO is mainly formed from Equations 2.8 and 2.11.

The NNH pathway has been proposed by Bozzelli and Dean, which is composed of the following two main reactions shown in Equations 2.12 and 2.13.

$$N_2 + H + M \Leftrightarrow NNH + M \tag{2.12}$$
NNH + O ⇔ NH + NO \quad (2.13)

The NNH molecule is mainly produced by Equation 2.12, which is thought to be close to equilibrium within the flame zone [43], and NO is formed through Equation 2.13. The last pathway for NO\textsubscript{X} formation was proposed by Fenimore in 1971 [44]. Known as the Fenimore or prompt mechanism, this pathway relies on the reaction of N\textsubscript{2} with hydrocarbon radicals, CH\textsubscript{i}. The principal reaction initiating the pathway is shown in Equation 2.14.

\[
\text{CH} + \text{N}_2 \leftrightarrow \text{HCN} + \text{N} \quad (2.14)
\]

The HCN and N-atom produced by this reaction are believed to quickly oxidize to NO; however, under certain conditions some of the HCN and N goes back to N\textsubscript{2}.

2.2.2 Available NO\textsubscript{X} Control Technologies

NO\textsubscript{X} emissions regulations are becoming more stringent as we move into the future. As of 2006, the United States EPA has issued the emissions standards for electricity producing land based gas turbines outlined in Table 2.1 [40].

<table>
<thead>
<tr>
<th>Fuel</th>
<th>Size (MW)</th>
<th>NO\textsubscript{X} emissions (ppmv, corrected to 15% O\textsubscript{2}, dry)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Gas</td>
<td>Under 3</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>3 - 110</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>above 110</td>
<td>15</td>
</tr>
<tr>
<td>Fuel Alternatives to Natural Gas</td>
<td>Under 3</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>3 - 110</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>above 110</td>
<td>42</td>
</tr>
</tbody>
</table>

In addition to the federal standards shown above, many local governments such as the SCAQMD in California have opted to impose NO\textsubscript{X} emissions standards as low
as 0.07 lbm/MWhr [47]. Assuming a thermal efficiency of 57% and CH₄ combustion, this corresponds to about 2.2 ppm corrected to 15% O₂. In many local governments, there is a requirement to use the best available control technology, requiring power plant operators to follow the state of the art technology [40]. Currently, the main NOₓ control technologies are the following:

- Water or steam injection
- Selective Catalytic Reduction
- Staged Combustion
- Lean premixed combustion

In water/steam injection, water or steam is introduced into the primary combustion zone. This reduces the flame temperature and causes up to an 80% decrease in NOₓ formation [48]. Steam injection can negatively impact gas turbine performance by causing pressure fluctuations. In addition to performance issues, a water/steam injection system can add significant capital cost and increase fuel consumption [49]. The last major drawback to this technology is that while reducing NOₓ emissions, water/steam injection can give rise to significant increases in the emissions of CO and unburned hydrocarbons (UHC), occurring mainly at part load [40].

The main post-combustion technology for NOₓ control is selective catalytic reduction (SCR). In SCR, NOₓ is reduced to N₂ by injecting ammonia into the exhaust stream over a narrow temperature range in the presence of a catalyst. Due to the required narrow temperature range, SCR is best suited to be used in combined cycle/cogeneration systems that are equipped with heat recovery systems. These systems are quite bulky and costly; thus they are generally not used in simple-cycle applications.
Another major NO\textsubscript{X} control strategy employed is staged combustion in which the combustion takes place in a succession of combustion regimes that are typically rich-lean. Variable geometry combustors are used in this technology and successful NO\textsubscript{X} control is dependent on rapid mixing between stages [46].

In premixed combustion, the air and fuel are combined prior to the combustion zone. This provides an overall improved homogeneity of the air fuel mixture, thus leading to a higher combustion efficiency. The implementation of fuel and air pre-mixing along with lean operation results in a significant lowering of the combustion temperature in the primary zone of the combustion device. The equivalence ratio needed for low NO\textsubscript{X} emissions often comes close to the blowout limit for most hydrocarbon fuels. Variable geometry combustor design and the use of staged combustion can help prevent lean blowout. Employing variable geometry, fuel-staged, lean premixed combustors is known as dry low NO\textsubscript{X} (DLN) combustion. In the past few decades, DLN combustors have been developed by Solar Turbines, General Electric, Alstom, Siemens, and Rolls Royce to achieve reliable single digit NO\textsubscript{X} emissions when operated on natural gas [40].

The optimal NO\textsubscript{X} control method is one that maintains system efficiency, curtails emissions, and can be applied to older units without requiring a significant amount of new hardware. Recently, DLN technology has become the most popular method of control; however, lean premixed operation is associated with lean blowout and acoustic instability problems. Although the industrial gas turbines of the past employing diffusion flame technology were able to burn a wide variety of fuels with varying flame speeds and heating values, new gas turbines employing DLN technology have been primarily run on natural gas. The uncertainty of future natural gas supply and the availability of other fuels, has greatly increased interest in using alternatives to natural gas in lean premixed DLN technology. As before mentioned, it is the goal of this study to determine the consequences in regards to emissions and lean blowout limits associated with using alternatives to natural gas in DLN gas turbines.
Chapter 3

JSR OVERVIEW AND DIAGNOSTICS

The well-stirred reactor (WSR) has been used since the mid 20th century to study many aspects of premixed turbulent combustion including global reaction rates, pollutant formation, and turbulent flame stability near blowout [46]. Experimental WSR designs have been constructed in many different ways from a single jet impinging on a truncated cone to dozens of jets emerging from the center of a sphere. The basic idea is to have mixing occur as fast as possible. While the WSR is known as an experimental device, the idealized model is referred to as the perfectly-stirred reactor (PSR). The basic concept behind the PSR is that premixed fuel and air flow into a fixed volume at constant pressure and are instantaneously mixed with the combustion products. The reaction that occurs achieves a steady state combustion temperature and the mass flow leaving the reactor maintains this reaction temperature as well as the species concentrations associated with the homogenous reactor volume [45]. That is, the PSR is uniform in temperature and species concentrations. While the WSR attempts to achieve this homogeneity, there are typically two or more combustion regimes within the experimental device that are associated with the inlet reactant stream.

Throughout the years, many researchers have built experimental well-stirred reactors in hopes of approaching the ideal PSR. Longwell and Weiss were among the first to build such a reactor in which they studied reaction rates of hydrocarbon fuels near blowout [50]. Their design incorporated a spherical reactor body with the premixed fuel and air being injected in the center of the body through a perforated ball. In the 70’s Pratt and Malte studied NO\textsubscript{X} formation in a single-jet stirred reactor burning
premixed CO and air [42]. In the 90’s Zelina and Ballal constructed an experimental PSR that is toroidal in geometry in which the premixed reactants enter through 32 jets on the outer surface of the toroid [51]. In the late 1980’s, Thornton et al. [52] developed a single-jet stirred reactor that employs a cavity in the shape of a truncated cone. This WSR geometry is what many UW researchers have been using to study LPM combustion kinetics from the early 90’s through today. The reactor currently used in this study is of this same geometry and was constructed out of high purity Greencast alumina by Lee [8].

3.1 Experimental Overview

All of the experimental data are obtained from a high intensity, backmixed, single-jet, stirred reactor shown in Figure 3.1. Both fuel and air enter the reactor through the
premixer. The air is preheated to 573 K. Neglecting back heating from the reactor cavity, the fuel and air mixture has a nominal temperature of about 550 K as it enters the reactor. The stagnation pressure of the premixed fuel/air mixture is measured 5 cm upstream of the reactor cavity and is typically about 21 psig. The premixed reactants enter the cast alumina reactor cavity through a 2mm nozzle resulting in a sonic jet velocity of approximately 450 m/s. The total volume of the reactor is 15.8 cc, the mass flow rate of air is 1.08E-3 kg/s, and nominal combustion temperature is held constant at 1800 K. This results in a mean fluid residence time of 2.7 ± 0.3 ms.

As shown in Figure 3.2, both temperature and species concentrations are measured at 2/3’s of the reactor height with the nominal sampling location being 2 mm inside the reactor wall. This sampling location is far enough into the reactor to avoid thermal and fluid boundary layer effects, but not so far as to experience the effects of the jet. In addition to collecting data at the standard sampling location, detailed reactor spatial probing is conducted in order to gain insight of flame structure within the reactor. Both temperature and species measurements are taken radially between the reactor wall and centerline at 2/3’s of the total reactor height.

Figure 3.2: Sampling locations within the JSR
The combustion gas temperature is measured with a type R thermocouple that is coated with alumina to prevent catalytic effects. The measured temperature on the coated thermocouple bead is affected by a balance between convection from the hot gases to the bead and loses from the bead radiating to the colder reactor wall and conduction through the thermocouple wires as shown in Equation 3.1.

\[Q_{\text{conv}} = Q_{\text{rad}} + Q_{\text{cond}} \]

(3.1)

Other researchers have shown that using sufficiently thin thermocouple wire reduces the conduction to a negligible amount [8], [53].

Neglecting conduction in the wire, the measured combustion temperature is between 50 and 70 K below the reported temperature which is obtained by correcting the measured thermocouple temperature for radiation to the colder reactor wall [54]. The hot combustion gases are sampled through a warm water cooled, quartz sample probe. The sample gas is drawn by a metal bellows pump into a heated teflon tube (to prevent condensation). The sample is then drawn through an ice bath where the H₂O in the sample is removed and the dried gas is sent to a three gas (CO₂, CO, and O₂) analyzer (Horiba VA-3000) and a NOX analyzer (Thermo Electron Model 10) in parallel. The CO₂ and CO analyzers operate on the NDIR principle, while the O₂ and NOX analyzers are paramagnetic and chemiluminescent instruments, respectively.

3.2 Heat Transfer through the JSR

In order to properly model the NOX data and compare it to data obtained from other fuels at various equivalence ratios, the true gas temperature must be measured. As mentioned above, the thermocouple mainly loses heat both due to radiation to the colder reactor wall. In order to properly correct the temperature read by the thermocouple, the temperature of the inside reactor wall must be known with a reasonable degree of certainty.

Several experimental researchers at the UW have reported some degree of heat loss
from various jet-stirred reactors for both atmospheric ([8], [54]), and high-pressure ([54], [55]) JSR experiments. In general, the high pressure experiments were found to be more adiabatic than the atmospheric pressure tests; however, all experiments showed that the heat loss is minimized when the mass flow rate through the reactor is increased. A larger mass flow rate decreases the overall reactor residence time as given in Equation 3.2, where τ is the reactor residence time, ρ is the density of the fluid in within the reactor based on the combustion temperature and pressure, V is the reactor volume, and \dot{m} is the total mass flow rate through the reactor.

$$\tau = \frac{\rho V}{\dot{m}}$$ (3.2)

Since the present study is concerned with the differences between a variety of fuels, the goal is to keep variations in residence time to a minimum to help remove this parameter since it does have a mild effect on emissions [54]. With the exception of the experiments investigating the effect of residence time, the air flow rate is kept constant at 1.08E-3 kg/s for all constant temperature experiments (1800 K) for every fuel tested. For the blowout tests, the air flow rate is also set constant at 1.08E-3 kg/s. However, due to differences in blowout temperature (e.g. H$_2$ vs. CH$_4$), the residence time is larger due to an inherent increase in density when the reactor is colder.

Past JSR researchers have used an optical pyrometer to measure the reactor wall temperature. In the work by Shuman, for a measured thermocouple temperature of 1813 K, the measured wall temperatures ranges from 1030 to 1220°C [55]. Lee reports a typical measured wall temperature of 1602 K [8]. Steele reports a measured wall temperature of 1563 K for the atmospheric tests conducted in his work [54]. Although all three experimentalists measured the wall temperature in order to properly correct their thermocouple measurements, none of them attempted to quantify the actual heat loss from the reactor.

The heat loss in the present reactor is quantified by two methods. In the first procedure, a First Law balance is performed on the JSR by taking the difference
between the enthalpy of the premixed reactants coming into the reactor and that of
the hot combustion products leaving the reactor as shown in Equations 3.3 and 3.4.
The estimated heat loss from the first law balance is 440.6 W, which is about 20% of
the incoming energy based on the LHV of the fuel. The inputs and outputs of the
analysis are shown in Table 3.1.

Table 3.1: Inputs and results from first law balance on the reactor

<table>
<thead>
<tr>
<th>Input parameters</th>
<th>Output parameters</th>
<th>q_{out} (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_{preheat} = 571) K</td>
<td>(T_{gas} = 1800) K</td>
<td>440.6</td>
</tr>
<tr>
<td>(\dot{m}_{CH_4} = 4.62e-5) kg/s</td>
<td>(y_{O_2} = 0.068)</td>
<td></td>
</tr>
<tr>
<td>(\phi = 0.718)</td>
<td>(y_{CO_2} = 0.079)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(y_{CO} = 0.00242)</td>
<td></td>
</tr>
</tbody>
</table>

\[
Q_{out} = \sum N_r (h_f^\circ + \bar{h}_r - \bar{h}_r^\circ) - N_p (h_f^\circ + \bar{h} - \bar{h}_p^\circ)
\]
(3.3)

\[
q_{out} = \frac{Q_{out}}{M_{CH_4}} \]
(3.4)

where,

- \(Q_{out} \) is the heat loss from the reactor (kJ/kmol\(_{CH_4}\))
- \(N_r \) and \(N_p \) are the mole numbers of each species for reactants and products, respectively (kmoles)
- \(h_f^\circ \) is the enthalpy of formation (kJ/kmole)
- \(\bar{h} \) is the enthalpy of each species at elevated temperature in kJ/kmole
- \(\bar{h}_p^\circ \) is the enthalpy of each species at 298 K (kJ/kmole)
- \(q_{out} \) is the reactor rate of heat loss (W)
- \(\dot{m}_{CH_4} \) is the mass flow rate of CH\(_4\) (kg/s)
• M_{CH_4} is the molecular weight of CH$_4$ (kg/kmole)

The second approach to quantifying reactor heat loss involves a simple one dimensional heat transfer model. As shown in Figure 3.3, heat is transferred to the reactor wall from the gas via convection and radiation. The convective heat transfer coefficient is estimated as 200 W/m2-K from using boundary layer theory analysis of flow around a body of revolution as outlined in Kays et al. [56]. The radiation to the reactor wall is quite insignificant due to the small mean beam length (0.017 m) calculated for the JSR. The emissivity of the combustion products is determined as 0.009 from the charts in Incropera et al. [57], and 0.012 from a more refined algorithm presented by Modest [58]. For the remainder of this analysis, the gaseous radiation to the wall is neglected. The heat convected to the wall is then transferred through the reactor wall by conduction. The radiative losses through the exhaust ports and feed jet are assumed to be negligible due to the small area that these holes encompass. The conduction resistance is modeled as two concentric spheres as given by Equation 3.5.

$$R_{\text{Conduction}} = \frac{(1/r_1) - (1/r_2)}{4\pi k}$$

(3.5)

where,

• $R_{\text{Conduction}}$ is the conduction resistance (K/W)

• r_1 and r_2 are the inside and outside radii, respectively (m)

• k is the thermal conductivity of the castable alumina (W/m-K) [59] (average k for calculated wall temperatures is 2.3 W/m-K)
The heat then is transferred to the ambient environment through natural convection and radiation. The temperature of the ambient environment is that of the plenum where the reactor exhausts. The one dimensional thermal circuit used in this analysis is shown in Figure 3.4. Note that the temperature of the gas and that of the ambient environment are measured; whereas the the inside and outside wall temperatures are calculated.
The total reactor heat loss calculated from this analysis is found to be 422 W, which is remarkably close to the heat loss calculated from the first law analysis shown above. A summary of the results are shown in Table 3.2.

Table 3.2: Measured and Calculated temperatures, thermal resistances, and heat loss from the thermal model illustrated by Figures 3.3 and 3.4

There are a couple of points that should be made about this one dimensional heat transfer analysis. Each one of the thermal resistances is of the same order of magnitude; thus there is no clear mode of heat transfer to focus on improvement. This being said, the reactor is run at the current flow rates to promote fast mixing and approach well-stirred condition. Decreasing the flow rates through the reactor will certainly increase the convective resistance on the inside wall of the reactor; however, this is not advised since mixing will be compromised. Constructing the reactor body out of a material with a lower thermal conductivity will increase the conductive resistance of the reactor. Increasing the outside dimensions of the reactor will augment
the conduction resistance; however, the increase in outside surface area reduces the
convection/radiation resistance on the outside of the reactor at a quicker rate. It
seems that constructing the reactor out of a material with a lower thermal conductiv-
ity or adding insulation to the outside (although this will also increase surface area)
is the best method of making the reactor operate in a more adiabatic manner. Most
of the materials that will tolerate these temperatures have a fairly large \(k \). This is
why layered designs are often used.

The second and third points to make is that the calculated and measured surface
temperatures on the outside of the reactor are in good agreement \((T_{\text{meas,avg}} = 563 \text{ K}, T_{\text{meas,avg}} = 577 \text{ K}) \), while the inside wall temperature is a couple hundred degrees
lower than what other JSR researchers have measured. This is a source of concern
since it will add about 30 K to the calculated gas temperature. It is assumed that
the relatively cold calculated wall temperature is an effect associated with the simple
one dimensional model. For the chemical modeling results shown in Chapter 5 it is
assumed that the inside wall of the reactor is 1500 K, which gives a nominal corrected
gas temperature of 1800 K. This wall temperature is the median temperature between
the measured results of past researchers and the results computed by CFD. This is
discussed further in Appendix C.
Chapter 4

CHEMICAL REACTOR NETWORK DEVELOPMENT

As mentioned in Chapter 1, the Chemical Reactor Network (CRN) for the JSR used in this study is developed using insight from detailed spatial measurements of the reactor, the results of CFD simulations with simplified chemistry, and classical fluid dynamic correlations. In this chapter, a general overview of the CFD simulations with simplified chemistry is presented with an emphasis placed on their aid in the development of the CRN. While CFD simulations are able to provide a detailed solution of the actual flow-field within the JSR, incorporation of complex chemical mechanisms into the model is limited due to a huge increase in computational expense.

CFD simulations are run in both two and three dimensions. The computational grid, the heat transfer, and the turbulence models used for both the two and three dimensional simulations are first presented. Next, the three dimensional CFD results from LPM CH$_4$ combustion employing a simplified global mechanism are shown. Finally, the results of this simulation are used to construct a CRN.

4.1 Grid, Fluid Dynamics and Heat Transfer Models

For both the two and three dimensional CFD models a structured hexagonal grid is generated encompassing both the solid and fluid portions of the JSR. For the 3D model, one quarter of the physical domain is modeled. In 2D model, the domain is modeled as axisymmetric. The fluid dynamic and heat transfer models are the same for both the two and three dimensional models.
4.1.1 Grid

The three dimensional CFD simulations are conducted with a structured domain of about 1,000,000 cells encompassing both the solid and fluid portion of the JSR. It is necessary to model the solid portion of the domain in order to properly incorporate heat transfer from the reactor. The grid and a blow up of the reactor region for the three-dimensional model are shown in Figure 4.1.

![Grid used in Three Dimensional CFD simulations](image)

Figure 4.1: Grid used in Three Dimensional CFD simulations

Use of a structured hexagonal domain is necessary to avoid convergence issues. The refined portion of the grid is concentrated within the combustion chamber and has a nominal cell length of 0.158 mm. Approximately, 71% of the cells in the entire domain are fluid cells with the remainder composed of solid cells. Optimally, the number of solid cells would be smaller; however, the solid cells on the combustor boundary are the same size as the adjacent fluid cells within the boundary layer. The size of the solid cells increase as the outside wall of the combustor is approached.

The two dimensional CFD simulations are conducted with a structured domain of about 36,000 cells encompassing both the solid and fluid portion of the JSR as shown in Figure 4.2. Similar to the three dimensional grid, about 70% of the domain is made up of fluid cells; however, in the refined portion of the combustion chamber the nominal cell length is about 0.065 mm.
4.1.2 Fluid Dynamics and Heat Transfer Models

The flow of reactants going through the nozzle block is choked; thus the density within the fluid portion of the domain is modeled with the ideal gas equation. Velocity and mass flow inlets can only be applied to simulations involving incompressible flow. Since the flow within the JSR nozzle is compressible, the before mentioned boundary conditions will not converge. Instead, the inlet and outlet are set as pressure boundaries. The correct stagnation properties are set for both boundaries and the model will adjust the mass flow rate through the reactor. For both the two and three dimensional simulations the upstream stagnation properties are set at the measured stagnation pressure and temperature which are approximately 21 psig and 550 K as mentioned above. The outlet pressure and temperature for the three dimensional simulation are set to 0 psig and 2000 K.

There are some difficulties associated with the outlets for the 2D axisymmetric model. The drain holes are represented by a single slot. Optimally, the area of the slot would be equivalent to the area encompassed by the four drain holes. This causes the height of the slot at the combustor exit to be quite small. The height of the slot is then increased to avoid the numerical difficulties; however this increase causes too small of a pressure drop resulting in erroneous fluid dynamics within the combustion
chamber. In order to correctly predict the fluid dynamics within the combustion chamber the outlet pressure is increased from 0 approximately 4.4 psig [60]. The temperature is set the same as in the 3D model. For all modeled conditions, the mass flow rate difference between the model and experiment is less than 1%.

Due to the recirculating nature of the flow within the combustion chamber, model convergence was not attainable for either the standard [61] or realizable [62] k-ε models. Instead, the Reynolds stress model [63] is employed due to its inherent ability to handle the highly recirculating nature of the flow inside the JSR.

A multidimensional heat transfer model is utilized that accounts for convection on both the inner and outer surfaces of the JSR, conduction throughout the entire domain, and radiation on both the inner and outer surface of the JSR. The radiation on the inner surface is modeled using the Discrete Ordinates Model [64], while the radiation on the outer surface is modeled as the actual ceramic surface with a temperature dependant emissivity (nominal emissivity is 0.67) and a view factor equal to unity. The partial differential equations that govern both flow and heat transfer within the JSR are solved using the ANSYS Fluent software package [65].

4.2 CFD Modeling for CRN Development

To aid in the development of the CRN, a simple 3 step global chemistry mechanism is used to model LPM CH₄ combustion [66]. The simplified chemistry within the reactor is modeled with the Finite Rate/Eddy-Dissipation model [67]. In this model, the reaction rate is computed by both an Arrhenius expression and an expression that incorporates turbulent effects. The turbulent mixing, or eddy-dissipation reaction rate is governed by the the large eddy mixing time scale: k/ε, while the chemical rate is generally governed by one or two global reaction steps [65]. The reaction steps and rates are shown below in Table 4.1. The net reaction rate is computed as the smaller of the two rates (turbulent or chemical).

The global chemistry does a reasonably good job of predicting CH₄ and CO ox-
idation as shown in Figures 4.3 and 4.4. The contours of temperature and CO concentration are shown in Figure 4.5.

Table 4.1: Reaction steps and global rates for the CH$_4$ oxidation mechanism developed by Nicol. Units are: kmoles, m3, and K.

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH$_4$ + 2O$_2$ \rightarrow CO + 2H$_2$O</td>
<td>$R_1 = 10^{15.220}[CH_4]^{1.460}[O_2]^{0.5217}\exp^{-20643/T}$</td>
</tr>
<tr>
<td>CO + $\frac{1}{2}$O$_2$ \rightarrow CO$_2$</td>
<td>$R_2 = 10^{14.902}[CO]^{1.6904}[O_2]^{1.579}\exp^{-11613/T}$</td>
</tr>
<tr>
<td>CO$_2$ \rightarrow CO + $\frac{1}{2}$O$_2$</td>
<td>$R_3 = 10^{14.349}[CO_2]^{1.0}\exp^{-62281/T}$</td>
</tr>
</tbody>
</table>

Figure 4.3: Profile of temperature from reactor centerline to wall, measured and predicted by CFD for CH$_4$ combustion for exit gas O$_2$ of 6.6% (mole %, dry)

Figure 4.5 illustrates the two zone combustion behavior of the JSR. The highly turbulent flame zone is anchored around the nozzle, which is outlined by the region of high CO concentration. This flame zone is then followed by a super-equilibrium post flame recirculation zone, where the radicals (indicated by CO concentration) are starting to relax and the temperature is fairly uniform at about 1800 K. Although this CFD model does not predict radicals and NO$_X$, the CO contours and flow field
Figure 4.4: Profile of CO from reactor centerline to wall, measured and predicted by CFD for CH₄ combustion for exit gas O₂ of 6.6% (mole %, dry)

![CO concentration vs Position in Reactor](image)

(a) CO concentration (mole fraction)

Figure 4.5: CO and temperature contours by CFD for JSR fired on CH₄ computed by global chemistry. The nominal recirculation zone temperature is 1800 K.

![CO and temperature contours](image)

(b) Temperature (K)

Figure 4.5: CO and temperature contours by CFD for JSR fired on CH₄ computed by global chemistry. The nominal recirculation zone temperature is 1800 K.

can be used as guidelines to develop a chemical reactor network (CRN), which can incorporate detailed chemistry.

Finally, the flowfield computed by CFD is analyzed to determine the location and strength of recirculation zones. Shown in Figure 4.6 are the contours of the stream
function within the JSR. Note the strongly recirculating flow in the upper portion of the reactor to either side of the jet.

Figure 4.6: Contours of stream function within the JSR (kg/s).

4.3 Development of the CRN

The CFD model is used as a basis to construct a chemical reactor network composed of perfectly stirred reactors (PSR) as shown in Figure 4.7. The first element, PSR 1, represents the turbulent flame brush that does not see any entrainment from the recirculation zone. It is modeled as a PSR at blowout, which is an adiabatic PSR that is 1% larger than the smallest volume that will sustain combustion with the given inlet conditions. Using the results of the CFD model and following a procedure developed by Novosselov [68], it is found that approximately 90% of the flow leaving the jet passes through PSR 1. About 10% of the flow proceeds through the side of the jet and mixes with hot gases coming from the recirculation zone. Denoted as PSR 3, or shear zone, this reactor is representative of a turbulent premixed strained flame, where cold reactants strain against hot recirculated products. PSR 3 is also adiabatic since it does not come into contact with the outside wall. Its volume is estimated to be about half of the volume computed for PSR 1 from the CFD simulation. The contents
Figure 4.7: Chemical Reactor Network constructed from the calculated flow field within the CFD model

of both PSR 1 and PSR 3 continue into PSR 2, which represents the recirculation zone within the JSR. PSR 2 is assigned the remaining reactor volume (most of the JSR volume) and is run at the measured temperature of 1800 K. For LPM CH₄ combustion at a nominal recirculation zone temperature of 1800 K, the computed volumes of the turbulent flame brush, recirculation zone, and shear zone, are 0.36 cc, 15.3 cc, and 0.18 cc, respectively. The CFD model is again consulted to choose the flow fraction that is being exhausted rather than sent back to the recirculation zone. At several axial locations along the height of the reactor, the downward mass flow
is integrated. For reference, three of the velocity profiles used in the integration are shown in Figure 4.8.

![Velocity Profiles](image)

Figure 4.8: Axial velocity profiles for three locations along the height of the reactor

The positive velocity shown is characteristic of fluid travelling in the same direction as the jet, and the negative velocity corresponds to fluid travelling towards the drain holes (this is the flow that is integrated as mentioned above). By subtracting this mass flow from the known mass flow leaving the reactor (mass conservation), one obtains an estimate for the mass flow that is returning to the recirculation zone through PSR 3. This calculation finds that approximately 75% of the flow returns to the recirculation zone, while 25% is exhausted. This flow fraction is verified by using the particle tracking feature within the software [65]. With this flow network established, it is now possible to calculate mixing-influenced states using detailed chemistry in the CRN.
Chapter 5

EXPERIMENTAL AND CRN MODELING RESULTS

The experimental data presentation is divided into seven sections:

1. The first section deals with issues associated with pollutant oxidation in the sample probe.

2. Detailed reactor scans are presented for the fuel compositions outlined in Table 1.1.

3. The effects of residence time and combustor temperature are investigated for a selected set of pure fuels.

4. The effect that fuel composition has on the resistance to lean blowout is presented.

5. Available chemical mechanisms with NO$_X$ formation are identified and tested against emissions data from LPM CH$_4$ combustion.

6. The CRN modeling of LPM CH$_4$ combustion from 1700 - 1800 K is analyzed.

7. Parameterized studies that investigate sequential composition changes within each fuel category are presented.

8. Comments are made about NO$_X$ entitlement based on our experimental data and the results of modeling.
5.1 Sample Probe Effects

There is some question about the accuracy of the measured CO data collected during the experiments. Specifically, we are concerned about the extent of CO oxidation within the probe after the sample has been removed from the reactor. As before mentioned, there are super-equilibrium levels of H, O, and OH within both the turbulent flame brush and the post flame zone. When the combustion gases are sampled, the initial CO in the sample begins to oxidize to CO$_2$ via the reaction: CO + OH \rightarrow CO$_2$ + H. Steele found that the amount of CO that is oxidized in the sample probe is in proportion to its concentration in the reactor; thus, more CO in the combustion products results in greater conversion to CO$_2$ [54]. He investigated the chemistry and gas dynamics within the probe using the chemical code GEPROB written by Pratt et al. [69], and found that for LPM CH$_4$ combustion at atmospheric pressure and a nominal combustion temperature of 1800 K in the recirculation zone, approximately 62% of the CO oxidizes to CO$_2$ within the sample probe [54]. All of the experimental CO results shown in this chapter are reported as measured, dry, actual O$_2$.

