Lost Lake Park: Perceiving Site History through a Recreation Landscape on Lake Union

Kelly Laleman

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Architecture

University of Washington
2011

Gundula Proksch, Co-chair
Brian McLaren, Co-chair

Program Authorized to Offer Degree:
Department of Architecture
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Figures</td>
<td>ii</td>
</tr>
<tr>
<td>Chapter 1: Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Chapter 2: Site History - Lake Union</td>
<td>2</td>
</tr>
<tr>
<td>Chapter 3: Site Analysis</td>
<td>14</td>
</tr>
<tr>
<td>Chapter 4: Site History - Lost Lake Park</td>
<td>28</td>
</tr>
<tr>
<td>Chapter 5: Design Response</td>
<td>40</td>
</tr>
<tr>
<td>Chapter 6: Site Experience</td>
<td>56</td>
</tr>
<tr>
<td>Conclusion</td>
<td>68</td>
</tr>
<tr>
<td>Bibliography</td>
<td>70</td>
</tr>
<tr>
<td>Appendix</td>
<td>74</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Site Location</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Water Connection</td>
<td>1</td>
</tr>
<tr>
<td>2.1 Pre-settlement Lake Union</td>
<td>2</td>
</tr>
<tr>
<td>2.2 John and Madeline Cheshiahud</td>
<td>3</td>
</tr>
<tr>
<td>2.3 Thomas Mercer</td>
<td>4</td>
</tr>
<tr>
<td>2.4 Path of Coal and Timber</td>
<td>5</td>
</tr>
<tr>
<td>2.5 Coal Transfer</td>
<td>6</td>
</tr>
<tr>
<td>2.6 Western Mill</td>
<td>6</td>
</tr>
<tr>
<td>2.7 Lake Union Shoreline Changes</td>
<td>7</td>
</tr>
<tr>
<td>2.8 Montlake Ditch</td>
<td>8</td>
</tr>
<tr>
<td>2.9 Historic Lake Union Uses</td>
<td>10</td>
</tr>
<tr>
<td>2.10 Woman Canoeing</td>
<td>10</td>
</tr>
<tr>
<td>2.11 Circe Sailboat</td>
<td>10</td>
</tr>
<tr>
<td>2.12 Floating Shack</td>
<td>12</td>
</tr>
<tr>
<td>2.13 Boeing Hangar</td>
<td>12</td>
</tr>
<tr>
<td>2.14 Present Lake Union Uses</td>
<td>13</td>
</tr>
<tr>
<td>3.1 Topography and Highways</td>
<td>15</td>
</tr>
<tr>
<td>3.2 Transportation Corridor</td>
<td>15</td>
</tr>
<tr>
<td>3.3 Land Connections</td>
<td>17</td>
</tr>
<tr>
<td>3.4 Gas Works Park</td>
<td>19</td>
</tr>
<tr>
<td>3.5 Lost Lake Park</td>
<td>19</td>
</tr>
<tr>
<td>3.6 Lake Union Park</td>
<td>19</td>
</tr>
<tr>
<td>3.7 Water Connections</td>
<td>19</td>
</tr>
</tbody>
</table>
4.17 Office Exterior
4.18 Office Interior
4.19 Vault
4.20 Office Wall Section
4.21 Office Original Plan
4.22 Shed from Street
4.23 Shed Exterior
4.24 Shed Interior
4.25 Pre-Fabricated Shed Structure
5.1 Site Changes
5.2 Site Section
5.3 Site Plan
5.4 Site Paths
5.5 Program and Circulation Diagram
5.6 Building Plans
5.7 Building 1 Interventions
5.8 Building 1 Plan
5.9 Building 2 Interventions
5.10 Building 2 Plan
5.11 Building 3 Interventions
5.12 Building 3 Plan
6.1 Site Connections to Greater Seattle
6.2 Hill Climb
6.3 Figure 6.2 Site Location
6.4 Figure 6.5 Site Location
6.5 I-5 Colonnade Park
6.6 Urban Beach
6.7 Figure 6.6 Site Location
6.8 Figure 6.9 Site Location
6.9 North Roof Bridge
6.10 North Path at Water
6.11 Figure 6.10 Site Location
6.12 Figure 6.13 Site Location
6.13 Espresso Bar
6.14 Kayak Approach
6.15 Figure 6.14 Site Location
6.16 Figure 6.17 Site Location
6.17 New Beach
6.18 Bike Rental
6.19 Figure 6.18 Site Location
6.20 Pier Park
6.21 Figure 6.20 Site Location
A.1 Piers from Shed
A.2 Pier Damage
A.3 Pier Damage
A.4 Pier End
A.5 Floating Homes
A.6 Lake Union Dry Dock
A.7 Warehouse from North 75
A.8 Pier Along Warehouse 75
A.9 Metal Windows 75
A.10 Warehouse Space 75
A.11 Glu-lam Structure 75
A.12 Laboratory Support Space 75
A.13 Office from South 76
A.14 Interior Stairs 76
A.15 Office Interior 76
A.16 Small Office Interior 76
A.17 Inside Vault 76
A.18 Typical Corridor 76
A.19 Pier Damage Near Shed 77
A.20 Pier Damage Near Shed 77
A.21 Shed Interior 77
A.22 Damaged Siding 77
A.23 Shed Interior Looking East 77
A.24 Shed Exterior 77
A.25 Looking North from Warehouse 78
A.26 Stairs at Yale Place 78
A.27 Office from East 78
A.28 Southern Site View 78
A.29 Pedestrian Path 78
A.30 Pedestrian Path Context 78
A.31 Site Access 79
A.32 Shed at North End 79
A.33 Looking South from Office 79
A.34 Looking Southeast from Office 79
A.35 Fenced-off Piers 79
A.36 Piers from Northern End of Site 79
A.37 Blaine Street Hill Climb 80
A.38 Streissguth Gardens 80
A.39 Stairs under I-5 Colonnade 80
A.40 I-5 Colonnade 80
A.41 Stunt Walls 80
A.42 I-5 Colonnade from Below 80
A.43 South Pier from Water 81
A.44 Kayaker’s View 81
A.45 Pier Damage from Water 81
A.46 Warehouse from Water 81
A.47 Space Needles Between Piers 81
A.48 Shed from Water 81
CHAPTER 1: INTRODUCTION

This thesis project is an adaptation of a site on one of Seattle’s former working waterfronts, Lake Union. Located on the lake’s eastern shore (Figure 1.1), the site was recently vacated, providing an opportunity to create a path and destination that enhances the connection of the site to the water and its surrounding neighborhoods. This is achieved through a recreation facility that reclaims utilitarian structures for recreational use. (Figure 1.2)

Lost Lake Park provides a framework for a programmatic connection between the activities that occur on land and those that occur on water. On land, it creates a node of activity in a current dead zone in the transit corridor between the University of Washington and downtown. On water, the site connects to a greater context of parks that exist on Lake Union, unifying the neighborhoods beyond that are presently separated by the lake. Through strategies of layering over and cutting through the existing site, buildings, and piers, the site design recalls its history while providing a use needed by today’s city.
LAKE UNION: FIRST INHABITANTS

Lake Union was carved 13,000 years ago by the Vashon Glacier. It was originally 900 acres in size, and 40 feet deep. (Figure 2.1) Today, after human alterations to the shorelines, it is roughly 700 acres in size. (Wagner, 3) Prior to European settlement, natives lived around Lake Union for over 2,000 years. Water was integral to their daily lives.

Lake Union, like Lake Washington and Lake Sammamish, was first inhabited by the Duwamish people, who utilized available resources such as fish, birds, animals, trees, and other plants for survival. By the mid-1800’s there were three settlements on Lake Union. The stream that connected Lake Union to Puget Sound, near the present-day constructed ship canal, served as an outlet for migrating salmon. A number of streams flowed into Lake Union from its east side, serving as spawning streams and inlets to the lake for salmon.

