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Abstract: As place-based frameworks are increasingly applied to fisheries management, 
researchers are faced with the need to define ecosystem units and collect data in a manner 
that will meet this management need.  Place-based management approaches, such as 
ecosystem-based management and marine spatial planning, are explicitly tied to spatial 
considerations and rely on an understanding of the spatial arrangement of elements within 
the system and how elements interact.  I explore the utility of spatial pattern analysis and 
spatial statistics for understanding the distribution of marine resources.  I focus on the 
upper shelf and outer slope region of the Eastern Bering Sea continental margin.  This 
region is highly heterogeneous in terms of geomorphology of the shelf break and system 
of canyons that incise the shelf.  I used slope and aspect to divide this region into shelf 
and slope geomorphic zones and facets and divided this region into a northern and 
southern portion to explore spatial pattern at a range of scales.  I quantified structural 
heterogeneity with a shape index and surface roughness metric.  I used groundfish catch 
per unit effort (CPUE) trawl survey data to describe and quantify the degree of spatial 
autocorrelation in this region.  I found spatial autocorrelation of groundfish CPUE in the 
upper shelf and outer slope region of the Eastern Bering Sea continental margin.  The 
clustering pattern was dominated by low-value clustering at the global level.  At the local 
level, low-value clusters were confined to the southern portion of the study area and high- 
value clusters varied spatially and temporally.  Outliers were most commonly found in 
close proximity to the shelf-slope break.  This explicitly spatial method demonstrates the 
feasibility of this approach in fisheries management.  
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INTRODUCTION 

Place-based marine management frameworks, such as ecosystem-based 

management (EBM) approaches, have been proposed by institutions and governmental 

bodies as a means to sustainably manage coastal and marine resources (EPAP, NMFS 

1999; POC 2003; USCOP 2004).  EBM is an integrated approach to management that 

recognizes human linkages with ecosystems and considers interactions within and among 

systems and across spatial and temporal scales (Leslie and McLeod 2007).  EBM 

explicitly acknowledges the complexity of human and ecological systems and the 

emergent properties that arise from these underlying complexities.  EBM for fisheries 

management is geographically specific, adaptive, considers ecosystem knowledge and 

uncertainty, takes into account external influences, and serves to balance societal 

objectives (Sissenwine and Murawski 2004).  Tools have been developed to meet these 

goals including spatially explicit management frameworks such as marine protected areas 

(MPAs) and marine spatial planning (MSP).  MPAs are spatially discrete marine areas in 

which restrictions on human use are established in order to rebuild stocks and encourage 

recovery of overexploited areas, protect habitats and ecosystem structures, maintain 

species biodiversity, or preserve culturally significant sites (Browman and Stergiou 

2004).  MSP is a multi-sectoral approach that brings together stakeholders to make 

coordinated and informed decisions about how to use marine and coastal resource with 

the intention of creating comprehensive plans that consider tradeoffs between ocean uses 

and goals (Ehler and Douvere 2009).  Both MPAs and MSP are marine and coastal 

management tools that combine consideration of the complexity of ecological and 

socioeconomic systems with explicit reference to the spatial attributes and scales of 

ecosystems. 

The National Oceanic and Atmospheric Administration (NOAA) and the North 

Pacific Fisheries Management Council (NPFMC) use an ecosystem-based approach to 

fisheries management in federal waters off the coast of Alaska.  This approach 

incorporates temporal scale through annual and long-term assessments (Livingston et al. 

2005); considers interactions within and among fisheries through a single species 

management approach of annual and seasonal quotas and a multispecies approach of 

limits on incidental catch and target fishery closures when incidental catch limits are 
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reached for non-target and protected species (Ruckelshaus et al. 2008); and protects 

habitat through the use of MPAs (Witherell et al. 2000).  Broader ecosystem interactions 

between target fisheries and other species are accounted for with diverse tools such as the 

spatial and temporal allocation of walleye pollock (Theragra chalcogramma) and Atka 

mackerel (Pleurogrammus monopterygius) to manage fishing pressure on sources of food 

for Steller sea lions (Eumetopias jubatus) (Witherell et al. 2000).  Other management 

measures in the Bering Sea include limiting fishing and transiting near marine mammal 

rookeries and haul-outs; reducing bycatch by establishing bycatch limitation zones for 

snow, king and tanner crab and implementing salmon and herring savings areas when 

prohibited species catch limits are reached; and protecting blue king crab (Paralithodes 

platypus) habitat with the Pribilof Islands Habitat Conservation Area (Witherell and 

Woodby 2005). 

Although NOAA and the NPFMC have taken actions to implement an ecosystem-

based approach in the Bering Sea, challenges exist.  Some are general to the 

implementation of EBM, such as managing the time lag between stock assessment 

modeling and decisions on fishery allocations (Methot 2009).  Others are specific to 

regional implementation, such as recommendations to include broader ecosystem 

objectives in management by considering socially valuable habitats and non-target 

species in higher and lower trophic levels (Ruckelshaus et al. 2008).  Considering broader 

ecosystem components requires a regional knowledge of the biological resources and the 

socioeconomic uses of those resources. 

The Bering Sea supports valuable and productive commercial fisheries, diverse 

and rare species, and subsistence needs for Alaskan Natives.  Given the use of this region 

by a variety of stakeholders, managers are challenged to meet stakeholder needs and 

maintain ecosystem functions.  The Bering Sea supports over 400 fish species, of which 

more than 40 are commercially valuable (Hunt et. al. 2010).  Major commercial fisheries 

have been active in the Eastern Bering Sea since the 1950s, with walleye pollock 

(Theragra chalcogramma) becoming a target in the 1970s and remaining commercially 

important since that time (Hunt et al. 2010).  Other commercially important species such 

as rockfish and crab have experienced population fluctuations due to natural variability in 

their life cycles and periods of overexploitation (Hunt et. al. 2010).  In addition to 
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substantial fishery resources, the Bering Sea supports diverse seabird and marine 

mammal species.  A number of species found in the Bering Sea are rare or listed as 

endangered.  Such species include short-tailed albatross (Phoebastria albatrus) and a 

number of cetaceans including the bowhead whale (Balaena mysticetus), fin whale 

(Balaenoptera physalus), humpback whale (Megaptera novaeangliae), North Pacific 

right whale (Eubalaena japonica) and sperm whale (Physeter macrocephalus) (NOAA 

2011). 