In addition to CO oxidation in the probe, various researchers have reported that almost all of the NO sampled in the reactor converts to NO$_2$ by the time it is measured by the analyzer via the reaction: NO + HO$_2$ \rightarrow NO$_2$ + OH [54], [70]. This would not be a major concern since all of the NO$_2$ is converted to NO at the analyzer; however, NO$_2$ is water soluble and can be lost in the water knockout trap and to condensation in the sample lines. Shuman investigated the possible loss of NO$_2$ in the sample line by placing an NO$_X$-to-NO converter in series. The results showed that there was not a significant difference in the measured NO$_X$ concentrations with and without the converter [55]. Although the tests performed by Shuman were at 3 atm instead of 1 atm, it is assumed that the same results apply to the present atmospheric pressure JSR since the sample system pressures are similar; thus, no appreciable NO$_X$ is lost in the sample system. For all testing, the sample lines are maintained above the dew
point with electrical heating tape.

5.2 Reactor Scans

Detailed reactor scans are conducted for each fuel category at 2/3’s of the reactor height as shown in Figure 3.2. In all cases, the plots include the scan for pure CH\textsubscript{4} as a comparison point. Both temperature and major species concentrations are measured radially from the reactor centerline to the reactor wall in order to gain perspective on the structure of the LPM flame for each fuel blend.

5.2.1 Pure H\textsubscript{2}

The temperature and NO\textsubscript{X} profiles for H\textsubscript{2} and CH\textsubscript{4} are shown below in Figures 5.1 and 5.2. Although these two fuels have the same temperature within the recirculation zone, H\textsubscript{2} is far more reactive along the centerline in comparison to the CH\textsubscript{4} and all other pure alkane fuels. Despite a significantly higher temperature on centerline, LPM H\textsubscript{2} combustion is found to produce about 35% less NO\textsubscript{X} in comparison to CH\textsubscript{4} measured at the nominal temperature of 1800 K within the recirculation zone.

![Figure 5.1: Temperature profile across the JSR for LPM CH\textsubscript{4} and H\textsubscript{2} combustion](image_url)
Figure 5.2: NO\textsubscript{X} concentration profile across the JSR for LPM CH\textsubscript{4} and H\textsubscript{2} combustion

5.2.2 Process and Refinery Blends

As mentioned above, process and refinery blends are composed mainly of H\textsubscript{2}, CH\textsubscript{4}, and other higher order hydrocarbons. Similar to the trend shown above, the addition of H\textsubscript{2} appears to increase reactivity on centerline while decreasing overall NO\textsubscript{X} emissions. The temperature, CO, and NO\textsubscript{X} profiles are shown in Figures 5.3, 5.4, and 5.5, respectively. The increase in reactivity is especially evident looking at the CO profiles in Figure 5.4. While the fuel blends with H\textsubscript{2} and C\textsubscript{2}H\textsubscript{6} addition have CO profiles that peak on centerline, pure CH\textsubscript{4} combustion actually peaks off of centerline at a radial location that is slightly larger than the radius of the reactor inlet. Essentially, CH\textsubscript{4} reacts so slowly that the center does not have enough time to make much CO. The faster reacting hydrocarbons make enough CO to show a peak on centerline.
It is interesting to note the effect of C$_2$H$_6$ addition. Table 1.1 shows that both the nominal process and refinery blend and alternative blend 2 contain 25% H$_2$. However, the nominal blend has 15% more C$_2$H$_6$ and this is replaced by CH$_4$ in the alternative fuel. While both of these blends are more reactive than pure CH$_4$ on centerline, the addition of C$_2$H$_6$ actually increases the temperature by about 100 degrees K on centerline. In Figure 5.5 the NO$_X$ profiles for these two blends are almost identical.
Figure 5.5: NO\textsubscript{X} concentration profile across the JSR for the Process and Refinery Fuel Blends

within the accuracy of the instrument; however, the NO\textsubscript{X} concentration is about 0.5 ppm larger for the blend with more C\textsubscript{2}H\textsubscript{6}. As mentioned above, this result is consistent with previous studies showing that NO\textsubscript{X} emissions increase with increasing fuel mole fraction of heavier hydrocarbons [8], [9], [71].

5.2.3 Gasified Coal/Petcoke (O\textsubscript{2} Blown)

Category 3 is a product of the gasification process. As outlined above, it is primarily composed of H\textsubscript{2} and CO with small concentrations of CO\textsubscript{2} but without any hydrocarbon species. The temperature, CO, and NO\textsubscript{X} profiles are shown in Figures 5.6, 5.7, and 5.8, respectively.
Figure 5.6: Temperature profile across the JSR for the Gasified Coal/Petcoke blend with pure CH$_4$ and H$_2$ shown for reference

Figure 5.7: CO concentration profile across the JSR for the Gasified Coal/Petcoke blend with pure CH$_4$ shown for reference

The temperature profiles for the gasification blend and pure H$_2$ are almost identical. Since H$_2$ is so highly reactive it dominates over the relatively low reactivity of the CO. Despite the small temperature difference, the gasification blend actually produces about 2 ppm more NO$_X$ than pure H$_2$ combustion.
Figure 5.8: NO\textsubscript{X} concentration profile across the JSR for the Gasified Coal/Petcoke blend with pure CH\textsubscript{4} and H\textsubscript{2} shown for reference

5.2.4 Landfill and Digester Gas

Landfill gas is mainly composed of CH\textsubscript{4} and CO\textsubscript{2} with varying levels of N\textsubscript{2}. The profiles for temperature, CO, and NO\textsubscript{X} are shown in Figures 5.9, 5.10, and 5.11, respectively.

Figure 5.9: Temperature profile across the JSR for the Landfill and Digester Gases with pure CH\textsubscript{4} shown for reference
Although the temperature profiles for each landfill blend and pure CH\textsubscript{4} are practically indistinguishable, the CO and NO\textsubscript{X} profiles are quite different. Shown in Figure 5.10, the addition of diluent seems to spread out the reaction zone with the CO concentration peaking at 2 mm away from the centerline instead of 1 mm for CH\textsubscript{4} combustion. This trend makes sense since the addition of diluent will slow the flame speed of the mixture; thus, spreading out the turbulent flame brush region.

Figure 5.10: CO concentration profile across the JSR for the Landfill and Digester Gases with pure CH\textsubscript{4} shown for reference

Figure 5.11: NO\textsubscript{X} concentration profile across the JSR for the Landfill and Digester Gases with pure CH\textsubscript{4} shown for reference
Note that the CO concentration within the recirculation zone is larger for the landfill gases than for pure CH$_4$. Within the recirculation zone, the landfill mixtures that contain CO$_2$ actually have a CO concentration that is more than double that of pure CH$_4$. The rise in CO emissions for landfill gas blends is partially due to an increase in the equivalence ratio required to maintain temperature (since air flow rate is kept constant). This effect is relatively unaffected by the diluent since both N$_2$ and CO$_2$ have approximately the same specific heat (as kJ/kg-K) within the range of preheat and combustion temperatures used in this study ($C_{p,CO_2}/C_{p,N_2} = 0.96$ to 1.07 over the temperature range from 500 to 1800 K). The larger increase in CO emissions for the landfill blends containing CO$_2$ can possibly be attributed to a competition between CO$_2$ and O$_2$ for H-atom, which will lead to increased CO formation through the reaction CO$_2$ + H \rightleftharpoons CO + OH [72]. Since CO$_2$ could be consuming H-atom, an important reactant in the primary chain branching reaction H + O$_2$ \rightleftharpoons O + OH, the presence of CO$_2$ is expected to result in a smaller radical pool. Although all of the landfill gas blends with CO$_2$ and/or N$_2$ lead to an increase in NO$_X$ (because of the increased equivalence ratio and thus increased prompt NO$_X$ formation), the main reason for the lower NO$_X$ emissions for the landfill gas diluted with CO$_2$ compared to N$_2$ is the smaller radical pool produced when diluted with CO$_2$.

5.2.5 LNG, Shale, and Associated Gas

LNG, Shale, and Associated Gases are mainly composed of CH$_4$ with varying levels of C$_2$ and C$_3$ hydrocarbons. The profiles for temperature, CO, and NO$_X$ are shown in Figures 5.12, 5.13, and 5.14, respectively.
Figure 5.12: Temperature profile across the JSR for the LNG, Shale, and Associated Gases with pure CH₄ shown for reference

Since each of the nominal fuel blends in this category is composed mainly of CH₄, the fact that the temperature profiles are similar is not surprising. The addition of C₂H₆ promotes an increased reactivity on centerline as indicated by the rise of CO concentration shown in Figure 5.13. This added reactivity is also thought to be the main reason for the larger NOₓ emissions produced by fuels containing larger amounts of C₂H₆ as shown in Figure 5.14.

Figure 5.13: CO concentration profile across the JSR for the LNG, Shale, and Associated Gases with pure CH₄ shown for reference
Figure 5.14: NO\textsubscript{X} concentration profile across the JSR for the LNG, Shale, and Associated Gases with pure CH\textsubscript{4} shown for reference

5.3 The Effect of Temperature and Residence Time

The formation of NO\textsubscript{X} is clearly a function of both combustion temperature and the residence time within the reactor regardless of fuel composition. Figures 5.15 and 5.16 show the variation in NO\textsubscript{X} emissions for pure CH\textsubscript{4} combustion for variable residence time and combustion temperature. Consistent with previous studies [54], for LPM CH\textsubscript{4} combustion, NO\textsubscript{X} emissions increase exponentially with temperature and linearly with residence time.
Figure 5.15: Variation of NO\textsubscript{X} concentration with reactor residence time for LPM CH\textsubscript{4} combustion. Temperature is held constant at 1800 K.

Figure 5.16: Variation of NO\textsubscript{X} concentration with reactor temperature for LPM CH\textsubscript{4} combustion. The residence time ranges between 2.6 and 2.8 ms for the data shown.
For the temperature variation tests, the mass flow of air is kept constant, while the fuel flow rate is adjusted to achieve a variation in combustion temperature. For the highest combustion temperature studied (1805 K), the fuel flow rate is less than 4% of the total flow, thus assuming an approximately constant residence time is legitimate. A lower combustion temperature will also lead to residence time changes; however this effect is small and the range of residence times calculated for the data shown in Figure 5.16 is between 2.65 and 2.8 ms. The data shown in Figure 5.15 are taken at a constant combustion temperature of 1800 K in the recirculation zone. Here the air flow rate is decreased and the fuel flow is adjusted to maintain a constant temperature.

Figure 5.17 shows the formation of NO\textsubscript{X} as a function of temperature and residence time for three additional pure fuels: C\textsubscript{3}H\textsubscript{8}, C\textsubscript{2}H\textsubscript{6}, and H\textsubscript{2}. As in Figure 5.16, the air flow rate is held constant, while the fuel flow rate is adjusted to vary the combustion temperature. The residence time ranges between 2.55 and 2.8 ms for all data reported.

![Figure 5.17: Net NO\textsubscript{X} production rate for CH\textsubscript{4}, C\textsubscript{3}H\textsubscript{8}, C\textsubscript{2}H\textsubscript{6}, and H\textsubscript{2} combustion.](image)

Each of these NO\textsubscript{X} rates fits an Arrhenius temperature dependance quite well. The least squares fit for the NO\textsubscript{X} data from each of the fuels tested is presented in
Equations 5.1 through 5.4, where X is mole fraction in ppm, \(\tau \) is residence time in ms, and T is combustion temperature in K.

\[
X_{\text{NO}, \text{CH}_4} = \tau (7.79 \times 10^6) \exp(-26487/T) \tag{5.1}
\]

\[
X_{\text{NO}, \text{C}_2\text{H}_6} = \tau (1.33 \times 10^7) \exp(-27285/T) \tag{5.2}
\]

\[
X_{\text{NO}, \text{C}_3\text{H}_8} = \tau (1.4 \times 10^7) \exp(-27220/T) \tag{5.3}
\]

\[
X_{\text{NO}, \text{H}_2} = \tau (1.07 \times 10^9) \exp(-36235/T) \tag{5.4}
\]

As mentioned above, the residence time for all the data taken in Figure 5.16 is approximately constant. Each of the fuels tested has a lower slope than the global Zeldovich activation temperature of 69,090 K. This difference can be partially attributed to the super-equilibrium O-atom concentration for these experiments. The other explanation is that there are other pathways to NO\(_X\) formation. Since H\(_2\) combustion does not produce prompt NO\(_X\), the Zeldovich pathway is proportionally a larger effect, which causes the NO\(_X\) activation temperature to increase for H\(_2\).

5.4 Blowout

The connection between turbulent flame speed and flow velocity controls the combustion stability under LPM combustion. Flame stability depends both on how well hot recirculating products mix with fresh reactants and the ability to sustain a large enough flame speed relative to the fluid velocity. Lean blowout occurs when the heat release from the primary combustion zone is not high enough to raise the temperature of the reactants to an adequate level to sustain reaction \[40\].

Since there is limited optical access to the JSR used within this study, flame liftoff cannot be directly verified. However, for most fuels with the exception of CH\(_4\) and the landfill gas blends, there are distinct "popping" or extinction/reignition events that take place as the mixture approaches blowout in the JSR. These events lead one to believe that the flame is lifting off the nozzle and then reattaching until it finally lifts
off for good. It is also quite likely is that the flame extinguishes and then is reignited by the hot wall, with cycling between complete blowout and reignition. For CH$_4$ and the landfill gas blends, the extinction occurs without noticeable “popping”.

Blowout tests were conducted for a selected number of the fuel compositions outlined in Table 1.1 with the addition of pure CH$_4$ for reference. A blowout test can be achieved in a number of different ways: (1) hold the fuel flow constant while increasing the airflow until the flame blows out, (2) increase both the fuel and air flow rate at constant equivalence ratio until the flame blows out, and (3) hold the air flow rate constant while decreasing the fuel flow until a blowout event occurs. Since it is the goal of this study to investigate the difference between a wide variety of fuel blends, it is decided that method (3) is the best experiment to conduct since the fluid dynamics will remain relatively constant for each fuel tested. For all of the blowout experiments conducted, the air flow rate is held constant at 1.08E-3 kg/s and the air inlet temperature is kept at 573 K. The fuel flow rate is gradually decreased until a blowout event occurs.

As mentioned above, the atmospheric pressure JSR is far from adiabatic. Since blowout is highly dependent on the combustion temperature within the reactor, it is important to remove the effect that thermal hysteresis has on the observed blowout temperature. First, the blowout temperature is found by starting at 1800 K and reducing the fuel flow rate so that the reactor temperature decreases by approximately 50 K. This flow rate is then held for 15 minutes and the fuel flow rate is again adjusted to decrease the combustion temperature another 50 K. Eventually the reactor will undergo blowout; however, due to the thermal hysteresis in the system this temperature will be somewhat lower than the actual blowout temperature. That is, the reactor can run at a reduced gas temperature because of the thermal inertia of the reactor solid material. Next, the reactor is heated up to 50 K above the blowout temperature found in the previous test. The fuel flow rate is then adjusted to achieve a combustion temperature that is 10 K lower than the initial temperature. This flow rate is held
for 30 minutes and the process repeated. In between times when the fuel is being adjusted, the temperature in the reactor is falling due to the falling temperature of the solid material; however, it is determined that 30 minutes is a sufficiently long enough time to overcome the thermal inertia of the JSR and the temperature within the reactor stabilizes. Once the new blowout temperature is determined, the test is conducted once more by preheating the reactor to 20 K hotter than the newly determined blowout temperature. The temperature is then decreased in 5 K increments separated by 30 minutes in order to determine a more refined blowout temperature. The composition of fuels tested is shown in Table 5.1 and the results are shown in Figure 5.18.

Table 5.1: Fuel Composition for 16cc reactor Blowout Studies

<table>
<thead>
<tr>
<th>Mix</th>
<th>H₂</th>
<th>CO</th>
<th>CH₄</th>
<th>CO₂</th>
<th>N₂</th>
<th>C₂H₆</th>
<th>C₃H₈</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2-A</td>
<td>25</td>
<td>0</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>2-B</td>
<td>55</td>
<td>0</td>
<td>35</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>40</td>
<td>50</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>50</td>
<td>35</td>
<td>15</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>75</td>
<td>0</td>
<td>25</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CH₄</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

The results of Figure 5.18 lend themselves to a number of conclusions. First, H₂ blows out about 500 K cooler than pure CH₄. This is not surprising since H₂ is far more reactive than CH₄. When diluent is added to pure CH₄ as in Mix 4, the blowout temperature is somewhat increased, most likely due to the lower reactivity and flame speed due to dilution effects. Mixes 2A and 5 blow out approximately 75 K cooler than pure CH₄. Due to the large C-H bond energy and lack of carbon to carbon (C-C) bonds, CH₄ has a relatively high ignition temperature and in general is less reactive than higher order hydrocarbons such as C₂H₆ [46]. While Mix 5 is composed of 75%/25% CH₄/C₂H₆, Mix 2A contains 25% H₂ in place of some CH₄.
It is interesting to note that the H\(_2\) addition does not significantly affect the blowout temperature. Blowout behavior appears to be best represented by the least reactive fuel component in the mixture. This point is further illustrated by comparing blowout temperature between Mixes 3 and 2B. Both mixtures contain about 50% H\(_2\); however, Mix 2B contains hydrocarbon species while the balance of Mix 3 is composed mainly of CO. The difference in blowout temperature is significant (about 200 K). This is thought to be related to the high C-H bond energy of CH\(_4\).

Although it is the goal of this study to determine the emissions and blowout characteristics of actual fuel compositions found in nature and from industrial byproducts, we can learn valuable information by expanding the compositional parameter space beyond that presented by the fuels alone. Figure 5.19 shows that the addition of small amounts H\(_2\) to CH\(_4\) has a relatively small effect and this effect increases as the H\(_2\) mixture fraction gets above 50%. In contrast, the blowout temperature for the CH\(_4\)/C\(_2\)H\(_6\) follows the CH\(_4\)/H\(_2\) mixture up to a 50% mixture fraction and then levels off.
Figure 5.19: Experimentally determined blowout temperature for CH$_4$ mixed with increasing levels of H$_2$ and C$_2$H$_6$. Blowout for pure C$_3$H$_8$ is shown for reference.

5.5 Available Chemical Mechanisms with NOx Formation Chemistry

In order to properly model the data, a suitable chemical mechanism must be chosen. The chemical mechanism best suited for a particular simulation should have been developed for conditions similar to those in which the mechanism is to be used. In the case of the present study, the mechanism should be optimized for high temperature oxidation of H$_2$, CO, and C$_1$ through C$_3$ hydrocarbons with NO$_X$ formation. Four mechanisms have been identified that claim to meet or partially meet this description.

GRI-Mech 3.0 was developed under Gas Research Institute support, and was presented in 1999 [73]. The mechanism was developed to model natural gas combustion with NO$_X$ formation and reburn chemistry. The mechanism was optimized for premixed systems at temperatures between 1000 and 2500 K, pressures between 10 torr and 10 atm, and equivalence ratios between 0.1 and 5. It is composed of 325 reactions including 53 species. C$_2$H$_6$ and C$_3$H$_8$ kinetics are included, however a cautionary disclaimer states that these species should only be included as minor constituents. Although, the model documentation does not recommend its use to model higher hydrocarbons, we included the mechanism in our study since it should properly model CH$_4$, H$_2$, and CO combustion.
Alexander Konnov developed a mechanism for C₁ through C₃ hydrocarbon oxidation, N-H-O chemistry, NOₓ formation, and reburn in 2000 [74]. The mechanism is composed of 1200 reactions including 127 species and has been validated for a variety of conditions including shock tubes, laminar flame speeds and laminar flame species profiles; however the validation of the NOₓ formation aspect of the mechanism is limited. Nevertheless, Konnov’s mechanism is included since it is said to model C₁ through C₃ oxidation with NOₓ formation.

In 2005, UCSD published the latest version of a chemical mechanism that describes high temperature oxidation, ignition, and detonation for H₂, CO, and C₁ through C₃ hydrocarbons [75]. The oxidation mechanism is composed of 235 reactions including 46 species and has been validated through various experimental tests including flame structure and ignition delay. The mechanism does not include NOₓ formation chemistry; however, a NOₓ mechanism developed by Hewson et al. [76] is provided to be used in conjunction with the combustion mechanism. The resulting mechanism including hydrocarbon oxidation and NOₓ formation is 288 reactions including 61 species. Although, the NOₓ portion of this mechanism has not been rigorously tested, it is decided to include it since the hydrocarbon portion of the mechanism does include up to C₃ chemistry.

The last mechanism is the C₂-NOx mechanism developed by Reaction Design in 2008 [77]. The mechanism consists of 694 reactions including 100 species. The model is reportedly good for replicating the oxidation of H₂, CH₄, and C₂H₆ with NOₓ formation. The model is a conglomeration of several studies describing oxidation and NOₓ formation. Unfortunately it does not include C₃H₈ chemistry.

In addition to the four mechanisms, Konnov et al. [78] recently suggested that there is a non-zero activation energy for the reaction NNH + O → NH + NO that is between 3 and 5 kcal/mole. The only modification made to GRI-Mech 3.0 is that the activation energy of this reaction is changed from 0 to 4 kcal/mole. This modification of GRI-Mech 3.0 will be referred to as the Konnov-4 mech for the rest
Each of these mechanisms is tested against experimental NO\textsubscript{X} emissions data from LPM CH\textsubscript{4} combustion going from 1708 to 1805 K. The CRN developed in Chapter 4 is used as the model. The results are shown below in Figure 5.20.

Figure 5.20: Comparison of four different chemical mechanisms against experimental NO\textsubscript{X} data going from 1700 to 1800 K for LPM CH\textsubscript{4} combustion.

The modeling results for all of the mechanisms follow the trend of the data with varying levels of accuracy. However, the configuration of the CRN can definitely affect the results. We decided to test how sensitive the CRN is to configuration. In particular, what effect does the volume of the first reactor have on the overall NO\textsubscript{X} prediction from the model? In the 3-element CRN developed in Chapter 4, the size of the first PSR is calculated as the volume of a reactor that is 1% larger than an adiabatic PSR at blowout. This is essentially the size that the reactor will be if there is perfect mixing. The influence that the first reactor volume has on the overall NO\textsubscript{X} predictions from the model is shown in Figure 5.21. Using the CRN from Chapter 4, the total combustor volume is held constant, the shear reactor volume is held constant, and the volume of the first reactor is increased from the blowout condition with the recirculation zone volume decreasing in size. The data shown in Figure 5.21 are for
LPM CH$_4$ combustion at 1805 K. The temperature of the recirculation zone reactor is run at an assigned temperature of 1805 K. Since the first reactor is an adiabatic PSR, it is expected that the predicted NO$_X$ emissions increase when it increases in size. Except for the UCSD mechanism, all of the mechanisms indicate that the first PSR is about 0.5 cc. The volume of a PSR at blowout seems to be a reasonable volume for the first PSR; however, is this the correct volume of the first PSR?

ElKady et al. [79] have suggested a different method to determine the size of the first reactor. In a continuation of previous work at GE, researchers studied NO$_X$ formation in perfectly premixed CH$_4$/air flames from 1 to 10 atm. They compare their experimental results with results of a chemical reactor network composed of an adiabatic PSR and a PFR in series. They set the overall residence time constant and use a PSR time equal to the chemical time of the first reactor as shown below in Equation 5.5.

\[
\tau_{cts} = \frac{(k/C_p)\tau_c}{\rho_u S_L^2}
\]

The volume of the first reactor is computed by the chemical time, \(\tau_{cts}\). The thermal
conductivity, \(k \), and specific heat, \(C_p \), are evaluated at the inner layer temperature, \(T_o \), which is the average temperature of the reactants and products. The unburned density, \(\rho_u \), and the laminar flame speed, \(S_L \), are evaluated and calculated at the unburned mixture properties, respectively. The unburned density, specific heat, and thermal conductivity will be equal for each mechanism; however, the laminar flame speed is certainly mechanism dependent. The computed chemical times and corresponding PSR volumes are shown in Table 5.2. As shown in Figure 5.21, these new volumes will result in an over prediction of the data for both versions of GRI, Konnov, and \(\text{C}_2\)-NOx. The UCSD mechanism still under-predicts the data.

Table 5.2: The chemical times computed for each mechanism by Equation 5.5 and the corresponding PSR volume.

<table>
<thead>
<tr>
<th>Mechanism</th>
<th>(\tau_{cts}) (ms)</th>
<th>Volume (cc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRI</td>
<td>0.127</td>
<td>0.74</td>
</tr>
<tr>
<td>UCSD</td>
<td>0.149</td>
<td>0.88</td>
</tr>
<tr>
<td>(\text{C}_2)-NOx</td>
<td>0.168</td>
<td>1.01</td>
</tr>
<tr>
<td>Konnov</td>
<td>0.162</td>
<td>0.95</td>
</tr>
</tbody>
</table>

Another approach would be to assume that the size of the first reactor volume is controlled by the slowest process, which could be the largest value of \(k/\varepsilon \) on centerline as computed by CFD (1.2 ms). This would give a computed volume of the first reactor of 7.8 cc, which is clearly too large.

As mentioned before, each mechanism that has been evaluated predicts the correct trend in the experimental data. The results of the model are definitively dependent on the configuration of the reactor network; in particular, the results are dependent on the size of the first reactor. It appears that this reactor represents a highly turbulent region where the chemistry becomes the controlling time scale. Thus, sizing it to match the PSB or using the approach from ElKady et al. [79] is appropriate. Both of these approaches give qualitatively similar results, and can be thought of as error bounds.
Given the above results, it becomes hard to pick a mechanism winner. Although GRI-Mech 3.0 is over ten years old, it still performs quite well in comparison to the other mechanisms when it comes to NO\textsubscript{X} prediction in our LPM CH\textsubscript{4} system. GRI-Mech 3.0 with the suggested modification by Konnov performs slightly better than GRI without the modification. The C\textsubscript{2}-NOx mechanism also performs fairly well for our conditions, which is not surprising since much of its NO\textsubscript{X} chemistry is taken from GRI-Mech 3.0. The NO\textsubscript{X} chemistry used in conjunction with the UCSD mechanism significantly under-predicts the experimental results. One could propose to use the NO\textsubscript{X} chemistry from GRI-Mech 3.0 in place of the chemistry set that UCSD provides. One major problem with doing that is the fact that the UCSD mechanism does not contain certain reactions containing CH, which will affect the prompt pathway. Konnov’s mechanism is just as old as GRI-Mech 3.0, it over predicts the data and becomes very unstable near blowout. The numerical instability is most likely due to the size of the mechanism.

Since GRI-Mech 3.0 is quite stable and performs well when predicting NO\textsubscript{X} emission data from the LPM CH\textsubscript{4} runs, it will be used for the majority of the modeling shown in this dissertation when CH\textsubscript{4} is the main constituent. The authors of GRI-Mech 3.0 give a disclaimer that it should not be used in systems containing large amounts of C\textsubscript{2}H\textsubscript{6} and C\textsubscript{3}H\textsubscript{8} [73]; thus, the C\textsubscript{2}-NOx mechanism will be used in its place when applicable. There will be certain situations where Konnov’s modification of GRI-Mech 3.0 will be used, since it probably better reflects NNH chemistry and will become important with fuels and conditions where NNH chemistry plays a large role. The residence time at mixture blowout is essentially a property of the unburnt mixture and using it to compute the size of the first element in the 3-element reactor network appears to best reproduce the experimental NO\textsubscript{X} data. For these reasons, the PSB volume/residence time will be used to predict the volume of the first reactor instead of the other methods mentioned above.
5.6 \textit{CH}_4 \textit{Modeling}

Good agreement between the modeling results and the experimental data for LPM \textit{CH}_4 combustion is shown below in Figure 5.22. Both the modeled and experimental NO\textsubscript{X} data are divided by residence time and plotted against the inverse of the combustion temperature representing an Arrhenius plot.

![Arrhenius Plot](image)

Figure 5.22: Net NO\textsubscript{X} production rate for LPM CH\textsubscript{4} combustion showing both experimental and modeling results.

In order to gain better insight on the modeling results, each of the four NO\textsubscript{X} production pathways presented in Chapter 2 is isolated using the method outlined in the next paragraph and the model is rerun. The complete NO\textsubscript{X} mechanism for GRI 3.0 is shown below in Table 5.3. It shows each reaction within the GRI 3.0 NO\textsubscript{X} mechanism along with the most likely direction of reaction under LPM conditions. The units are as follows: the pre-exponential factor for each reaction is equal to 10A (mole/cm3-s), \textit{b} is the temperature exponent corresponding to \((T/T_0)^{b}\), \(T_0\) is 298 K, and the activation energy, \(\text{Ea}\), has units of kcal/mole [68].