As freshwater natives, the Duwamish used gathering techniques specific to rivers and lakes, which were different than that of the tidewater natives. Weirs and nets spanned creeks to catch a variety of fish. Non-water dwelling animals were also hunted by means of water. Deer and elk were found as they fed on cabbage located in marshes. Landlocked sockeye salmon was available in the lake at all times. In fall, muskrat, beaver, and otter were hunted and potatoes gathered. Fowl migrated in fall, when they were also caught in the marshes.
In the Salish language, Lake Union was known as Ha-AH-Chu, meaning “littlest lake”. Lake Washington was HAH Chu, “The Lake”, and Lake Sammamish was HAHT-hah- chu, “Second Lake”. Similarly, in the Chinook trading jargon of Northwest natives, Lake Union was Tenas Chuck, meaning “Small Water”, and Lake Washington was Hyas Chuck, or “Large Water”. (Wagner, 4)

The saltwater natives, the sheel-shole AHBSH, were able to access Lake Union from Shilshole Bay to Salmon Bay by means of a narrow passage between the steep forested hills. Sheel-shole translates to “threading a bead”. The natives then led their canoes through Ross Creek, the outlet of Lake Union known as gWaXWap, meaning “lead (at) bottom end”. (Wagner, 5) No paddling had to be done, as the tide would carry canoes to the mouth of the lake, where the Fremont Bridge now spans.

By 1900 most of the longhouses had been abandoned or destroyed, and most natives had moved to reservations. One of the last natives living on Lake Union was Chief Chi-Siak-Ka, or Cheshiahud. (Figure 2.2) He and his wife Madeline lived in Portage Bay, near the site of the present-day Seattle Yacht Club. Cheshiahud would play a role in introducing white settlers to Lake Union.

The lifestyle of the natives was integrated with the water and its seasonal changes, and they adapted their lifestyle according to the water. In contrast, the white settlers adapted the water to suit their lifestyle.
FOUNDING OF SEATTLE

In 1851 David Denny and John Low arrived at Alki Point. (Wagner 8) They had traveled west with a party that had come from Cherry Grove, Illinois to Portland, Oregon. Denny and Low proceeded to Puget Sound in search of a good place to settle. After landing on Alki, Low returned to Portland to inform the group of their find while Denny remained at their new claim. Natives from the Duwamish and Suquamish tribes began to move to the point near Denny; he began to learn their languages, and they his.

Almost immediately, it became apparent that the new village could profit from its abundant surrounding forest. A ship came from San Francisco to Puget Sound in search of resources for pilings to bring to San Francisco. Over the course of three weeks, trees were felled, prepared, and loaded. It was then concluded that the port for the timber industry should be relocated to a place accessible to virgin forest, next to deep water for easy transfer to vessels, and sheltered from winter storms. In 1853 the community moved to the other side of Elliott Bay, to today’s Pioneer Square area.

When this move was made, the name of the town was changed to Seattle, after Chief Sealth. Land claims were appointed and the plat of Seattle was filed on May 1853. (Wagner, 14) The Mercer and Denny claims were located at the southwest corner of Lake Union. To celebrate this new beginning, Thomas Mercer (Figure 2.3) declared that new names be given for the nearby lakes. The smaller lake would no longer be AH-chu (littlest water) or Tenas Chuck (small water), but now would be known as Lake Union, implying that Mercer envisioned this body of water to one day connect Puget Sound to Lake Washington.

Figure 2.3: Thomas Mercer, one of the first settlers to claim land along Lake Union, as well the person to rename it. (Seattle Historical Society Collection, MOHAI SHS1046)
Figure 2.4: Path of coal and timber from Newcastle to Elliott Bay. The alternating modes of transportation between land and water are depicted.
At the time the village relocated, the piling trade was still being operated on Alki, continuing Seattle’s first industry. In 1852 Doc Maynard arrived in Seattle and began packing salmon to be sent to the San Francisco market, generating a second commercial industry for Seattle. Later the same year, Henry Yesler arrived in town to set up a steam sawmill, the first on Puget Sound. By the end of the same year, Seattle’s industrial ventures had tripled, all utilizing water as a key component of their function.

In the 1880’s, coal was discovered in Newcastle, located on east side of Lake Washington. The Seattle Coal and Transportation Company was created to extract and export the coal. The coal traveled through a series of alternating methods of land and water transportation. (Figure 2.4) The coal was transported by railroad from Newcastle to Lake Washington. The coal was then placed on a barge that traveled across Lake Washington to the isthmus between Lake Washington and Lake Union. The coal was next horse-drawn across the isthmus to Lake Union’s Portage Bay. At the water, it was reloaded into a barge and towed to south Lake Union. The coal was then loaded (Figure 2.5) and hauled by steam railroad to the Pike Street Wharf located below Pike Street on the central waterfront. This railroad ran along present day Westlake Avenue, which was oriented away from the regular street grid to avoid Denny Hill. On the shore of Elliott Bay, the coal was tumbled down a chute to yet another barge and sent on its way to its next destination via the Puget Sound.

In 1882, Arthur Denny opened the Lake Union Lumber and Manufacturing Company on the southwest corner of Lake Union. (Figure 2.6) Like the coal, logs were transported from sources around Lake Washington by both water and land.
Figure 2.7: Lake Union shoreline changes. Historic based on "Historical Changes to Lake Washington and route of the Lake Washington Ship Canal, King County, Washington" by Michael Chrzastowski, overlaid on current GIS information.
A tug boat was built to tow logs across Lake Union from Portage Bay. Sawdust and bark filled up lake at the present site of Lake Union Park, and the mills continued to operate on the site until late 1930’s.

TRANSFORMATION FOR INDUSTRY

The years between 1851-1889 have been described as the “can do” era of Seattle’s waterfronts. (Hershman, 8) As industry developed, city pioneers sought opportunities to improve what nature had provided in order to improve the efficiency of industrial functions. Through these land transformations, hills were leveled, soil deposited in low lying areas, and channels cut to connect bodies of water.

The majority of Lake Union’s shoreline transformations have been in the form of land fill. (Figure 2.7) The southern end of the lake was shallow, and it was filled so that adjacent depths would be appropriate boat-mooring depths. (Chrzastowski, map) On the east and west lake shores there was a steep slope, so filling at the base of the slope was necessary for waterfront development. In 1873, the Seattle and Walla Walla rail line built tracks around Lake Union to serve its sawmills and adjacent villages. (Wagner, 26) Railroad trestles ran along the east and west sides of the lake, parallel to the steep slopes that prevented the tracks from being built on land. In 1925 the trestle on the west side of the lake was filled, creating Westlake Avenue. Later, the east trestle was also filled, creating Fairview Avenue East.

Perhaps the most significant transformation pertaining to Lake Union was the building of the Lake Washington Ship Canal. In 1861 Harvey Pike dug the first channel across the isthmus between Lake Washington and Lake Union, to allow for the passage of logs and canoes. (Wagner, 19) In 1883 David Denny and Thomas
Burke hired Chinese laborers to enlarge the ditch to improve the capacity of logs that could pass from Union Bay to Denny’s Western Mill. (Figure 2.8)

The Lake Washington Ship Canal was completed in 1917 by the U.S. Corps of Engineers. It was wider than earlier passages and allowed for travel of larger vessels to pass from Lake Washington directly through Lake Union and Salmon Bay to Puget Sound. The Montlake cut was placed north of the earlier ditches, creating the shortest path from one major body of water to the other across Portage Bay. The new Ship Canal and the Hiram M. Chittenden Locks allowed ships to navigate the different water levels in the fresh water and salt water. The locks increased the lake’s role for maritime industry by improving the efficiency by which vessels could reach Puget Sound, thus increasing the efficiency of export. The creation of this east-to-west connection on the water resulted in newly separated land masses, between the north and south. This prompted the city to build a series of drawbridges to reconnect the land: the Montlake Bridge, University Bridge, Fremont Bridge, and Ballard Bridge. These bridges have become beloved crossings characteristic of Seattle.
Figure 2.9: Mixed use of Lake Union in 1930. Sketch by Diuk Wagner, Legends of the Lake.