The Bering Sea is a dynamic marine system serving as a transition zone between 

arctic and temperate water bodies and containing high structural complexity along the 

outer continental margin.  The Bering Sea experiences substantial seasonal, annual and 

decadal oceanographic shifts due to the accumulation, advection and melting of sea ice 

(Stabeno et. al. 1998 and Macklin et. al. 2002) that drive the spring plankton bloom and 

annual cold pool formation (Stabeno et. al. 1998 and Hunt et. al. 2010).  Shifts in 

physical forcing by the Pacific Decadal Oscillation (PDO) in 1977 and shifts in polar 

vortex winds by the Arctic Oscillation (AO) in the 1990s has led to a subarctic maritime 

climate (Overland et. al. 2005) and more recently, extensive sea ice coverage that favors 

species at lower trophic levels and extends the summer cold pool (Zador and Gaichas 

2011).   

The geomorphological heterogeneity of the outer continental margin and system 

of canyons incising the shelf also contribute to the complexity of the Bering Sea 

ecosystem.  Outer continental margins tend to be dynamic with strong gradients in depth, 

pressure, dissolved oxygen and substrate stability with high population differentiation 

and species diversity (Levin and Dayton 2009).  Shelf edge canyons, such as those of the 

Bering Sea, are believed to support higher biomass and productivity than other marine 

areas (Brodeur 2001).  The abrupt slope of marine canyons alters downstream circulation 

and increases the shelf-slope exchange of water and nutrients (Napp et. al. 2000; Brodeur 

2001; Allan and Durrieu de Madron 2009).  Research by Mizobata and Saitoh (2004) 

found that the slope topography and canyon features along the shelf edge affect the 

formation of anticyclonic eddies along the shelf break, finding that advection by 

mesoscale features led to increased horizontal mixing.  Other processes such as sediment 

flushing, transport of organic matter offshore, and diel vertical migration of zooplankton 
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may also increase biological productivity (Brodeur 2001).  In the Bering Sea, Pacific 

Ocean perch (Sebastes alutus) have an affinity for sea whip habitat associated with 

Probilof Canyon (Brodeur 2001), short-tailed albatross (Phoebastria albatrus) frequently 

forage along shelf edges and at marine canyons (Piatt et al. 2006), egg deposition by the 

Alaska skate (Bathyraja parmifera) Aleutian skate (B. aleutica) and Bering skate (B. 

interrupta) was high in areas near marine canyons for (Hoff 2010), and corals and 

sponges provide vertical relief in an area of otherwise low relief substrate in Zhemchung 

and Probilof canyon (Miller et al. 2012).  These studies suggest potential associations 

between the structural complexity of canyons and the biological use and productivity of 

these habitats. 

The development of geographic information systems (GIS) and related tools allow 

for more efficient spatial analysis and readily interpretable data visualization that may be 

valuable in the policy and management context of place-based frameworks.  Furthermore, 

the application of remote sensing and remotely operated vehicle technology to the marine 

environment allows resource managers to inventory and map resources, quantify 

environmental characteristics, describe the flow of energy and matter and evaluate 

changes in ecosystem dynamics in new ways (Quattrochi and Pelletier 1991).  Using 

remote sensing to model seafloor geomorphology provides an avenue to model seafloor 

terrain and explore potential relationships between habitat types and species assemblages 

that can be used to improve the understanding of a region and how processes are affected 

by seafloor geomorphology (Wilson et al. 2007).  For example, steeply sloping areas can 

alter current flow, limit fishing gear use and influence community composition (Wilson 

et al. 2007).   

Spatial statistical analysis is concerned with both the location and attributes of 

data (Wong and Lee 2005).  It considers where phenomena occur in space and the spatial 

dependence and spatial heterogeneity among phenomena (Anselin 1993).  Spatial 

analysis considers interactions between observations in space and distances between 

observations in space (Anselin 1993).  It is used in diverse fields of inquiry to identify 

regions with extreme values and to explore the processes that may have led to those 

values and configurations of values (Ord and Getis 2001), as well as the ability to 
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understand associations between observations based on distance (Legendre and Fortin 

1989).     

An underlying premise of spatial analysis is the concept of spatial autocorrelation. 

Spatial autocorrelation, the interdependence of values over space, is a common attribute 

among most ecological data (Legendre and Fortin 1989).  Measuring the degree of spatial 

autocorrelation requires specifying a neighborhood or distance measure that locates n 

points in space (Ord and Getis 1995).  Distance can be a relative position in space, such 

as a spatial arrangement, or an absolute position in space, such as Euclidean distance 

(Fortin and Dale 2005).  Spatial autocorrelation will not be identical for all distances; a 

location that exhibits autocorrelation at one distance may not exhibit it at another distance 

(Legendre and Fortin 1989).  Spatial scale is an important consideration for any analysis 

because the distance threshold used, or neighborhood, delineates the geographic scope of 

influence under investigation (Tobler 1979).  Different neighborhood definitions will lead 

to different statistical values (Unwin and Unwin 1998).  In ecological data, it is common 

to find positive spatial autocorrelation at short distances, with the possibility that negative 

spatial autocorrelation indicates too large a sampling interval for a given patch or 

ecological avoidance (Legendre and Fortin 1989).  Spatial autocorrelation that is positive 

at a short distance and negative at a long distance indicates an ecological gradient, while 

positive autocorrelation at both short and long distances indicates an aggregation 

(Legendre and Fortin 1989).  