The NO\textsubscript{X} contribution from each pathway is determined via two independent
Table 5.3: Major Reactions of NO\textsubscript{x} formation

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Reactants</th>
<th>Direction</th>
<th>Products</th>
<th>A</th>
<th>b</th>
<th>Ea</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N NO</td>
<td>←</td>
<td>N\textsubscript{2} O</td>
<td>13.431</td>
<td>0</td>
<td>0.355</td>
</tr>
<tr>
<td>2</td>
<td>N O\textsubscript{2}</td>
<td>→</td>
<td>NO O</td>
<td>9.954</td>
<td>1</td>
<td>6.5</td>
</tr>
<tr>
<td>3</td>
<td>N OH</td>
<td>→</td>
<td>NO H</td>
<td>13.526</td>
<td>0</td>
<td>0.385</td>
</tr>
</tbody>
</table>

Zeldovich Mechanism

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Reactants</th>
<th>Direction</th>
<th>Products</th>
<th>A</th>
<th>b</th>
<th>Ea</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>N\textsubscript{2}O M</td>
<td>↔</td>
<td>N\textsubscript{2} O M</td>
<td>10.898</td>
<td>0</td>
<td>56.02</td>
</tr>
<tr>
<td>5</td>
<td>N\textsubscript{2}O O</td>
<td>→</td>
<td>N\textsubscript{2} O\textsubscript{2}</td>
<td>12.146</td>
<td>0</td>
<td>10.81</td>
</tr>
<tr>
<td>6</td>
<td>N\textsubscript{2}O O</td>
<td>→</td>
<td>NO NO</td>
<td>13.462</td>
<td>0</td>
<td>23.15</td>
</tr>
<tr>
<td>7</td>
<td>N\textsubscript{2}O H</td>
<td>→</td>
<td>N\textsubscript{2} OH</td>
<td>14.588</td>
<td>0</td>
<td>18.88</td>
</tr>
</tbody>
</table>

Nitrous oxide mechanism

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Reactants</th>
<th>Direction</th>
<th>Products</th>
<th>A</th>
<th>b</th>
<th>Ea</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>N\textsubscript{2}O OH</td>
<td>→</td>
<td>N\textsubscript{2} OH\textsubscript{2}</td>
<td>12.301</td>
<td>0</td>
<td>21.06</td>
</tr>
<tr>
<td>9</td>
<td>NH NO</td>
<td>←</td>
<td>N\textsubscript{2}O H</td>
<td>14.562</td>
<td>-0.45</td>
<td>0</td>
</tr>
</tbody>
</table>

NNH mechanism

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Reactants</th>
<th>Direction</th>
<th>Products</th>
<th>A</th>
<th>b</th>
<th>Ea</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>NNH</td>
<td>←</td>
<td>N\textsubscript{2} H</td>
<td>8.519</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>NNH M</td>
<td>←</td>
<td>N\textsubscript{2} H M</td>
<td>14.114</td>
<td>-0.1</td>
<td>4.98</td>
</tr>
<tr>
<td>12</td>
<td>NNH O\textsubscript{2}</td>
<td>←</td>
<td>HO\textsubscript{2} N\textsubscript{2}</td>
<td>12.699</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>NNH O</td>
<td>←</td>
<td>OH N\textsubscript{2}</td>
<td>13.398</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>NNH H</td>
<td>←</td>
<td>H\textsubscript{2} N\textsubscript{2}</td>
<td>13.699</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>NNH OH</td>
<td>←</td>
<td>H\textsubscript{2}O N\textsubscript{2}</td>
<td>13.301</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>NNH CH\textsubscript{3}</td>
<td>←</td>
<td>CH\textsubscript{4} N\textsubscript{2}</td>
<td>13.398</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>NNH O</td>
<td>→</td>
<td>NH NO</td>
<td>13.845</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>NH OH</td>
<td>→</td>
<td>N H\textsubscript{2}O</td>
<td>9.301</td>
<td>1.2</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>NH O</td>
<td>→</td>
<td>NO H</td>
<td>13.602</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>NH O\textsubscript{2}</td>
<td>→</td>
<td>NO OH</td>
<td>6.107</td>
<td>1.5</td>
<td>0.1</td>
</tr>
<tr>
<td>21</td>
<td>N O\textsubscript{2}</td>
<td>→</td>
<td>NO O</td>
<td>9.954</td>
<td>1</td>
<td>6.5</td>
</tr>
<tr>
<td>22</td>
<td>N OH</td>
<td>→</td>
<td>NO H</td>
<td>13.526</td>
<td>0</td>
<td>0.385</td>
</tr>
</tbody>
</table>

Fenimore prompt (CH) mechanism

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Reactants</th>
<th>Direction</th>
<th>Products</th>
<th>A</th>
<th>b</th>
<th>Ea</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>CH N\textsubscript{2}</td>
<td>→</td>
<td>HCN N</td>
<td>9.494</td>
<td>0.88</td>
<td>20.13</td>
</tr>
<tr>
<td>24</td>
<td>HCN O</td>
<td>→</td>
<td>NCO H</td>
<td>4.307</td>
<td>2.64</td>
<td>4.98</td>
</tr>
<tr>
<td>25</td>
<td>NCO O</td>
<td>→</td>
<td>NO CO</td>
<td>13.371</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>26</td>
<td>NCO OH</td>
<td>→</td>
<td>NO H CO</td>
<td>12.398</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>27</td>
<td>NCO O\textsubscript{2}</td>
<td>→</td>
<td>NO CO\textsubscript{2}</td>
<td>12.301</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>28</td>
<td>HCN O</td>
<td>→</td>
<td>NH CO</td>
<td>3.705</td>
<td>2.64</td>
<td>4.98</td>
</tr>
<tr>
<td>29</td>
<td>NCO H</td>
<td>→</td>
<td>NH CO</td>
<td>13.732</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>30</td>
<td>NH OH</td>
<td>→</td>
<td>N H\textsubscript{2}O</td>
<td>9.301</td>
<td>1.2</td>
<td>0</td>
</tr>
<tr>
<td>31</td>
<td>NH O</td>
<td>→</td>
<td>NO H</td>
<td>13.602</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>32</td>
<td>NH O\textsubscript{2}</td>
<td>→</td>
<td>NO OH</td>
<td>6.107</td>
<td>1.5</td>
<td>0.1</td>
</tr>
<tr>
<td>33</td>
<td>N O\textsubscript{2}</td>
<td>→</td>
<td>NO O</td>
<td>9.954</td>
<td>1</td>
<td>6.5</td>
</tr>
<tr>
<td>34</td>
<td>N OH</td>
<td>→</td>
<td>NO H</td>
<td>13.526</td>
<td>0</td>
<td>0.385</td>
</tr>
</tbody>
</table>
methods in order to provide a check. The procedure for Method 1 is the following. First we remove all reactions besides the Zeldovich pathway (Reactions 1 - 3). We then run the model, and the computed results are the NO\textsubscript{X} production from the Zeldovich pathway only. Next, we add the reactions associated with the NNH pathway (Reactions 10 - 22). We then run the model again and the results give the contributions from the Zeldovich and NNH pathways; thus the difference of the two is the contribution from the NNH pathway alone. Lastly, we add the reactions associated with the prompt mechanism (Reactions 23 - 34). We run the model again to determine the contributions from the Zeldovich, NNH, and prompt pathways. The difference of this result from the previous result is the contribution from the prompt pathway alone. The difference between the entire mechanism and the contributions from the Zeldovich, NNH, and prompt pathways is the contribution from the N\textsubscript{2}O pathway.

An important question is whether the appearance of common reactions between the mechanisms lead to synergies and thus non-additive results. Each mechanism is primarily rate controlled by the first step that converts N\textsubscript{2} to a reactive species, with the subsequent reactions being relatively fast. Thus, a mechanism can be effectively disabled by removing the key initiating reaction from N\textsubscript{2}. Instead of removing all the reactions associated with a mechanism, in Method 2 the rate limiting reactions are the only reactions removed, and each reaction path is run separately. For example, to determine the contribution from the Zeldovich pathway only, the initial, rate limiting reactions from the NNH, prompt, and N\textsubscript{2}O pathways are removed. In other words, in the Zeldovich only model, Reactions 4, 10, 11, and 23 are removed. In the NNH only model, Reactions 1, 4, and 23 are removed. In the N\textsubscript{2}O only model, Reactions 1, 10, 11, and 23 are commented out. Finally, in the prompt only model, Reactions 1, 4, 10, and 11 are removed. As shown in Figure 5.23, the results between Methods 1 and 2 are nearly identical.
We consider Method 2 (only commenting out the key reactions) to be the better of the two algorithms since it only influences a handful of reactions rather than 20 to 30 reactions. Thus, Method 2 is used for the remainder of this study to determine the contribution to NO\textsubscript{X} production from each of the four pathways.

The contribution from each of the four pathways is shown in Figure 5.24 in terms of a production rate in moles/s. This figure shows the pathway contribution within the two most important reactors of the CRN for three different combustion temperatures. Due to the small volume and extremely short residence time of the shear reactor (it has approximately three times more mass flow than the flame brush), it does not significantly contribute to NO\textsubscript{X} formation. Thus, attention is focussed on the flame brush and recirculation zone.
Figure 5.24: NO\textsubscript{X} rate of production from each of the four pathways in the recirculation zone and turbulent flame brush elements of the CRN model outlined in Chapter 4.

As shown in Figure 5.24, the total production of NO\textsubscript{X} is of equal magnitude in both the turbulent flame brush and the recirculation zone. The majority of the prompt NO\textsubscript{X} is formed in the flame brush, while nearly all of the NO\textsubscript{X} formed via the Zeldovich and N\textsubscript{2}O pathways occurs in the recirculation zone. It is interesting to note that while the NNH and N\textsubscript{2}O pathways have approximately equal contributions as the temperature in the recirculation zone falls, both the Zeldovich and prompt pathways decrease in production efficiency. This can be explained by looking at the pertinent radical concentrations in the recirculation zone and flame brush shown in Figure 5.25.
Since the air flow is fixed in the above experiments, the equivalence ratio falls from 0.71 to 0.64 as the recirculation zone temperature decreases from 1805 to 1708 K. The CH radical concentration in the flame brush also falls as the flame becomes leaner, which then results in a decrease in NO\textsubscript{X} production from the prompt pathway within the flame brush. Also shown is a decrease in O radical in the recirculation zone as the temperature falls. Although this loss of O radical can partially explain the decrease in NO\textsubscript{X} from the Zeldovich pathway, the decrease in combustion temperature most likely has a greater effect since the backward rate of Reaction 1 in Table 5.3 is strongly dependent on combustion temperature. In summary, for the experimental results displayed in Figures 5.16 and 5.22, the NO\textsubscript{X} concentration falls mostly due to a decrease in the prompt contribution from leaner operation and a decrease in the contribution from the Zeldovich pathway due to a decrease in combustion temperature and a loss of O-atom.
5.7 Parameter Studies

As mentioned before, in addition to investigating specific fuel compositions, it is important to run experiments on a wider parameter space in order to determine more specifically how one or more fuels affect each other. This section describes compositional parameter studies for CH$_4$ mixed with varying amounts of H$_2$, C$_2$H$_6$, CO, CO$_2$ and N$_2$. Additionally, a syngas compositional space is studied with increasing amounts of CO mixed into a stream of H$_2$. The studies shown in this section simulate a broader variation in Mixtures 2, 3, 4, and 5 than outlined in Table 1.1.

5.7.1 CH$_4$ mixed with CO$_2$ and N$_2$

The experimental results shown below focus on the influence of each diluent on NO$_X$ production in LPM CH$_4$ combustion. The experiments are designed to hold the temperature constant for all diluent concentrations (N$_2$ versus CO$_2$). This is achieved as follows. First, the air flow is held constant. The CH$_4$ flow is selected to achieve a constant temperature of 1800 K in the recirculation zone. As the diluent loading is increased, the natural tendency of the reactor to run cooler is balanced by increasing the CH$_4$ flow rate. Thus, as the diluent is increased, the CH$_4$ flow rate is also increased, and the overall fuel/oxidant ratio approaches stoichiometric.

An important question is how to best present the NO$_X$ data. In the present experiments (1) the stoichiometry varies, and (2) the CO$_2$ and N$_2$ dilute the flow. NO$_X$ mole fraction (as ppm) is the normal way to present the emission data. The mole fraction is, however, influenced by dilution effects, in this case both due to stoichiometry and the added N$_2$ and CO$_2$. While the stoichiometry effect can be handled by correcting to a common O$_2$ value, the presence of the N$_2$ and CO$_2$ can change mole fraction without any change in chemistry. It is concluded that the most meaningful way to present the data is as a NO$_X$ emission index, i.e., the amount of NO$_X$ formation attributed to each CH$_4$ molecule entering the reactor. This avoids
mole fraction changes that are due only to dilution (via variable stoichiometry, or \(N_2\) and \(CO_2\) addition). Recently, ElKady et al. [36] have derived a \(NO_X\) correction to 15% \(O_2\) that is based on an oxidizer composed of \(O_2\), \(N_2\), and \(CO_2\); however, the derivation presented in Appendix B shows that their method is algebraically equivalent to the emission index, within a constant. For the remainder of this section, the \(NO_X\) emissions are expressed as an emission index since it is a more common method of expressing pollutant emissions.

Figure 5.26 shows that the \(NO_X\) emission index (grams \(NO_X/\text{kg CH}_4\)) increases for both \(N_2\) and \(CO_2\) dilution.

![Figure 5.26: Measured NO\(_X\) as EI versus mass fraction of \(N_2\) or \(CO_2\) diluent in fuel stream. Temperature is maintained constant at 1800 K](image)

The results also show that dilution with \(N_2\) is more effective at enhancing \(NO_X\) formation than \(CO_2\) dilution. There are, however, several ways to correlate the effect of the diluents, e.g., plotting against mass fraction of diluent, mole fraction of diluent, etc. As mentioned above, increasing the diluent flow requires an increase in \(CH_4\) flow

to maintain the 1800 K reactor temperature. This means that the mixture approaches a stoichiometric fuel-air ratio and the O\textsubscript{2} concentration decreases. In examining the various ways to correlate the effect of the diluents on NO\textsubscript{X} formation, we selected plotting against O\textsubscript{2} concentration as the most fundamental approach, because the relationship between fuel, O\textsubscript{2}, and NO\textsubscript{X} is at the core of the chemical behavior.

![Graph showing measured NO\textsubscript{X} as EI versus exit gas O\textsubscript{2} concentration.](image)

Figure 5.27: Measured NO\textsubscript{X} as EI versus exit gas O\textsubscript{2} (mole %, dry). Temperature is maintained constant at 1800 K.

Figure 5.27 shows the NO\textsubscript{X} emissions index plotted against the O\textsubscript{2} concentration in the exhaust. As in Figure 5.26, the fuel stream diluted with N\textsubscript{2} is more effective at producing NO\textsubscript{X} emissions than with CO\textsubscript{2} dilution when compared on a common O\textsubscript{2} basis. Thus, there is evidence to suggest that there may be a chemical kinetic explanation for this phenomenon.

For reference, the measured NO\textsubscript{X} (expressed as ppm) is displayed versus exhaust O\textsubscript{2} concentration in Figure 5.28. Note that Figures 5.27 and 5.28 show the same trend. In general, the specific heat of the two additives on a mass basis is sufficiently similar that (1) the tendency of the reactor to cool upon additive addition is nearly
Figure 5.28: Measured NO\textsubscript{X} as (ppm, dry) versus exit gas O\textsubscript{2} (mole %, dry). Temperature is maintained constant at 1800 K.

the same for the two, and (2) the increase in CH\textsubscript{4} flow needed to maintain the 1800 K flame temperature is similar between the two. Thus, in this case the mole fraction results and the emission index results report similar trends. The other effect that can influence the data on an emission index basis is the increasingly larger molecular weight of the product gas as more CO\textsubscript{2} is added. For N\textsubscript{2} dilution, the molecular weight remains essentially constant throughout the entire range of experiments. As shown in Figures 5.26 through 5.28, the model predicts the data quite well.

These results raise two main questions: 1.) why do NO\textsubscript{X} emissions go up when the O\textsubscript{2} in the exhaust decreases/mass fraction of diluent increases? and 2.) why are NO\textsubscript{X} emissions higher for fuels diluted with N\textsubscript{2} rather than CO\textsubscript{2}?

In an approach similar to the analysis done above in Section 5.6, each of the four NO\textsubscript{X} production pathways is isolated and the model is rerun. The contributions of each of the four pathways as a function of dilution are shown in Figures 5.29 and 5.30. Figure 5.31 shows the pathway contribution within each reactor of the
CRN at a common O$_2$ concentration of 3.6% dry mole fraction in the exhaust. Here the emission index from each of the reactors is normalized by reactor volume and residence time.

Figure 5.29: NO$_X$ emission index predicted by CRN model: total and by four pathways. CH$_4$ diluted with N$_2$

Figure 5.30: NO$_X$ emission index predicted by CRN model: total and by four pathways. CH$_4$ diluted with CO$_2$
Figure 5.31: NO\textsubscript{X} production reported as emission index for each of the four mechanisms in each of the three reactor elements of the CRN model. O\textsubscript{2} concentration is 3.6% (dry mole fraction)

Analysis of Figures 5.29, 5.30, and 5.31 show the following trends for NO\textsubscript{X} formation in the JSR:

1. Similar to the atmospheric pressure modeling work done by Li et al. [38], prompt NO\textsubscript{X} is the major source of NO\textsubscript{X} for this experiment, and all three figures support this.

 (a) This may be related to the relatively high CH\textsubscript{4}-air equivalence ratios used: 0.71-0.86 for N\textsubscript{2} dilution and 0.71-0.92 for CO\textsubscript{2} dilution. Note that for most LPM combustion devices operating on CH\textsubscript{4}, the equivalence ratio ranges from 0.45 to 0.65.

 (b) The prompt NO\textsubscript{X} increases as the dilution level is increased (i.e. as the exit gas O\textsubscript{2} decreases). This is expected because of the increasing amounts of CH\textsubscript{4} required as the dilution levels are increased.

 (c) Much of the prompt NO\textsubscript{X} is formed in the turbulent flame brush (i.e. flame zone) modeled as an adiabatic PSR operating near blowout condition.
2. NNH contributes a relatively small amount of NO\textsubscript{X} and the N\textsubscript{2}O and Zeldovich sources of NO\textsubscript{X} are negligible within the flame brush as shown in Figure 5.31, because of this reactor’s short residence and low temperature. The computed temperature within the flame brush ranges between 1609 and 1612 K for both diluted fuels at all dilution levels.

3. All four sources of NO\textsubscript{X} contribute in the recirculation zone, modeled as a PSR at measured temperature (1800 K).

4. The sources of NO\textsubscript{X} are greater for N\textsubscript{2} dilution than for CO\textsubscript{2} dilution in both the turbulent flame brush and the recirculation zone.

These NO\textsubscript{X} trends are supported by the concentrations of free radicals O, H, and CH shown in Figures 5.32, 5.33, and 5.34, as calculated from the CRN modeling.

![Figure 5.32: O atom concentration in the recirculation zone and PSB for both diluted fuels](image)

When compared to no dilution, the N\textsubscript{2} mole fraction is 5% greater for maximum N\textsubscript{2} dilution and 17% smaller for maximum CO\textsubscript{2} dilution. For small concentrations of NO\textsubscript{X} at constant temperature (which is the case here) Zeldovich NO\textsubscript{X} forms in
Figure 5.33: H-atom concentration in the recirculation zone and turbulent flame brush for both diluted fuels

Figure 5.34: CH concentration within the Flame Brush for CH$_4$ diluted with both N$_2$ and CO$_2$

proportion to $[N_2][O]$, where $[]$ means moles/vol. Looking at the recirculation zone, for increasing N$_2$ dilution, O is nearly constant and N$_2$ increases; thus, Zeldovich NO$_X$ increases with dilution. However, for increasing CO$_2$ dilution, mole fractions of both O and N$_2$ decrease: thus, Zeldovich NO$_X$ decreases with dilution.
Nitrous oxide (N$_2$O) is formed by reaction of N$_2$ with O and is depleted by reaction with both O and H. As shown above in Figure 5.31 most of the NO$_X$ formed through the N$_2$O pathway is formed in the recirculation zone. Figure 5.33 shows H-atom increasing as the dilution level of the JSR increases. This trend is the same for both N$_2$ and CO$_2$ dilution. Shown in Figure 5.32, the O concentration in the recirculation zone falls slightly for CO$_2$ dilution and stays flat for dilution with N$_2$. For N$_2$ dilution, N$_2$ and H increase, thus increasing NO. O-atom decreases, which drives NO down. These effects appear to offset each other. For CO$_2$ dilution, H increases, which promotes NO production; however both N$_2$ and O decrease, which decreases NO production. The effects of decreased N$_2$ and O seem to dominate, decreasing the NO production from CO$_2$ dilution slightly more than for dilution with N$_2$.

As seen in Figures 5.29 and 5.30, NO formed from NNH increases as the N$_2$ and CO$_2$ dilution levels increase. As noted from Figure 5.31, it forms in both reactor zones. NNH is formed by reaction of N$_2$ with H, and NO is formed by reaction of NNH with O. NNH concentration follows the upward trend shown for H-atom in Figure 5.33, tempered by increasing N$_2$ concentration for N$_2$ dilution and decreasing N$_2$ concentration for CO$_2$ dilution. The result is a somewhat greater increase in NO with dilution level for N$_2$ than for CO$_2$.

Prompt NO forms as CH radical reacts with N$_2$ to form HCN and N, both of which oxidize to NO. CH has a short lifetime; thus, the prompt NO is produced more significantly in the flame brush than in the recirculation zone. The flame brush concentrations of CH are plotted in Figure 5.34, where they are seen to increase significantly as more N$_2$ is added to the reactor. Small amounts of CO$_2$ dilution appear to suppress CH, though as more CO$_2$ is added, the CH increases.

In addition to the above analysis, both Glarborg et al. [72] and Liu et al. [80] have shown that large concentrations of CO$_2$ will compete with O$_2$ for H-atom via the reaction: H + CO$_2$ ⇌ CO + OH. The consumption of H atom will decrease the rate of the most significant chain branching reaction: H + O$_2$ ⇌ OH + O. This
suppression effectively reduces the size of the O/H/OH radical pool, leading to a decrease in NO\textsubscript{X} formed by the Zeldovich, N\textsubscript{2}O and NNH pathways when CO\textsubscript{2} rather than N\textsubscript{2} is added to the reactor.

5.7.2 \textit{CH\textsubscript{4} mixed with H\textsubscript{2}}

In the experimental studies shown in this section, the air flow rate is held constant, while the flow rates of both CH\textsubscript{4} and H\textsubscript{2} are adjusted to maintain a combustion temperature of 1800 K within the recirculation zone. As shown in Figure 5.35, for a constant recirculation zone temperature of 1800 K the NO\textsubscript{X} concentration decreases with increasing H\textsubscript{2} concentration in the fuel stream.

![Figure 5.35: NO\textsubscript{X} concentration as a function of H\textsubscript{2} concentration in the fuel stream for a fuel mixture of CH\textsubscript{4} and H\textsubscript{2}. Combustion temperature is kept constant at 1800 K.](image)

The model is run using the CRN described in Chapter 4 with both GRI-Mech 3.0 [73] and GRI-Mech 3.0 modified by Konnov [78]. Although the NNH mechanism does not appear to affect NO\textsubscript{X} formation from CH\textsubscript{4} combustion significantly, it certainly does affect NO\textsubscript{X} formation as a highly reactive, high H radical producing fuel such
as H₂ is mixed into the fuel. Since there is clearly an issue with GRI-Mech 3.0 over predicting the data because of the NNH mechanism, GRI 3.0 with the Konnov modification is applied from this point forward to study fuels mixed with H₂.

The model predicts the data fairly well up to about 80% H₂ and then it diverges. At this point, there is not a clear explanation for the model divergence when large levels of H₂ are added to CH₄. It is possible that the CRN configuration needs to be adjusted for fuels with large levels of H₂ since it is far more reactive than hydrocarbon fuels. The model is somewhat self adjusting to changes in chemistry since the blowout volume of the flame brush decreases in size for more reactive chemistry (e.g. higher inlet temperature, larger % H₂, etc.). As shown in Figure 5.36, the computed volume of the flame brush decreases significantly moving from pure CH₄ to pure H₂.

![Volume of Turbulent Flame Brush as a function of H₂ concentration](image)

Figure 5.36: Volume of Turbulent Flame Brush as a function of H₂ concentration in the fuel stream. Combustion temperature is kept constant at 1800 K.

As described in Chapter 4, the recirculation zone then occupies the rest of the volume of the JSR minus a very small volume occupied by the shear zone. It is possible that one or more elements need to be added to the current CRN in order to properly capture the physics of a flame with highly reactive chemistry like H₂.
Nevertheless, a similar approach to that taken in Sections 5.6 and 5.7.1 to quantify which pathways are responsible for NO\textsubscript{X} formation is also performed on this set of experiments.

The NO\textsubscript{X} contribution from each of the four pathways in the turbulent flame brush and the recirculation zone are shown in Figure 5.37 for five varying levels of H\textsubscript{2}: 0%, 30%, 50%, 70%, and 100%, respectively. The contribution from the prompt pathway becomes increasingly less significant as the percentage of H\textsubscript{2} increases in the fuel stream. Note that due to the lack of prompt NO\textsubscript{X}, almost all of the NO\textsubscript{X} produced for pure H\textsubscript{2} combustion is made in the recirculation zone. Finally, the plot shows that the contributions from Zeldovich, NNH, and N\textsubscript{2}O pathways increase as more H\textsubscript{2} is added to the fuel stream.

Figure 5.37: NO\textsubscript{X} rate of production from each of the four pathways in the recirculation zone and turbulent flame brush for H\textsubscript{2} mixed with CH\textsubscript{4}. Combustion temperature is kept constant at 1800 K.
These results are supported by looking at the computed species concentrations in each reactor. The concentrations of CH and NNH in the turbulent flame brush are shown in Figure 5.38. The concentrations of CH, NNH, and N₂O in the recirculation zone are shown in Figure 5.39. The concentrations of O and H in the recirculation zone are shown in Figure 5.40. The CH and NNH concentrations shown in Figure 5.38 support the decreasing contribution of the prompt pathway and the increasing contribution of the NNH pathway shown in Figure 5.37. It is interesting to note that the CH concentration is relatively flat until there is about 70% H₂ in the fuel stream. The decreasing prompt contribution is due to the decreasing hydrocarbon material within the turbulent flame brush as more H₂ is added to the fuel mixture. The computed N₂O concentration in the recirculation zone remains relatively flat throughout the range of H₂ in the fuel stream and the concentration of O-atom increases, but not significantly. We speculate that the increase in contributions from both the Zeldovich and N₂O pathways within the recirculation zone is largely due to a larger volume and thus longer residence time associated with the addition of H₂.

Figure 5.38: CH and NNH concentration in the turbulent flame brush for H₂ mixed with CH₄. Combustion temperature is kept constant at 1800 K.
Although the CRN model developed for the JSR shows fairly good agreement with the experimental data, the configuration must most likely be modified in order to deal with fuels with increasing levels of H\textsubscript{2}. Much of the disagreement is likely due to the
an increasingly large computed recirculation zone associated with large levels of H_2. This large recirculation zone artificially “spreads” the highly reactive H_2 chemistry over a larger volume than what is actually happening within the experiment.

As mentioned above, the CRN that has been successful in modeling CH_4 and landfill gas blends is shown to have some shortcomings when it comes to capturing the physics of H_2 combustion. The question is: how do we construct the CRN in order to capture the physics within our experimental combustor run with increasing levels of H_2? Shown below in Figure 5.7.2 are four possible CRN configurations.

CRN 1 is simply one PSR at assigned (measured) temperature encompassing the entire volume of the reactor. In CRN 2, the reactor is broken up into two volumes in series. The first volume represents the turbulent flame brush, which is modeled as an adiabatic PSR near blowout. The second volume encompasses the rest of the reactor and is modeled as a PSR at measured temperature. CRN 3 is the same configuration that was developed in Chapter 4. The flow from the jet is split with 90% flowing into the turbulent flame brush (as above modeled as an adiabatic PSR near blowout) and 10% of the flow goes into a small adiabatic PSR that is representative of a turbulent premixed strained flame or shear zone, where cold reactants strain against hot recirculated products. The contents of both of these reactors flow into the remaining reactor, which is modeled as a PSR at measured temperature representing the recirculation zone. Three-quarters of the flow leaving the recirculation zone returns to the reactor through the shear zone while one-quarter exhausts. CRN 4 is composed of two elements. The first element is modeled as a turbulent flame brush as in CRN 2 and CRN 3; however, unlike CRN 3, 10% of the jet does not flow into an element representing a turbulent strained flame. The remainder of the reactor volume is composed of a plug flow reactor, PFR, with variable heat loss that is adjusted so that the max temperature within this reactor reaches the measured temperature (1800 K). As in CRN 3, one-quarter of the flow leaving the PFR exhausts while three-quarters return to the reactor where the flow is mixed with the exhaust of the turbulent flame.
Figure 5.41: Possible CRN configurations
brush before being sent back into the PFR. The recirculating flow fraction that is applied to CRN 3 and 4 has been determined through analyzing CFD data.