Figure 2.10: A woman paddles a canoe on Lake Union in 1923. (MOHAI 1983.10.11,287.2)

Figure 2.11: The sailboat Circe was built at the Lake Union Drydock Company in 1932 and is seen sailing here in 1950. (Joe Williamson Collection, Puget Sound Maritime Historical Society)
LAKE UNION: MIXED USES

In essence, Lake Union has always been, and continues to be, a host of mixed uses. One of the founders of the Center for Wooden Boats, Dick Wagner, has described Lake Union as a “microcosm of Seattle” (Raymond), aptly describing the lake as a place that embodies many of the characteristics of the development and use of the whole city. This is true in terms of the development of industry and the change of shorelines. Lake Union has also been a miniature city itself, with its assortment of activities and uses.

By the 1850’s, Lake Union was the “backwater of a backwater town”. (Crowley) It was lined with dirty lumber mills, a chemical plant, tannery, varnish manufacturer, asphalt plant, asbestos factory, the Seattle Gas Company, a sand and gravel lot, ship building yards, and other maritime industries. (Figure 2.9) It was polluted by debris, toxins, garbage, and sewage from surrounding neighborhoods. (Blecha, Houseboats).

Boathouses began to appear on Lake Union in the 1880’s and 1890’s, supplying rowboats and canoes for rental, signifying the beginning of recreational use of the lake. With the rise of availability of the Model T Ford, the boathouses started to fade in use, but became more popular again in the 1930s during the Great Depression, when the small rental fee for a boat provided a good, cheap source of recreation. (Figure 2.10)

With the ship canal in place, a multitude of boat-building shops appeared on Lake Union between the years of 1919 - 1929. (Wagner, 48) New vessels built ranged from personal boats, both motor and sail yachts, to small boats for blue collar
families, to tugs, trollers, cannery tenders, and schooners. (Figure 2.11) The shops were built on pilings, and had maritime railways or dry docks. (Wagner, 49) Supplies for wooden boats, such as old-growth Douglas fir, cedar, and spruce, were readily available around Lake Union and easily transportable from Lake Washington. (Raymond) Schooners were brought in for repairs during the off season, from October until April. Lake Union provided inland shelter from winter storms and the fresh water protected the vessels from teredos, worms that feed on wood and live in saltwater. One of the first boat shops built on the lakeshore still remains; the Lake Union Drydock Company. It was founded in 1919 and remains in the same location today, immediately south of the project site.

The boat shops and mills began to share shoreline space with a non-industrial use: floating shacks. These minimal shacks have evolved into today’s floating shacks and houseboats. Logging and fishing work was seasonal, during which the workers towed floating bunkhouses and cookhouses up the river for the crews. They then built similar floating shacks in Seattle to live in during the off season. Logs were easily found on Lake Union from sawmills from logs that had been cast off due to knots or char. The shacks typically were simple structures, one-story rectangles with deck on all sides. (Figure 2.12) The floating homes were seen as gritty, but over time gained popularity as an acceptable form of bohemian lifestyle. Today, these homes have become exclusive, expensive dwellings, much in contrast to the original shacks on the water.

Another element adding to the dirtiness associated with Lake Union was the Gas Works, which was built in 1905 on what had been known as “Brown’s Point” (Raymond), at the northern shore of Lake Union. Large burners transformed coal
into gas, which was used to light home appliances and streetlights. The facility was in use until 1956, when the city was connected to natural gas from Canada. (Wagner, 34) The plant was known for pumping foul smells into the adjacent neighborhoods.

In 1916 William E. Boeing built a simple post and truss airplane hangar on the eastern shore of Lake Union, at the foot of Roanoke Street. (Wagner, 95) This hangar housed the first planes designed and built by Boeing. (Figure 2.13) In 1919 the first international postal service began at the site, with mail delivered to and from Victoria, British Columbia. This was the beginning of the company that is known today as Boeing Commercial Airplanes.

The seaplane tradition has continued on Lake Union today with passenger crafts provided by Kenmore Air on the west side of the lake, and Chrysler Air on the east side of the lake. Like Boeing did initially, the seaplanes today take off from the south of the lake, utilizing the summer tailwind.

In the present, Lake Union is a bustling center of seemingly incompatible water activities, with seaplanes sharing space with kayaks, canoes, recreational sailboats, and industrial and research ships coming in for repair or storage. The shoreline utilization remains a mix, with floating homes, commercial buildings, industrial facilities, maritime functions, and parks. (Figure 2.14) Lake Union remains a microcosm of Seattle, hosting a mix of shoreline uses and water activities.
CHAPTER 3: SITE ANALYSIS

CONTEXT OF LAKE UNION

Topography is the biggest underlying factor that has shaped the site, both directly and indirectly. The locations of Interstate 5 and Highway 99 are directly influenced by topography, as it is most efficient to locate highways to be as flat as possible. (Figure 3.1) The highways essentially create walls around Lake Union and separate neighborhoods. However, these walls are fragmented at several locations because of the topography. Where it is raised or sunken, the freeway can be crossed freely at ground level. One of these breaks exists at the I-5 Colonnade, where the freeway is raised off Capitol Hill’s steep west slope. This creates an opportunity for an east/west connection across the freeway barrier to the project site, connecting this isolated site to the larger context of the city.

These highways, with topography and boundaries of water, create a narrow strip of land between Lake Union’s eastern shore and I-5. This zone serves as a transportation corridor connecting downtown Seattle to the University of Washington, as it is the shortest route between the two on relatively flat ground. (Figure 3.2)
Figure 3.1: Influence of topography and highways. Breaks are created in the walls formed by the highways, including one near the project site.

Figure 3.2: Transportation corridor, created by restrictions of topography, highways, and water boundaries.
LAND CONNECTION

Between downtown and the University of Washington, the transit corridor passes through the South Lake Union and Eastlake neighborhoods. The organized street grid of Eastlake breaks down where the land is narrow between I-5 and Lake Union, which is related to the location of the original shoreline. (Figure 3.3) The site at 1801 Fairview Avenue East does not clearly belong to the Eastlake neighborhood, or to the South Lake Union neighborhood. This area lacks the vitality of either the South Lake Union or Eastlake neighborhoods.

By inserting a recreational program, the project site will connect to the activity of the I-5 Colonnade, creating a destination that draws people from both neighborhoods and stitches them together. Furthermore, there is a mix of use on the water, a mix of use on the shoreline, but the land and water do not currently interact. A better connection to the lake highlights what is unique about Lake Union - the mix of activities and uses both on and surrounding the lake.
Figure 3.3: Different types of building use characterize each neighborhood on land. On water, the mix of uses on Lake Union’s shoreline is visible. The influence of the original shoreline on the street grid can be seen.
WATER CONNECTION

Lake Union is somewhat contradictory because the water itself is well-used by the public, but from land the water seems inaccessible. In the past, the water was not accessible because it was surrounded by rail tracks and the shoreline was occupied by industrial uses. The east and west sides of the lake were also inaccessible in part because of the steeper slopes along those shores.

The two primary existing land-to-water connections on Lake Union are at the north and south ends of the lake, at Gas Works Park to the north and Lake Union Park to the south. These parks are visible from the other, providing a physical relationship and awareness of the lake as a whole.

