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Seattle is known for its high occurrence of rainfall events but most of them are low intensity 

events. However, when it rains heavily, sewer pipes can reach capacity and sewer backups may 

result. Damage claims are filed by the parties with sewer backup damage incurred on their 

property and, in some cases, the city will pay a damage claim amount to cover the amount of 

damage. The dataset used in this project contains sewer backups that caused a total of $8 million 

damage from August 2004 to March 2011. Nearly half of the damage claims in the dataset were 

due to three major storms that occurred within that timeline.  

Meteorological, demographic, environmental and structural variables that explain the damage 

caused by those three storms are analyzed using a rare events logistic regression model. Sewer 

backups are rare events in Seattle since the highest claim-producing storm induced 147 claims in 

Seattle, a city with over 180,000 parcels. The model uses the claims from a particular storm and 

a random stratified citywide sample of parcels (stratified by neighborhood) to examine the 
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explanatory variables that explain the occurrence of backups. A conditional backup probability is 

calculated for each sample parcel. 

A spatial econometric model is used to measure the effect of explanatory variables that explain 

various levels of sewer backup damage while accounting for spatial effects of clustered claims. 

The results of the model are used to calculate potential damage for each sample parcel. The 

probability and potential damage calculations are multiplied together to produce an expected 

sewer backup damage (ESBD) amount for the sample parcels. These calculations were used to 

create three maps that represent probabilities of backups (conditional on the occurrence of a 

claim-producing storm), potential damage and ESBD.  

These maps and the data that makes up the map can be used to prioritize preventative 

maintenance before a storm season. There are many other risks that face utility customers in 

Seattle but focusing on sewer backup risk allows for the application of two econometric models 

to better assess this specific risk. Such analysis has not been utilized to analyze the occurrence of 

sewer backups to date. Given the results of Salathe et al. (2010) and Zhu (2012) that suggest that 

higher frequency and higher intensity storms will affect the Puget Sound area, the accumulation 

of data and the use of the best information can efficiently mitigate damage caused by future 

storms.  
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Chapter 1: Introduction 

Seattle is known for its persistent rainy weather though most rain events in the Puget Sound area 

are low-intensity events. The rainfall can be described as a slow trickle that lasts seemingly for 

months. The drainage and waste water system is built to conduct the rain water that is not 

absorbed by the soil to a receiving water body or a treatment plant. The system is designed to 

handle most rain events but it is not equipped to handle high-intensity rain events (Martin, 2012). 

The evidence suggests that drainage infrastructure designed using mid-20th century rainfall 

records [in the Puget Sound] may be subject to a future rainfall regime that differs from current 

design standards (Rosenberg et al., 2010). When high-intensity rain events occur, issues in the 

form of floods and sewer backups result due to excess stormwater and wastewater flow exiting 

the system into customers’ property.  

A sewer backup occurs when the sewer and stormwater flow is blocked from continuing to its 

intended endpoint due to an obstruction within the sewer mainline. The flow enters a residential 

or commercial building through the side sewer infrastructure connected from the mainline to the 

plumbing in the building. When this process of flow is disrupted in the system and there is 

enough pressure cause by the blockage and the heavy flow of water, stormwater and wastewater 

enters a residential or a commercial building and causes damage. 

If a residence or a business experiences property and/or personal damage as a result of sewer 

backup and flood damage, a claim can be filed with the city to receive reparations for the amount 

of the damage. The claim will go to litigation and, if the city is liable, the claimant will be 

awarded a damage payment in the amount decided in the litigation process. A potential claimant 

has three years to file a claim after the date of loss (Martin, 2012).  
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This thesis project aims to explain why sewer backups occurred where they did and why varying 

levels of damage occurred. The occurrence of sewer backups is modeled using a rare events 

logistic regression model. The parcels that received payments as a result of settled claims 

associated with a storm will be measured against parcels that did not. The largest storm in the 

dataset, which ranges from 2004 to 2011, led to 148 claims. Given the amount of parcels in 

Seattle (~ 183,000), these sewer backups are rare events and a model that corrects the estimates 

for the true population is necessary to measure why backups occurred where they did.  

This thesis also aims to explain various levels of sewer backup damage. Potential property 

damage is modeled using a spatial econometric model. Given the clustered nature of the spatial 

distribution of claims, spatial dependence may need to be accounted for. Spatial dependence 

reflects a situation where values, observed at one location or region, depend on the values of 

neighboring observations at nearby locations (LeSage and Pace, 2009). A spatial econometric 

model adds a spatial weights matrix to the dependent variable or the error term of an ordinary 

least squares (OLS) regression model and controls for spatial dependence.  