The various CRN configurations show differing levels of flow complexity. The multi-zone behavior of the reactor is captured in CRN 2 through 4. The recirculating aspect of the reactor is modeled in CRN 3 and CRN 4. However, in CRN 4 a recirculating PFR with heat loss replaces the shear zone and constant temperature PSR in CRN 3. The modeling results are shown below in Figure 5.42.

![Figure 5.42: NO\textsubscript{X} concentration as a function of H\textsubscript{2} concentration in the fuel stream for a fuel mixture of CH\textsubscript{4} and H\textsubscript{2}. Combustion temperature is kept constant at 1800 K.](image)

Figure 5.42 shows that CRN 1 does follow the same trend as the data but over predicts it across the entire range of fuel mixtures. Modeling the entire reactor as one PSR, artificially spreads the highly super-equilibrium flame brush over the entire volume of the reactor. Artificially spreading these large radical concentrations over the whole volume causes the model to predict an elevated amount of NO\textsubscript{X}. There is very little difference between the predictions of CRN 2 and 3. In fact, both models predict the data fairly well up to about 80% H\textsubscript{2} and then they diverge from the measured NO\textsubscript{X}. At this point, there is not a clear explanation for the model divergence when
large levels of H$_2$ are added to CH$_4$ other than the fact that H$_2$ is more reactive than the hydrocarbon material and modeling the recirculation zone as a homogenous PST is still spreading high radical concentrations over too much of the reactor. Note that the predictions of CRN 2 and 3 are nearly identical except CRN 3 doesn’t diverge quite as dramatically nearing 100% H$_2$. CRN 4 does the best job of capturing the downward trend of NO$_X$ production with increasing H$_2$ concentration especially after 70% H$_2$. This suggests the need for a PFR in the model. A PFR acts to reduce free radical levels and thus NO$_X$ formation in the recirculation zone. Finally, note that the model predictions of fuels with high CH$_4$ concentration are fairly insensitive to configuration or recirculation as long as a PSR near blowout is included as the first element in the network.

5.7.3 H$_2$ mixed with CO

Similar to the parameter studies detailed above, for the LPM combustion of H$_2$ mixed with CO the air flow rate is held constant, while the flow rates of both H$_2$ and CO are adjusted to maintain a combustion temperature of 1800 K within the recirculation zone. Unlike the CH$_4$/H$_2$ study, the mole fraction of CO in the fuel stream is not increased past 70% by volume since this is thought to be the largest CO concentration that would be normally seen in any practical syngas that is produced in an O$_2$ blown gasification plant [81]. As shown in Figure 5.43, for a constant recirculation zone temperature of 1800 K the NO$_X$ concentration decreases with increasing H$_2$ concentration in the fuel stream.
Again, the 3-element CRN illustrated in Chapter 4 (CRN 3 in Section 5.7.2) is employed to model the data. The model follows the general trend of the data; however, for large H\textsubscript{2} levels the model over predicts the data, and becomes gradually better as the concentration of CO in the fuel stream increases. This discrepancy is most likely due to the same reason that the predictions diverge from the measurements for the CH\textsubscript{4}/H\textsubscript{2} fuel blends. The CRN composed of a PSB with a recirculating PFR (CRN 4 in Section 5.7.2) does a better job at predicting the data at high H\textsubscript{2} concentrations.

The breakdown between NO\textsubscript{X} produced in both the turbulent flame brush and the recirculation zone is shown below in Figure 5.44 employing CRN 4 from Section 5.7.2. The plot shows that the turbulent flame brush produces very little NO\textsubscript{X}. Figure 5.45 shows the breakdown of NO\textsubscript{X} production as a function of H\textsubscript{2} concentration in the fuel stream for each of the NO\textsubscript{X} formation pathways in the entire reactor, which in this case is essentially the formation from within the recirculation zone. It should also be noted that the prompt pathway has been removed from consideration since there is no hydrocarbon component of this mixture.
Figure 5.44: NO\textsubscript{X} production reported as a function of H\textsubscript{2} concentration in the fuel stream in the turbulent flame brush and the recirculation zone. Combustion temperature is kept constant at 1800 K.

Figure 5.45: NO\textsubscript{X} production reported as a function of H\textsubscript{2} concentration in the fuel stream for each NO\textsubscript{X} formation pathway in the entire reactor. Combustion temperature is kept constant at 1800 K.

This plot clearly shows that the N\textsubscript{2}O pathway is the highest producer followed by Zeldovich and NNH. Also, as the CO concentration in the fuel stream increases
the production from all three mechanisms increases. These trends are supported by looking at the radical concentrations as a function of H$_2$ concentration as shown in Figure 5.46.

![Figure 5.46: Radical concentrations in the recirculation zone reported as a function of H$_2$ concentration in the fuel stream. Combustion temperature is kept constant at 1800 K.](image)

As expected, the OH concentration falls as the CO concentration in the fuel stream increases. This is an effect of the increased reactivity of the major CO oxidation step: CO + OH \rightleftharpoons CO$_2$ + H. Following the same rationale, the H concentration increases as CO fuel fraction increases. An increase in H concentration increases the production of the NNH pathway and an increase in O concentration increases NO$_X$ production from both the N$_2$O and Zeldovich pathways.

5.7.4 CH_4 mixed with CO

Although, CH_4 mixed with CO is not one of the fuel blends outlined in Table 1.1, CO is one of the main components of reformed natural gas; thus it is of general interest to study the effect it has on NO$_X$ emissions when blended into a stream of CH_4. Similar
to the experiments described above, the air flow rate is held constant, while the flow rates of both CH$_4$ and CO are adjusted to maintain a combustion temperature of 1800 K within the recirculation zone. As shown in Figure 5.47, for a constant recirculation zone temperature of 1800 K the addition of CO causes the NO$_X$ emissions to remain relatively flat until about 60% CO, following which the emissions begin to rise steeply. The model captures the data fairly well, it predicts a small initial decrease in emissions before capturing the final rise with larger CO concentration in the fuel stream.

Figure 5.47: NO$_X$ concentration as a function of CO concentration in the fuel stream for a fuel mixture of CH$_4$ and CO. Combustion temperature is kept constant at 1800 K.

The contribution from each of the four pathways in the turbulent flame brush and the recirculation zone are shown in Figure 5.48 for five varying levels of CO: 0%, 30%, 50%, 70%, and 90%, respectively. The prompt pathway decreases in significance as the CO concentration increases in the fuel stream, since CO combustion does not produce CH. Also, similar to the CH$_4$/H$_2$ mixture, fuels with decreasing CH$_4$ percentage do not produce much NO$_X$ within the flame brush. Although the contribution from the prompt pathway decreases as CO is added, the contributions of the other three pathways increase significantly. This is supported by looking at the
Figure 5.48: NO\textsubscript{X} rate of production from each of the four pathways in the recirculation zone and turbulent flame brush for CH\textsubscript{4} mixed with CO. Combustion temperature is kept constant at 1800 K.

radical concentrations within the recirculation zone as shown in Figure 5.49.

Figure 5.49: O and H concentration in the recirculation zone for CO mixed with CH\textsubscript{4}. Combustion temperature is kept constant at 1800 K.
CO is a large promoter of radical chain branching, in particular when normalized to the heating value it brings to the combustor. A large CO concentration increases the forward rate of the key CO oxidation reaction: $\text{CO} + \text{OH} \leftrightarrow \text{CO}_2 + \text{H}$. This effectively increases the H radical pool, which in turn increases the O radical pool due to the prolific reaction $\text{H} + \text{O}_2 \leftrightarrow \text{O} + \text{OH}$. The increase of both O and H radicals promotes NO$_X$ formation via the NNH, N$_2$O and Zeldovich pathways.

5.7.5 CH_4 mixed with C_2H_6

For the LPM combustion of C_2H_6 mixed with CH$_4$, the air flow rate is held constant, while the flow rates of both CH$_4$ and C$_2$H$_6$ are adjusted to maintain a combustion temperature of 1800 K within the recirculation zone. As mentioned in Section 5.5, the authors of GRI-Mech 3.0 caution against using the mechanism with fuel mixtures composed of large concentrations of C$_2$ and C$_3$ hydrocarbons. Despite this caution, GRI-Mech 3.0 is used in the CRN developed in Chapter 4. In addition, the C$_2$-NOx mechanism developed by Reaction Design is used in the same CRN. It is found that the C$_2$-NOx mechanism shows some unstable numerical behavior near blowout. The computed blowout volumes for the first PSR in the 3-element CRN from using both GRI-Mech 3.0 and C$_2$-NOx are shown below in Figure 5.50. Since the solution computed for the PSB appears to be questionable, it is decided to test the C$_2$-NOx mechanism in conjunction with the PSB volumes computed by GRI-Mech 3.0. The results from all three models are shown below in Figure 5.51. Figure 5.51 shows that the experimental NO$_X$ concentration rises as the C$_2$H$_6$ concentration in the fuel increases. The results of the model with GRI-Mech 3.0 show a very slight increase in emissions with increasing C$_2$H$_6$ concentration. The model predictions from the C$_2$-NOx mechanism with the PSB volume computed using the C$_2$-NOx mechanism show a rise going from pure CH$_4$ to pure C$_2$H$_6$; however, the model does not show a smooth trend, which is most likely due to the unstable behavior of the model near blowout. The model predictions of the C$_2$-NOx mechanism using the PSB volumes
Figure 5.50: The volumes computed for the PSB as a function of C$_2$H$_6$ concentration in the fuel stream for a fuel mixture of CH$_4$ and C$_2$H$_6$ from both GRI-Mech 3.0 and C2-NOx. Temperature in the recirculation zone is kept constant at 1800 K.

Figure 5.51: NO$_X$ concentration as a function of C$_2$H$_6$ concentration in the fuel stream for a fuel mixture of CH$_4$ and C$_2$H$_6$ from experiment and the three element CRN. Temperature in the recirculation zone is kept constant at 1800 K.
computed by GRI-Mech 3.0 show the best trend with the data. The curve is smooth, which can most likely be attributed to a smooth prediction of PSB volume and the corresponding temperature that goes along with this volume. However, this model under-predicts the NO\textsubscript{X} data by 1-2 ppm, though it does follow the proper trend with respect to C\textsubscript{2}H\textsubscript{6} percentage. Since neither mechanism predicts the data very well and the C\textsubscript{2}-NOx mechanism does not contain the same oxidation chemistry as GRI-Mech 3.0, a pathway breakdown analysis as outlined in Section 5.6 is not performed. Further work must be put into developing a chemical mechanism that can accurately model the oxidation of C\textsubscript{2} and C\textsubscript{3} hydrocarbons with NO\textsubscript{X} formation is clearly indicated.

5.8 \textit{NOx Entitlement}

As stated in Section 1.4, one of the goals of this research is to develop a set of of Gaseous Fuel Interchangeability Criteria or a methodology to help manufacturers develop and predict the outcome when an alternative fuel to natural gas is used. One of the underlying concepts of the interchangeability criteria from an emissions standpoint is: what fuel or combustor geometry makes the lowest NO\textsubscript{X} possible, while still preserving system efficiency?

In 1994, Leonard and Stegmaier published a seminal work addressing this issue for an aeroderivative gas turbine fueled with LPM natural gas [82]. In the paper they present a basic overview of their design of the premixed system, but they mainly discuss the results of their testing. Their study encompasses a wide ranging parameter space including inlet temperatures between 300 and 800 K, operating pressures between 1 and 30 bar, and combustor residence times between 2 and 100 ms. From their tests they concluded that when operating at flame temperatures less than 1900 K, NO\textsubscript{X} production is not influenced by inlet temperature, operating pressure, or residence time. The emissions are only influenced by the degree to which the reactants are mixed with emissions increasing with less homogeneous levels of premix. With these findings, they have essentially set an emissions floor that has come to be
viewed as the lower limit achievable for practical combustion systems. This is the lower limit that combustion system designers strive to reach. This floor in NO\textsubscript{X} has been termed an entitlement. As mentioned above, they burned natural gas in their combustor. The question now is: what happens if other fuels are burned in its place?

Experimental data taken from the 16 cc JSR, a 64 cc JSR of similar geometry, and the correlation adapted from the Leonard and Stegmaier paper is shown in Figure 5.52.

![Figure 5.52: NO\textsubscript{X} emissions data taken at various temperatures in the JSR and a curve representing the Leonard and Stegmaier data as a function of flame temperature.](image)

The Leonard and Stegmaier data are plotted against adiabatic flame temperature, while the JSR data are plotted against measured flame temperature. The 16cc atmospheric pressure JSR loses a significant amount of heat; thus to maintain a measured flame temperature of 1800 K the equivalence ratio must be increased well above the stoichiometry required to achieve an adiabatic flame temperature of 1800 K. The non-adiabaticity of the present 16cc JSR leads to NO\textsubscript{X} for hydrocarbon fuels above the L-S correlation. In earlier research with a high pressure, nearly adiabatic 2cc JSR fired on CH\textsubscript{4}, Steele [54] found the JSR-measured NO\textsubscript{X} to agree well with the L-S correlation, i.e. Steele’s data fell slightly above the L-S line. The NO\textsubscript{X} data from
LPM CH$_4$ combustion taken from the 64 cc reactor still lies above the L-S curve, but not as far as the data taken in the 16cc reactor. This reactor has a smaller surface to volume ratio; thus, the reactor losses less heat and requires a lower equivalence ratio to maintain the same temperature within the recirculation zone.

Figure 5.52 shows NO$_X$ from H$_2$ combustion in the present 16cc JSR agreeing very closely with the L-S line. It is interesting to explore this finding and well as further explore the behavior for the hydrocarbon fuels. The combustor that was used by Leonard and Stegmaier was a high throughput commercial combustor. They plot their data against adiabatic flame temperature instead of measured temperature, which is a good assumption since their combustor is quite close to adiabatic. The fact that the NO$_X$ emission data from the JSR fall on the Leonard and Stegmaier curve for H$_2$ combustion and lie above the curve for combustion of hydrocarbon fuels may be attributable to the large heat loss in the experimental JSR. We address this issue below.

5.8.1 Reactor Heat Loss

As reported in Section 1.2.2, there is considerable inconsistency reported in the literature regarding whether replacing H$_2$ for CH$_4$ in an LPM flame at constant temperature increases, decreases, or does not affect NO$_X$ formation. Shown above in Section 5.7.2, CH$_4$ produces more NO$_X$ than H$_2$ when burned at constant measured temperature in our experimental JSR. Figure 5.53 shows various data sets taken from some of the references discussed in Section 1.2.2. The experimental conditions for the data shown in Figure 5.53 are displayed in Table 5.4.

There are other data in the literature; however, we limited the plot to only H$_2$/CH$_4$ blends, or H$_2$/CH$_4$ blends with very low concentrations of CO. As shown in Sections 5.7.3 and 5.7.4, CO strongly affects NO$_X$ production through its intense chain branching.
Figure 5.53: Various data showing the effect that H\textsubscript{2} has on NO\textsubscript{X} formation in a LPM CH\textsubscript{4} flame at constant temperature. References are given in Table 5.4.

Table 5.4: A summary of experimental conditions for the data shown in Figure 5.53.

<table>
<thead>
<tr>
<th>Researcher</th>
<th>Experiment</th>
<th>AFT (K)</th>
<th>Measured Flame Temperature (K)</th>
<th>Components other than H\textsubscript{2} and CH\textsubscript{4}</th>
</tr>
</thead>
<tbody>
<tr>
<td>U of W [83]</td>
<td>Backmixed JSR at 1 atm (High heat loss)</td>
<td>2039 - 2046 with increasing %H\textsubscript{2}</td>
<td>1800</td>
<td>No</td>
</tr>
<tr>
<td>UCI [29]</td>
<td>Flare quani combustor at 3 atm fed with a low swirl injector</td>
<td>1816 - 1822 with increasing %H\textsubscript{2}</td>
<td>NA</td>
<td>No</td>
</tr>
<tr>
<td>Delattin et al. [19]</td>
<td>Dump combustor at 1 atm fed with a high swirl injector</td>
<td>2029 - 2056 with increasing %H\textsubscript{2}</td>
<td>NA</td>
<td>Yes, very small percentages of CO, CO\textsubscript{2}, and N\textsubscript{2} (CO < 3% of fuel)</td>
</tr>
<tr>
<td>Griebel et al. [33]</td>
<td>Generic turbulent jet burner at 5 bar</td>
<td>1816 - 1811 with increasing %H\textsubscript{2}</td>
<td>NA</td>
<td>No</td>
</tr>
<tr>
<td>Cheng et al. [28]</td>
<td>Industrial scale dump combustor at 4 atm fed with a low swirl injector</td>
<td>1702 - 1704 with increasing %H\textsubscript{2}</td>
<td>NA</td>
<td>No</td>
</tr>
<tr>
<td>Gauthier et al. [23]</td>
<td>Porous ceramic burner at 1 atm</td>
<td>1999 - 2009 with increasing %H\textsubscript{2}</td>
<td>NA</td>
<td>No</td>
</tr>
</tbody>
</table>
The NO$_X$ trend with H$_2$ addition appears to depend on the experimental configuration. The combustor used by Delattin et al. [19] is only slightly larger than ours and is run at 1 atm, which would definitely promote significant heat loss. The ceramic burners are high heat loss devices (Gauthier et al. [23]). High throughput combustors run at elevated pressure like the dump combustor at UCI [29], Griebel’s [33], and the combustor at NETL [28] can be assumed to be very close to adiabatic. Thus, it appears that the burners with higher heat loss tend to yield lower NO$_X$ when replacing CH$_4$ with H$_2$, while the more adiabatic burners tend to increase NO$_X$ as H$_2$ is increased.

As discussed previously, the JSR experiments are generally run to obtain a measured flame temperature of 1800 K in the recirculation zone. The heat loss in the JSR is typically 20% relative to the lower heating value of the input fuel. This means that to achieve 1800 K measured temperature in the JSR the stoichiometry needs to be more fuel rich, and at a higher adiabatic flame temperature than it would need to be if the reactor had no heat loss. A larger or high pressure combustor with little heat loss will run significantly leaner than the JSR to achieve an 1800 K temperature. We suggest that this difference in equivalence ratio is what leads to the differences in the NO$_X$ emissions trends with CH$_4$ versus H$_2$.

Figure 5.54 shows the results of a numerical experiment in which a PSR is set to run at 1800 K and 3 ms, but with the heat loss from the reactor being varied. At high heat loss, the reactor must be run closer to stoichiometric to achieve the 1800 K temperature. At the zero heat loss, adiabatic 1800 K condition, H$_2$ produces somewhat more NO$_X$ than CH$_4$. At high heat loss, but still at 1800 K, CH$_4$ produces more NO$_X$. The reason for this trend appears in Figure 5.55, which shows the contribution of the various NO$_X$ formation mechanisms for the two fuels: H$_2$ vs. CH$_4$, both at adiabatic vs. 20% heat loss.
Figure 5.54: The effect of increasing heat loss/\(\phi\) has on NO\(_X\) emissions for LPM H\(_2\) and CH\(_4\) combustion. \(T = 1800\) K.

![Figure 5.54: The effect of increasing heat loss/\(\phi\) has on NO\(_X\) emissions for LPM H\(_2\) and CH\(_4\) combustion. \(T = 1800\) K.](image)

Figure 5.55: Contribution from each pathway to total NO\(_X\) production for LPM H\(_2\) and CH\(_4\) at a temperature of 1800 K for both 0 and 20% heat loss.

![Figure 5.55: Contribution from each pathway to total NO\(_X\) production for LPM H\(_2\) and CH\(_4\) at a temperature of 1800 K for both 0 and 20% heat loss.](image)

While the contribution from the Zeldovich and N\(_2\)O pathways remain relatively constant when the equivalence ratio is increased at constant temperature, the prompt pathway becomes much important under high heat loss/richer conditions. Although
the NNH contribution to NO\textsubscript{X} also increases with heat loss/richer conditions, its overall contribution is secondary. The effect of heat loss on other mixtures is shown in Figure 5.56 with the specific compositions shown in Table 5.5.

Table 5.5: Composition of Fuels shown in Figure 5.56.

<table>
<thead>
<tr>
<th>Mix</th>
<th>H\textsubscript{2}</th>
<th>CH\textsubscript{4}</th>
<th>CO\textsubscript{2}</th>
<th>CO</th>
<th>N\textsubscript{2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0.4</td>
<td>0</td>
<td>0.1</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0.5</td>
<td>0.35</td>
<td>0</td>
<td>0.15</td>
</tr>
</tbody>
</table>

Figure 5.56: The effect of increasing heat loss/\phi has on NO\textsubscript{X} emissions for other mixtures in our study. T = 1800 K.

The effect of the prompt mechanism is also experienced with the landfill blend, showing the same trend here as shown in Section 5.7.1. Mix 3 looks similar to H\textsubscript{2} combustion, because of the absence of the prompt mechanism. From Sections 5.7.3 and 5.7.4, it is not surprising that the syngas produces more NO\textsubscript{X} than the other mixes, because CO appears to produce more radicals per unit heat release than the other fuels. The N\textsubscript{2}O, Zeldovich and NNH pathways become large contributors when
the CO concentration of a fuel is increased because of the enhanced amounts of O and H-atoms.

Thus, we suggest that the general trend can be explained by whether the prompt mechanism is a significant contributor. In near-adiabatic combustors, the stoichiometry is sufficiently lean that prompt is a relatively small contributor, and the replacement of CH\textsubscript{4} by H\textsubscript{2} leads to no change or an increase in NO\textsubscript{X}. For those systems with high heat loss, prompt is a major contributor to NO\textsubscript{X} in CH\textsubscript{4} flames, and replacing the CH\textsubscript{4} with H\textsubscript{2} leads to a loss of the prompt mechanism and thus a reduction in NO\textsubscript{X} emissions.

5.8.2 CRN Configuration in Regards to NO\textsubscript{X} Entitlement

The issue of entitlement has come up often. In an attempt to address this issue, a simple adiabatic Bragg cell (PSR + PFR) is run for both LPM H\textsubscript{2} and CH\textsubscript{4} combustion at adiabatic flame temperatures (AFT) of 1550, 1800, and 2100 K. The effect that the size of the PSR has on the overall NO\textsubscript{X} prediction is shown below in Figures 5.57, 5.58, 5.59. On the left hand side of each curve plotted, the PSR is at its blowout volume. On the right hand side of each curve, the PSR encompasses the entire combustor volume (there is no PFR).
Figure 5.57: The effect that the PSR volume has on NO\textsubscript{X} predictions in an adiabatic Bragg cell. AFT for both fuels is 1550 K. The NO\textsubscript{X} is reported for the exit of the Bragg cell.

Figure 5.58: The effect that the PSR volume has on NO\textsubscript{X} predictions in an adiabatic Bragg cell. AFT for both fuels is 1800 K. The NO\textsubscript{X} is reported for the exit of the Bragg cell.
Figure 5.59: The effect that the PSR volume has on NO$_X$ predictions in an adiabatic Bragg cell. AFT for both fuels is 2100 K. The NO$_X$ is reported for the exit of the Bragg cell.

Using Figure 5.57 as an example, H$_2$ emissions at blowout are small, and they increase because of a large increase in the product of radicals and residence time in the PSR as it relaxes from the blowout point. This is important because the radicals decay quickly after the PSR.

It appears the reason for the peak in NO$_X$ for H$_2$ combustion is an increase in free radical levels as the flame zone is initially allowed to grow from the blowout point. Figure 5.60 shows the O atom concentration in the PSR as it encompasses more of the combustor volume for an adiabatic flame temperature of 1800 K.
Figure 5.60: Predicted O atom concentration in the PSR as its volume is increased for both LPM H$_2$ and CH$_4$ combustion at an AFT of 1800 K.

As the size of the PSR initially increases from the blowout condition, the O atom begins rising sharply for both CH$_4$ and H$_2$; however, it is a far more dramatic increase for H$_2$. By the time the PSR has encompassed the entire combustor volume, the O concentration from the combustion of both fuels has relaxed considerably. The O-atom rises initially as the flow enters the PFR and then falls significantly as the residence time increases. Figure 5.61 shows the computed O atom concentration vs. residence time in the PFR corresponding to the Bragg cell with the smallest PSR volume (a PSR at the blowout condition).
The O atom spike for H$_2$ combustion in the beginning stages of the PFR is almost an order of magnitude larger than for CH$_4$ combustion and relaxes far quicker. The O atom spike for CH$_4$ combustion is most likely broader because of the CO intermediate, which is absent from H$_2$ combustion. As CO oxidizes, it produces O and H. Figure 5.62 shows NO$_X$ concentration in the PFR vs. residence time. Noting the large sharp O atom spike for H$_2$ combustion in Figure 5.61, it is not surprising that nearly all of the NO$_X$ made in the Bragg cell combustor is made very early on in the PFR. For H$_2$ combustion, the PSR at blowout doesn’t have a long enough residence time to make a significant amount of NO$_X$. For CH$_4$ combustion, the PSR at blowout does have a long enough residence time to make NO$_X$ and is impacted by prompt NO$_X$ as shown throughout this chapter. Once in the PFR, the rate of NO$_X$ production for CH$_4$ combustion is far slower than for H$_2$ combustion, most likely due to smaller initial bloom of free radicals.
Figure 5.62: Predicted NO\textsubscript{X} concentration vs. PFR residence time corresponding to the Bragg cell configuration with a PSR sized at blowout for both LPM H\textsubscript{2} and CH\textsubscript{4} combustion at an AFT of 1800 K.

The following points can be made about Figures 5.57 through 5.59.

1. At adiabatic conditions H\textsubscript{2} makes more NO\textsubscript{X} than CH\textsubscript{4} independent of the PSR volume (because the prompt mechanism is largely absent).

2. It is interesting to note that the difference between running with a small flame zone/long burn out (PSB + PFR) to running a long lazy flame encompassing the entire combustor (PSR) is the smallest at the lowest temperature.

3. The percentage increase in NO\textsubscript{X} emissions between H\textsubscript{2} and CH\textsubscript{4} is the largest at the lowest temperature. This is most likely due to the fact that the Zeldovich contribution starts to dominate at higher temperatures, which lessens the importance of the other NO\textsubscript{X} formation pathways.

4. The best configuration for low NO\textsubscript{X} emissions for both H\textsubscript{2} and CH\textsubscript{4} combustion is a PSR at blowout followed by a PFR. This would imply that it is best to construct a combustor with the smallest flame zone possible.
5. For H₂ combustion, the NOₓ emissions rise sharply as the flame zone is initially increased, then they fall off as the flame zone gets larger still. This has two additional implications:

(a) It may be wise to design combustors burning fuels with high H₂ concentrations to have highly turbulent, voluminous flame zones to avoid the peak.

(b) This peak may be the reason that some researchers with adiabatic combustors see more of a discrepancy in NOₓ emissions between H₂ and CH₄ than others.
Chapter 6

CFD MODELING

This chapter presents results of both two and three dimensional CFD simulations to illustrate the general flow, temperature, and species structure within the reactor. We present CFD results from the LPM combustion of pure H$_2$, H$_2$/CO, and pure CH$_4$. The simulations are run employing chemical mechanisms of increasing levels of complexity. The computational grid, heat transfer, and turbulence models discussed in Chapter 4 are employed for all models presented in this chapter.

The temperature, flow and major species contours from the two and three dimensional CFD model with simple global chemistry discussed in Chapter 4 are used to initialize all models employing more detailed chemistry. The results shown in this section come reasonably close to experimental measurements; however, there are still many difficulties and concerns to be solved with the models. The most notable issues have to do with the fluid to solid heat transfer coupling, unrealistic reaction rates within the boundary layer, and the ability to handle regions of low Damköhler number.

6.1 The Eddy Dissipation Concept

The chemistry within the reactor is modeled using the Eddy-Dissipation-Concept (EDC) model [84]. The EDC model is an extension of the Eddy-Dissipation-Model that can employ detailed chemistry in turbulent reacting flows [85].