The east and west sides of Lake Union currently lack such connections. The west side of the lake is lined with commercial buildings that only offer a connection to the lake if one is willing to pay for the services they offer. Behind many of these commercial structures are marinas and boat storage facilities. From Westlake Avenue, it is difficult to decipher the proximity of the shoreline.

The east side of Lake Union is inaccessible along its entire side. At its southern portion it is lined with parking lots between the street and the commercial functions on the waterfront. The central eastern shoreline (at the project site and adjacent Lake Union Dry Dock Company), the lake is inaccessible because these companies have restricted access to employees. To the north of the project site, groups of floating homes line the shoreline, which restrict access to residents. There are no large parks that bring the public to the water on these shores. The street-end parks along Fairview Avenue are not significant enough to serve as destinations.
Figure 3.4: Gas Works Park.

Figure 3.5: Lost Lake Park.

Figure 3.6: Lake Union Park.

Figure 3.7: Lake Union Parks master plan. Four parks on Lake Union connect to neighborhoods beyond, unifying the lake's surroundings.
By creating an east-to-west connection on Lake Union, Capitol Hill and Queen Anne are better connected to Lake Union and to each other. The hill climbs that connect to these neighborhoods carry people up the hills, connecting all neighborhoods around Lake Union. (Figure 3.7)

Lost Lake Park builds upon this sequence of parks that already exist on Lake Union: Gas Works Park and Lake Union Park. (Figures 3.4, 3.5, 3.6) The mix of recreational, commercial, and leisure uses of Lost Lake Park draws a variety of users. Some programs directly relate to water use, which further emphasize the connection between land and water. The reuse of a greatly altered site is an opportunity to teach visitors about the shoreline changes that have occurred on the lake. Lost Lake Park learns from the previous parks on Lake Union and strives to become even more interactive.
Gas Works Park is located on the former site of the gasification plant that was built in 1906. Prior to this, the promontory between the east and west arms of Lake Union was known as “Brown’s Point”, a popular location for picnicking and leisure activities. (Richard, 4) The Seattle Gas Light Company built its gas works on the site in 1906, producing gas that was used for lighting homes and businesses. By 1954, technology had changed, and the gas works became obsolete when the city was granted permission to pipe natural gas from Canada. The gas plant was closed at the end of 1956. (Figure 3.8)

The property was purchased by the city from the gas company and a proposal to turn the site into a park was approved in 1968. (Richard, 7) Local landscape architect Richard Haag was granted the commission to design the park. He submitted the master plan in 1971, which stirred controversy because it proposed to keep the gas plant structures in the park.

Supporters of the plan pointed out that the plant had been the last operational gas plant of its kind in the United States, and was one of few that still stood in the world. The character of the machinery would also ensure that the park would be one-of-a-kind. The plan was approved, and Seattle would have the world’s first industrial site converted into a park. Certain structures were saved, and the popular Great Mound was constructed from industrial debris and fill from nearby excavations. (Figure 3.9)

The design of Gas Works Park was forward-thinking because it did not follow the traditional notion that a park should be a wooden oasis, removed from the city.
Instead, Haag recognized that the gas plant was a significant aspect of the site, and created a unique type of park by incorporating into the design.

Although this strategy was progressive, Gas Works Park does not meet its potential to be a center of activity. The reused structures are treated as artifacts, and the strategy to address the contaminated soil was to cover it up. The structures that are functional are restricted to loosely programmed park functions. (Figure 3.10) Although the park design did not follow idea of a park as an oasis, Gas Works Park is disconnected from its surrounding neighborhood by the line of trees that follow the line of the historic railroad track.

LAKE UNION PARK

Lake Union Park is located on another former industrial site on Lake Union. Historically, the use of this site changed with Seattle’s industrial development. In the 1870s coal barges from Newcastle docked in this location to transfer coal to rail. In 1882, (Becker) David Denny built a large sawmill here, the Western Mill. It was located at the foot of Westlake and extended partially over the water, partially into the site of today’s park. In 1909 this mill burned, and a larger mill was built, known as the Brace and Hergert Mill. (Figure 3.11) One-hundred foot piles were driven into the lake and fill was placed along the lakeshore to support the mill north of Valley Street.

In 1942, the Naval Reserve Center, or the “armory”, was built on this site. It housed a training center during World War II and later served as the local headquarters for the United States Naval Reserve. The building and its property were deeded to the city in 2000.
The idea for a park in this location first gained momentum in 1991, and the project finally became possible by 2000 when the land was acquired from the Naval Reserve. (Blecha, Park) The park was designed by the San Francisco-based firm Hargreaves Associates and opened on September 25, 2010. The park contains expansive lawns, a model boat pond, pedestrian bridge, and waterfront steps. (Figure 3.12) The Armory is currently being converted to house the Museum of History and Industry.

Lake Union Park is better connected to its adjacent neighborhood, South Lake Union, than Gas Works Park is to Wallingford. One reason is that there is a direct physical connection: Terry Avenue North continues along the urban street grid, passing directly through the park. The second reason is that the park provides a variety of activities that draw people to the site for different reasons. Not only does the park contain park programs, but visitors may come for the Museum of History and Industry or the Center for Wooden Boats. The park elements are more directly programmed as well. The model boat pond offers a unique activity that does not exist in other parks. Water fountains recall the historic shoreline of the site, though it is vague which shoreline it refers to, as it is not the original shoreline. In addition to being better-connected on land, Lake Union Park is also better connected to the water than Gas Works Park. At the northern edge of the site, the land terraces to meet the water. The shore along the inlet contains restored wetlands and a kayak and canoe launching beach. (Figure 3.13)
VALUE OF SITE REUSE

Gas Works Park and Lake Union Park are examples showing that there is value in reusing industrial sites for recreation and passive education about a site’s history. Reuse is sustainable, both environmentally and culturally. Environmentally, it is a form of recycling, utilizing the embodied energy that already exists in a structure as well as preventing additional energy from being expended for demolition and even more embodied energy being extracted to build anew. (Figure 3.14)

Culturally, site and building reuse provide historical continuity of information about the evolution of society. (Figure 3.15) Allowing a site to adapt to a present day use leads it to be more historically significant than preserving a building to freeze it in time. Sites and buildings can be reused in a way that both retains expression of past function as well as expresses modern day use. This thought is expressed by Hannah Arendt in *The Human Condition*:

> Only the existence of a public realm and the world’s subsequent transformation into a community of things which gathers men together and relates them to each other depends entirely on permanence. If the world is to contain a public space, it cannot be erected for one generation and planned for the living only; it must transcend the life-span of mortal men. (Arendt, 55)

This idea of cultural transcendence comes forward in the public realm. Arendt summarizes that the loss of public realm also results in a loss of cultural transcendence:

> There is perhaps no clearer testimony to the loss of public realm in the modern age than the almost complete loss of authentic concern with immortality, a loss somewhat overshadowed by the simultaneous loss of the metaphysical concern with eternity. (Arendt, 55)
Figure 3.14: Environmental sustainability of reuse.

Figure 3.15: Cultural sustainability of reuse.
Arendt’s philosophy on the loss of permanence is relevant to a particular building type: industrial buildings, as industrial sites tend to be abandoned and fall into ruin. In *Industrial Ruins: Spaces, Aesthetics, and Materiality*, Tim Edensor discusses what ruins mean in terms of cultural memory, and how they affect perceptions of the urban environment:

Ruins and other forms of ‘wasteland’ are thus tarnished by their association with economic decline and the failure to quickly replace them with something more contemporary. (Edensor, 166)

Ruins offer different ways of remembering the past. They are already material allegories of the imperfect way in which the past is remembered, replete with loss and confusion. Also, they provoke sensual and involuntary ways of remembering, which gesture towards those impressions and half-remembered bits of knowledge which are just beyond grasp although they may or may not once have been familiar. (Edensor, 172)

From these philosophies of Edensor and Arendt, we can see that it is important to recognize that the past has influenced the present, and that by saving physical elements constructed by humans, we make human existence a reality. If we destroy everything and create new for each generation, we destroy continuity as human beings. Furthermore, if destruction and reconstruction is the value we carry, then we should recognize that future generations will not save what we create today. If there is no consideration to how our creations transcend time, then how do we determine what is important?