The results of the rare events logistic regression model produce a probability of a positive sewer 

backup claim occurring on a parcel given the rainfall variables associated with the storm that 

caused them. The spatial econometric model produces coefficients that attach a potential damage 

amount to a parcel. The combination of the probability and the damage amount produce an 

expected damage amount for each parcel estimated.  

Known Causes of Damage 

The three main factors that cause backups in SPU’s sewer system are rainfall intensity, tree roots 

and grease (Martin, 2012). Rainfall is ostensibly the primary cause of system issues. The other 
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two factors, tree roots and grease, exacerbate the rainfall intake in the system by robbing the 

system of the designed capacity. Tree roots infiltrate into the pipe via natural processes and 

through cracks in the pipe. Grease enters the system via disposal into the drains connected to the 

system. The grease coats the inside walls of the pipes and can coat the tree roots already in the 

system. The loss of capacity combined with the large amounts of flow and the speed of the flow 

entering the system leads to sewer backups.  

Do these three variables tell the whole story? Do other factors explain why backups occur and 

explain the level of damage incurred on a residence or business? This thesis project postulates 

that these factors may explain much of the story but other factors such as demographic and 

structural variables may also explain the causes of backups and size of the damage claim 

amounts.  

Paying out damage compensation via sewer claims that occur as a result of some of the 

explanatory variables that will be used in this thesis makes the occurrence of backups an 

economic problem for the utility. The factors that add to the cause of backups and the damage of 

sewer backups may be mitigated and the factors that prevent backups and backup damage may 

be further established to lower the amount paid out by backups. Many of the factors are static or 

exogenous and cannot be altered to prevent backups but the purpose of these models is to explain 

the cause and damage potential of backups within Seattle and estimate areas of highest risk 

where sewer backup prevention measures can be implemented.  

Mitigating the risks of sewer backup occurrences should then translate into reduced costs of 

claim arbitration and payout for the utility and the claimants. This, in turn, will improve the level 

of service provided by the utility due to the absence of sewage causing damage or less damage in 
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some cases. This higher level of service would help the utility to improve social welfare for the 

customers in Seattle. 

There is a possibility of an increase in significant storms due to global climate change which may 

mean more claim-producing storms for Seattle. Both simulations in the Salathé Jr. et al. (2010) 

yield an increase in the measures of extreme precipitation even though one simulation produced 

mostly reductions in total precipitation during winter and spring. Climate simulations by Zhu 

(2012) reveal that rainfall intensity differences from the historical runs and future simulations 

were significant at all intervals from two years to 100 years. Given these findings, mitigation 

should be a higher priority and this thesis provides tools to aid in proper mitigation of increased 

rainfall events and intensities.  

 

Purpose of Study 

This thesis estimates the expected damage from system overflow caused by heavy rainstorms. 

Rain is necessary for the flora, fauna and humans in the Puget Sound region and is considered a 

positive benefit for what it provides. However, when excess rain infiltrates the drainage and 

waste water system and causes damage to a residence or a business, that rainfall allocation 

provides negative benefit. Since rainfall is an exogenous atmospheric process, only damages can 

be mitigated. The purpose of the study is to find the factors that affect the damage. The variable 

factors can be changed to mitigate the damage and the fixed factors can be used as reference so 

that mitigation efforts can be concentrated to these areas before a future event occurs.  

More extreme rainfall events may lead to more claims paid out by the city and more issues for 

utility customers. Knowing which areas could be impacted and what measures need to be carried 
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out for prevention of system issues can mitigate the damages of extreme rainfall. More future 

Pacific Northwest climate issues will be discussed later in the paper.  

 

An econometric analysis of sewer backup claims has not been published to date, although flood 

claims and risk have been analyzed in a similar manner. This type of empirical analysis allows 

for the relative measurement of risk of excess rainfall and how other factors (demographic, 

environmental and structural) add or subtract to the occurrences of and damages from backups. 

This risk will always be present and the framework allows for the accumulation of information to 

better inform risk managers as time goes on.  

 

This thesis is structured in the following manner: Chapter 2 covers the history of the sewer 

system and recent storms as well as a literature review of relevant topics, Chapter 3 explains the 

methodology of the data and the models, Chapter 4 includes results and discussion and Chapter 5 

contains implications and conclusions.  
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Chapter 2: Background and Literature Review 

The Sewer System 

The areas in Seattle that were incorporated first are the central part of the city around downtown 

and the area in North Seattle around Green Lake in the mid-to-late 1800’s (Phelps, 1978). The 

earliest existing sewer system was implemented in 1891 after the devastating fire where the city 

had to build over existing buildings and infrastructure (Phelps, 1978). These systems were 

combined sewer systems (storm water and sewer flow together) and most of these assets remain 

combined today.  