The EDC model assumes that reaction occurs in turbulent structures called fine scales. The volume fraction of these structures is shown below in Equation 6.1, where γ^* is the length of the fine scales, C_γ is the volume fraction constant, ν is the kinematic...
viscosity, ε is the turbulent dissipation rate, and k is the turbulent kinetic energy.

$$
(\gamma^*)^3 = (C_\gamma)^3 \left(\frac{\nu \varepsilon}{k^2} \right)^{3/4}
$$ \hspace{1cm} (6.1)

Reaction is supposed to take place within the fine structures over a time scale, τ^*, which is proportional to the Kolmogorov time scale as shown in Equation 6.2, where C_t is the time scale constant. Both the time and volume fraction constants have been determined through energy cascade arguments $[86]$.

$$
\tau^* = C_t \left(\frac{\nu}{\varepsilon} \right)^{1/2}
$$ \hspace{1cm} (6.2)

The species mass fraction in the fine scales, Y_i^*, is the solution of a constant pressure, adiabatic PSR run at a residence time of τ^*. The averaged species mass fraction for a computational cell is shown in Equation 6.3, where, Y_i^o is the species mass fraction in the surrounding fluid.

$$
\tilde{Y}_i = (\gamma^*)^3 Y_i^* + (1 - (\gamma^*)^3) Y_i^o
$$ \hspace{1cm} (6.3)

In Fluent, the species reaction rate with cell averaged values is calculated as shown in Equation 6.4, where $\bar{\rho}$ is the averaged cell density.

$$
\tilde{R}_i = \frac{\bar{\rho}(\gamma^*)^2}{\tau^*[1 - (\gamma^*)^3]} (Y_i^* - Y_i^o)
$$ \hspace{1cm} (6.4)

Note that when $(\gamma^*)^3$ gets large, i.e. approaches unity, the solution to Equations 6.3 and 6.4 approach the EDC reaction rate limit. The above equations are derived assuming that the reaction only takes place in the fine scales with the surrounding fluid being chemically inert. For reacting systems with low Damköhler Numbers, the reactions in the surrounding fluid may become important and these rates will need to be added to the reaction rates computed by Equation 6.4 $[87]$. This approach for low Da combustion is however not implemented in Fluent.
In addition to concern with low Da systems, the EDC model has some problems near the wall. As shown in Karalus et al. [60], \(k \) goes to zero within the boundary layer. This causes the volume fraction, \((\gamma^*)^3\), to increase. As the calculation moves into the viscous sublayer, the volume fraction of fine scales quickly becomes larger than 1, which is not physical. In fact, the length fraction of fine scales, \(\gamma^* \), is limited to about 0.75. Although limiting \(\gamma^* \) to 0.75 puts somewhat of a limit on how high the reaction rate can go, the value of \(\tau^* \) is unregulated. For certain flow conditions like the stagnation point at the top of the reactor, \(\tau^* \) does get quite small as the flow approaches the wall (\(\varepsilon \) gets large). Figure 6.1 shows a plot of \(1/\tau^* \) from the reactor inlet to the stagnation point along centerline. This value is proportional to the reaction rate given in Equation 6.4 and is shown to increase almost an order of magnitude in about 1 mm as the jet moves close to the top of the reactor.

![Figure 6.1: 1/\(\tau^* \) from reactor inlet to ceiling.](image)

Since the EDC model is shown to breakdown in the boundary layer, a User Defined Function (UDF) is employed that eliminates all reactions in this region [60]. This boundary layer thickness is defined by a turbulent Reynolds number less than 200 as shown below in Equation 6.5 [65].
\[\text{Re}_y = \frac{\rho y \sqrt{k}}{\mu} \leq 200 \quad (6.5) \]

This UDF does slightly affect the solution, especially for slow reacting species. Fast reacting species that are consumed before reaching the wall are unaffected by the UDF. For example, the net reaction rates for LPM H\(_2\) and CH\(_4\) are shown below in Figures 6.2 and 6.3.

![Figure 6.2: H\(_2\) combustion, T = 1800 K. H\(_2\) rate of destruction (kg/m\(^3\)-s)](image)

![Figure 6.3: CH\(_4\) combustion, T = 1800 K. CH\(_4\) rate of destruction (kg/m\(^3\)-s)](image)

Clearly there is little difference in the computed reaction rates for fast reacting
species such as H$_2$. There is, however, a difference in the computed reaction rates for slower reacting species such as CH$_4$. In the following sections, we show that the UDF allows some unreacted radicals to flow around through the boundary layer and re-entrain into the jet. This affects the reaction rates of various species; especially species that react over a long time constant. The UDF shifts the geometric positions and maximum values of radical pools, and causes more radicals to be available for entrainment into the jet. However, the varying reaction rates and radical pool locations do not affect the computed values of temperature, NO$_X$, and CO to a large degree. All of this will be quantified in the following sections.

6.2 H$_2$ Combustion

The following section describes results from both two and three dimensional CFD simulations that model H$_2$ combustion with full NO$_X$ chemistry. Since the prompt NO$_X$ mechanism is absent from H$_2$ combustion, modeling full NO$_X$ chemistry is feasible in both the two and three dimensional models because the mechanism is relatively small. In the following CFD results, the GRI 3.0 mechanism [73] is used without any C containing species. As shown in Section 5.7.2, NO$_X$ formation from H$_2$ combustion is strongly affected by the NNH pathway. The modification proposed by Konnov [78] has been applied to GRI-Mech 3.0 for this simulation as well, changing the activation energy of NNH + O \leftrightarrow NO + NH from 0 to 4 kcal/mole. The H$_2$ oxidation mechanism with NO$_X$ formation is composed of 18 species with 69 reactions.

Although a 3D solution is tractable with a convergence time of about 10 days, the 2D model runs far faster and converges in only 1-2 days. The radial temperature and NO$_X$ predictions are shown for both the two and three dimensional models in Figures 6.4 and 6.5.
Figure 6.4: Profile of temperature from reactor centerline to wall, measured and predicted by CFD for H\textsubscript{2} combustion with NO\textsubscript{X} formation chemistry in two and three dimensions.

Figure 6.5: Profile of NO\textsubscript{X} concentration from reactor centerline to wall, measured and predicted by CFD for H\textsubscript{2} combustion with NO\textsubscript{X} formation chemistry in two and three dimensions.

These figures show that both the two and three dimensional models predict the data in the recirculation zone with reasonable accuracy; however, the models un-
der predict temperature in the near jet region. As discussed above, the turbulence/chemistry interaction is not modeled properly within this region. This is a region of very high turbulent kinetic energy, and the turbulence/chemistry coupling via the Eddy Dissipation Concept may not be accurate under these extreme conditions. This highly turbulent jet is a region of low Damköhler Number. The EDC model, as it is implemented in Fluent, does not account for the reaction rates in the fluid surrounding the fine scales. Accounting for these rates would increase the total reaction rate in the jet and bring up both temperature and most likely NO\textsubscript{X} predictions on centerline.

The 2D model predicts a slightly higher NO\textsubscript{X} concentration and temperature in the recirculation zone than the 3D model. The slightly larger NO\textsubscript{X} prediction is likely due to the higher temperature prediction in the 2D model. The difference in temperature is thought to be due to a difference in the manner that heat transfer is handled in the different models. Since the 2D model has a far faster convergence time and still does a reasonable job of predicting both temperature and NO\textsubscript{X} concentration in the recirculation zone, all results shown below are from the 2D model only.

The results shown in Figure 6.2 depicting H\textsubscript{2} rate of destruction with and without the UDF look nearly identical to one another. In order to check the real difference between the models, temperature and NO\textsubscript{X} plots from the centerline to the wall are shown for the 2D H\textsubscript{2} combustion model both with and without the UDF. There is a small temperature deficit at the wall for the simulation where the boundary layer reactions are turned off. This model also shows a slight increase in NO\textsubscript{X} concentration within the center of the recirculation zone. We will show later in this section that the majority of the NO\textsubscript{X} production for the H\textsubscript{2} flame is produced just above the turbulent flame brush.
Figure 6.6: Profile of temperature from reactor centerline to wall, measured and predicted by 2D CFD for H\textsubscript{2} combustion with and without a UDF.

Figure 6.7: Profile of NO\textsubscript{X} concentration from reactor centerline to wall, measured and predicted by 2D CFD for H\textsubscript{2} combustion with and without a UDF.

For the case with the UDF (boundary layer reactions are off), some unreacted radicals are carried around through the boundary layer and are entrained back into the jet; thus making slightly more NO\textsubscript{X} than if the radicals were consumed in the
boundary layer. The difference in NO\textsubscript{X} prediction is small here; however the boundary layer reactions may become more of a concern when simulating fuels with high levels of slow burning fuels such as CO.

Figures 6.8 and 6.9 show the predicted radical fields within the reactor. The highest concentration of radicals is found in and around the jet, and comparing the results with the computed H\textsubscript{2} destruction rates of Figure 6.2, the radical concentrations peak near the region of maximum H\textsubscript{2} destruction. As discussed above, the computed radical concentrations have shifted slightly in location when the UDF is employed.

When the fluid moves into the recirculation zone, these radical concentrations are already starting to relax. This finding supports the results of Figure 5.42, which shows that a PSB followed by a PFR is a more accurate way to build a CRN for a highly reactive fuel such as H\textsubscript{2}, as opposed to the 3-element CRN developed in Chapter 4. The region of high radical concentrations for H\textsubscript{2} combustion encompass a quite small volume. Thus, artificially spreading the reactions throughout the entire recirculation zone produces higher average radical concentrations and thus yields higher than measured NO\textsubscript{X} concentrations.

Figure 6.8: Contours of H predicted by CFD for H\textsubscript{2} combustion (mole fraction)
We used the methodology presented in Chapter 5 to determine the NO\textsubscript{X} contribution from each pathway for 2D CFD simulations of H\textsubscript{2} combustion. This is done by removing the rate limiting reactions from two pathways and running the model again. For example, to determine the contribution to NO\textsubscript{X} production from only the Zeldovich pathway, the rate limiting reactions for both the NNH and N\textsubscript{2}O pathways are removed from the mechanism. The results of isolating the NO\textsubscript{X} formation mechanism into the specific pathway contributions are shown in Figure 6.11 for H\textsubscript{2} combustion.
with the boundary layer reactions turned off.

Figure 6.11: Profile of NO\textsubscript{X} concentration from reactor centerline to wall, measured and predicted by CFD for H\textsubscript{2} combustion with NO\textsubscript{X} formation chemistry in two dimensions for each NO\textsubscript{X} pathway.

The figure shows that the N\textsubscript{2}O pathway is the the most significant pathway to NO\textsubscript{X} formation followed by the Zeldovich and NNH pathways. This is the same result as seen from the CRN modeling shown in Figure 5.37. The rate of NO production from the full mechanism is shown in Figure 6.12. For reference, the rate of NO\textsubscript{X} production from the full mechanism with boundary layer reactions turned on is also shown in Figure 6.12. The model with boundary layer reactions turned on (without the UDF) shows very high reaction rates at the wall (particularly at the top of the reactor). However, these high rates near the wall do not cause the plot to look that different than the plot with the boundary layer reactions disabled. When the scale is adjusted to reflect the same scale as the solution with the UDF, the magnitude and position of the rates with and without the UDF look nearly identical. This is expected since the NO\textsubscript{X} concentrations along the probe traverse are nearly identical as shown above in Figure 6.7.
Figure 6.12: Contours of the rate of NO\textsubscript{X} production for the full GRI 3.0 mechanism with the Konnov4 modification. (kmole/m3-s)

A larger version of NO\textsubscript{X} formation from the full mechanism as well as NO\textsubscript{X} production for each of the three pathways is shown in Figures 6.13 through 6.16.

Figure 6.13: Contours of the rate of NO\textsubscript{X} production for the full GRI 3.0 mechanism with the Konnov4 modification. (kmoles/m3-s).
Figure 6.14: Contours of the rate of NO\textsubscript{X} production from the Zeldovich pathway only (kmoles/m3-s).

Figure 6.15: Contours of the rate of NO\textsubscript{X} production from the N\textsubscript{2}O pathway only (kmoles/m3-s).
Figure 6.16: Contours of the rate of NO\textsubscript{X} production from the NNH pathway only (kmoles/m3-s).

These figures show that most of the NO\textsubscript{X} production occurs in and around the turbulent flame brush with most of the production taking place within the shear layer of the jet just as it enters the reactor. NO\textsubscript{X} production from the Zeldovich pathway is the largest in the shear region, but extends well into the high temperature region of the reactor. Peak production from the N\textsubscript{2}O and NNH pathways is also anchored around the jet shear layer. There is some production in the recirculation zone for the N\textsubscript{2}O pathway since this pathway is both sensitive to temperature and O radical, which peaks at the top of the jet as shown in Figure 6.9. The NNH pathway has a weak temperature dependance; thus, the contours of peak NO\textsubscript{X} production are found around the jet where H radical is the largest. There is almost no production due to the NNH pathway in the recirculation zone.

As mentioned above, the EDC model under predicts the reaction rate in regions of low Damköhler number (i.e., in the turbulent jet region). Since it does not compute reaction rate in the fluid surrounding the fine scales, we decided to artificially increase the volume of the fine scales; essentially forcing the code to account for reaction taking place in a larger portion of the cell. Fluent limits the quantity \((\gamma^*)^2/(1 - (\gamma^*)^3)\) in
Equation 6.4 to unity; thus limiting the computed quantity of γ^* to 0.75488. One could increase the value of γ^* to 0.75488 everywhere, which would make the quantity $(\gamma^*)^2/(1 - (\gamma^*)^3)$ in Equation 6.4 equal to unity, and the reaction rate would be at EDC limit imposed by Fluent. This however, is not possible, because Fluent does not provide access to this variable, we instead increased the volume fraction constant, C_γ, in Equation 6.1 to achieve the same result. Figures 6.17 and 6.18 show the effect that increasing the reaction rate to the EDC limit has on temperature and NO$_X$ predictions. The results are shown for 2D simulations without the UDF.

Figure 6.17: Profile of temperature from reactor centerline to wall, measured and predicted by CFD for H$_2$ combustion with NO$_X$ formation chemistry in 2D. EDC limit is shown for comparison.
As expected, both the temperature and NO\textsubscript{X} concentrations come up on centerline. Temperature and NO\textsubscript{X} have, however, also increased within the recirculation zone; albeit by small amounts. Since the EDC model is based on turbulence energy cascade models with the volume fraction, \((\gamma^*)^3\) computed from \(\nu\) and the turbulence quantities \(k\) and \(\varepsilon\) [86]; it would not be legitimate to increase this reaction rate everywhere. However the above results do show that the reaction rates are too small in the jet, and if the rates were increased the model would better agree with the data within the jet region. This error likely occurs due to limitation on the EDC model in regions of high turbulence intensity (e.g., low Damköhler number).

6.3 H\textsubscript{2}/CO Combustion

Since there is no prompt NO\textsubscript{X} pathway in CO combustion, the model is only barely more computationally expensive than that of H\textsubscript{2} combustion with NO\textsubscript{X} formation. Basic chemical mechanism reduction analysis determines that both HCO and NCO do not need to be included in the mechanism when simulating lean combustion; thus
only two additional species and four reactions are added to describe the CO/H2 system with NOX formation. This new mechanism includes 20 species with 73 reactions. A fuel composed of 50% H2/50% CO is chosen for the 2-D CFD simulations.

The temperature and CO profiles from both the experiments and the CFD simulations are shown with and without the UDF in Figures 6.19 and 6.20.

Figure 6.19: Profile of temperature from reactor centerline to wall, measured and predicted by CFD for 50%H2/50%CO combustion. T = 1800 K.
Figure 6.20: Profile of CO from reactor centerline to wall, measured and predicted by CFD for 50%H\textsubscript{2}/50%CO combustion. T = 1800 K.

Similar to the CFD results shown for H\textsubscript{2} combustion, this model under predicts temperature on centerline, but does better within the recirculation zone. As expected, the model over predicts CO concentration on centerline. This under prediction is one of the factors contributing to a temperature deficit on centerline; some question exists, however, whether the data measured on centerline are correct. As explained in Section 5.1 and Appendix A, a significant amount of CO oxidation probably takes place within the sample probe. Syngas fuels with high concentrations of CO within the fresh mixture may be especially prone to this problem. Also note the large temperature deficit and CO rise shown at the wall for the simulation run with the UDF (where the wall reactions have been turned off in the boundary layer). Section 6.2 shows that the UDF did not significantly affect the results for H\textsubscript{2} combustion. However, since CO is so much slower to react, the reactions in the boundary layer do make a difference. The computed contours of CO, H, O, and OH are shown in Figures 6.21 through 6.24.
Figure 6.21: Contours of CO predicted by CFD for H₂/CO combustion (mole fraction)

Figure 6.22: Contours of H predicted by CFD for H₂/CO combustion (mole fraction)
In contrast to H$_2$ combustion, the CO addition to the fuel causes the free radicals to spread out and push further away from the jet. As expected, the UDF increases the concentrations of the free radicals and prevents CO burnout in the boundary layer. The measured and predicted NO$_X$ concentration along the probe traverse is shown in Figure 6.25.
Figure 6.25: Profile of NO\textsubscript{X} from reactor centerline to wall, measured and predicted by CFD for 50%H\textsubscript{2}/50%CO combustion. T = 1800 K.

Similar to the results for H\textsubscript{2} combustion shown above, the UDF increases NO\textsubscript{X} production in the center of the reactor. The model does follow the data better in this case than in H\textsubscript{2} combustion. We believe this to be largely due to a better prediction of temperature in the recirculation zone.

The rate of NO\textsubscript{X} production within the reactor is shown in Figure 6.26. Although the maximum rate of NO\textsubscript{X} production shown in Figure 6.26 is less than that in Figure 6.13 for H\textsubscript{2} combustion, the production fills the entire reactor, where the production for H\textsubscript{2} combustion is strong in and around the jet. A pathway analysis was not performed for this mix; however, it can be assumed that the increase in production is largely due to an increase in production from the N\textsubscript{2}O and Zeldovich pathways as shown in Figure 5.45 due to the wider distribution of O-atom over the reactor volume for the slower burning CO.
(a) Without UDF
(b) With UDF

Figure 6.26: Contours of NO\textsubscript{X} rate of production predicted by CFD for H\textsubscript{2}/CO combustion (kmoles/m3-s).

6.4 CH\textsubscript{4} Combustion

Since the prompt pathway to NO\textsubscript{X} formation is important for CH\textsubscript{4} combustion, especially at the high heat loss conditions in the JSR, this pathway must be included in the chemical mechanism used in the CH\textsubscript{4} CFD model. For CH\textsubscript{4} combustion, GRI-Mech 3.0 has been systematically reduced by Karalus [88] to capture the major chemistry associated with CH\textsubscript{4} oxidation and NO\textsubscript{X} formation. The skeletal mechanism was developed by applying the Direct Relational Graph (DRG) method of Lu and Law [89] to a sample of perfectly stirred reactors (PSRs) using GRI-Mech 3.0. The parameter space was chosen to include a single pressure of 1 atm, equivalence ratios from 0.4 to 1.0, preheat up to 600 K, and mean PSR residence times from near blowout to 3 ms [88]. The resulting mechanism contains 30 species and 177 reactions. A plot similar to Figure 5.20 is shown below in Figure 6.27, where the reduced mechanism is compared to GRI-Mech 3.0 [73] and GRI-Mech 3.0 with the Konnov modification [78]. All three mechanisms are run in the 3-Element CRN developed in Chapter 4.

The reduced mechanism gives results almost identical to GRI-Mech 3.0, computing NO\textsubscript{X} predictions only slightly larger than the parent mechanism. This is expected since the mechanism was developed using a parameter space that is well within the
Figure 6.27: Comparison the reduced mechanism against GRI Mech 3.0 and GRI Mech 3.0 with the Konnov modification against experimental NO\textsubscript{X} data going from 1708 to 1805 K for LPM CH\textsubscript{4} combustion.

The temperature profiles, both measured and computed by CFD for CH\textsubscript{4} combustion, are shown below in Figure 6.28. The reduced mechanism developed by Karalus [88] with and without the UDF, the reduced mechanism at the EDC Limit with and without the UDF, and the 3 step global mechanism developed by Nicol et al. [66] from 3D simulation are shown for comparison. Figure 6.28 shows that the reduced mechanism under predicts the temperature on centerline by about 150 degrees and in the recirculation zone by about 50 degrees. When the UDF is turned on, there is an additional temperature deficit at the wall, which is due to a lack of CO oxidation within the boundary layer. The computed solutions at the EDC limit are nearly identical to each other both with and without the UDF; however, there is a slight decrease in temperature near the wall for the case where wall reactions are disabled. The reaction rates in the rest of the reactor are fast enough so the boundary layer does not influence the results as much. Note that the EDC model at its reaction limit accurately predicts the temperature within the recirculation zone; however it under
Figure 6.28: Profile of temperature from reactor centerline to wall, measured and predicted by CFD for CH₄ combustion.

predicts temperature on centerline by about 100 degrees.

The 3D model employs 3-step global chemistry and the turbulence-chemistry interaction is modeled with the Finite Rate/Eddy Dissipation model. This model computes both a turbulent rate and a chemical rate of reaction and chooses the smaller of the two. Figure 6.29 shows the rate of destruction of CH₄ in the 3D model computed by turbulence, chemistry, and the resultant reaction rate. Since the reaction describing CH₄ destruction is a globalized reaction, the CH₄ is made into CO in one step rather than many steps with various hydrocarbon intermediates. This global CH₄ oxidation step (shown in Table 4.1) is quite fast, and the resultant reaction rate is clearly controlled by the turbulent rate.
Although the turbulent rate is over a magnitude slower than the kinetic rate computed by the global chemistry, it is still far faster on centerline than the rates of CH$_4$ destruction computed by the EDC model for both the default conditions and at the EDC limit as shown in Figure 6.30 (EDC models are shown with the UDF).

Since chemistry is always incorporated into the reaction rate in the EDC model, the computed reaction rates will always be slower than the turbulent rates in the
Eddy Dissipation/Finite Rate model. Setting the volume fraction of EDC model to its limit aids in the destruction of CH$_4$ within the jet, but it is still slower than the purely turbulent rate. Similar trends are shown in Figure 6.31, where CO profiles are plotted from centerline to the wall, both measured and predicted by CFD.

![Figure 6.31: Profile of CO from reactor centerline to wall, measured and predicted by CFD for CH$_4$ combustion.](image)

The EDC model with and without the UDF does not properly predict the position of the CO peak nor the magnitude. As expected, there is a large increase in CO concentration near the wall when wall reactions are disabled. The EDC model at the EDC limit does a better job at predicting position of the CO peak; however, it predicts about double the magnitude of the data. Both EDC models at the EDC limit (with and without the UDF) predict the CO concentration within the recirculation zone with reasonable accuracy; however, as explained above, it is questionable whether the measured data reflects the CO concentrations actually within the reactor due to CO oxidation in the probe. The 3D model with Nicol’s 3-step global chemistry does the best job at predicting the CO peak in both position and magnitude. Similar to the EDC model at the EDC limit, it also predicts the CO concentration within the
recirculation zone quite accurately. However, the same question with respect to probe oxidation applies here as well.

The Finite Rate/Eddy Dissipation (FR/ED) model appears to predict temperature and CO better than the EDC model. This can be attributed to its ability to handle reaction rate within regions of low Damköhler number. Unfortunately, the FR/ED model does not have the ability to compute intermediate radicals.

The formation of NO\textsubscript{X} can be globalized and has been executed with success for LPM CH\textsubscript{4} combustion [66], [68]. However, since the focus of this study is on the differences in NO\textsubscript{X} formation between a wide variety of fuels, it is more useful to compute NO\textsubscript{X} using detailed chemistry predicting the formation of free radicals. The computed radical concentrations from the EDC model for 2-D CFD are shown below in Figures 6.32 through 6.34.
Figure 6.32: Contours of H atom for \(\text{CH}_4 \) combustion from the reduced GRI 3.0 mechanism both with and without the UDF at the default EDC conditions and at the EDC limit. (mole fraction)
Figure 6.33: Contours of O atom for CH₄ combustion from the reduced GRI 3.0 mechanism both with and without the UDF at the default EDC conditions and at the EDC limit. (mole fraction)
Figure 6.34: Contours of OH atom for CH₄ combustion from the reduced GRI 3.0 mechanism both with and without the UDF at the default EDC conditions and at the EDC limit. (mole fraction)

The scale in the plots has been set to the maximum computed concentration to gain perspective between models. The default EDC model with the UDF has the largest computed radical concentrations. This is expected since CO and radicals are convected around the boundary layer and re-entrained into the jet. The maximum concentration of the radicals for the default EDC model without the UDF and the EDC model at the EDC limit with and without the UDF are about equal. This also is expected since the the radicals are likely to be consumed in the boundary layer for the default EDC model without the UDF and the radicals are consumed soon after leaving the jet for each model at the EDC limit.
Figure 6.35 shows the concentration of OH from the reactor centerline to the wall from each CFD model. The plot also shows measured OH concentrations taken by Malte et al. [90] for LPM CH$_4$ combustion in a JSR at an equivalence ratio of 0.7, a measured temperature of 1750 K, and a pressure of 0.92 atm. The conditions are almost identical to the experimental conditions in the present work; however, they ran with a reactor loading of 4.03×10^{-2} g/cm3 − s and the loading in the present work is 6.25×10^{-2} g/cm3 − s. The measured data were obtained from integrated absorption measurements and should be thought of as average values throughout the recirculation zone and the downstream region of one of the seven jets. Since these were spectral measurements, there is no effect from probe oxidation as seen in the present study. In fact, the computed OH rotational temperature and measured thermocouple temperatures were virtually identical [90].

Figure 6.35: Profile of OH from reactor centerline to wall, measured and predicted by CFD for CH$_4$ combustion.

In their study [90], Malte et al. showed that at constant equivalence ratio, OH concentration increased with increasing reactor loading. We thus expect that if the same measurements were taken in the present JSR, the data would fall somewhere in
between the predictions of the default EDC models with and without the UDF.

Figure 6.36 shows NO\textsubscript{X} profiles for both data and CFD predictions plotted from centerline to the wall. These calculations used the reduced mechanism from Karalus. The default EDC models with and without the UDF show the same trend as above for H\textsubscript{2} and H\textsubscript{2}/CO combustion; the UDF causes an increase in NO production in the center of the reactor due to re-entrainment of unreacted radicals. Note that the correction by Konnov to the GRI Mech 3.0 has not been applied here. However, it is shown in Chapter 5 that the Konnov correction does not affect CH\textsubscript{4} combustion to the same extent that it affects fuel blends containing H\textsubscript{2}. Both EDC models with the default γ^* under predict temperature by about 50 degrees. We expect that the predicted NO\textsubscript{X} concentrations would increase if temperature is predicted properly.

![Figure 6.36](image)

Figure 6.36: Profile of NO\textsubscript{X} from reactor centerline to wall, measured and predicted by CFD for CH\textsubscript{4} combustion.

Similar to the analysis shown above in Section 6.2, the NO\textsubscript{X} contribution from each pathway is determined by removing the rate limiting reactions from three pathways and repeating the model run. The results shown in Figure 6.37 follow the trends of Chapter 5. The prompt pathway is the largest NO\textsubscript{X} producer, followed by N\textsubscript{2}O,
Zeldovich, and NNH. The contours of NO\textsubscript{X} production for the reduced mechanism [88] as well as each of the pathways are shown below in Figures 6.38 through 6.42.

Figure 6.37: Profile of NO\textsubscript{X} concentration from reactor centerline to wall, measured and predicted by CFD for CH\textsubscript{4} combustion with NO\textsubscript{X} formation chemistry in 2D for each NO\textsubscript{X} pathway.

Figure 6.38: Contours of the rate of NO\textsubscript{X} production from the reduced GRI 3.0 mechanism (kmoles/m3.s).
Figure 6.39: Contours of the rate of NO\textsubscript{X} production from the prompt pathway only (kmoles/m3\textperiodcentered s).

Figure 6.40: Contours of the rate of NO\textsubscript{X} production from the N\textsubscript{2}O pathway only (kmoles/m3\textperiodcentered s).
Figure 6.41: Contours of the rate of NO\(_X\) production from the Zeldovich pathway only (kmoles/m\(^3\)-s).

Figure 6.42: Contours of the rate of NO\(_X\) production from the NNH pathway only (kmoles/m\(^3\)-s).

The computed contours of CH, N\(_2\)O, N, and NNH are shown below in Figure 6.43 to help explain the trends shown in Figures 6.38 through 6.42.
The most important mechanism is the prompt, which peaks just on the outside of the jet. Almost no prompt production is active in the recirculation zone, which makes sense since the CH radical is fully consumed right at the jet boundary. The N radical and N₂O molecule extend well into the entire reactor volume. Since O atom is also shown to extend into the recirculation zone, it makes sense that the production from the N₂O and Zeldovich pathways are fairly uniform throughout the recirculation zone. The contours of H atom peak in the upper portion of the recirculation zone, thus it follows that NNH also peaks in the same region. Since O atom also peaks in this region, it is expected that the fastest NOₓ production from the NNH pathway is in the upper portion of the recirculation zone. Note that if the reactions were turned
on within the boundary layer, the NNH pathway may become a stronger contributor.

6.5 Summary of CFD Results

The results presented in this chapter show that the CFD predictions are in reasonable agreement with experiments, but also that the model shows some deficiencies that need to be addressed with future research.