One scenario in which this physical manifestation exists is in the form of sites that have fallen into ruin. Such physical environments can contribute to the idea of cultural transcendence as discussed by Arendt. They recall past ambitions and provide a humbling image of failed achievement or technologies that are no
longer relevant. It is important to recognize the past, but it is not feasible, neither economically nor culturally, to preserve everything as a perfect image of the past. We, as human beings, continue to evolve, and thus our creations are another layer that are just as important to be included in the story of human evolution that is told through the physical environment.

For these reasons, the existing site and buildings at 1801 Fairview Avenue East should be reused to provide a cultural continuity. In order to make this continuity successful, the site needs to be reused for a purpose that is relevant today. A problem with the word “preservation” is that it is associated with the past, not the present. In order for anyone to recognize the past, people must have a reason to come to the site and make the connection between past and present. Understanding the past and present condition of the site is critical to understand how to develop it in the future in a way that carries on the story of its past while also telling the story of today’s needs.
CHAPTER 4: SITE HISTORY - LOST LAKE PARK

SITE CREATION

The project site did not historically exist. The shoreline of Lake Union at this location was gradually moved westward, with its present location being established in 1963 when the existing buildings were built for the National Oceanic and Atmospheric Administration (NOAA). Historic maps show the shoreline of Lake Union having influenced the urban street grid, and the kinks in Eastlake Avenue are the result of its following the shoreline. (Figures 4.1, 4.2) A 1917 Sanborn Fire Insurance map shows a wooden viaduct bridging the shallow water. (Figure 4.4)

At some point, the location of the viaduct was filled to create today’s Fairview Avenue. This shoreline can be seen in an aerial photograph from 1961. (Figure 4.3) This aerial photo shows the site on the brink of major changes, changing it from an area of small grain buildings to an area of large infrastructures. Interstate 5 can be seen under construction to the right in the photo. Once complete, this freeway cut Eastlake off from Capitol Hill to the east. The shoreline also made a major transformation two years after this photo was taken. Since at least the mid 1940’s, this portion of the shoreline hosted a great number of floating homes. The homes were soon cleared for NOAA’s site and piers.

The existing buildings and site were built in 1963 for the U.S. Coastguard Geodetic Survey, with the purpose of serving as NOAA’s Pacific Marine Center. The facility was the home base for the organization’s research ships when they were not out at sea. The site is owned by an association composed of multiple families who leased it to NOAA. This group has owned the property since its construction.
Figure 4.3: Current shoreline and buildings overlaid on a 1961 aerial photograph. Underlay: Pacific Aerial Surveys, Inc. 1961. (UW Map Library)
The site is constructed from fill and is held in place by a bulkhead. The piers follow the line of the bulkhead and sit approximately 10 feet above the water. The piers extend hundreds of feet horizontally into the water, maximizing the waterway property rights. Four buildings were originally built for NOAA, three of which remain. The two primary buildings were an office building and a warehouse. The other two buildings were metal sheds, one of which has been destroyed.

In 2006, a fire caused extensive damage on the site. It began sometime on the evening of July 4, and continued to burn well into the day on July 5. It is known that NOAA employees were celebrating the 4th of July on a ship that was docked on the south side of the southern pier. The insurance company determined that the fire started in the location where the ship was docked. There is clearly more intensive fire damage at this location on the pier, but NOAA has denied starting the fire. The investigation by the U.S. Department of Commerce determined that the fire started at the end of the southern pier.

Shortly after the fire, and with their long-term lease to the site set to expire in 2011, NOAA announced that they would seek options to move their Pacific Marine Center elsewhere. Newport, Oregon was eventually selected as the new location. This decision was controversial, and the new site has been criticized for not being in a protected harbor to shelter the ships from storms, and for its location in saltwater, which will speed deterioration of ships. Nonetheless, NOAA vacated the Seattle site on June 30, 2011. At the time of this document, the entire site is up for sale by the association of owners. Thus, there is an opportunity to transform this site into an engaging center of activity.
SITE CHARACTER FROM WATER
From water, the site is isolated from its surroundings. The site is located at a position where the lake shore curves to the east, creating a pocket that is distanced by the long piers and is not welcoming to kayakers and recreational users of the lake. For recreational vessels, the piers are inaccessible because they are tall, due to their purpose of docking large ships. (Figure 4.5)

The location of the site and its adjacent properties on Lake Union highlight the mix of uses that exist on the lake’s shoreline, but the mix cannot be experienced due to the lack of shoreline access. To the north of the site are the southernmost group of floating homes on Lake Union. To the south is the Lake Union Drydock Company, which is the last remaining industrial use of shoreline in the southern portion of Lake Union. Furthermore, the lack of activity on the site and on the block between Fairview Avenue and Eastlake Avenue creates a dead zone that increases the discontinuity from the residential zone to the north to the industrial zone to the south and the commercial and residential zone to the east.

SITE CHARACTER FROM LAND
The orientation of the buildings parallel to the shoreline create a wall to the street, which is emphasized by the opacity of the buildings. A narrow trail, used by pedestrians or bikes, runs parallel to Fairview Avenue East, separated by a row of parked cars. (Figure 4.6) On the side of this trail are overgrown bushes and trees, which separate the trail from yet another group of parked cars. This parking lot is the front yard for most of the building site. A chain link fence spans the space between each building on the land side. (Figure 4.7) In addition to this fence between the
shed and office building, at the time the site was occupied by NOAA, a security guard was on duty to monitor access to the site.

The site is separated from the Eastlake neighborhood by the slope at the location of the original shoreline. This topographic edge is further defined by a line of trees that create a lack of visibility to the site. Another contribution to the isolation of the site is that no street runs directly into the site. Blaine Street stops where it meets Fairview Avenue, with a chain link fence straight ahead. Howe Street turns northwest into Yale Place after crossing Eastlake Avenue rather than connecting to the site down the hill. This condition is a direct result of the historic shoreline. (Figure 4.8)

These issues of lack of access, poor site treatment, and lack of physical character do not invite interaction, and contribute to the site’s isolation from its surroundings.

Figure 4.8: Existing site conditions overlaid on aerial photography. Underlay: Google Earth image.
PIERS

1800+ linear ft
25 ft wide

The piers were capable of docking nine or ten of NOAA’s research ships at one time. (source) The piers had been built with firewalls integrated to the structure along the length of the piers. The firewalls were intended to prevent the spread of a fire, if it should ever occur. However, when the fire did occur, it burned for so long that these fire walls burned through, and the fire was able to spread. The fire was more intensive at the locations of these firewalls, which is visible from the surface, as they are noted by holes that burned all the way through the layers of structure to the surface. (Figure 4.11)

The amount of fire damage to the piers varies across the entire structure, with the most intensive damage generally being located on the southern pier, while the arms of the northern piers received less damage. The most intensive damage is located along the bulkhead along the shoreline. (Figures 4.9, 4.10) This exposed the bulkhead holding back the fill soil, which strongly exposes the false shoreline.
BUILDING 1: WAREHOUSE

200 ft x 60 ft
12,000 sq ft

The warehouse is the northernmost building on the site and initially functioned solely as a warehouse, but was renovated 1983 to include two laboratories. These laboratories were used to test hazardous chemicals and to develop ways to refurbish ships. The building is constructed from tilt-up concrete wall panels that attach to concrete pilasters that support the glu-lam roof structure. (Figures 4.15, 4.16)

The exterior of the warehouse building is particularly closed to the street. The solid tilt-up concrete walls are punctured with only a few windows at eye level. (Figure 4.12) Fiberglass clerestory windows located in approximately every other bay help light the large warehouse space. Main access to the building is through the access points on the short ends of the building, within the fenced area, and no access points exist on the street side.