The use of local statistics facilitates investigation into sub-regional variation and 

acknowledges the likelihood that different processes are operating at different spatial and 

temporal scales within a study area (Fortin and Dale 2005).  Global statistics used over 

large areas with large data sets can fail to detect fine-scale pattern, while local statistics 

compare each data point to its neighbors.  A classic example from Ord and Getis (1992) 

considered Sudden Infant Death Syndrome mortality rates in North Carolina counties 

from 1979-1984.  Global statistics did not detect spatial patterns in the data, but local 

statistics detected clustering of cases in a few southern counties.  It is important to use 

global and local statistical analysis in combination to investigate spatial dependency and 

consider local statistical values in light of global values (Ord and Getis 2001).  A local 

indicator of spatial autocorrelation (LISA) decomposes global statistics into parts, 
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investigating whether a global pattern is representative of the average pattern of local 

associates (Anselin 1995).   When a pattern is stable throughout the study area, there is 

little variation from the mean, but when there are significant deviations in values, these 

locations contribute a greater share towards the global statistic (Anselin 1995).  Results of 

the local Gi
* statistic should be interpreted in the context of whether global 

autocorrelation is present (Ord and Getis 2001).  The likelihood of Type I error in 

analyzing local statistical values can be increased when local results are interpreted in the 

absence of global statistical results since locations that appear as local ‘hot spots’ in Gi
* 

results may be located in areas with generally high values.  Local statistics can be used to 

understand local pattern in the absence of global spatial autocorrelation and to explore 

cases where local patterns are an aberration from the global pattern (Ord and Getis 1995 

and Anselin 1995).  

Exploratory spatial data analysis can be used to determine and describe spatial 

structure in data in order to generate insights in spatial associations (Anselin 1993; 

Wilhelm and Steck 1998).  These approaches allow researchers to visualize and describe 

geographic distributions, uncover patterns of spatial association, measure spatial 

heterogeneity and spatial instability, and identify outliers at both global and local levels 

(Anselin 1993; Wilhelm and Steck 1998).  Global statistics provide a summary or 

average value for an entire area, while local statistics provide a unique value for each 

location.  

Contemporary marine management is shifting towards place-based frameworks 

and tools; this approach has been incorporated into NPFMC management actions through 

an EBM approach to fisheries management (Witherell et al. 2000; Witherell and Woodby 

2005). According to Belgrano et al. (2006), space constitutes and important variable in 

the Bering Sea system and exogenous and endogenous processes leading to ecological 

variation should be analyzed with consideration of spatial autocorrelation and 

multivariate methods.  Spatial statistics and pattern analysis have the potential to inform 

place-based management frameworks, increase data integration, and improve data 

visualization.  In this region, the continental shelf-slope break forms a conspicuous 

spatial feature.  I used a hierarchical study design and spatial pattern analysis to integrate 

biological and structural information.  I used groundfish distribution and abundance as a 
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Figure 1. Study area with shelf-slope break line in relation to the Eastern Bering Sea and surrounding 
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 Data Sources ETOPO1 was used for bathymetry and derivatives.  ETOPO1 is a 

one-arc-second model of global relief developed by NOAA using land topography and 

ocean bathymetry (Amante and Eakins 2009).  Although higher resolution bathymetry is 

available for portions of the study area, ETOPO1 has uniform 1.5 km cell resolution 

throughout the study area.  

 I utilized fisheries-independent direct in situ trawl survey data for groundfish 

distribution and abundance data.  The groundfish data were taken from the 2002, 2004, 

2008 and 2010 Eastern and Northern Bering Sea Continental Shelf Bottom Trawl 

Surveys of Groundfish and Invertebrate Fauna and Eastern Bering Sea Upper Continental 

Slope Surveys of Groundfish and Invertebrate Resources conducted by the Alaska 

Fisheries Science Center (AFSC).  The Resource Assessment and Conservation 

Engineering (RACE) Division of the AFSC conducted both surveys between June and 

August each year.  The shelf survey utilized a stratified systematic grid sampling 

approach in which the sampling grid consisted of fixed sampling stations at the center of 

each 37 X 37 km (20 X 20 nautical mile) grid square.  Sampling density of the shelf 

survey ranged from one station per 775 km2 to one station per 1,496 km2 with a mean 

sampling density of one station per 1,311 km2.  The slope survey sampling grid consisted 

of random sampling within predefined geographic subareas based on bathymetric type 

and landscape features in an effort to represent habitat types (Hoff and Britt 2011).  

Sampling density for the slope survey ranged from one station per 112.39 km2 to one 

station per 368.96 km2 with a mean sampling density for the EBSS of one station per 204 

km2.  Three chartered stern trawlers (43.5-m F/V Alaska Knight, 40-m F/V Aldebaran, 

and 38-m F/V Vesteraalen) conducted trawls for 30-minute durations at standard tow 

speeds of 3 knots for the EBS (Lauth 2011).  One charted stern trawler (38-m F/V 

Vesteraalen) conducted trawls for 30-minute durations at standard tow speeds of 2.5 

knots for the EBSS (Hoff and Britt 2011).  Both surveys were conducted with eastern 

otter trawl gear with 25.3 m headropes and 34.1 m footropes (Hoff and Britt 2011; Lauth 

2011). Species were recorded as catch per unit effort (CPUE) number by dividing the 

number of species caught per hectare swept.  Species were also recorded as CPUE weight 

(kg) by dividing the catch weighs for each species by the hectare swept (Hoff and Britt 
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2011; Lauth 2011).  For 

additional details regarding 

survey methods and data 

processing, refer to Lauth (2011) 

and Hoff and Britt (2011).  

 Because this study 

focuses on the outer continental 

shelf and slope area, the shelf 

survey data were partitioned based on depth.  Trawl data from 100 m and greater from 

the EBS survey stations and trawl data from all EBSS survey stations were included in 

the analysis (Table 1).  

All invertebrates as well as eggs, egg cases, shells and unidentified species were 

removed from the survey data.  To assess spatial pattern among species and determine 

whether patterns of groundfish were driven by the most abundant species, the four most 

abundant species by CPUE flathead sole (Hippoglossoides elassodon), giant grenadier 

(Albatrossia pectoralis), Pacific Ocean perch (Sebastes alutus) and walleye pollock 

(Theragra chalcogramma) were analyzed individually.  Within the Bering Sea Aleutian 

Island fishery, flathead sole, Pacific Ocean perch, and walleye pollock are classified as 

target species and giant grenadier as non-specified.  Species categorized as target species 

are those with commercial value and non-specified species are those with no economic 

value and for which records are not maintained.  