The fluid to solid heat transfer coupling seems to be handled differently by the code between the two and three dimensional models. Moreover, both results predict different wall temperatures than measurements made by previous JSR researchers. This issue has not been fully addressed but it could be due to a number of reasons including (1) a poor estimation of the thermal conductivity of the ceramic (the actual ceramic is probably not perfect, e.g., increased porosity during casting), (2) heat transfer in the JSR is a 3D phenomena that may not be predicted properly in 2D, and (3) the method in which the code couples the fluid and solid is somewhat of a black box, which may well be the major problem. There is also uncertainty associated with measuring temperature with optical pyrometers.

The EDC model computes unrealistically high reaction rates within the boundary layer. This problem has been dealt with by eliminating chemical reactions in the boundary layer; this however, causes free radicals and CO (when applicable) to be convected around the boundary layer at the outside edge of the recirculation zone and re-entrained into the jet. This potentially artificially increases the amount of these species being convected into the jet since one would normally expect the CO and free radicals to be partly consumed in the boundary layer. This affects slow reacting species more significantly than faster reacting species that are consumed before the gases reach the boundary layer.

The implementation of the EDC model in Fluent does not account for reactions in the fluid surrounding the fine scales. This phenomenon most likely becomes important under conditions of low Da (in the turbulent jet) and should be added to the reaction
rate computed in the fine scales. The volume fraction constant is increased to force Fluent to compute reaction in a larger part of the cell. This appears to improve agreement between the CFD results and the experiment on centerline; however, this correction should not be applied throughout the entire reactor, as it is inappropriate in areas of higher Da (e.g., recirculation zone).

In spite of these deficiencies, the model predicts the data reasonably well. For the conditions within the experimental JSR, the results show that NO\textsubscript{X} is produced in and around the jet for H\textsubscript{2} combustion. When CO is added to the fuel stream, the radicals are pushed further out into the reactor; thus, encompassing more volume and producing more NO\textsubscript{X}. For CH\textsubscript{4} combustion, the radicals encompass the entire reactor since the CH\textsubscript{4} needs more time to break down and the resulting CO also produces radicals over the reactor volume. Although the radicals cover a larger volume, they are in lower concentration than seen in the H\textsubscript{2} and H\textsubscript{2}/CO systems. This lower radical concentration is, however, overshadowed by the large contribution of the prompt mechanism, which is a result of the high equivalence ratio needed to overcome the heat loss and sustain 1800 K in the reactor.
Chapter 7

SUMMARY AND CONCLUSIONS

A high intensity, single-jet stirred reactor, JSR, is used to study both pollutant formation and resistance to blowout for CH$_4$ and the variety of gaseous fuel alternatives to CH$_4$ listed in Table 1.1. The JSR is intended to act as an idealized lean, premixed combustor. NO$_X$ measurements are taken at a nominal combustion temperature of 1800 K, atmospheric pressure, and a reactor residence time of 3 ms. This ensures that the results focus on the effect of fuel chemistry by removing temperature, residence time, and pressure as variables. Additionally, the effects of changing temperature and residence time are investigated for selected fuels.

7.1 Experiments

At the nominal temperature and residence time, the experimental results show the following trends for NO$_X$ emissions as a function of fuel category:

1. NO$_X$ emissions decrease for combustion of CH$_4$/H$_2$ blends with increasing H$_2$ fuel fraction.

2. For category 3 (the O$_2$ blown gasified coal/petcoke), NO$_X$ emissions decrease with increasing H$_2$ fuel fraction.

3. For category 2 (the process and refinery blend) and category 5 (the LNG, shale, and associated gases), NO$_X$ emissions increase with the addition of C$_2$ and C$_3$ hydrocarbons.
4. For category 4 (the landfill gas) the addition of diluents such as CO$_2$ and N$_2$ at constant air flow produces more NO$_X$ per kg of CH$_4$ consumed, and N$_2$ is more effective than CO$_2$ in increasing the NO$_X$ emission index.

At temperatures and residence times other than the nominal conditions, the experimental results show the following trends:

1. The NO$_X$ emissions from LPM combustion of pure CH$_4$, H$_2$, C$_2$H$_6$, and C$_3$H$_8$ are shown to be linear with residence time and exponential with temperature.

2. The addition of both H$_2$ and C$_2$H$_6$ to a LPM CH$_4$ flame is effective at extending its lean blowout limit.

7.2 **Modeling**

Both computational fluid dynamics (CFD) and chemical reactor network (CRN) models are used to predict, illustrate, and isolate the underlying chemical kinetic reasons for differences in emissions between selected fuel blends. In general, the modeling results have correlated well with measured data.

7.2.1 CRN Modeling

A 3-element CRN is constructed using insight from detailed spatial measurements of the reactor, the results of CFD simulations, and classical fluid dynamic correlations. Several chemical mechanisms are tested in the CRN, and GRI-Mech 3.0, a modification of GRI-Mech 3.0, and the C2-NOx mechanism prove to model the experimental data best within the CRN configuration. The CRN model performs well in predicting NO$_X$ emissions for LPM CH$_4$ flames at constant air flow rate and combustion temperatures between 1700 and 1800 K. As the combustion temperature/equivalence ratio increases, the model indicates that NO$_X$ formation increases mainly due to an
increase in the Zeldovich and prompt pathways. The CRN is employed to predict experimental trends observed when the composition of a mixture is varied.

For a LPM CH\textsubscript{4} flame diluted with N\textsubscript{2} and CO\textsubscript{2} held at a constant combustion temperature of 1800 K, the CRN model indicates that the increase in NO\textsubscript{X} emissions with increased dilution is due to an enhancement of the prompt NO\textsubscript{X} pathway. This is resulting from an increase in the CH radical concentration as the mixture moves towards stoichiometric. The model also suggests that both a smaller N\textsubscript{2} concentration and a preferential loss of free radicals due to CO\textsubscript{2} enhanced radical recombination, results in decreased NO\textsubscript{X} emissions for CO\textsubscript{2} dilution compared to N\textsubscript{2} dilution.

The CRN model predicts NO\textsubscript{X} emissions for a LPM CH\textsubscript{4}/H\textsubscript{2} flame with reasonable accuracy. The model follows the data up to about 80% H\textsubscript{2} in the fuel stream, then the model over predicts NO\textsubscript{X} as H\textsubscript{2} approaches 100%. The modeling suggests that a decrease in prompt NO\textsubscript{X} is the main reason for the decrease in NO\textsubscript{X} formation as the mixture moves from pure CH\textsubscript{4} to pure H\textsubscript{2}. The model also predicts an increase in NO\textsubscript{X} formation as the mixture nears 100% H\textsubscript{2} due to both the Zeldovich and N\textsubscript{2}O pathways. Mixtures with high concentrations of H\textsubscript{2} have been shown to be better represented by an alternative CRN composed of a PSB followed by a recirculating PFR with heat loss, than by the 3-element CRN. The modeling results from CH\textsubscript{4} combustion appear relatively insensitive to CRN configuration as long as the first element is a PSB. As the H\textsubscript{2} concentration in the fuel increases above 80%, artificially spreading the super-equilibrium flame zone around the entire reactor appears to cause the model to increase its NO\textsubscript{X} prediction. The CFD model for H\textsubscript{2} combustion shown in Chapter 6 suggests this alternative CRN as well.

Similar to the CH\textsubscript{4}/H\textsubscript{2} mix, for H\textsubscript{2}/CO combustion the alternative CRN predicts the NO\textsubscript{X} emissions for high H\textsubscript{2} mixes better than the 3-element CRN. The CRN configuration also becomes less sensitive to configuration when the CO concentration of the fuel is increased. For H\textsubscript{2}/CO combustion there is no prompt NO\textsubscript{X} due to the lack of hydrocarbon material. The model predicts that there is almost no NO\textsubscript{X}
production within the turbulent flame brush. The model predicts that as the volume fraction of CO in the fuel stream increases, the contributions of the N\(_2\)O, Zeldovich, and NNH pathways increase due to an increase in the concentration of O and H radicals. CO appears to produce more radicals per unit heat release than the other fuels studied.

As the CO concentration is increased in CH\(_4\)/CO fuel blends, NO\(_X\) emissions initially stay constant but then rise steeply after the CO concentration reaches about 60\%. The 3-element CRN is used to model these data. The model indicates that with increasing CO concentration, prompt NO\(_X\) decreases and the other three mechanisms increase to maintain emissions. After 60\% CO, the N\(_2\)O and Zeldovich pathways increase considerably due to a large increase in O atom.

Although the experiments indicate that NO\(_X\) emissions increase when C\(_2\)H\(_6\) replaces CH\(_4\) at the same combustion temperature, the model is not able to reproduce this trend. This may be due to inadequacies in the ability of the chemical kinetic model to replicate C\(_2\) and C\(_3\) behavior.

7.2.2 CFD Modeling

The two dimensional CFD simulations can spatially resolve both concentration fields and chemical production rates for free radicals and NO\(_X\) formation within the reactor. The results indicate that for H\(_2\) combustion, NO\(_X\) is primarily formed in and around the jet. CO addition to H\(_2\) causes radical fields to be pushed out further into the recirculation zone, which causes NO\(_X\) to be formed in a larger portion of the reactor; thus, increasing emissions. For CH\(_4\) combustion, the radical fields encompass a large portion of the reactor like the H\(_2\)/CO mix; however, there is an additional component of NO\(_X\) formation from the prompt pathway, which causes further increases in NO\(_X\) formation and emission. This largely appears near the jet, suggesting that in CH\(_4\) combustion, NO\(_X\) formation is a complex process involving both multiple mechanism and multiple locations in the reactor. Although the CFD simulations employing
the EDC model do a reasonably satisfactory job of predicting free radical and NO$_X$ formation, there are some shortcomings to the model. In particular, it predicts unrealistically high reaction rates in the near wall region, and it does not account for reaction rate in the fluid surrounding the fine scales in regions of low Damköhler number, resulting in an underprediction of reaction rates in the turbulent jet.

7.2.3 Reactor Heat Loss

The experimental JSR used in this study experiences about a 20% heat loss based on the LHV of the inlet fuel. We have shown that when burning fuels containing high concentrations of hydrocarbons in a high heat loss device, the prompt pathway becomes increasingly important because of the higher equivalence ratios necessary to maintain flame temperature. This effect is not observed for fuel mixes lacking hydrocarbons. This can help explain the discrepancy in the literature in regards to whether H$_2$ or CH$_4$ produces more NO$_X$ when the flame temperature is held constant. In high heat loss devices, the large increase in the productivity of the prompt mechanism causes CH$_4$ to produce more NO$_X$ than H$_2$. In large throughput, adiabatic combustion devices, the necessary equivalence ratios to maintain temperature are lower; thus the prompt mechanism is less important and H$_2$ produces more NO$_X$ than CH$_4$.

7.2.4 NO$_X$ Entitlement

CRN modeling shows that the combustor configuration that produces the lowest NO$_X$ emissions at a given flame temperature is a Bragg Cell with the initial PSR at blowout followed by a PFR. This indicates that the best combustor design has the smallest flame zone possible, regardless of fuel composition. The modeling results also show that for H$_2$ combustion, a flame zone that is slightly larger than blowout may produce significantly more NO$_X$ than if the flame zone is enlarged further. Since it is quite difficult to design a combustor with such a tight flame zone, it may be wise to design combustors that burn high H$_2$ fuels to have long, lazy flames. Also note that this
may explain why there is more scatter in the H$_2$ literature than in the CH$_4$ literature. The flame is more sensitive to the primary zone turbulent mixing intensity.

7.3 Implications for the Gaseous Fuel Interchangeability Criteria (GFIC)

The principal motivation for this work was the development of GFIC for fuels that differ in chemical composition from natural gas, or CH$_4$. Our first conclusion is that the complexity of chemistry of the various fuels does not appear to allow a single constant, such a a Wobbe index or another such number, to be used to characterize gas interchangeability. Instead, the more likely approach is to develop a methodology that involves both the specific fuel chemistry and the combustor configuration. Along these lines, the work presented here supports some conclusions on what needs to be included in such a methodology:

1. For LPM combustion of fuels containing no fuel bound N$_2$, NO$_X$ is formed through four distinct mechanisms: Zeldovich, N$_2$O, NNH, and prompt.

2. These mechanisms have different responses to temperature and stoichiometry, depending on fuel composition.

3. The prompt mechanism is absent from H$_2$ and CO combustion, but becomes increasingly important for hydrocarbon combustion as the equivalence ratio is increased. Our modeling shows that:

 (a) In high heat loss combustion devices, fuels with high hydrocarbon concentrations produce more NO$_X$ than fuels composed mainly of H$_2$ because of the large prompt contribution.

 (b) In near adiabatic devices, the prompt contribution is less significant; thus, fuels with large concentrations of H$_2$ produce more NO$_X$ than fuels composed mainly of hydrocarbons.
4. CO is a large promoter of radical chain branching, in particular when normalized to the heating value it brings to the combustor. A large CO concentration increases O and H radical production which in turn promotes NO$_X$ formation via the NNH, N$_2$O and Zeldovich pathways.

5. When C$_2$ and C$_3$ hydrocarbons are added to CH$_4$, NO$_X$ is seen to increase in this study and in every other study in the known literature.

6. When diluents are added to a hydrocarbon fuel, the equivalence ratio must increase to maintain flame temperature and more NO$_X$ can be expected due to the prompt mechanism. The presence of CO$_2$ as a diluent catalyzes the loss of flame radicals, leading to less NO$_X$ formation than when an equivalent amount of N$_2$ is used as a diluent.

7. The findings outlined above indicate that fuel interchangeability depends on fuel properties, combustor configuration, and combustion environment.

8. For LPM combustion, the main factors that define active NO$_X$ formation mechanisms and govern their relative importance include:

 (a) Fuels containing hydrocarbons and fuels composed of H$_2$ and CO that do not.

 (b) Fuels without and with diluents such as N$_2$ and CO$_2$.

 (c) Near adiabatic combustors versus combustors with high heat loss.

9. Appropriate CFD and CRN methodologies are shown to capture these effects.
BIBLIOGRAPHY

Appendix A

CO OXIDATION IN THE SAMPLE PROBE

As discussed in Chapter 6, a significant amount of CO oxidation may take place in the sample probe. In this section the modeled CO results are compared to experimental results for 4 different cases: the variable temperature CH$_4$ data presented in Section 5.3, CH$_4$ mixed with both CO$_2$ and N$_2$ as presented in Section 5.7.1, and CH$_4$ mixed H$_2$ as presented in Section 5.7.2. All of the data for the above mentioned studies is from the nominal sampling location (2 mm inside the wall) within the recirculation zone; thus, it should be reasonable to apply the 62% correction that was done in Chapter 6.

A.1 Variable temperature CH$_4$ Combustion

The modeled and measured data for the temperature study performed on CH$_4$ is shown below in Figure A.1.

![Figure A.1: CO concentrations as a function of temperature for CH$_4$ combustion](image-url)
As shown above, the correction is fairly accurate for higher temperatures, but it diverges at lower temperatures. This is potentially due to a lower OH concentration at low temperature.

A.2 CH\textsubscript{4} mixed with N\textsubscript{2}

The modeled and measured data for CH\textsubscript{4} mixed with N\textsubscript{2} is shown below in Figure A.2.

![Figure A.2: CO concentrations as a function of O\textsubscript{2} concentration in the exhaust for CH\textsubscript{4} mixed with N\textsubscript{2} combustion](image)

Similar to the results shown for pure CH\textsubscript{4} combustion, the 62% correction does a reasonably good job at predicting the measured CO data. It does a better job with pure CH\textsubscript{4} than it does at the highest level of N\textsubscript{2} dilution.

A.3 CH\textsubscript{4} mixed with CO\textsubscript{2}

The modeled and measured data for CH\textsubscript{4} mixed with CO\textsubscript{2} is shown below in Figure A.3. Unlike the previous two corrections, the 62% correction for the modeled CO considerably under predicts the data. In spite of this, the uncorrected model barely over predicts the data. We believe that the same chemical effect that is responsible for
less NO\textsubscript{X} production in the current study is responsible for this phenomena. Essentially, the high CO\textsubscript{2} concentration is balancing out the tendency for CO oxidation in the probe, which in turn causes the modeled and measured CO data to look similar. Note that the corrected model predicts pure CH\textsubscript{4} CO emission well, and this model diverges as more CO\textsubscript{2} is added to the system.

![Figure A.3: CO concentrations as a function of O\textsubscript{2} concentration in the exhaust for CH\textsubscript{4} mixed with CO\textsubscript{2} combustion](image)

A.4 CH\textsubscript{4} mixed with H\textsubscript{2}

The modeled and measured data for CH\textsubscript{4} mixed with CO\textsubscript{2} is shown below in Figure A.4. Like the variable temperature CH\textsubscript{4} data and the data shown for CH\textsubscript{4} mixed with N\textsubscript{2}, the corrected CO model predicts the data quite well. Similar to the results shown above, the correction does a better job at pure CH\textsubscript{4} than it does as H\textsubscript{2} is added to the system with the exception of pure H\textsubscript{2} of course.
The results shown above as well as the CFD results shown in Chapter 6 strongly suggest that there is a fairly significant amount of CO oxidation occurring in the sample probe. This most definitely needs to be further investigated.
Appendix B

EMISSION INDEX VS. CORRECTION TO 15% O\textsubscript{2}

When comparing emissions between fuels with large diluent composition, it is decided to express the emissions as an emission index since it removes ambiguity associated with O\textsubscript{2} content in the exhaust. However, it has been suggested that emission index may not be the best way to express the data [36]. The emissions index can be written as in Equation B.1, where: \(EI_{NO_X} \) is the Emission Index of NO\textsubscript{X} in (grams NO\textsubscript{X}/ kg fuel), \(X_{i,dry} \) is the measured dry mole fraction of species \(i \), \(N_{mix,dry} \) is the number of moles in a mixture, and \(MW_i \) is the molecular weight of species \(i \) in kg/kmole.

\[
EI_{NO_X} = \frac{X_{NO_X} MW_{NO_2} N_{mix,dry}}{MW_{fuel}} \tag{B.1}
\]

Recently, Elkady et al. have derived a NO\textsubscript{X} correction to 15% O\textsubscript{2} that is based on an oxidizer composed of O\textsubscript{2}, N\textsubscript{2}, and CO\textsubscript{2} as shown in Equation B.2, where \(x \) and \(y \) are the number of carbon and hydrogen moles in a hydrocarbon fuel \(C_xH_y \) and \(\alpha \), \(\beta \), \(\gamma \) are the mole fractions of O\textsubscript{2}, N\textsubscript{2}, and CO\textsubscript{2}, respectively [36]. This procedure in essence corrects the NO\textsubscript{X} concentration for both stoichiometry (to a common 15% O\textsubscript{2}) and for dilution (to 21% O\textsubscript{2} in the oxidant).

\[
C_xH_y + a(O_2 + \frac{\beta}{\alpha}N_2 + \frac{2}{\alpha}CO_2) \rightarrow (x + a\frac{2}{\alpha})CO_2 + \frac{y}{2}H_2O + bO_2 + a\frac{2}{\alpha}N_2 \tag{B.2}
\]

For CH\textsubscript{4} as the fuel, the revised NO\textsubscript{X} concentration corrected to 15% O\textsubscript{2} is given in Equation B.3 [36].

\[
X_{NO_X,15\%O_2} = X_{NO_X}(0.033231)(\frac{2-\alpha}{\alpha - X_{O_2}}) \tag{B.3}
\]
From Equation B.2, the number of moles in the dry product stream can be derived, which is shown in Equation B.4.

\[N_{\text{mix,dry}} = \frac{x + \frac{y}{4}(1 - X_{O_2,\text{dry}})}{\alpha - X_{O_2,\text{dry}}} - \frac{y}{4} \] (B.4)

For CH\textsubscript{4} as the fuel, Equations B.1 and B.4 can be combined as shown in Equation B.5, which is clearly a multiple of Equation B.3. Thus, the two approaches are equivalent in expressing NO\textsubscript{X} emissions, while removing the effects of both stoichiometry and dilution.

\[EI_{NOX} = \frac{X_{NOX}MW_{NO_2}}{MW_{fuel}} \left(\frac{2 - \alpha}{\alpha - X_{O_2}} \right) \] (B.5)

The above derivation was made possible after realizing that there is an error in Equation 2 in reference: [36]. The equation is multiplied by a factor of 0.0595 that should not be there.
Appendix C

THERMOCOUPLE CORRECTIONS

An R-type thermocouple (TC) has been used for all temperature measurements within the combustion chamber. Shown in the TC analysis by Lee [8], the measured TC temperature is less than the gas temperature mainly due to radiative losses to the colder reactor wall and reactor cold spots (the jet and drain holes). As shown in Equation C.1, heat can be transferred to the TC bead by the hot combustion gases and from the catalytic oxidation of CO at the Pt/Rh interface. Heat can be transferred away from the TC bead by conduction through the wires and sheath and radiation to the reactor wall and cold spots [8].

\[Q_{\text{conv}} + Q_{\text{cat}} = Q_{\text{rad}} + Q_{\text{cond}} \] \hspace{1cm} (C.1)

Lee shows that catalytic effects are negligible when a thin ceramic coating is applied to the bead [8]. Singh shows that conduction effects are negligible when small (\(<0.12\ \text{in. diameter}\)) TC wires are used. The R-type TC wires used in the present study were manufactured by Omega Engineering Inc., have a diameter of 0.01 in. and the specific part numbers are shown below in Table C.1.

<table>
<thead>
<tr>
<th>Material</th>
<th>Diameter (in)</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>100% Pt</td>
<td>0.01</td>
<td>SPPL-010</td>
</tr>
<tr>
<td>87% Pt/13% Rh</td>
<td>0.01</td>
<td>SP13RH-010</td>
</tr>
</tbody>
</table>

The TC bead is coated with a non-catalytic ceramic coating: Ceramabond 569. Both catalytic and conduction effects are neglected and the resulting heat transfer
balance is composed of convection and radiation only as shown in Equation C.2.

\[Q_{\text{conv}} = Q_{\text{rad}} \] \hspace{1cm} (C.2)

C.1 Convection

The convective term in Equation C.2 is given by Equation C.3, where:

- \(A_{\text{tip}} \) is the surface area of the TC bead, which is approximated as a sphere and is nominally 1 mm in diameter.
- \(h_{\text{tip}} \) is the convective heat transfer coefficient to the TC bead
- \(T_{\text{gas}} \) is the actual gas temperature.
- \(T_{\text{tip}} \) is the measured TC temperature.

\[Q_{\text{conv}} = A_{\text{tip}} \times h_{\text{tip}} \times (T_{\text{gas}} - T_{\text{tip}}) \] \hspace{1cm} (C.3)

The convective heat transfer coefficient, \(h_{\text{tip}} \), is given by Equation C.4, where:

- \(Nu_D \) is the Nusselt number for flow around a sphere.
- \(k_{\text{air}} \) is the thermal conductivity of air at the combustion gas temperature, \(T_{\text{gas}} \).
- \(D \) is diameter of the TC bead (nominally 1 mm).

\[h_{\text{tip}} = Nu_D \times \frac{k_{\text{air}}}{D} \] \hspace{1cm} (C.4)

The Nusselt number is given by Equation C.5 for flow around a sphere at Reynolds numbers between 17 and 70,000 [91], where:
• V is the bulk fluid velocity flowing over the TC bead, which is determined by CFD. It is 65 m/s at the nominal temperature measurement location.

• ν_{air} is the viscosity of air at the combustion gas temperature, T_{gas}.

$$Nu_D = 0.37 \times \left(\frac{V \times D}{\nu_{air}} \right)^{0.6}$$ \hspace{1cm} (C.5)

C.2 Radiation

Following an analysis by Lee [8], the three-body radiation interaction between the TC bead, the reactor wall, and the reactor cold spots is given in Equation C.6, where:

• σ is the Stefan-Boltzmann constant (5.67×10^{-8} W/m2K4),

• ε_{tip} is the emissivity of the TC tip.

• $F_{tip-wall,hot}$ and $F_{tip-wall,cold}$ are the view factors of the TC bead to the hot and cold portions of the reactor wall, respectively,

• $\varepsilon_{wall,hot}$ and $\varepsilon_{wall,cold}$ are the emissivities of the hot and cold portions of the reactor wall, respectively,

• $T_{wall,hot}$ and $T_{wall,cold}$ are the temperatures of the hot and cold portions of the reactor wall, respectively.

$$Q_{rad} = \sigma \times A_{tip} \times \varepsilon_{tip} \times \left[T_{tip}^4 \right.$$
\[- (F_{tip-wall,hot} \times \varepsilon_{wall,hot} \times T_{wall,hot}^4 + F_{tip-wall,cold} \times \varepsilon_{wall,cold} \times T_{wall,cold}^4) \left. \right] \hspace{1cm} (C.6)$$
From Lee [8], the estimated view factor of the TC bead to the cold reactor wall, $F_{tip-wall,cold}$, is 0.05; thus $F_{tip-wall,hot}$ is 0.95. The TC bead is assumed to be a small body in a large enclosure; thus both $\varepsilon_{wall,hot}$ and $\varepsilon_{wall,cold}$ are assumed to be unity. The average temperature of the cold spots on the reactor wall, $T_{wall,cold}$, is assumed to be 1000 K [8]. The average temperature of the reactor wall is calculated by 3D CFD to be between 1550 and 1475 K. The 2D CFD simulations calculate the wall temperature to be about 1400 K. When running at similar conditions (temperatures/pressures) to the experiments in this study, other JSR researchers measured the temperature of the 16cc JSR wall with an optical pyrometer to be 1563 K [54] and 1608 K [8], respectively. Given the wide range of measured and calculated wall temperatures and the uncertainties associated with both measuring the wall temperature with an optical pyrometer and calculating the wall temperature with CFD, it is decided to use a nominal value of $T_{wall,hot}$ equal to 1500 K. Lee measured the value of ε_{tip} by varying the emissivity setting on the optical pyrometer until the measured temperature by the TC was equal to the temperature measured by the pyrometer [8]. The measured value of ε_{tip} was 0.258, and this value is used in this study.
Appendix D

16 CC REACTOR SCANS

Table D.1: 100% CH₄

<table>
<thead>
<tr>
<th>Date</th>
<th>1/22/2010</th>
<th>Composition</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Phi</td>
<td>0.720</td>
<td>H₂</td>
<td>CO</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>position (mm)</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>T (K)</td>
<td>1427.2</td>
<td>1568.5</td>
<td>1625.1</td>
</tr>
<tr>
<td>CO (vol%)</td>
<td>0.47</td>
<td>0.95</td>
<td>0.62</td>
</tr>
<tr>
<td>CO₂ (vol%)</td>
<td>3.3</td>
<td>5.02</td>
<td>7.26</td>
</tr>
<tr>
<td>NOₓ (ppm)</td>
<td>5.05</td>
<td>7.58</td>
<td>10.2</td>
</tr>
</tbody>
</table>

Table D.2: Mix 1

<table>
<thead>
<tr>
<th>Date</th>
<th>1/24/2010</th>
<th>Composition</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Phi</td>
<td>0.607</td>
<td>H₂</td>
<td>CO</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>position (mm)</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>T (K)</td>
<td>1782.6</td>
<td>1797.9</td>
<td>1810.3</td>
</tr>
<tr>
<td>CO (vol%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CO₂ (vol%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>NOₓ (ppm)</td>
<td>5.86</td>
<td>6.06</td>
<td>6.46</td>
</tr>
</tbody>
</table>

Table D.3: Mix 2A

<table>
<thead>
<tr>
<th>Date</th>
<th>3/5/2010</th>
<th>Composition</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Phi</td>
<td>0.685</td>
<td>H2</td>
<td>CO</td>
<td>CH4</td>
<td>CO2</td>
<td>N2</td>
<td>C2H6</td>
<td>C3H8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.25</td>
<td>0</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
<td>0.25</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>position (mm)</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>T (K)</td>
<td>1360.5</td>
<td>1515.4</td>
<td>1643.4</td>
<td>1732</td>
<td>1786.2</td>
<td>1801.7</td>
<td>1800.6</td>
<td>1809.4</td>
<td>1810.5</td>
</tr>
<tr>
<td>O2 (vol%)</td>
<td>7.10</td>
<td>7.10</td>
<td>7.05</td>
<td>7.00</td>
<td>7.00</td>
<td>7.00</td>
<td>7.00</td>
<td>7.00</td>
<td>7.00</td>
</tr>
<tr>
<td>CO (vol%)</td>
<td>0.99</td>
<td>0.52</td>
<td>0.35</td>
<td>0.25</td>
<td>0.19</td>
<td>0.16</td>
<td>0.15</td>
<td>0.16</td>
<td>0.18</td>
</tr>
<tr>
<td>CO2 (vol%)</td>
<td>6.67</td>
<td>7.20</td>
<td>7.38</td>
<td>7.48</td>
<td>7.54</td>
<td>7.58</td>
<td>7.60</td>
<td>7.60</td>
<td>7.58</td>
</tr>
<tr>
<td>NOx (ppm)</td>
<td>7.88</td>
<td>9.90</td>
<td>10.86</td>
<td>10.86</td>
<td>11.11</td>
<td>11.11</td>
<td>11.36</td>
<td>11.36</td>
<td>11.11</td>
</tr>
</tbody>
</table>