The interior of the warehouse building is more interesting than the exterior indicates. The immense glu-lam beams that are visible in the warehouse portion of the building provide warmth in relief to the gray concrete. (Figure 4.13) This structure is hidden in the laboratory portion of the building because a lower ceiling was inserted to relate to the scale of the use of that space. The laboratories are arranged in a fashion following the long direction of the building. (Figure 4.14)
Figure 4.15: Warehouse wall section. (City of Seattle Department of Planning and Development)

Figure 4.16: Plan and section of warehouse. (City of Seattle Department of Planning and Development)
BUILDING 2: OFFICE

200 ft x 50 ft
17,000 sq ft

The NOAA office building located at the center of the site was the most frequently occupied. It housed civilian engineers and facility administration. The building is wood-frame construction, with its structure consisting of three bearing walls that the wood joist roof sits on. One bearing wall is in the center of the building, and the other two are the perimeter walls in the long direction. (Figures 4.20, 4.21)

The exterior of the office building is more open to the street than the warehouse building. (Figure 4.17) Its exterior walls are consistently punched with windows, providing some human-scale. A main door is located on the street-side facade of the building, which is separated from the street by a parking lot. Due to security reasons, however, this door remained locked during NOAA’s occupation of the building.

The interior of the office building is characterized by low ceilings and dated finishes, such as pink and blue carpets and faux wood paneling. (Figure 4.18) The interior spaces within the bearing walls were subdivided into small compartments to create office spaces. Some office spaces are open, containing multiple desks, while others were smaller, single person offices. There is a concrete vault that spans both floors that is located on the water side of the building adjacent to the entry space. (Figure 4.19)
Figure 4.20: Office wall section. (City of Seattle Department of Planning and Development)

Figure 4.21: Plan and section of office/laboratory. (City of Seattle Department of Planning and Development)
BUILDING 3: SHED

100 ft x 40 ft
4,000 sq ft

The southernmost steel shed is different from the other buildings on the site because it sits on the pier rather than the land. (Figure 4.22) Most recently, it housed a boiler, which produced steam that powered ships without having to run the ships’ engines while docked. The shed is constructed from a factory-produced system that was available in various heights. (Figure 4.25) Corrugated metal was installed over this structure as the building’s skin.

The shed has remained in the same state of disrepair for the past 5 years since the fire, and the building pad next to it remains empty. The shed received direct damage from the fire, which caused portions of the corrugated metal to become deformed from the heat. The building also received indirect damage because of the fire. The fire department used a backhoe to rip part of the floor out and push it into the water, effectively putting the fire out. (Figures 4.23, 4.24)
Figure 4.25: Structure of prefabricated shed. (City of Seattle Department of Planning and Development)
CHAPTER 5: DESIGN RESPONSE

URBAN ADAPTATION

The existing site is isolated from its surroundings, both on land and on water. The east/west-oriented streets end at Fairview Avenue, which passes by the site in the north/south direction. As a result, the site is disconnected from the city street grid. There are several pedestrian and bike paths that exist near the site but do not connect to it or to one another. The Cheshiahud bike path passes by the site, parallel to Fairview Avenue. Under the I-5 Colonnade, bike activity exists but lacks a designated route to connect to its greater surroundings. Stairs under the I-5 Colonnade connect to the hill-climbs that run on Blaine Street and Howe Street up to the top of Capitol Hill, but dissolve at the west side of the colonnade. New paths connect to existing bike and pedestrian infrastructure, drawing users directly to the site. The paths from the I-5 Colonnade continue the structure of the urban street grid, not only physically leading people to the park, but also enabling the path and its destination to be visible from a distance. The Cheshiahud Loop is altered to meander through the site, allowing the biker to engage in the activities, rather than to pass by without noticing the site. (Figure 5.1)

To make physical connections between land and water, the site peels away pieces of existing infrastructure. The damaged pier structure is broken into 3 pieces to define areas that are accessible to park visitors. This strategy also breaks down the scale of the pier and generates different zones on the pier. The sharpness of the man-made shoreline is pulled back in one location, allowing people to pass underneath the pier into the water. This reflects the new human scale use of the site. (Figure 5.1)
Figure 5.1: Strategy for site changes.
Different zones of use are emphasized in the park plan, which also brings the paths to a pedestrian scale. This also provides interest for visitors as they follow the paths down the hill, intriguing them to continue to the water. These zones are based upon the character and boundaries that already exist and further distinguishes them. (Figure 5.1)

SITE ADAPTATION
The I-5 Colonnade is an existing zone of urban recreation, where existing infrastructure has been uniquely reclaimed for recreational use. Here, Interstate I-5 is elevated, sitting 30-80 feet above the ground surface, depending on one’s position on the slope. The road surfaces are held up by tall concrete columns, and the collection of them creates a forest of columns. (Figure 5.2) The bike park contains an assortment of stunt areas, as well as a through bike path and pedestrian stair. The pedestrian stair aligns approximately with the Howe Street hill climb. (Figure 5.3)

The next zone that is experienced when going toward the water is the Urban Neighborhood. This zone contains buildings that are characteristic of the Eastlake Neighborhood, from large mixed use/apartment buildings to smaller townhouses and single family homes. This zone reconnects users with the urban context, and is also an access point to the park for those traveling through the transit corridor on Eastlake Avenue.

The next zone is the Urban Beach, which serves as a transition between the urban activity and the recreational activity in the park. It is also a physical reference to the original shoreline of Lake Union. The steep slope physically separates the Urban Beach from the area that once was water. The zone is heavily programmed with
Figure 5.2: Site section showing the different levels of surfaces that are passed through, over, and under.

Figure 5.3: Site plan showing the zones that are passed through between the hill climb and Lake Union.
restaurants and bars with outdoor seating that overlook Lost Lake Park. This zone also contains shops that sell sporting gear, a resource that enables people to unexpectedly utilize the activity resources in Lost Lake Park.

The next zone is Lost Lake Park, which sits on a flat surface, echoing the flatness of the surface of water which originally extended to this location. This zone is occupied by recreational uses that take form in the open spaces on the site. The buildings on the site create a sub-zone within Lost Lake Park. This is a zone of gathering and transition and is defined by the paving pattern that ties all three buildings together. This zone contains equipment, changing facilities, and food venues, resources that facilitate changing between land and water functions.

The last zone in this sequence is Lake Union. This zone contains a variety of activities. Within the area of the site, recreational water activities exist. Beyond this, lake activities range from the small scale of self-propelled paddling vessels to sail boats and seaplanes.

The zones are tied together by red paths. (Figure 5.3) The northern path connects to the pedestrian path from the I-5 Colonnade and the southern path connects to the bike path from the I-5 Colonnade. The paths relate to the urban context and, with the existing buildings, set up the overall structure within the site. The spaces between are for loosely programmed for recreation. The playfield to the west of the Urban Beach can be used for field hockey, soccer, and frisbee, among other activities. The slope to the Urban Beach provides a natural location for spectator viewing. Likewise, the slope to the water on the northern shore of the site provides a viewing arrangement for kayak polo that takes place on the water. Amid the land
activities, Fairview Avenue and the Cheshiahud Loop bike path pass through the site. A new beach provides a location for direct connection to the water, bringing the scale of the site to the human use. On water, a pool barge allows for swimming on Lake Union. Water circulation takes place around all the programmed water activities. In contrast, on land the primary circulation takes precedence and activities are scattered around them.