Methods Calculation of derivatives: I partitioned the study area into a shelf zone 

and slope zone by calculating the first and second order derivative of bathymetry to 

represent the slope and aspects and their local rates of change. 

Definition of study area, geomorphic zones, and facets: The spatial extent of the 

study area was established by the international dateline to the north and the Alaska coast 

to the south with a combination of a 25 km spatial buffer around the point observations of 

the groundfish survey, the 100 m isobaths, and the digitized continuous line representing 

the toe edge of the slope.  The slope-shelf break was established as a digitized line of 

maximum slope dividing the study area into the geomorphic shelf-zone and slope-zone. 

These geomorphic zones were further defined into facets based on slope and aspect 

  

 

 

 

 

 2002 2004 2008 2010 

Total Number of Stations 248 340 310 310 

Shelf Stations 135 171 154 163 

Slope Stations 113 169 156 147 

Northern Stations 122 148 146 147 

Southern Stations 126 192 164 163 

Table 1. Total stations by year. 
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morphology and adjacency of 

facets along the shelf.  Facet 

initiation points identified the 

point of slope-shelf incision 

using a minimum mapping 

unit length of 100 km along 

the slope-shelf break.  In the 

slope zone, facet boundaries 

were digitized following 

connected regions of 

maximum change in aspect.  

Given the very low structural 

complexity of the shelf 

geomorphic zone, facet 

boundaries in this zone were 

oriented orthogonally from 

the point of initiation at the 

slope-shelf break and 

continued to the intersection 

of the 200 km shelf-slope break line buffer.  In this way each facet was recognized as an 

individual geomorphic unit within the study area extent.  Polygon vector fields were 

added to the attribute tables of each facet designating the polygons as either slope or shelf 

geomorphic zones and each geomorphic facet was individually labeled north to south as 

F01-F08 for slope facets and F11-F18 for shelf facets (Figure 2). Subsequent spatial analysis 

was used to compare response variables across geomorphic zones and facets and between 

northern and southern portions of the extent.  The groundfish data sets were spatially 

intersected with the polygon attributes to aid in interpreting results.  

Structural pattern metrics: Quantitative measures of shape complexity and 

surface roughness (rugosity) were calculated for each facet.  These two terms represent 

the relative spatial complexity between facets in the study area in the horizontal and 

vertical dimensions.  Shape index is a measure of shape complexity where the patch 

Figure 2. Spatial scales captured within the study area highlighted 
by pattern type and facet number. 



Laura Wigand 
SMEA Thesis 

 13

shape is compared to a standard shape (square).  This metric is calculated as (McGarigal 

et al. 2002): 

����� ��	�
 �  0.25 ���
����

 

 

Where 0.25 serves as a constant to adjust for the standard shape, ��� is the perimeter of 

patch ij  and ��� is the area of patch ij .  When shape index equals one, the shape is a 

square; the value increases as the patch becomes more irregular.  Rugosity is a measure 

of surface roughness and was calculated by dividing the surface area by planimetric area 

(Jenness 2011).  Shape index and rugosity were calculated for each geomorphological 

facet in the study area. 

Spatial trend: The geographic mean center is the point representing the geometric 

center of a point distribution.  When these spatial observation points are weighted by an 

attribute value such as count, the shift in direction and distance between the mean center 

and the weighted mean center is a measure of spatial trend in the observed data.  In this 

study, shifts in the weighted mean center indicate shifts in groundfish species abundance 

(measured in CPUE number and weight) and species richness vary in magnitude and 

direction over time in relation to the geographic mean center. 

Global statistics: The Moran’s I and Getis-Ord general G are used in this analysis 

to investigate the variation in the autocorrelation of the measured variables among the 

different units of analysis.  Moran’s I is a measure of correlation based on the degree of 

covariance among values where the general G is based on proportional distribution of 

values (Moran 1950; Getis and Ord 1992).  Both global autocorrelation statistics are 

weak in detecting variations in spatial dependence and are instead focused on 

characterization of similarity of measured values as a function of distance or adjacency.  

One advantage of general G over Moran’s I is its ability to distinguish between patterns 

of high values and patterns of low values.  Moran’s I is only able to distinguish the 

presence of spatial pattern.  Another frequently used measure of global spatial 

autocorrelation is Geary’s C, but Moran’s I is often preferred because the results are 

easily interpretable (scaled from -1 to 1) and more closely resembles Pearson’s 

Correlation Coefficient (Legendre and Fortin 1989).  In addition, because Geary’s C is 
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calculated directly from attribute values, its variance is affected more greatly by the 

sample distribution than that of Moran’s I, which is calculated from differences in 

reference to the mean (Cliff and Ord 1981).   Global Moran’s I is calculated as according 

to Wong and Lee (2005): 

 

� �  � ∑ ∑ ����
� � 
���
� � 
����������
�∑ ∑ ����������� � ∑ ����� 
� � 
���  

 

Where n is the number of observations; ��� is a spatial weights matrix indexing location i 

in proximity to location j; 
� is the mean of the variable over all locations; 
� and 
� are 

the variable’s value at two particular locations.  With the exception of the weights matrix 

(���) all terms are calculated directly from attributes of the data.     

Moran’s I detects spatial pattern in data by measuring whether high values are 

proximate to high values and low values proximate to low values for an attribute given 

the weight matrix used.  When high values occur in neighborhoods of high values or low 

values occur in neighborhoods of low values, Moran’s I is positive.  When high values 

occur in neighborhoods of low values or low values occur in neighborhoods of high 

values, Moran’s I is negative.  The Getis-Ord general G statistic is calculated as (Getis 

and Ord 1992): 

 

��	� � ∑ ∑ ����	�
�
���������
∑ ∑ 
�
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 , ! not equal to �  

 

Where n is the number of observations; ��� is a spatial weights matrix indexing location i 

in proximity to location j; d is distance; 
� and 
� are the variable’s value at two particular 

locations.  

General G detects the spatial concentration of values in data by measuring, for a 

specific attribute, whether high values are clustered around other high values and whether 

low values are clustered around other low values.  In interpreting general G, both positive 

and negative z-scores indicate spatial autocorrelation, but a significant positive z-score 

indicates high values clustered near high values and a significant negative z-score 
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indicates low values clustered near low values.  Thus general G indicates both whether 

there is spatial structure present in data and the type of structure, unlike Moran’s I that 

can indicate only whether there is spatial structure. 