Table D.4: Mix 2B

<table>
<thead>
<tr>
<th>Date</th>
<th>3/8/2010</th>
<th>Composition</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Phi</td>
<td>0.685</td>
<td>H2</td>
<td>CO</td>
<td>CH4</td>
<td>CO2</td>
<td>N2</td>
<td>C2H6</td>
<td>C3H8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.25</td>
<td>0</td>
<td>0.65</td>
<td>0</td>
<td>0</td>
<td>0.1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>position (mm)</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>T (K)</td>
<td>1465.6</td>
<td>1553.1</td>
<td>1608.9</td>
<td>1739.9</td>
<td>1780.6</td>
<td>1794.7</td>
<td>1802.2</td>
<td>1804.7</td>
<td>1806.7</td>
</tr>
<tr>
<td>O2 (vol%)</td>
<td>7.02</td>
<td>7.10</td>
<td>7.10</td>
<td>7.09</td>
<td>7.04</td>
<td>7.05</td>
<td>7.07</td>
<td>7.03</td>
<td>7.02</td>
</tr>
<tr>
<td>CO (vol%)</td>
<td>0.33</td>
<td>0.25</td>
<td>0.19</td>
<td>0.15</td>
<td>0.13</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
<td>0.12</td>
</tr>
<tr>
<td>CO2 (vol%)</td>
<td>7.18</td>
<td>7.18</td>
<td>7.23</td>
<td>7.27</td>
<td>7.30</td>
<td>7.29</td>
<td>7.29</td>
<td>7.31</td>
<td>7.30</td>
</tr>
<tr>
<td>NOx (ppm)</td>
<td>8.91</td>
<td>9.01</td>
<td>9.31</td>
<td>9.51</td>
<td>9.51</td>
<td>9.31</td>
<td>9.21</td>
<td>9.21</td>
<td>9.11</td>
</tr>
</tbody>
</table>

Table D.5: Mix 2C

<table>
<thead>
<tr>
<th>Date</th>
<th>3/1/2010</th>
<th>Composition</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Phi</td>
<td>0.668</td>
<td>H2</td>
<td>CO</td>
<td>CH4</td>
<td>CO2</td>
<td>N2</td>
<td>C2H6</td>
<td>C3H8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.55</td>
<td>0</td>
<td>0.35</td>
<td>0</td>
<td>0</td>
<td>0.1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>position (mm)</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>T (K)</td>
<td>1665.7</td>
<td>1693.3</td>
<td>1748.2</td>
<td>1782.7</td>
<td>1797.7</td>
<td>1802.2</td>
<td>1803.6</td>
<td>1804.1</td>
<td>1804.2</td>
</tr>
<tr>
<td>O2 (vol%)</td>
<td>7.54</td>
<td>7.52</td>
<td>7.57</td>
<td>7.55</td>
<td>7.56</td>
<td>7.58</td>
<td>7.56</td>
<td>7.56</td>
<td>7.52</td>
</tr>
<tr>
<td>CO (vol%)</td>
<td>0.25</td>
<td>0.19</td>
<td>0.14</td>
<td>0.11</td>
<td>0.09</td>
<td>0.08</td>
<td>0.07</td>
<td>0.08</td>
<td>0.08</td>
</tr>
<tr>
<td>NOx (ppm)</td>
<td>7.98</td>
<td>8.48</td>
<td>8.48</td>
<td>8.48</td>
<td>8.38</td>
<td>8.38</td>
<td>8.38</td>
<td>8.28</td>
<td>8.18</td>
</tr>
</tbody>
</table>

Table D.6: Mix 3

<table>
<thead>
<tr>
<th>Date</th>
<th>2/3/2010</th>
<th>Composition</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Phi</td>
<td>0.57</td>
<td>H2</td>
<td>CO</td>
<td>CH4</td>
<td>CO2</td>
<td>N2</td>
<td>C2H6</td>
<td>C3H8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.4</td>
<td>0.5</td>
<td>0</td>
<td>0.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>position (mm)</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>T (K)</td>
<td>1727.4</td>
<td>1766.3</td>
<td>1783.8</td>
<td>1792.6</td>
<td>1796.2</td>
<td>1798.7</td>
<td>1800.1</td>
<td>1802.1</td>
<td>1804.4</td>
</tr>
<tr>
<td>O2 (vol%)</td>
<td>9.02</td>
<td>9.02</td>
<td>9.02</td>
<td>9.02</td>
<td>8.97</td>
<td>8.97</td>
<td>8.92</td>
<td>8.92</td>
<td>8.92</td>
</tr>
<tr>
<td>CO (vol%)</td>
<td>0.78</td>
<td>0.65</td>
<td>0.50</td>
<td>0.35</td>
<td>0.27</td>
<td>0.23</td>
<td>0.21</td>
<td>0.20</td>
<td>0.20</td>
</tr>
<tr>
<td>CO2 (vol%)</td>
<td>10.98</td>
<td>11.09</td>
<td>11.23</td>
<td>11.39</td>
<td>11.42</td>
<td>11.47</td>
<td>11.51</td>
<td>11.51</td>
<td>11.47</td>
</tr>
</tbody>
</table>

172
Table D.7: Mix 4A

<table>
<thead>
<tr>
<th>Date</th>
<th>2/10/2010</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phi</td>
<td>0.816</td>
<td>H2</td>
</tr>
<tr>
<td>position (mm)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T (K)</td>
<td>1257.3</td>
<td>1334.5</td>
</tr>
<tr>
<td>O2 (vol%)</td>
<td>12.23</td>
<td>9.82</td>
</tr>
<tr>
<td>CO (vol%)</td>
<td>0.51</td>
<td>0.87</td>
</tr>
</tbody>
</table>

Table D.8: Mix 4B

<table>
<thead>
<tr>
<th>Date</th>
<th>1/22/2010</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phi</td>
<td>0.838</td>
<td>H2</td>
</tr>
<tr>
<td>position (mm)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T (K)</td>
<td>1437.9</td>
<td>1584.2</td>
</tr>
<tr>
<td>O2 (vol%)</td>
<td>11.83</td>
<td>7.52</td>
</tr>
<tr>
<td>CO (vol%)</td>
<td>0.60</td>
<td>1.24</td>
</tr>
<tr>
<td>CO2 (vol%)</td>
<td>10.96</td>
<td>12.80</td>
</tr>
</tbody>
</table>

Table D.9: Mix 4C

<table>
<thead>
<tr>
<th>Date</th>
<th>1/31/2010</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phi</td>
<td>0.816</td>
<td>H2</td>
</tr>
<tr>
<td>position (mm)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T (K)</td>
<td>1287.8</td>
<td>1431.6</td>
</tr>
<tr>
<td>O2 (vol%)</td>
<td>11.37</td>
<td>8.78</td>
</tr>
<tr>
<td>CO (vol%)</td>
<td>0.42</td>
<td>0.76</td>
</tr>
<tr>
<td>CO2 (vol%)</td>
<td>2.95</td>
<td>3.90</td>
</tr>
</tbody>
</table>

Table D.10: Mix 5A

<table>
<thead>
<tr>
<th>Date</th>
<th>3/5/2010</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phi</td>
<td>0.710</td>
<td>H2</td>
</tr>
<tr>
<td>position (mm)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T (K)</td>
<td>1282.5</td>
<td>1431.5</td>
</tr>
<tr>
<td>O2 (vol%)</td>
<td>12.10</td>
<td>7.00</td>
</tr>
<tr>
<td>CO (vol%)</td>
<td>0.61</td>
<td>0.92</td>
</tr>
<tr>
<td>CO2 (vol%)</td>
<td>3.22</td>
<td>6.68</td>
</tr>
<tr>
<td>NOx (ppm)</td>
<td>5.25</td>
<td>9.19</td>
</tr>
</tbody>
</table>
Table D.11: Mix 5B

<table>
<thead>
<tr>
<th>Date</th>
<th>4/7/2010</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phi</td>
<td>0.713</td>
<td>H2 0 CO 0 CH4 0.85 CO2 0 N2 0 C2H6 0.15 C3H8 0</td>
</tr>
<tr>
<td>position (mm)</td>
<td>0 1 2 3 4 5 6 7 8 9 10 11 12</td>
<td></td>
</tr>
<tr>
<td>T (K)</td>
<td>1237.2 1376.5 1568.6 1697.3 1767.3 1792 1801 1803.4 1805.6 1807.2 1809.6 1811 1804.5</td>
<td></td>
</tr>
<tr>
<td>O2 (vol%)</td>
<td>7.58 6.98 6.88 6.78 6.78 6.78 6.78 6.78 6.78</td>
<td></td>
</tr>
<tr>
<td>CO (vol%)</td>
<td>0.92 0.78 0.43 0.29 0.23 0.20 0.18 0.18 0.19 0.21 0.22 0.23 0.24</td>
<td></td>
</tr>
<tr>
<td>CO2 (vol%)</td>
<td>3.62 7.21 7.65 7.79 7.88 7.90 7.92 7.89 7.87 7.88 7.85 7.84</td>
<td></td>
</tr>
<tr>
<td>NOx (ppm)</td>
<td>5.30 7.80 10.40 11.20 11.50 11.70 11.70 11.70 11.70 11.45 11.45 11.35 11.20</td>
<td></td>
</tr>
</tbody>
</table>

Table D.12: Mix 5C

<table>
<thead>
<tr>
<th>Date</th>
<th>3/7/2010</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phi</td>
<td>0.702</td>
<td>H2 0 CO 0.75 CH4 0 CO2 0 N2 0 C2H6 0.25 C3H8 0</td>
</tr>
<tr>
<td>position (mm)</td>
<td>0 1 2 3 4 5 6 7 8 9 10 11 12</td>
<td></td>
</tr>
<tr>
<td>T (K)</td>
<td>1293.5 1434.4 1592.5 1706.3 1768.1 1788.8 1796.3 1800.3 1801.6 1803.3 1805.9 1805.4 1796.8</td>
<td></td>
</tr>
<tr>
<td>O2 (vol%)</td>
<td>7.1 7 7 6.9 6.9 6.9 6.9 6.9 6.9</td>
<td></td>
</tr>
<tr>
<td>CO (vol%)</td>
<td>1.26 0.69 0.41 0.29 0.22 0.19 0.18 0.18 0.19 0.21 0.22 0.24 0.25</td>
<td></td>
</tr>
<tr>
<td>CO2 (vol%)</td>
<td>3.85 7.41 7.75 7.85 7.93 7.98 7.98 7.98 7.95 7.93 7.93 7.89 7.87</td>
<td></td>
</tr>
</tbody>
</table>
Appendix E
PARAMETER STUDIES
Table E.1: Parameter Studies

<table>
<thead>
<tr>
<th>% CH4</th>
<th>% CO2</th>
<th>Phi</th>
<th>Temperature (K)</th>
<th>CO (vol%)</th>
<th>CO2 (vol%)</th>
<th>O2 (vol%)</th>
<th>NOx (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100.0%</td>
<td>0.0%</td>
<td>0.71</td>
<td>1800.3</td>
<td>0.171</td>
<td>7.82</td>
<td>6.4</td>
<td>11.25</td>
</tr>
<tr>
<td>90.1%</td>
<td>9.9%</td>
<td>0.72</td>
<td>1799.96</td>
<td>0.19</td>
<td>8.66</td>
<td>6.24</td>
<td>11</td>
</tr>
<tr>
<td>80.0%</td>
<td>20.0%</td>
<td>0.73</td>
<td>1800.64</td>
<td>0.232</td>
<td>9.72</td>
<td>6.2</td>
<td>11</td>
</tr>
<tr>
<td>70.1%</td>
<td>29.9%</td>
<td>0.74</td>
<td>1800.84</td>
<td>0.278</td>
<td>11.05</td>
<td>5.98</td>
<td>11.5</td>
</tr>
<tr>
<td>60.1%</td>
<td>39.9%</td>
<td>0.76</td>
<td>1800.42</td>
<td>0.366</td>
<td>13</td>
<td>5.26</td>
<td>12</td>
</tr>
<tr>
<td>50.0%</td>
<td>50.0%</td>
<td>0.81</td>
<td>1800.9</td>
<td>0.542</td>
<td>15.74</td>
<td>4.24</td>
<td>12.75</td>
</tr>
<tr>
<td>45.0%</td>
<td>55.0%</td>
<td>0.85</td>
<td>1801.11</td>
<td>0.744</td>
<td>17.85</td>
<td>3.5</td>
<td>13.5</td>
</tr>
<tr>
<td>40.0%</td>
<td>60.0%</td>
<td>0.92</td>
<td>1801.24</td>
<td>1.334</td>
<td>20.97</td>
<td>2.32</td>
<td>15.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>% CH4</th>
<th>% N2</th>
<th>Phi</th>
<th>Temperature (K)</th>
<th>CO (vol%)</th>
<th>CO2 (vol%)</th>
<th>O2 (vol%)</th>
<th>NOx (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100.0%</td>
<td>0.0%</td>
<td>0.71</td>
<td>1800.43</td>
<td>0.171</td>
<td>7.82</td>
<td>6.4</td>
<td>11.25</td>
</tr>
<tr>
<td>90.1%</td>
<td>9.9%</td>
<td>0.72</td>
<td>1799.73</td>
<td>0.156</td>
<td>7.84</td>
<td>6.25</td>
<td>11.5</td>
</tr>
<tr>
<td>79.9%</td>
<td>20.1%</td>
<td>0.73</td>
<td>1800.92</td>
<td>0.163</td>
<td>7.87</td>
<td>5.96</td>
<td>12</td>
</tr>
<tr>
<td>69.9%</td>
<td>30.1%</td>
<td>0.74</td>
<td>1801.3</td>
<td>0.172</td>
<td>7.87</td>
<td>5.7</td>
<td>12.25</td>
</tr>
<tr>
<td>60.0%</td>
<td>40.0%</td>
<td>0.75</td>
<td>1799.88</td>
<td>0.18</td>
<td>7.86</td>
<td>5.24</td>
<td>12.5</td>
</tr>
<tr>
<td>50.0%</td>
<td>50.0%</td>
<td>0.77</td>
<td>1801.3</td>
<td>0.2</td>
<td>7.83</td>
<td>4.6</td>
<td>13.5</td>
</tr>
<tr>
<td>40.1%</td>
<td>59.9%</td>
<td>0.8</td>
<td>1801.61</td>
<td>0.234</td>
<td>7.78</td>
<td>3.85</td>
<td>14.5</td>
</tr>
<tr>
<td>34.8%</td>
<td>65.2%</td>
<td>0.83</td>
<td>1801.11</td>
<td>0.263</td>
<td>7.76</td>
<td>3.14</td>
<td>16.25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>% CH4</th>
<th>% H2</th>
<th>Phi</th>
<th>Temperature (K)</th>
<th>CO (vol%)</th>
<th>CO2 (vol%)</th>
<th>O2 (vol%)</th>
<th>NOx (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100.0%</td>
<td>0.0%</td>
<td>0.71</td>
<td>1801.1</td>
<td>0.141</td>
<td>7.66</td>
<td>6.68</td>
<td>11.5</td>
</tr>
<tr>
<td>89.9%</td>
<td>10.1%</td>
<td>0.74</td>
<td>1800.3</td>
<td>0.129</td>
<td>7.43</td>
<td>6.77</td>
<td>11</td>
</tr>
<tr>
<td>80.1%</td>
<td>19.9%</td>
<td>0.73</td>
<td>1800.3</td>
<td>0.117</td>
<td>7.18</td>
<td>6.86</td>
<td>10.5</td>
</tr>
<tr>
<td>70.1%</td>
<td>29.9%</td>
<td>0.72</td>
<td>1800.5</td>
<td>0.103</td>
<td>6.84</td>
<td>7.02</td>
<td>10</td>
</tr>
<tr>
<td>60.1%</td>
<td>39.9%</td>
<td>0.71</td>
<td>1800.4</td>
<td>0.09</td>
<td>6.48</td>
<td>7.18</td>
<td>9.7</td>
</tr>
<tr>
<td>50.0%</td>
<td>50.0%</td>
<td>0.7</td>
<td>1800.3</td>
<td>0.076</td>
<td>6</td>
<td>7.4</td>
<td>9.2</td>
</tr>
<tr>
<td>40.0%</td>
<td>60.0%</td>
<td>0.69</td>
<td>1800.2</td>
<td>0.061</td>
<td>5.36</td>
<td>7.68</td>
<td>8.8</td>
</tr>
<tr>
<td>29.9%</td>
<td>76.1%</td>
<td>0.69</td>
<td>1800.5</td>
<td>0.046</td>
<td>4.52</td>
<td>7.99</td>
<td>8.1</td>
</tr>
<tr>
<td>19.9%</td>
<td>89.1%</td>
<td>0.69</td>
<td>1800.4</td>
<td>0.032</td>
<td>3.66</td>
<td>8.44</td>
<td>7.7</td>
</tr>
<tr>
<td>10.0%</td>
<td>90.0%</td>
<td>0.59</td>
<td>1800.4</td>
<td>0.018</td>
<td>2.4</td>
<td>8.91</td>
<td>7.2</td>
</tr>
<tr>
<td>0.0%</td>
<td>100.0%</td>
<td>0.59</td>
<td>1800.4</td>
<td>0.0</td>
<td>0</td>
<td>9.82</td>
<td>6.86</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>% CH4</th>
<th>% CO</th>
<th>Phi</th>
<th>Temperature (K)</th>
<th>CO (vol%)</th>
<th>CO2 (vol%)</th>
<th>O2 (vol%)</th>
<th>NOx (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100.0%</td>
<td>0.0%</td>
<td>0.72</td>
<td>1801.2</td>
<td>0.203</td>
<td>7.7</td>
<td>6.56</td>
<td>11.5</td>
</tr>
<tr>
<td>90.1%</td>
<td>9.9%</td>
<td>0.72</td>
<td>1801.5</td>
<td>0.218</td>
<td>8.16</td>
<td>6.62</td>
<td>12</td>
</tr>
<tr>
<td>79.9%</td>
<td>20.1%</td>
<td>0.71</td>
<td>1801.6</td>
<td>0.236</td>
<td>8.73</td>
<td>6.73</td>
<td>12.25</td>
</tr>
<tr>
<td>70.2%</td>
<td>29.8%</td>
<td>0.7</td>
<td>1801.2</td>
<td>0.257</td>
<td>9.34</td>
<td>6.87</td>
<td>12</td>
</tr>
<tr>
<td>59.6%</td>
<td>40.4%</td>
<td>0.68</td>
<td>1801.8</td>
<td>0.288</td>
<td>10.11</td>
<td>6.94</td>
<td>11.75</td>
</tr>
<tr>
<td>49.6%</td>
<td>50.4%</td>
<td>0.67</td>
<td>1801.7</td>
<td>0.324</td>
<td>10.96</td>
<td>7.06</td>
<td>12</td>
</tr>
<tr>
<td>40.1%</td>
<td>59.9%</td>
<td>0.66</td>
<td>1801.6</td>
<td>0.373</td>
<td>11.92</td>
<td>7.23</td>
<td>12.25</td>
</tr>
<tr>
<td>29.9%</td>
<td>76.1%</td>
<td>0.64</td>
<td>1801.4</td>
<td>0.452</td>
<td>13.17</td>
<td>7.42</td>
<td>13</td>
</tr>
<tr>
<td>20.0%</td>
<td>80.0%</td>
<td>0.62</td>
<td>1801.7</td>
<td>0.61</td>
<td>14.79</td>
<td>7.51</td>
<td>14.5</td>
</tr>
<tr>
<td>9.9%</td>
<td>90.1%</td>
<td>0.6</td>
<td>1801.5</td>
<td>0.924</td>
<td>16.93</td>
<td>7.72</td>
<td>19</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>% CH4</th>
<th>% C2H6</th>
<th>Phi</th>
<th>Temperature (K)</th>
<th>CO (vol%)</th>
<th>CO2 (vol%)</th>
<th>O2 (vol%)</th>
<th>NOx (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100.0%</td>
<td>0.0%</td>
<td>0.7</td>
<td>1799</td>
<td>0.197</td>
<td>7.41</td>
<td>6.98</td>
<td>11</td>
</tr>
<tr>
<td>90.0%</td>
<td>10.0%</td>
<td>0.7</td>
<td>1800.5</td>
<td>0.204</td>
<td>7.54</td>
<td>7</td>
<td>11.5</td>
</tr>
<tr>
<td>79.9%</td>
<td>20.1%</td>
<td>0.69</td>
<td>1800</td>
<td>0.212</td>
<td>7.64</td>
<td>7.1</td>
<td>12</td>
</tr>
<tr>
<td>70.0%</td>
<td>30.0%</td>
<td>0.69</td>
<td>1800.3</td>
<td>0.216</td>
<td>7.75</td>
<td>7.15</td>
<td>12.25</td>
</tr>
<tr>
<td>60.0%</td>
<td>40.0%</td>
<td>0.69</td>
<td>1800.5</td>
<td>0.219</td>
<td>7.83</td>
<td>7.2</td>
<td>12.5</td>
</tr>
<tr>
<td>50.0%</td>
<td>50.0%</td>
<td>0.69</td>
<td>1800.6</td>
<td>0.222</td>
<td>7.9</td>
<td>7.25</td>
<td>12.75</td>
</tr>
<tr>
<td>39.9%</td>
<td>60.1%</td>
<td>0.69</td>
<td>1801</td>
<td>0.228</td>
<td>7.96</td>
<td>7.3</td>
<td>13</td>
</tr>
<tr>
<td>29.9%</td>
<td>70.1%</td>
<td>0.69</td>
<td>1801</td>
<td>0.232</td>
<td>8</td>
<td>7.35</td>
<td>13.25</td>
</tr>
<tr>
<td>19.9%</td>
<td>80.1%</td>
<td>0.68</td>
<td>1801</td>
<td>0.241</td>
<td>8.05</td>
<td>7.4</td>
<td>13.5</td>
</tr>
<tr>
<td>10.3%</td>
<td>89.7%</td>
<td>0.68</td>
<td>1801</td>
<td>0.247</td>
<td>8.1</td>
<td>7.42</td>
<td>13.75</td>
</tr>
<tr>
<td>0.0%</td>
<td>100.0%</td>
<td>0.69</td>
<td>1801.2</td>
<td>0.254</td>
<td>8.14</td>
<td>7.42</td>
<td>14</td>
</tr>
</tbody>
</table>
Appendix F

TEMPERATURE VARIATION
Table F.1: Temperature Variations for Pure Fuels

<table>
<thead>
<tr>
<th></th>
<th>CH4</th>
<th>C2H6</th>
<th>C3H8</th>
<th>H2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phi</td>
<td>Temperature (K)</td>
<td>CO (vol%)</td>
<td>CO2 (vol%)</td>
<td>O2 (vol%)</td>
</tr>
<tr>
<td>0.71</td>
<td>1805.1</td>
<td>0.244</td>
<td>7.88</td>
<td>6.8</td>
</tr>
<tr>
<td>0.7</td>
<td>1787.7</td>
<td>0.239</td>
<td>7.68</td>
<td>7.1</td>
</tr>
<tr>
<td>0.69</td>
<td>1777</td>
<td>0.238</td>
<td>7.57</td>
<td>7.3</td>
</tr>
<tr>
<td>0.68</td>
<td>1763.6</td>
<td>0.234</td>
<td>7.45</td>
<td>7.5</td>
</tr>
<tr>
<td>0.67</td>
<td>1751.7</td>
<td>0.233</td>
<td>7.33</td>
<td>7.6</td>
</tr>
<tr>
<td>0.66</td>
<td>1736.3</td>
<td>0.236</td>
<td>7.18</td>
<td>7.9</td>
</tr>
<tr>
<td>0.65</td>
<td>1725.2</td>
<td>0.24</td>
<td>7.18</td>
<td>8.1</td>
</tr>
<tr>
<td>0.64</td>
<td>1708.4</td>
<td>0.246</td>
<td>7.05</td>
<td>8.4</td>
</tr>
<tr>
<td>0.61</td>
<td>1708.1</td>
<td>0.119</td>
<td>7.31</td>
<td>8.64</td>
</tr>
<tr>
<td>0.60</td>
<td>1698.4</td>
<td>0</td>
<td>0</td>
<td>9.75</td>
</tr>
<tr>
<td>0.59</td>
<td>1701.5</td>
<td>0</td>
<td>0</td>
<td>10.01</td>
</tr>
<tr>
<td>0.57</td>
<td>1761</td>
<td>0</td>
<td>0</td>
<td>10.32</td>
</tr>
<tr>
<td>0.55</td>
<td>1734.6</td>
<td>0</td>
<td>0</td>
<td>10.63</td>
</tr>
<tr>
<td>0.54</td>
<td>1708.2</td>
<td>0</td>
<td>0</td>
<td>10.96</td>
</tr>
</tbody>
</table>
64 CC JSR

Table G.1: A summary of the experimental tests conducted on the 64 cc JSR

<table>
<thead>
<tr>
<th>Mixture</th>
<th>Composition</th>
<th>1490 C (1800 K)*</th>
<th>1400 C (1790 K)*</th>
<th>1300 C (1590 K)*</th>
<th>Blow Out (deg C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100% CH₄</td>
<td>10</td>
<td>5</td>
<td>NA</td>
<td>1337</td>
</tr>
<tr>
<td>1</td>
<td>55% CH₄, 30% C₂H₆, 15% C₃H₁₀</td>
<td>4</td>
<td>NA</td>
<td>NA</td>
<td>1417</td>
</tr>
<tr>
<td>2</td>
<td>74% CH₄, 18% C₂H₆, 8% C₃H₁₀</td>
<td>4</td>
<td>2</td>
<td>NA</td>
<td>1387</td>
</tr>
<tr>
<td>3</td>
<td>80% CH₄, 20% C₂H₆</td>
<td>7</td>
<td>3</td>
<td>NA</td>
<td>1367</td>
</tr>
<tr>
<td>4</td>
<td>75% CH₄, 5% C₂H₆, 15% CO₂, 5% N₂</td>
<td>4</td>
<td>2</td>
<td>NA</td>
<td>1363</td>
</tr>
<tr>
<td>5</td>
<td>65% CH₄, 5% CO₂, 30% H₂</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>1140</td>
</tr>
<tr>
<td>6</td>
<td>45% CH₄, 5% CO₂, 50% H₂</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>1010</td>
</tr>
<tr>
<td>7</td>
<td>75% CH₄, 25% CO₂</td>
<td>5</td>
<td>3</td>
<td>NA</td>
<td>1352</td>
</tr>
<tr>
<td>8</td>
<td>65% CH₄, 25% CO₂, 10% CO</td>
<td>4</td>
<td>2</td>
<td>NA</td>
<td>1373</td>
</tr>
<tr>
<td>9</td>
<td>50% CH₄, 50% CO₂</td>
<td>5</td>
<td>3</td>
<td>NA</td>
<td>1368</td>
</tr>
<tr>
<td>10</td>
<td>25% CH₄, 10% CO₂, 54% H₂, 11% CO</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1086</td>
</tr>
<tr>
<td>11</td>
<td>10% CH₄, 32% H₂, 58% CO</td>
<td>1</td>
<td>x</td>
<td>1</td>
<td>1205</td>
</tr>
<tr>
<td>12</td>
<td>100% C₃H₈</td>
<td>5</td>
<td>NA</td>
<td>NA</td>
<td>1418</td>
</tr>
</tbody>
</table>
Table G.2: Mixture 0

<table>
<thead>
<tr>
<th>Date</th>
<th>tau (ms)</th>
<th>MW</th>
<th>C</th>
<th>H</th>
<th>O</th>
<th>C/H ratio</th>
<th>stoich F/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/22/2007</td>
<td>3.98</td>
<td>16.043</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>0.25</td>
<td>0.058</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R (mm)</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>14</th>
<th>16</th>
<th>18</th>
<th>20</th>
<th>22</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOx ppm</td>
<td>1.53</td>
<td>4.49</td>
<td>7.34</td>
<td>8.16</td>
<td>8.65</td>
<td>8.82</td>
<td>8.83</td>
<td>8.86</td>
<td>8.8</td>
<td>8.85</td>
<td>8.89</td>
<td>8.89</td>
</tr>
<tr>
<td>CO %</td>
<td>0.44</td>
<td>1.02</td>
<td>0.95</td>
<td>0.47</td>
<td>0.26</td>
<td>0.15</td>
<td>0.1</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
<td>0.09</td>
</tr>
<tr>
<td>CO2 %</td>
<td>1.19</td>
<td>3.28</td>
<td>5.79</td>
<td>6.81</td>
<td>7.1</td>
<td>7.2</td>
<td>7.24</td>
<td>7.26</td>
<td>7.25</td>
<td>7.25</td>
<td>7.25</td>
<td>7.25</td>
</tr>
<tr>
<td>NOx - 15% O2 ppm</td>
<td>2.73</td>
<td>3.34</td>
<td>3.71</td>
<td>3.86</td>
<td>4.06</td>
<td>4.11</td>
<td>4.11</td>
<td>4.12</td>
<td>4.12</td>
<td>4.12</td>
<td>4.14</td>
<td>4.14</td>
</tr>
<tr>
<td>T (K)</td>
<td>860.5</td>
<td>951</td>
<td>1326</td>
<td>1600.5</td>
<td>1725.7</td>
<td>1769.4</td>
<td>1778.7</td>
<td>1782.4</td>
<td>1783.9</td>
<td>1789.6</td>
<td>1800.5</td>
<td>1808.2</td>
</tr>
</tbody>
</table>