The existing condition of the site varies from the northern part of the site to the southern part of the site. The southern portion received more substantial fire damage, and as a result, is partially deconstructed. The northern portion of the site is more intact, as the fire did not reach to this end of the site. These given conditions affected how the site is transformed.
THE PATHS

The northern path layers over the existing site infrastructure, where the existing buildings and pier are more intact. (Figure 5.4) To the east beyond, this path connects to the pedestrian path that emerges from the I-5 Colonnade, and thus the path is experienced casually as a form of leisure. Each path segment is flat and corresponds to the stepping surfaces of the site. Each path segment lands on a new surface, which contains a viewing platform and serves as a transfer point to circulate to other places on the site. The first segment begins at the level of the urban beach, where it splits between a raised path and a set of stairs that access the ground level. The first path segment lands on the roof of the northernmost building on the site. The translucent quality of the path allows the activity below to be visible. One can see cars and bikes passing by below. From this surface, one can access the skate park on top of the roof. The stairs hang off the path, emphasizing the path itself. At the bottom of these stairs, at the beginning of the next path segment, one can access the main ground surface of Lost Lake Park, including the buildings. The second path segment sits on the level of the piers and bridges the two northernmost piers on the site. Below this path, one can see kayakers, canoeers, paddle boarders, and kayak polo players. This path lands on the surface of the middle pier. From here, one can access the pier park, which is vegetated with an assortment of plants and small trees. The next set of stairs land on the path on the surface of the water. From here, one can access the water.

The southern path cuts through the existing fire-damaged pier, creating a more direct connection to the water, in association with the faster pace of this access point. (Figure 5.4) This path is about flow in and out of the site for bikers and kayakers, with storage for each. A quick stop at
Figure 5.4: Strategies for different paths are related to different parts of the site.
Espresso on the Edge in between land and water fuels this quick pace. Bike storage is located to the east of the espresso bar and kayak storage is located to its west. Kayak storage is inserted into the structure of the pier on a platform inserted between the path and the existing pier. These storage facilities offer visitors a secure place to leave their own bikes and kayaks to the site and transition to the other.

THE BUILDINGS

The design interventions made to the buildings facilitate the connection between land and water. Programmatically, the spatial functions are arranged with water resources at the south end of the site, and land resources located at the north end. Between these are the programs that support both the land and the water. (Figure 5.5) This strategy allows each recreation rental element to have an equal relationship to their support programs, and therefore to have equal value on the site.

For circulation, the buildings are penetrated in their short direction to create a transparency through which people can see through the buildings to the water. This also enables a direct path through any building’s land side to its water side. Major exterior circulation takes place through the plaza space between the buildings. (Figure 5.6)

For each of the three buildings to achieve its transparency, a different strategy is used in response to the building’s construction type, existing condition, and relation to the program on the site.
Figure 5.5: Program diagram and flow through the building zone.

Figure 5.6: Building plans.
BUILDING 1: WAREHOUSE TO BIKE RENTAL

Building 1 is a tilt-up concrete building, organized on 20 foot bays. Pilasters support the glu-lam beam roof structure above. To create transparency through the building, certain bays of the tilt-up concrete are tilted down. In their down position, they become part of the site paving pattern that defines the zone of buildings. The larger panels on the ground emphasize the openings and encourage entry to the building. In the bays where the panels are tilted down, a new system of vertically sliding doors is installed. When open, these doors allow for a view and openness through the building. When closed, the doors allow for enclosure while maintaining transparency. (Figures 5.7, 5.8)

In this case, the interventions fit within the structural order of the building. New interior walls to define the different functions are inserted at structural grid lines. In the bike rental, mezzanines create space for additional storage and fit within the structural grid.
Figure 5.7: Diagram of interventions to Building 1.

Figure 5.8: Building 1 plan.
BUILDING 2: OFFICE TO KAYAK RENTAL

Building 2 is a wood frame building with three bearing walls in the long direction: one in the center and one on either side along the perimeter. To achieve transparency, holes are cut in the exterior walls where windows were located in the original building. To compensate for this removal of material in a load-bearing wall, box beams span between the openings. In the center of the building, a new structural system of columns and beams is inserted to open the space. The columns are arranged in a 20 foot grid, relating to the rhythm of the structure in the other two buildings on the site. Like Building 1, vertical sliding doors are inserted into the new openings, allowing for open air connection when open and transparency when closed. (Figures 5.9, 5.10)

In this case, the structural grid and the interventions work as two systems that overlap, creating unique conditions. Walls that divide the interior spaces align with locations of exterior walls, while the mezzanines fit within the central structural grid.
Figure 5.9: Diagram of interventions to Building 2.

Figure 5.10: Building 2 plan.
BUILDING 3: SHED TO ESPRESSO

Building 3 is a steel structure shed with minimal existing enclosure. The southern site path also runs through the shelter of this building. Therefore, no material is removed from the existing building, and the intervention is inserted as a new enclosed space within the frame of the existing building. Within the new glass wall, a series of full-height horizontal sliding doors are installed, enabling the espresso bar to completely open to the exterior. (Figures 5.11, 5.12)

In this case, the structure of the new and existing are independent, with the existing creating a framework for a new enclosure within.
Figure 5.11: Diagram of interventions to Building 3.

Figure 5.12: Building 3 plan.
CHAPTER 6: SITE EXPERIENCE

Lost Lake Park is experienced differently by different user types of and through different access points. The primary user groups are pedestrians, bikers, kayakers, and other recreational athletes. The park is accessed by both land and water, with multiple access points for each. (Figure 6.1)

Pedestrian access from the east occurs primarily at the north path to the site. Access can also occur from the east on Blaine Street, and through the adjacent low-slope transition area from the urban beach to the park. From the north or south, pedestrian access occurs along Fairview Avenue, which cuts through the center of the park.

Mountain bikers access the site from the I-5 Colonnade to the east by a new bike path on Blaine Street. Road bikers, including commuters, access the site by the Cheshiahud Loop bike path that passes through the park.

Kayakers who rent from Lost Lake Park rentals access the water from the new beach under the burned pier. Other visiting kayakers access the site at the south path, where the kayak storage is located.

The park is experienced casually on land through the loosely-programmed spaces around the structured circulation routes. The site encourages exploration and discovery of the unique elements that have been peeled away or layered over the site. On water, exploration is also encouraged, and paddlers are drawn to the park by the variety of activities and new structures that reach out into the water.
Figure 6.1: Site connections to greater Seattle.
The lookout tower in Volunteer Park takes in the 360 degree view of Seattle and its surroundings. After descending, one can walk up 10th Avenue, glancing over to the west to the vast views of Lake Union, Queen Anne, and Elliott Bay beyond, as they appear between the gaps of buildings and trees. Coming upon one of the many east/west streets that dead end just beyond 10th Avenue, one can take in the view and activity below. Off in the distance, one can see two long structures projecting out into Lake Union, with trees growing on them. (Figure 6.2)
After taking the Blaine Street hill climb and crossing Lakeview Boulevard, a forest of columns appears. Walking toward it, an entire bike park full of ramps, rocks, and jumps unfolds as the ground slopes downward tremendously. Bikes fly through the air and then disappear to make their way back to the top of the jump launch. Constant activity is all around, with bike stunts happening in front of a person and the sound of cars buzzing on the freeway above. On the north end of the bike park, one finds another set of stairs that continues down the hill. From here, one can see down a couple blocks ahead that there is a red surface that disappears beyond a grouping of trees. (Figure 6.5)
While waiting to cross the arterial Eastlake Avenue, one can see the path disappearing beyond the trees across the street. To its left, an outdoor bar is full of people taking in the sunshine. Beyond this is a set of shops, including Lost Lake Recreation Store, which sells a variety of sporting goods. This open area is a contrast to the densely built-up blocks on either side of the block on Eastlake Avenue. (Figure 6.6)
Passing through the trees, the ground drops rapidly below. There is a stairway off to the left that leads down to the lower ground level. Walking across the elevated translucent path, one can see cars, bikes, and runners pass below. Toward the end of the bridge is the roof of a building, at the same level of the bridge, angled away from it. The roof is used for skateboarding at the center and roller blading around the perimeter. As the water of Lake Union comes into view, it looks as though this path ends. However, a stairway appears on the left side of the path, just like the previous one before the bridge. The bridge platform extends beyond this stair, allowing one to walk to its end to watch activity on the lake. (Figure 6.9)
After one takes the stairs, the path becomes a bridge high above the water, spanning between two piers. Below, one can see kayakers and paddle boarders pass by. To the right is a kayak polo area, where crowds can watch from the seating built into the small hillside. Ahead, the piers contain plantings and small trees. Another viewing platform is at the end of this bridge segment, and the next set of stairs to the left lead to a surface that floats just above the water. On the dock, people sit scattered over the edge, fishing. There is a sense of calm in this area, juxtaposed with the activity on the lake just beyond the existing piers. (Figure 6.10)
Figure 6.12: Figure 6.13 site location.