Local statistics: Local statistics acknowledge that processes can vary within a 

geographic region and provide insights on the presence of localized patterns that might 

not be detected using global statistics.  Rather than providing a global average value, 

these statistics provide a measure of autocorrelation for each location.  Results of local 

statistics can be mapped to aid in interpretation because they produce individual values 

for each location.  Similar to global measures of spatial pattern, each local statistic 

measures a different aspect of spatial autocorrelation so it is recommended to use more 

than one statistic (Wilhelm and Steck 1998).   

I used local Moran’s I and ��* statistics in this analysis.  Local Moran’s I 

decomposes global Moran’s I by measuring the degree to which locations in a specified 

neighborhood have similar attribute values; the sum of these values is proportional to the 

measure of global spatial autocorrelation (Anselin 1995).  Following Anselin (1995), the 

local Moran’s I statistic is calculated as: 

 

�� � +� , ���+�
�

 

 

Where +� and +� are locations that deviate from the mean; ��� is a spatial weights matrix; 

and the summation over j ensures only neighboring values are included in the calculation. 

Local Moran’s I measures the degree of similarity of attribute values among 

neighboring locations.  Resulting values that are large and positive indicate concentration 

of high values or low values (high values in neighborhoods of high values or low values 

in neighborhoods of low values).  Values that are large and negative indicate 

heterogeneity (high values in neighborhoods of low values or low values in 

neighborhoods of high values).  Large positive values can serve as outliers or leverage 

points, locations that exert a strong influence on the global value (Wilhelm and Steck 

1998).  The ��* statistic (Ord and Getis 1995) is calculated as:  
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��*�	� � ∑ ����	�
� � -�*
��
�./�0��* � -�*�1/�� � 1�4�/�  , all ! 

 

Where ��� is a spatial weights matrix; -�* = Wi + ���; d is distance; 
� is the mean of the 

variable over all locations; s is the sample variance; 0��*  = 0��* � ∑ �����  (for all j).  

Because the ��* includes all j it includes values where ��� ≠ 0 unlike the general G 

statistic.  In interpreting ��* a large positive z-score indicates the presence of high value 

clusters and a large negative z-score indicates the presence of low value clusters. 

Determination of spatial relationship and distance:  A 50,000 km distance 

threshold was used for calculation of neighborhood statistics based upon the results of the 

Ripley's K multi-distance spatial cluster analysis that summarizes spatial dependency 

over a range of distances.  A zone of indifference was used for the spatial relationship, in 

which all features within the 50,000 km distance were included in the analysis of each 

target feature; beyond this threshold the degree of influence of the feature declines 

exponentially with distance. 

Data analysis All data analysis was conducted with ArcGIS Version 10.0 

(Environmental Systems Research Institute, ESRI).  

 

RESULTS 

Structural pattern metrics Measures of structural complexity indicated clear 

differences between shelf and slope geomorphological zones (Figure 3), but differences 

between the northern and southern portions of the study area were not detected.  

Differences between individual facets varied based on the metric used.  Among the shelf 

facets, complexity was lowest in F13 and highest in F16 based on the shape index metric 

(Figure 3).  Of the slope facets, complexity was lowest in F3 and highest in F2 and F7.  

The incised facets (F1, F2, F4 and F6) did not appear to have greater complexity than those 

that were not incised.  Among facets on the shelf, rugosity was lowest in F16 and F17, and 

highest in F14.  Among facets on the slope, rugosity was lowest in F7 and F8, and highest 

in F5.  The incised shelf facets did not exhibit the greatest complexity as measured in 

rugosity.  Shelf and slope facets did not differ with respect to rugosity or complexity.  
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Neither of these methods seemed to 

detect differences between incised and 

non-incised slope facets.  

Spatial trend Spatial trends in 

species abundance and richness were 

consistent over time (Figure 4).  In all 

years, CPUE (measured as number and 

weight) trended northwest of the 

geometric mean center.  The weight 

CPUE weighted mean center was the 

greatest distance from the geometric 

mean center in all years.  Species 

richness trended a southeast direction 

in all years. The distance between the 

weight CPUE weighted mean center 

and the geometric mean center was 

greatest in 2004 and 2010, while 

distance between the species richness 

weighted mean center and the geometric mean center was greatest in 2002 and 2004.  

Although results indicated variations in the distance, or magnitude, between weighted 

attributes and between years, the directional trend of each weighted attribute was 

consistent over all years. 

Figure 3. Facet complexity as quantified by shape 
complexity metrics.  Shading lighter to darker indicates 
increasing complexity measured by the shape index metric.   
Crosshatching larger to smaller indicates increasing surface 
roughness measured by the rugosity metric.   
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Global statistics. Moran’s I:  The Moran’s I test indicated that groundfish were 

not dispersed and exhibited significant clustering (p-value < 0.05).  Results of the 

Moran’s I test indicated the occurrence of spatial autocorrelation at the scale of the study 

area in all years for total groundfish and individual species except Pacific Ocean perch at 

the study area level based on CPUE number (Figure 4 and Appendix Table 1).  Total 

groundfish, flathead sole and walleye pollock CPUE were autocorrelated in the shelf 

zone in all years, while giant grenadier was autocorrelated in the slope zone in all years.  

Pacific Ocean perch exhibited the greatest variability in spatial autocorrelation.  The 

pattern was not significantly different from random in 2000 and 2008, but in 2004 Pacific 
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Ocean perch were autocorrelated in the shelf zone and in 2010 in the slope zone.  

Moran’s I results indicated variability in autocorrelation in the northern and southern 

portions between years and species. 

General G: Results of the general G indicated less spatial autocorrelation than 

results of Moran’s I.  The general G indicated clustering of low and high values (Figure 5 

and Appendix Table 2).  Based on this spatial analysis, groundfish CPUE were clustered 

at the study area level and the southern portion in 2002, 2004 and 2008 and the northern 

portion in 2008.  No spatial patterns were detected for groundfish CPUE in 2010. 