Table G.3: Mixture 1

<table>
<thead>
<tr>
<th>Date</th>
<th>tau (ms)</th>
<th>MW</th>
<th>C</th>
<th>H</th>
<th>O</th>
<th>C/H ratio</th>
<th>stoich F/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/13/2007</td>
<td>4.16</td>
<td>30.77</td>
<td>2.05</td>
<td>6.1</td>
<td>0</td>
<td>0.3361</td>
<td>0.0625</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R (mm)</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>14</th>
<th>16</th>
<th>18</th>
<th>20</th>
<th>22</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOx ppm</td>
<td>2.03</td>
<td>3.96</td>
<td>6.29</td>
<td>7.41</td>
<td>8.12</td>
<td>8.53</td>
<td>8.93</td>
<td>9.54</td>
<td>10.56</td>
<td>10.35</td>
<td>9.95</td>
<td>9.54</td>
</tr>
<tr>
<td>CO %</td>
<td>0.85</td>
<td>1.97</td>
<td>1.38</td>
<td>0.92</td>
<td>0.63</td>
<td>0.47</td>
<td>0.35</td>
<td>0.26</td>
<td>0.12</td>
<td>0.09</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>CO2 %</td>
<td>1.01</td>
<td>3.91</td>
<td>6.23</td>
<td>6.98</td>
<td>7.31</td>
<td>7.46</td>
<td>7.60</td>
<td>7.70</td>
<td>7.89</td>
<td>7.90</td>
<td>7.90</td>
<td>7.88</td>
</tr>
<tr>
<td>O2 %</td>
<td>11.42</td>
<td>9.19</td>
<td>8.98</td>
<td>8.78</td>
<td>8.63</td>
<td>8.58</td>
<td>8.58</td>
<td>8.58</td>
<td>8.43</td>
<td>8.43</td>
<td>8.43</td>
<td>8.48</td>
</tr>
<tr>
<td>NOx - 15% O2 ppm</td>
<td>1.21</td>
<td>1.85</td>
<td>2.96</td>
<td>3.49</td>
<td>3.82</td>
<td>4.02</td>
<td>4.24</td>
<td>4.54</td>
<td>4.99</td>
<td>4.90</td>
<td>4.71</td>
<td>4.53</td>
</tr>
<tr>
<td>T (K)</td>
<td>916.8</td>
<td>1056.3</td>
<td>1163.3</td>
<td>1296.9</td>
<td>1428.6</td>
<td>1552.0</td>
<td>1641.7</td>
<td>1701.9</td>
<td>1782.0</td>
<td>1792.6</td>
<td>1797.6</td>
<td>1808.9</td>
</tr>
</tbody>
</table>

Table G.4: Mixture 2

<table>
<thead>
<tr>
<th>Date</th>
<th>tau (ms)</th>
<th>MW</th>
<th>C</th>
<th>H</th>
<th>O</th>
<th>C/H ratio</th>
<th>stoich F/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/19/2007</td>
<td>4.19</td>
<td>24.46</td>
<td>1.60</td>
<td>5.20</td>
<td>0.00</td>
<td>0.3077</td>
<td>0.0613</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R (mm)</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>14</th>
<th>16</th>
<th>18</th>
<th>20</th>
<th>22</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOx ppm</td>
<td>1.82</td>
<td>3.33</td>
<td>5.45</td>
<td>6.67</td>
<td>7.37</td>
<td>7.88</td>
<td>8.58</td>
<td>9.29</td>
<td>9.90</td>
<td>9.58</td>
<td>9.29</td>
<td>9.09</td>
</tr>
<tr>
<td>CO %</td>
<td>0.65</td>
<td>1.49</td>
<td>1.54</td>
<td>0.98</td>
<td>0.67</td>
<td>0.46</td>
<td>0.33</td>
<td>0.25</td>
<td>0.11</td>
<td>0.09</td>
<td>0.08</td>
<td>0.10</td>
</tr>
<tr>
<td>CO2 %</td>
<td>1.01</td>
<td>3.78</td>
<td>5.51</td>
<td>6.65</td>
<td>7.01</td>
<td>7.27</td>
<td>7.40</td>
<td>7.55</td>
<td>7.68</td>
<td>7.69</td>
<td>7.67</td>
<td>7.63</td>
</tr>
<tr>
<td>O2 %</td>
<td>16.89</td>
<td>9.90</td>
<td>8.88</td>
<td>8.78</td>
<td>8.68</td>
<td>8.58</td>
<td>8.48</td>
<td>8.38</td>
<td>8.32</td>
<td>8.38</td>
<td>8.38</td>
<td>8.38</td>
</tr>
<tr>
<td>NOx - 15% O2 ppm</td>
<td>2.42</td>
<td>1.68</td>
<td>2.53</td>
<td>3.13</td>
<td>3.48</td>
<td>3.72</td>
<td>4.04</td>
<td>4.35</td>
<td>4.66</td>
<td>4.31</td>
<td>4.38</td>
<td>4.28</td>
</tr>
<tr>
<td>T (K)</td>
<td>918.4</td>
<td>1041.3</td>
<td>1149.8</td>
<td>1293.3</td>
<td>1427.3</td>
<td>1543.9</td>
<td>1630.3</td>
<td>1689.9</td>
<td>1778.8</td>
<td>1789.7</td>
<td>1797.2</td>
<td>1808.1</td>
</tr>
</tbody>
</table>
Table G.5: Mixture 3

<table>
<thead>
<tr>
<th>Date</th>
<th>tau (ms)</th>
<th>MW</th>
<th>C</th>
<th>H</th>
<th>O</th>
<th>C/H ratio</th>
<th>stoich F/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/23/2007</td>
<td>3.95</td>
<td>21.68</td>
<td>1.49</td>
<td>4.80</td>
<td>0.00</td>
<td>0.2918</td>
<td>0.0605</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R (mm)</th>
<th>NOx ppm</th>
<th>CO %</th>
<th>CO2 %</th>
<th>O2 %</th>
<th>NOx - 15% O2 ppm</th>
<th>T (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.73</td>
<td>0.57</td>
<td>1.19</td>
<td>17.42</td>
<td>2.69</td>
<td>875.0</td>
</tr>
<tr>
<td>2</td>
<td>4.67</td>
<td>1.46</td>
<td>3.84</td>
<td>10.63</td>
<td>2.52</td>
<td>928.0</td>
</tr>
<tr>
<td>4</td>
<td>7.41</td>
<td>0.96</td>
<td>6.56</td>
<td>8.81</td>
<td>2.68</td>
<td>1254.2</td>
</tr>
<tr>
<td>6</td>
<td>8.93</td>
<td>0.44</td>
<td>7.28</td>
<td>8.51</td>
<td>4.20</td>
<td>1520.4</td>
</tr>
<tr>
<td>8</td>
<td>9.54</td>
<td>0.24</td>
<td>7.49</td>
<td>8.41</td>
<td>4.48</td>
<td>1697.0</td>
</tr>
<tr>
<td>10</td>
<td>9.74</td>
<td>0.15</td>
<td>7.57</td>
<td>8.41</td>
<td>4.65</td>
<td>1775.8</td>
</tr>
<tr>
<td>12</td>
<td>9.84</td>
<td>0.10</td>
<td>7.65</td>
<td>8.41</td>
<td>4.65</td>
<td>1783.9</td>
</tr>
<tr>
<td>14</td>
<td>9.84</td>
<td>0.09</td>
<td>7.66</td>
<td>8.41</td>
<td>4.65</td>
<td>1789.4</td>
</tr>
<tr>
<td>16</td>
<td>9.74</td>
<td>0.08</td>
<td>7.66</td>
<td>8.41</td>
<td>4.65</td>
<td>1795.4</td>
</tr>
<tr>
<td>18</td>
<td>9.64</td>
<td>0.09</td>
<td>7.64</td>
<td>8.41</td>
<td>4.65</td>
<td>1824.0</td>
</tr>
</tbody>
</table>

Table G.6: Mixture 4

<table>
<thead>
<tr>
<th>Date</th>
<th>tau (ms)</th>
<th>MW</th>
<th>C</th>
<th>H</th>
<th>O</th>
<th>C/H ratio</th>
<th>stoich F/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/7/2007</td>
<td>4.24</td>
<td>22.29</td>
<td>1.05</td>
<td>3.39</td>
<td>0.30</td>
<td>0.3093</td>
<td>0.0927</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R (mm)</th>
<th>NOx ppm</th>
<th>CO %</th>
<th>CO2 %</th>
<th>O2 %</th>
<th>NOx - 15% O2 ppm</th>
<th>T (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.37</td>
<td>0.41</td>
<td>2.13</td>
<td>17.59</td>
<td>2.29</td>
<td>858.7</td>
</tr>
<tr>
<td>2</td>
<td>2.99</td>
<td>1.04</td>
<td>3.88</td>
<td>13.19</td>
<td>2.15</td>
<td>934.1</td>
</tr>
<tr>
<td>4</td>
<td>5.53</td>
<td>1.09</td>
<td>6.72</td>
<td>9.20</td>
<td>2.68</td>
<td>1310.2</td>
</tr>
<tr>
<td>6</td>
<td>6.85</td>
<td>0.54</td>
<td>7.83</td>
<td>8.38</td>
<td>3.18</td>
<td>1584.7</td>
</tr>
<tr>
<td>8</td>
<td>7.46</td>
<td>0.30</td>
<td>8.17</td>
<td>8.38</td>
<td>3.46</td>
<td>1712.6</td>
</tr>
<tr>
<td>10</td>
<td>7.76</td>
<td>0.17</td>
<td>8.32</td>
<td>8.38</td>
<td>3.59</td>
<td>1766.5</td>
</tr>
<tr>
<td>12</td>
<td>7.97</td>
<td>0.12</td>
<td>8.37</td>
<td>8.38</td>
<td>3.70</td>
<td>1788.0</td>
</tr>
<tr>
<td>14</td>
<td>7.97</td>
<td>0.09</td>
<td>8.38</td>
<td>8.38</td>
<td>3.86</td>
<td>1794.0</td>
</tr>
<tr>
<td>16</td>
<td>7.76</td>
<td>0.09</td>
<td>8.38</td>
<td>8.38</td>
<td>8.36</td>
<td>1801.4</td>
</tr>
<tr>
<td>18</td>
<td>7.66</td>
<td>0.10</td>
<td>8.37</td>
<td>8.38</td>
<td>8.35</td>
<td>1810.5</td>
</tr>
<tr>
<td>20</td>
<td>7.56</td>
<td>0.11</td>
<td>8.38</td>
<td>8.38</td>
<td>8.35</td>
<td>1820.1</td>
</tr>
</tbody>
</table>

Table G.7: Mixture 5

<table>
<thead>
<tr>
<th>Date</th>
<th>tau (ms)</th>
<th>MW</th>
<th>C</th>
<th>H</th>
<th>O</th>
<th>C/H ratio</th>
<th>stoich F/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/22/2007</td>
<td>4.16</td>
<td>13.24</td>
<td>0.65</td>
<td>3.2</td>
<td>0</td>
<td>0.203</td>
<td>0.0663</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R (mm)</th>
<th>NOx ppm</th>
<th>CO %</th>
<th>CO2 %</th>
<th>O2 %</th>
<th>NOx - 15% O2 ppm</th>
<th>T (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.82</td>
<td>1.04</td>
<td>2.03</td>
<td>13.19</td>
<td>1.31</td>
<td>1012.6</td>
</tr>
<tr>
<td>2</td>
<td>4.85</td>
<td>0.93</td>
<td>5.68</td>
<td>9</td>
<td>3.31</td>
<td>1235.0</td>
</tr>
<tr>
<td>4</td>
<td>5.45</td>
<td>0.58</td>
<td>6.68</td>
<td>8.79</td>
<td>2.32</td>
<td>1430.2</td>
</tr>
<tr>
<td>6</td>
<td>5.96</td>
<td>0.42</td>
<td>8.42</td>
<td>8.69</td>
<td>2.61</td>
<td>1563.9</td>
</tr>
<tr>
<td>8</td>
<td>6.36</td>
<td>0.28</td>
<td>8.42</td>
<td>8.69</td>
<td>2.85</td>
<td>1660.7</td>
</tr>
<tr>
<td>10</td>
<td>6.77</td>
<td>0.2</td>
<td>8.42</td>
<td>8.69</td>
<td>3.05</td>
<td>1731.8</td>
</tr>
<tr>
<td>12</td>
<td>6.87</td>
<td>0.15</td>
<td>8.42</td>
<td>8.69</td>
<td>3.23</td>
<td>1767.9</td>
</tr>
<tr>
<td>14</td>
<td>7.27</td>
<td>0.11</td>
<td>8.42</td>
<td>8.69</td>
<td>3.47</td>
<td>1790.8</td>
</tr>
<tr>
<td>16</td>
<td>7.37</td>
<td>0.05</td>
<td>8.42</td>
<td>8.69</td>
<td>3.53</td>
<td>1803.0</td>
</tr>
<tr>
<td>18</td>
<td>7.27</td>
<td>0.05</td>
<td>8.42</td>
<td>8.69</td>
<td>3.43</td>
<td>1806.4</td>
</tr>
<tr>
<td>20</td>
<td>7.17</td>
<td>0.05</td>
<td>8.42</td>
<td>8.69</td>
<td>3.43</td>
<td>1813.6</td>
</tr>
<tr>
<td>22</td>
<td>7.17</td>
<td>0.05</td>
<td>8.42</td>
<td>8.69</td>
<td>3.43</td>
<td>1817.8</td>
</tr>
</tbody>
</table>
Table G.8: Mixture 6

<table>
<thead>
<tr>
<th>Date</th>
<th>tau (ms)</th>
<th>MW</th>
<th>C</th>
<th>H</th>
<th>O</th>
<th>C/H ratio</th>
<th>stoich F/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/18/2007</td>
<td>4.20</td>
<td>10.40</td>
<td>0.45</td>
<td>2.79</td>
<td>0.00</td>
<td>0.1601</td>
<td>0.0659</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R (mm)</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>14</th>
<th>16</th>
<th>18</th>
<th>20</th>
<th>22</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOx ppm</td>
<td>5.61</td>
<td>5.10</td>
<td>5.71</td>
<td>6.53</td>
<td>7.04</td>
<td>7.14</td>
<td>7.24</td>
<td>7.24</td>
<td>7.14</td>
<td>7.04</td>
<td>6.83</td>
<td>6.73</td>
</tr>
<tr>
<td>CO %</td>
<td>0.84</td>
<td>0.62</td>
<td>0.31</td>
<td>0.17</td>
<td>0.10</td>
<td>0.06</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>O2 %</td>
<td>9.30</td>
<td>9.10</td>
<td>9.00</td>
<td>8.90</td>
<td>8.79</td>
<td>8.79</td>
<td>8.79</td>
<td>8.79</td>
<td>8.79</td>
<td>8.79</td>
<td>8.79</td>
<td>8.79</td>
</tr>
<tr>
<td>NOx - 15% O2 ppm</td>
<td>2.77</td>
<td>2.50</td>
<td>2.81</td>
<td>3.20</td>
<td>3.43</td>
<td>3.54</td>
<td>3.54</td>
<td>3.49</td>
<td>3.49</td>
<td>3.44</td>
<td>3.34</td>
<td>3.29</td>
</tr>
<tr>
<td>T (K)</td>
<td>1294.0</td>
<td>1341.7</td>
<td>1602.0</td>
<td>1759.4</td>
<td>1803.9</td>
<td>1806.2</td>
<td>1798.4</td>
<td>1796.3</td>
<td>1801.8</td>
<td>1810.0</td>
<td>1815.6</td>
<td>1820.1</td>
</tr>
</tbody>
</table>

Table G.9: Mixture 7

<table>
<thead>
<tr>
<th>Date</th>
<th>tau (ms)</th>
<th>MW</th>
<th>C</th>
<th>H</th>
<th>O</th>
<th>C/H ratio</th>
<th>stoich F/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/11/2007</td>
<td>3.33</td>
<td>22.98</td>
<td>0.75</td>
<td>3.01</td>
<td>0.00</td>
<td>0.2500</td>
<td>0.1110</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R (mm)</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>14</th>
<th>16</th>
<th>18</th>
<th>20</th>
<th>22</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOx ppm</td>
<td>1.12</td>
<td>2.74</td>
<td>5.18</td>
<td>6.70</td>
<td>7.31</td>
<td>7.61</td>
<td>7.81</td>
<td>7.81</td>
<td>7.51</td>
<td>7.41</td>
<td>7.31</td>
<td></td>
</tr>
<tr>
<td>CO %</td>
<td>0.32</td>
<td>0.82</td>
<td>1.10</td>
<td>0.65</td>
<td>0.36</td>
<td>0.21</td>
<td>0.15</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>0.13</td>
<td>0.14</td>
</tr>
<tr>
<td>O2 %</td>
<td>17.84</td>
<td>14.18</td>
<td>9.71</td>
<td>8.28</td>
<td>7.98</td>
<td>7.88</td>
<td>7.78</td>
<td>7.78</td>
<td>7.78</td>
<td>7.78</td>
<td>7.78</td>
<td>7.78</td>
</tr>
<tr>
<td>NOx - 15% O2 ppm</td>
<td>2.03</td>
<td>2.27</td>
<td>2.61</td>
<td>3.07</td>
<td>3.31</td>
<td>3.44</td>
<td>3.51</td>
<td>3.51</td>
<td>3.47</td>
<td>3.38</td>
<td>3.33</td>
<td>3.28</td>
</tr>
<tr>
<td>T (K)</td>
<td>860.8</td>
<td>933.0</td>
<td>1286.4</td>
<td>1545.4</td>
<td>1691.3</td>
<td>1758.1</td>
<td>1776.1</td>
<td>1785.1</td>
<td>1790.2</td>
<td>1798.6</td>
<td>1806.6</td>
<td>1816.2</td>
</tr>
</tbody>
</table>

Table G.10: Mixture 8

<table>
<thead>
<tr>
<th>Date</th>
<th>tau (ms)</th>
<th>MW</th>
<th>C</th>
<th>H</th>
<th>O</th>
<th>C/H ratio</th>
<th>stoich F/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/11/2007</td>
<td>4.08</td>
<td>24.28</td>
<td>0.65</td>
<td>2.59</td>
<td>0.00</td>
<td>0.2500</td>
<td>0.1363</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R (mm)</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>14</th>
<th>16</th>
<th>18</th>
<th>20</th>
<th>22</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOx ppm</td>
<td>1.17</td>
<td>3.59</td>
<td>5.02</td>
<td>6.75</td>
<td>7.46</td>
<td>7.87</td>
<td>7.97</td>
<td>8.17</td>
<td>8.17</td>
<td>7.97</td>
<td>7.87</td>
<td>7.76</td>
</tr>
<tr>
<td>CO %</td>
<td>0.34</td>
<td>0.74</td>
<td>1.14</td>
<td>0.74</td>
<td>0.39</td>
<td>0.23</td>
<td>0.16</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.14</td>
<td>0.16</td>
</tr>
<tr>
<td>O2 %</td>
<td>17.48</td>
<td>14.52</td>
<td>9.92</td>
<td>7.98</td>
<td>7.57</td>
<td>7.46</td>
<td>7.36</td>
<td>7.36</td>
<td>7.36</td>
<td>7.36</td>
<td>7.36</td>
<td>7.36</td>
</tr>
<tr>
<td>NOx - 15% O2 ppm</td>
<td>1.91</td>
<td>2.26</td>
<td>2.58</td>
<td>3.01</td>
<td>3.27</td>
<td>3.44</td>
<td>3.47</td>
<td>3.56</td>
<td>3.56</td>
<td>3.47</td>
<td>3.43</td>
<td>3.38</td>
</tr>
<tr>
<td>T (K)</td>
<td>830.1</td>
<td>912.9</td>
<td>1265.8</td>
<td>1539.9</td>
<td>1679.8</td>
<td>1759.2</td>
<td>1785.6</td>
<td>1796.3</td>
<td>1805.6</td>
<td>1810.9</td>
<td>1821.9</td>
<td>1827.8</td>
</tr>
</tbody>
</table>
Table G.11: Mixture 9

<table>
<thead>
<tr>
<th>Date</th>
<th>tau (ms)</th>
<th>MW</th>
<th>C</th>
<th>H</th>
<th>O</th>
<th>C/H ratio</th>
<th>stoich F/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/16/2007</td>
<td>2.28</td>
<td>29.95</td>
<td>0.50</td>
<td>2.01</td>
<td>0.00</td>
<td>0.2500</td>
<td>0.2162</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R (mm)</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>NOx ppm</td>
<td>1.44</td>
<td>2.77</td>
<td>5.64</td>
<td>7.59</td>
<td>8.30</td>
<td>8.71</td>
<td>8.92</td>
</tr>
<tr>
<td>CO %</td>
<td>0.34</td>
<td>0.77</td>
<td>1.32</td>
<td>1.00</td>
<td>0.61</td>
<td>0.42</td>
<td>0.29</td>
</tr>
<tr>
<td>CO2 %</td>
<td>7.83</td>
<td>9.27</td>
<td>11.78</td>
<td>13.83</td>
<td>14.52</td>
<td>14.80</td>
<td>14.89</td>
</tr>
<tr>
<td>O2 %</td>
<td>16.41</td>
<td>13.57</td>
<td>8.66</td>
<td>6.28</td>
<td>5.87</td>
<td>5.77</td>
<td>5.77</td>
</tr>
<tr>
<td>NOx - 15% O2 ppm</td>
<td>1.81</td>
<td>2.12</td>
<td>2.59</td>
<td>2.97</td>
<td>3.21</td>
<td>3.37</td>
<td>3.46</td>
</tr>
<tr>
<td>T (K)</td>
<td>825.9</td>
<td>894.1</td>
<td>1240.0</td>
<td>1507.9</td>
<td>1666.7</td>
<td>1747.0</td>
<td>1771.3</td>
</tr>
</tbody>
</table>

Table G.12: Mixture 10

<table>
<thead>
<tr>
<th>Date</th>
<th>tau (ms)</th>
<th>MW</th>
<th>C</th>
<th>H</th>
<th>O</th>
<th>C/H ratio</th>
<th>stoich F/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/12/2007</td>
<td>4.10</td>
<td>12.58</td>
<td>0.36</td>
<td>2.08</td>
<td>0.11</td>
<td>0.1731</td>
<td>0.1108</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R (mm)</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>NOx ppm</td>
<td>4.57</td>
<td>5.78</td>
<td>6.98</td>
<td>7.59</td>
<td>7.89</td>
<td>7.99</td>
<td>7.99</td>
</tr>
<tr>
<td>CO %</td>
<td>0.84</td>
<td>0.51</td>
<td>0.28</td>
<td>0.16</td>
<td>0.10</td>
<td>0.06</td>
<td>0.05</td>
</tr>
<tr>
<td>CO2 %</td>
<td>7.11</td>
<td>7.42</td>
<td>7.61</td>
<td>7.73</td>
<td>7.82</td>
<td>7.86</td>
<td>7.87</td>
</tr>
<tr>
<td>O2 %</td>
<td>8.90</td>
<td>8.90</td>
<td>8.79</td>
<td>8.79</td>
<td>8.79</td>
<td>8.79</td>
<td>8.79</td>
</tr>
<tr>
<td>NOx - 15% O2 ppm</td>
<td>2.18</td>
<td>2.79</td>
<td>3.38</td>
<td>3.69</td>
<td>3.85</td>
<td>3.90</td>
<td>3.90</td>
</tr>
<tr>
<td>T (K)</td>
<td>1333.0</td>
<td>1321.0</td>
<td>1463.2</td>
<td>1669.1</td>
<td>1786.4</td>
<td>1800.2</td>
<td>1794.3</td>
</tr>
</tbody>
</table>

Table G.13: Mixture 11

<table>
<thead>
<tr>
<th>Date</th>
<th>tau (ms)</th>
<th>MW</th>
<th>C</th>
<th>H</th>
<th>O</th>
<th>C/H ratio</th>
<th>stoich F/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/18/2007</td>
<td>3.59</td>
<td>18.50</td>
<td>0.68</td>
<td>1.04</td>
<td>0.58</td>
<td>0.6538</td>
<td>0.2067</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R (mm)</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>NOx ppm</td>
<td>2.28</td>
<td>3.20</td>
<td>5.13</td>
<td>6.55</td>
<td>7.36</td>
<td>7.66</td>
<td>7.56</td>
</tr>
<tr>
<td>CO %</td>
<td>3.60</td>
<td>2.08</td>
<td>1.04</td>
<td>0.56</td>
<td>0.31</td>
<td>0.18</td>
<td>0.13</td>
</tr>
<tr>
<td>O2 %</td>
<td>11.68</td>
<td>11.38</td>
<td>10.76</td>
<td>10.56</td>
<td>10.25</td>
<td>10.15</td>
<td>10.04</td>
</tr>
<tr>
<td>NOx - 15% O2 ppm</td>
<td>1.26</td>
<td>1.79</td>
<td>2.85</td>
<td>3.65</td>
<td>4.03</td>
<td>4.18</td>
<td>4.10</td>
</tr>
<tr>
<td>T (K)</td>
<td>1221.3</td>
<td>1292.3</td>
<td>1466.8</td>
<td>1675.5</td>
<td>1789.7</td>
<td>1813.8</td>
<td>1810.3</td>
</tr>
<tr>
<td>Date</td>
<td>tau (ms)</td>
<td>MW</td>
<td>C</td>
<td>H</td>
<td>O</td>
<td>C/H ratio</td>
<td>stoich F/A</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>4/10/2007</td>
<td>3.54</td>
<td>44.10</td>
<td>3.00</td>
<td>8.00</td>
<td>0.00</td>
<td>0.3750</td>
<td>0.0641</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R (mm)</th>
<th>NO\textsubscript{x} ppm</th>
<th>CO%</th>
<th>CO\textsubscript{2}%</th>
<th>O\textsubscript{2}%</th>
<th>NO\textsubscript{x} - 15% O\textsubscript{2} ppm</th>
<th>T (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3.22</td>
<td>2.30</td>
<td>3.01</td>
<td>9.94</td>
<td>1.57</td>
<td>994.0</td>
</tr>
<tr>
<td>2</td>
<td>6.33</td>
<td>1.43</td>
<td>6.46</td>
<td>9.43</td>
<td>3.08</td>
<td>1058.3</td>
</tr>
<tr>
<td>4</td>
<td>7.64</td>
<td>0.70</td>
<td>7.36</td>
<td>9.13</td>
<td>3.73</td>
<td>1384.0</td>
</tr>
<tr>
<td>6</td>
<td>8.54</td>
<td>0.38</td>
<td>7.73</td>
<td>9.02</td>
<td>4.20</td>
<td>1592.4</td>
</tr>
<tr>
<td>8</td>
<td>8.94</td>
<td>0.21</td>
<td>7.92</td>
<td>8.92</td>
<td>4.39</td>
<td>1706.8</td>
</tr>
<tr>
<td>10</td>
<td>9.14</td>
<td>0.13</td>
<td>7.98</td>
<td>8.92</td>
<td>4.50</td>
<td>1759.3</td>
</tr>
<tr>
<td>12</td>
<td>9.25</td>
<td>0.10</td>
<td>8.01</td>
<td>8.92</td>
<td>4.55</td>
<td>1775.3</td>
</tr>
<tr>
<td>14</td>
<td>9.14</td>
<td>0.09</td>
<td>8.03</td>
<td>8.87</td>
<td>4.49</td>
<td>1779.2</td>
</tr>
<tr>
<td>16</td>
<td>9.04</td>
<td>0.09</td>
<td>8.01</td>
<td>8.87</td>
<td>4.44</td>
<td>1787.5</td>
</tr>
<tr>
<td>18</td>
<td>8.94</td>
<td>0.09</td>
<td>8.00</td>
<td>8.87</td>
<td>4.39</td>
<td>1793.8</td>
</tr>
<tr>
<td>20</td>
<td>8.64</td>
<td>0.10</td>
<td>8.00</td>
<td>8.87</td>
<td>4.24</td>
<td>1795.7</td>
</tr>
<tr>
<td>22</td>
<td>8.44</td>
<td>0.11</td>
<td>8.00</td>
<td>8.87</td>
<td>4.14</td>
<td>1807.8</td>
</tr>
</tbody>
</table>

Table G.14: Mixture 12
VITA

Keith Boyd Fackler Jr.

Doctor of Philosophy in Mechanical Engineering, December 2011
University of Washington, Seattle, WA

Master of Science in Mechanical Engineering, June 2006
University of Washington, Seattle, WA

Bachelor of Science in Mechanical Engineering, December 2003
University of Washington, Seattle, WA