Figure 6.13: The espresso bar serves as a transition between biking and kayaking.

After biking in the I-5 Colonnade bike park, one comes down the hill on Blaine Street, which leads to Lost Lake Park’s south path. Here, one can leave his or her bike in the storage racks and proceed to the water to kayak or participate in other activities in the park. Before pursuing another activity, one can stop by Espresso on the Edge for a coffee and light snack. A variety of coffee patrons can be seen, from exercisers in athletic gear, to researches from across the street in laboratory coats, and workers from the Lake Union Dry Dock in work clothes. As one takes the path down to the water, people can be seen sitting out in the sun overlooking the lake from “the point” seating area. (Figure 6.13)
As a kayaker comes to the last floating homes on Lake Union’s eastern shore, the shoreline bends sharply to the left. Protruding hundreds of feet into the water are immense pier structures. One can see an assortment of people sitting on the edge and walking across the top of the pier. In effort to find a place to leave one’s kayak, one paddles around the various pier structures. On the way, one sees a red path with people sitting on its edge. At the south end of the site, a similar floating path is found. Straight ahead, one can see people carrying canoes and kayaks to the underside of the pier. Approaching the dock, one also can see cyclists riding down from the I-5 Colonnade. (Figure 6.14)
As one walks across the flat surface of the park, it suddenly slopes downward, leading one straight to the water’s edge. The slope is a consistent angle, indicating that it is man-made. The water’s edge is defined by charred pier columns. Above these columns is the pier surface, half removed. As one looks further up the shoreline, it is seen that the shoreline stops abruptly at a wall containing the earth from spilling into the water. This provides a clue to the site’s past, indicating that the earth had been built up to the level of the charred pier that is seen above. (Figure 6.17)
From the street, the openness of the buildings invites people inside. The northern building is long, but has large doors that are frequently open, offering something new to see after every twenty feet of solid wall. First, one sees a cafe full of diners casually eating and taking in their surroundings. Next, one encounters the clanging activity of the bike and kayak repair shop. Finally, at the north end of the building one finds the bike rental shop, with a number of people testing out bikes for size and gathering helmets to rent. One can pass through the building to the opening directly on the opposite side, accessing the piers. (Figure 6.18)
From the piers, one can look back at Lost Lake Park and see the variety of activities that take place there. Kakyakers and paddle boarders are seen below on the water. On a building roof, people can be seen skateboarding and roller blading. Amid these activities, people walk along the path that brings them down to the different park levels. Off in the distance, the path ascends the hill up to the I-5 Colonnade. Above, Saint Mark’s Cathedral sits prominently at the top of the hill, indicating the extent of the park path’s connection to greater Seattle. (Figure 6.20)
CONCLUSION

Within the city of Seattle, there is a significant length of shoreline, yet this shoreline is not easily accessible to its inhabitants. In particular, the eastern side of Lake Union is inaccessible because it is lined primarily with private homes and industrial facilities, which restrict access. This, in combination with a weak connection between Eastlake and South Lake Union, the site at 1801 Fairview Avenue East has become a dead zone. For the site’s next use, it must be transformed into a vibrant place of activity that ties the neighborhoods together and ties the water and land to one another.

Through the reuse of an industrial site, the park experience provides a continuity of evolution that has occurred on the lake, expanding upon the stories that Gas Works Park and Lake Union Park tell. With the addition of Lost Lake Park, Lake Union becomes a series of recreationally experienced nodes that together tell the story of the lake’s past and development. As industrial sites are abandoned and subsequently taken over for recreational uses, the current generation’s contribution adds yet another layer to the lake’s evolution, creating a richer history in the future.

Lost Lake Park provides a variety of ways to experience the site, in terms of both activity and access. These experiences draw a variety of users to Lost Lake Park, creating a node of activity on the central eastern shore of Lake Union, and at the center of two vibrant Seattle neighborhoods, Eastlake and South Lake Union. Visitors at Lost Lake Park experience the site’s history through the new interventions that both layer over and cut through the existing site, pier, and buildings.
Each building is adapted differently, according to its unique position on the site and its existing condition, but the goal of each is to allow visitors to have both physical and visual access through the building to its other side, to either land or water. Thus, the buildings facilitate the connection between land and water.

From the urban scale of the lake, to the scale of the site, to the scale of the buildings, Lost Lake Park serves as both path and a destination that enhances one’s understanding of the history of the site, Lake Union, and Seattle. This generates an understanding of how we as a society have and continue to evolve and adapt our surroundings according to the way we live in the present.
BIBLIOGRAPHY

APPENDIX

SITE INVENTORY: PIER

Figure A.1: Piers as seen from shed.
Figure A.2: Pier damage from 2006 fire.
Figure A.3: Pier damage from 2006 fire.
Figure A.4: Shed and Capitol Hill as seen from pier.
Figure A.5: Floating homes to the north of the site.
Figure A.6: Lake Union Dry Dock to the south of the site.
SITE INVENTORY: WAREHOUSE

Figure A.7: Warehouse from the north.

Figure A.8: Pier along warehouse.

Figure A.9: Metal windows.

Figure A.10: Warehouse space.

Figure A.11: Glu-lam structure above laboratory.

Figure A.12: Laboratory support space.
SITE INVENTORY: OFFICE

Figure A.13: Office building from the south.

Figure A.14: Interior stairs.

Figure A.15: Office interior.

Figure A.16: Small office interior.

Figure A.17: Inside vault.

Figure A.18: Typical corridor.
Figure A.19: Pier damage in front of shed.

Figure A.20: Pier damage in front of shed.

Figure A.21: Interior looking toward Lake Union.

Figure A.22: Damaged siding from 2006 fire.

Figure A.23: Interior looking east.

Figure A.24: Exterior from street.
SITE INVENTORY: OUTSIDE THE FENCE

Figure A.25: Looking north from the warehouse.

Figure A.26: Stairs from Yale Place East.

Figure A.27: Office from the east.

Figure A.28: Space between bike path and fence.

Figure A.29: Pedestrian path between cars.

Figure A.30: Context of pedestrian path.
SITE INVENTORY: HILL CLIMB

Figure A.37: Blaine Street hill climb.
Figure A.38: Hill climb near Streissguth Gardens.
Figure A.39: Stairs under I-5 Colonnade.
Figure A.40: I-5 Colonnade.
Figure A.41: I-5 Colonnade stunt walls.
Figure A.42: I-5 Colonnade from Blaine Street.
SITE INVENTORY: FROM WATER

Figure A.43: Southern pier.

Figure A.44: Site from a kayaker’s view.

Figure A.45: Pier damage from 2006 fire.

Figure A.46: Warehouse from the water.

Figure A.47: Space Needle between pier columns.

Figure A.48: Shed from the water.