Flathead sole CPUE varied in clustering pattern based on year and area.  Giant grenadier 

CPUE was rarely autocorrelated.  Pacific Ocean perch CPUE were only autocorrelated in 

the slope zone in 2010.  Walleye Pollock results varied from no spatial autocorrelation to 

high value clusters in CPUE.  
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Figure 5. Global statistical results by total study area, slope and shelf zones and northern and southern 
portions.  Black shading indicates significant spatial autocorrelation for Moran’s I results, black shading 
indicates significant spatial clustering of high values for general G results and gray shading indicates 
significant spatial clustering of low values for general G results. In unshaded regions the distribution did 
not differ from random.   

Local statistics Local Moran’s I: Local Moran’s I indicated a variety of clusters 

and outliers in CPUE between years and species (Figure 6).  High value outliers and low 

value outliers were detected among total groundfish CPUE.  Low value outliers were 

detected for flathead sole and giant grenadier and high value outliers were detected for all 

individual species.  High value clusters were detected among total groundfish CPUE and 

all individual species, but low value clusters were detected only for total groundfish and 

giant grenadier.  Outliers were congregated along the shelf-slope break for total 

groundfish CPUE and varied among shelf and slope zones by year.  Flathead sole results 

indicated high value clusters and outliers in F12 and F13 in all years, with low value 

outliers present in F12 in 2008.  Giant grenadier results indicated both high value clusters 

and high value outliers in F1 in all years.  Pacific Ocean perch had the fewest occurrences 

of clusters and outliers and they were consistently located in F4 or F5 of the slope zone.  



Laura Wigand 
SMEA Thesis 

 22

Walleye Pollock high value clusters varied from year to year among F11-F16 of the shelf 

zone. 
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Figure 6. Local Moran's I results by species and year.  Circles indicate clustering, while squares indicate 
outliers of CPUE number.   

Gi
*: The Gi

* results indicated a wide range of high and low clustering among 

years and species (Figure 7).  Among total groundfish CPUE Gi
* results indicated low 

value clustering in the southern portion of the study area in all years with varying 

magnitude.  High value clusters of total groundfish CPUE were variable, ranging from 

the shelf to the slope zone and from the northern to the southern portion of the study area.      

The location of flathead sole CPUE clusters also varied greatly by year with high value 

clusters detected in the northern and southern portions of the study area and one low 

value cluster detected in F11 in 2002, both high and low value clusters detected in the 

uppermost and lowermost facets in 2004, only high value clusters detected in the northern 

portion in 2008, and high value clusters detected in the northern and southern portions 

and one low value cluster in F18 in 2010.  Giant grenadier results indicated clustering of 

high values in F1 in all years and frequent low value clustering in F7 and F8.  Pacific 

Ocean perch were present along the entire shelf-slope line but had the least spatial 

autocorrelation.  Pacific Ocean perch CPUE high value clusters were detected in F4 and 

F5.  No low value clusters were detected.  Walleye pollock CPUE results indicated 

clustering of high values throughout the northern portion of the shelf zone, with some 
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high value clustering in F15 and F16 and one station in F18.  Low value clusters were 

detected in 2004 and 2008 and confined to the southern portion.     
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Figure 7. Gi
* results by species and year.  Blue circles indicate clustering of low values, while red circles 

indicate clustering of high values of CPUE (number). 

 

DISCUSSION 

The results of this study demonstrate that spatial analysis of fisheries data can 

provide new insights into the distribution of species abundance (or variation in abundance 

with respect to space).  Groundfish abundance on the outer continental margin of the 

Eastern Bering Sea varied over space and time, but some regions exhibit consistently 

high or low abundance. The results of global and local statistical analysis demonstrated 

that the structural complexity of the shelf-slope break is associated with spatial attributes 

of groundfish abundance. 

A thin ribbon of higher abundance around the shelf-slope break is apparent in the 

results.  In some years and with some species, this feature appears to move shelf-ward, 

while in other years and among other species it appears to move slope-ward.  This 

observation is consistent with work by Springer et al. (1996) who termed this region of 

the Bering Sea the Green Belt.  Those authors found that primary and secondary 

productivity along the Bering Sea shelf edge is enhanced compared with neighboring 

regions.  They contended that shelf edge processes are critical to maintaining fish, 

mammal and avian populations.  Spatial analysis can provide insights to ecological 
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process since the presence of pattern indicates the presence of ecological process(es) that 

govern the exhibited pattern.  Detecting these patterns and seeking to understand the 

processes that drive the pattern can provide information to managers on interactions of 

ecosystem components. 

Evidence for high productivity along the outer continental margin has been 

detected elsewhere.  Spatial variability is high on continental margins and this complexity 

impacts the flow of water, sediments, and nutrients from continental shelves to ocean 

basins (Springer et al. 1996; Rogers et al. 2003; Bianchelli et al. 2008).  Although these 

systems play a meaningful role in ocean dynamics, they remain poorly understood but 

exposed to a high degree of human use due to fishing pressure and oil and natural gas 

extraction (Rogers et al. 2003). The application of remote sensing and spatial analysis 

tools will provide new insights into these regions.  Remote sensing and spatial analysis 

are tools readily applied to inaccessible marine regions.  Spatial analysis can be applied 

to current data acquisition to aid in reducing data collection costs and provide a new lens 

to view existing data sets.  The insights gained from spatial analysis can contribute to 

marine resource management through refining our knowledge of ecosystems, improving 

data visualization and expanding data integration. 

Boundary delineation poses a challenge to spatially-explicit forms of marine 

resource management (Sissenwine and Murawski 2004).  Tools are needed to improve 

our understanding of these issues and provide guidance to managers and decision makers.  

The spatially-explicit visualizations produced by spatial statistics and pattern analysis can 

be beneficial in addressing these challenges.  Spatial statistics and pattern analysis 

provide techniques to monitor species distribution and abundance over space and time.  

These tools can be used to incorporate spatially explicit information in stock assessments 

and food web modeling or can be integrated into multivariate analysis and spatial 

modeling.  The use of geomorphology to delineate hierarchical boundaries in this study 

provided insights into how structural heterogeneity of the outer continental shelf of the 

Eastern Bering Sea relates to groundfish distribution and abundance. 

The two measures of structural complexity used in this study, shape index and a 

surface area based rugosity measure, both failed to differentiate incised 

geomorphological facets from those that are not incised.  The lack of differentiation using 
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these methods could result from the techniques used to derive these metrics and cell size 

or scale of the data.  For example, the rugosity metric considered only surface area; it did 

not consider aspect, or the direction of orientation, in calculating rugosity.  In the case of 

the shape index, finer scale resolution of facet edges would lead to greater complexity.  

Other measures of complexity exist, such as a contour index (Yen et al. 2004) that 

measures the total range in depth over an area divided by the maximum depth of that area 

or a suite of tools in the Bathymetric Terrain Modeler (BTM) developed by NOAA 

Coastal Services Center and Oregon State University, but BTM is not currently 

compatible with versions of ArcGIS higher than Version 9.2.  Exploring other measures 

of complexity, and at varying scales, may lead to different results.  Managers are faced 

with the need to determine the appropriate scale of inquiry, which is not the same for all 

ecosystems or ecosystem components.  Understanding what question is being asked and 

the appropriate scale for that question is a continuing challenge for marine resource 

managers. 

Although the results do not allow inference with regard to differential distribution 

of marine resources and their association with incised slope facets or marine canyons, 

ongoing research on marine canyons in the Bering Sea and elsewhere (Brodeur et al. 

2001; Hoff 2011; Miller et al. 2012) indicate that these regions could support enhanced 

productivity.  Some evidence shows that canyons may also serve as barriers for along-

slope processes because they create discontinuity along the shelf (Gage 2003; Rogers et 

al. 2003).  Understanding these complex geomorphological features should be a goal of 

fisheries management and research.  Finer scale resolution in bathymetric coverage and 

biological data collection within the outer continental margin of the Eastern Bering Sea 

may lead to a more nuanced understanding of interactions between seafloor 

geomorphology and features and biological attributes.  These regions, as portions of the 

outer continental margin in general, are undergoing pressure from increased human use 

and disturbance, but we have limited knowledge of how vulnerable or resilient these 

regions are to human impacts (Levin and Dayton 2009).  Fisheries are expanding onto 

upper continental slopes, but the impacts to deep sea fish, which are often long lived, 

slow growing and late maturing species, as well as to the benthic habitat are not well 

known (Levin and Dayton 2009).  Outer continental margins tend to have patch-like 
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structures of high vertical relief habitat among vast areas of sandy or silty habitat 

according to Levin and Dayton (2009) and recent research in the Bering Sea by Miller et 

al. (2012).  Understanding the possible interplay between species, geomorphological 

structure and habitat types allows managers greater ability to delineate boundaries in 

place-based management approaches. 

 

SUMMARY 

Spatial statistics and pattern analysis are tools that can provide new insights and 

improve data visualization and integration.  Fishery managers and policy makers can gain 

greater comprehension of marine resource abundance and distribution through this 

explicitly spatial approach.  These tools can be used to better understand interactions 

within ecosystems and consider how fishing effort is distributed in the Eastern Bering 

Sea.  Understanding spatial patterns in abundance and the underlying processes that 

create patterns can help to improve place-based marine management.  The results of this 

study demonstrate the utility of spatial approaches in fisheries management and show 

how these approaches can advance our understanding of marine systems. 
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APPENDIX  
 

Table 1. Moran’s I values by study area, shelf and slope zone and northern and southern portions by year.  
 

Total Groundfish CPUE (number) 
Year 

Moran's 
I 

z-
score 

Year 
Moran's 

I 
z-

score 
Year 

Moran's 
I 

z-
score 

Year 
Moran's 

I 
z-

score 

Study Area 2002 0.10 3.85 2004 0.06 3.83 2008 0.09 4.68 2010 0.09 5.37 

Shelf Zone 2002 0.17 4.02 2004 0.07 2.85 2008 0.22 6.07 2010 0.12 4.49 

Slope Zone 2002 0.06 1.76 2004 0.04 1.91 2008 0.02 1.07 2010 0.03 1.62 

Northern Portion 2002 0.09 2.21 2004 -0.05 -1.44 2008 0.06 2.13 2010 0.08 2.87 

Southern Portion 2002 0.06 2.46 2004 0.11 6.76 2008 0.09 4.08 2010 0.07 3.53 

Flathead Sole CPUE (number) 
Year 

Moran's 
I 

z-
score 

Year 
Moran's 

I 
z-

score 
Year 

Moran's 
I 

z-
score 

Year 
Moran's 

I 
z-

score 

Study Area 2002 0.14 3.79 2004 0.11 4.47 2008 0.06 2.32 2010 0.13 5.18 

Shelf Zone 2002 0.12 2.69 2004 0.17 5.89 2008 0.07 2.32 2010 0.18 5.81 

Slope Zone 2002 0.33 3.37 2004 -0.10 -1.30 2008 0.04 0.73 2010 -0.07 -0.84 

Northern Portion 2002 0.16 3.26 2004 0.16 3.39 2008 0.01 0.40 2010 0.16 3.75 

Southern Portion 2002 0.13 2.73 2004 0.12 4.55 2008 0.19 5.39 2010 0.14 4.70 

Giant Grenadier CPUE (number) Year 
Moran's 

I 
z-

score 
Year 

Moran's 
I 

z-
score 

Year 
Moran's 

I 
z-

score 
Year 

Moran's 
I 

z-
score 

Study Area 2002 0.18 4.37 2004 0.29 0.00 2008 0.14 5.00 2010 0.25 9.44 

Shelf Zone 2002 N/A N/A 2004 N/A N/A 2008 N/A N/A 2010 0.11 4.70 

Slope Zone 2002 0.19 3.76 2004 0.32 9.57 2008 0.09 2.68 2010 0.24 6.28 

Northern Portion 2002 0.09 1.43 2004 0.14 2.95 2008 0.02 0.99 2010 0.07 1.65 

Southern Portion 2002 0.14 3.26 2004 0.14 5.44 2008 0.14 4.22 2010 0.09 3.41 
Pacific Ocean Perch CPUE 
(number) 

Year 
Moran's 

I 
z-

score 
Year 

Moran's 
I 

z-
score 

Year 
Moran's 

I 
z-

score 
Year 

Moran's 
I 

z-
score 

Study Area 2002 0.02 0.93 2004 0.04 2.03 2008 0.03 1.15 2010 0.09 3.47 

Shelf Zone 2002 N/A N/A 2004 0.03 1.99 2008 0.02 1.18 2010 -0.01 0.27 

Slope Zone 2002 0.02 0.83 2004 -0.02 -0.03 2008 -0.02 0.01 2010 0.13 2.18 
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Northern Portion 2002 N/A N/A 2004 N/A N/A 2008 N/A N/A 2010 0.09 1.73 

Southern Portion 2002 0.03 1.45 2004 0.03 2.21 2008 0.04 1.75 2010 0.05 2.24 

Walleye Pollock CPUE (number) 
Year 

Moran's 
I 

z-
score 

Year 
Moran's 

I 
z-

score 
Year 

Moran's 
I 

z-
score 

Year 
Moran's 

I 
z-

score 

Study Area 2002 0.26 6.37 2004 0.08 3.21 2008 0.30 8.08 2010 0.18 4.41 

Shelf Zone 2002 0.26 5.43 2004 0.13 0.13 2008 0.31 7.02 2010 0.19 3.90 

Slope Zone 2002 -0.16 -1.11 2004 0.00 0.57 2008 0.33 4.03 2010 0.10 2.12 

Northern Portion 2002 0.27 4.53 2004 0.00 0.22 2008 0.30 4.44 2010 0.12 2.49 

Southern Portion 2002 0.09 1.84 2004 0.11 4.42 2008 0.05 1.73 2010 0.08 1.51 
 
 

Table 2. General G values by study area, shelf and slope zone and northern and southern portions by year.  
 

Total Groundfish CPUE (number) Year 
General 

G 
z-

score Year 
General 

G 
z-

score Year 
General 

G 
z-

score Year 
General 

G 
z-

score 

Study Area 2002 0.03 -2.09 2004 0.04 -2.43 2008 0.03 -3.34 2010 0.04 -1.39 

Shelf Zone 2002 0.04 -0.43 2004 0.06 -1.68 2008 0.04 -1.74 2010 0.05 -1.62 

Slope Zone 2002 0.07 -0.34 2004 0.07 -1.31 2008 0.07 -0.34 2010 0.08 0.05 

Northern Portion 2002 0.06 0.33 2004 0.07 -0.61 2008 0.05 -2.38 2010 0.07 -0.20 

Southern Portion 2002 0.06 -2.95 2004 0.09 -2.65 2008 0.08 -2.20 2010 0.11 -1.44 

Flathead Sole CPUE (number) Year 
General 

G 
z-

score Year 
General 

G 
z-

score Year 
General 

G 
z-

score Year 
General 

G 
z-

score 

Study Area 2002 0.04 1.72 2004 0.04 -0.90 2008 0.03 -1.26 2010 0.05 0.33 

Shelf Zone 2002 0.05 1.17 2004 0.06 -1.26 2008 0.04 -1.06 2010 0.06 0.00 

Slope Zone 2002 0.11 2.31 2004 0.07 -1.13 2008 0.08 0.75 2010 0.08 -0.10 

Northern Portion 2002 0.08 2.60 2004 0.07 1.10 2008 0.06 -0.20 2010 0.10 2.54 

Southern Portion 2002 0.09 0.43 2004 0.10 -1.99 2008 0.08 -1.90 2010 0.11 -0.89 

Giant Grenadier CPUE (number) Year 
General 

G 
z-

score 
Year 

General 
G 

z-
score 

Year 
General 

G 
z-

score 
Year 

General 
G 

z-
score 

Study Area 2002 0.09 0.29 2004 0.10 0.30 2008 0.08 0.09 2010 0.11 0.68 
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Shelf Zone 2002 N/A N/A 2004 N/A N/A 2008 N/A N/A 2010 0.69 1.86 

Slope Zone 2002 0.09 1.34 2004 0.11 3.09 2008 0.08 1.51 2010 0.12 3.83 

Northern Portion 2002 0.15 1.45 2004 0.18 2.32 2008 0.16 0.98 2010 0.18 1.22 

Southern Portion 2002 0.20 0.47 2004 0.17 -1.23 2008 0.15 -0.90 2010 0.15 -2.00 
Pacific Ocean Perch CPUE 
(number) Year 

General 
G 

z-
score Year 

General 
G 

z-
score Year 

General 
G 

z-
score Year 

General 
G 

z-
score 

Study Area 2002 0.02 -0.80 2004 0.02 -1.36 2008 0.06 -0.40 2010 0.19 0.83 

Shelf Zone 2002 N/A N/A 2004 0.05 -1.51 2008 0.02 -0.95 2010 0.05 -0.95 

Slope Zone 2002 0.00 -0.66 2004 0.02 -0.99 2008 0.07 -0.04 2010 0.23 2.25 

Northern Portion 2002 N/A N/A 2004 N/A N/A 2008 N/A N/A 2010 0.41 1.60 

Southern Portion 2002 0.03 -0.87 2004 0.04 -1.40 2008 0.11 -0.45 2010 0.17 -0.25 

Walleye Pollock CPUE (number) Year 
General 

G 
z-

score Year 
General 

G 
z-

score Year 
General 

G 
z-

score Year 
General 

G 
z-

score 

Study Area 2002 0.06 2.85 2004 0.03 -0.98 2008 0.05 1.12 2010 0.06 2.66 

Shelf Zone 2002 0.06 2.01 2004 0.04 -1.21 2008 0.06 0.43 2010 0.07 1.92 

Slope Zone 2002 0.05 -0.56 2004 0.02 -0.73 2008 0.22 2.87 2010 0.25 2.89 

Northern Portion 2002 0.11 3.45 2004 0.05 -0.37 2008 0.08 3.44 2010 0.08 1.40 

Southern Portion 2002 0.05 -0.89 2004 0.09 -0.80 2008 0.06 -0.78 2010 0.09 -0.09 
 
 