Over the years, Seattle has incorporated areas of Seattle north and south of the existing 

incorporated sections of the city and, as a result, has inherited informal drainage systems 

(Martin, 2012). Different parts of the city’s sewer systems were built differently with roughly 

one third of the city’s infrastructure were built as combined, one third partially separated and the 

rest separated systems (Martin, 2012). The older infrastructure is downtown and was built as 

combined and the post-WWII construction in the north and in the south was decidedly built as 

separated when the city decided to connect the systems and treat wastewater (Martin, 2012).  

This study focuses on combined and sanitary sewer assets as drainage-only pipes do not produce 

sewer backups, though they can produce flooding. The different types of sewer systems are 

displayed in Figure 1. 

The Major Storms 

The rare events logistic regression model (may also be referred to as the probability model) is 

used to model the location of sewer backup claims occurred where they did using parcels where 



7  
 

 

Figure 1: The City of Seattle Drainage and Wastewater System 
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claims occurred and parcels where no claims occurred. To do so, a specific storm must be 

selected based on the amount of claims resulting from the storm. The dataset contains backups 

that occurred as a result of many different various-sized storms. There were three storms in the 

dataset that produced a sizeable amount of claims to be used in the Rare Events logistic 

regression model.  

The first storm took place on May 27th, 2006. This storm was a short storm (around 2 to 3 hours) 

that only produced substantial rainfall amounts in the area of three rain gauges (0.66 inches of 

rain in one hour and 1.1 inches of rain in three hours), yet the storm produced 32 sewer backup 

claims. The statistical characteristics of the rainfall variables attached to sampled parcels that 

pertain to the May 2006 storm are displayed in Figure A in Appendix A. 

The next took place on December 14th, 2006. This storm can be described as a long rainstorm 

with a 2 to 3 hour spike of heavy rainfall, especially in the Madison Valley where the rain gauge 

in the area recorded 1.35 inches of rain from 2 p.m. to 5 p.m. Within that spike, the peak five and 

ten minute rainfall amounts were on average 0.14 and 0.22 inches, respectively. This storm 

produced 147 sewer backup claims and the summary statistics pertaining to this storm are 

displayed in Figure 7 in Chapter 4. This storm will be the focus of the analysis for this thesis.  

The third storm took place on December 3rd, 2007. This storm began later in the day on 

December 1st according to most gauges but produced low, steady rainfall until the 3rd where 

heavier rainfall persisted for most of the day, consistently ranging from 0.2 to 0.45 inches per 

hour for much of the day. The rainfall intensity for the storm period measured, which began later 

in the day on the 2nd, was 0.22 inches per hour. That rainfall intensity value is twice as large as 
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what was measured in the other two storms. This storm produced 48 sewer backup claims and 

the summary statistics applicable to this storm are displayed in Figure B in Appendix B.  

 

Figure 2: Peak rainfall amounts for the three major storms 

 

The varying nature of these storms is fortuitous as different storms should reveal different factors 

that prove explanatory for why backups occurred. A future storm fitting the characteristics of one 

of the aforementioned storms can be used as a comparison to estimate the level of claim amounts 

that can be expected to be paid out as a result of the storm. 
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No studies that examine the cause of and levels of damage from sewer backups using 

econometric models were found in the literature search for relevant studies. Related damage 

claim studies were relied upon for shaping the research design of this thesis.  

Yoder (2002) examines wildlife-imposed crop damage claims filed by Wisconsin farmers using 

crop dummy, wildlife management and land size variables among others in a truncated 

regression model. Yoder (2002) does not analyze spatial effects for his study, though this project 

uses a truncated statewide sample. The single most valuable and inexpensive addition would be 

data on undamaged fields managed by the claimant, in addition to the data on damaged fields 

already collected (Yoder, 2002). This thesis uses data from parcels that did not submit claims in 

addition to parcels that submitted claims to predict conditional sewer backup probabilities and 

forecast potential damage on the non-claim parcels.  

Van Tassel et al. (2000) examine the depredation claim process in Wyoming using a probit 

model based on a utility theory where landowner utility is a function of management and 

personal characteristics as well as depredation conditions. When various forms of wildlife cause 

damage to landowner property, the landowner can file a depredation claim and the state will 

reimburse the landowner for the amount of damage. The state of Wyoming has the program 

because landowners may be prone to retaliate against the wildlife in absence of the program.  

While this project has some similar characteristics, much of this project is focused on 

determining whether or not a landowner will make a claim and assessing attitudes towards 

different kinds of wildlife. Claimant characteristics may be of interest for those involved in the 

sewer backup claim process but the particular specification Van Tassel et al. (2000) use is not 

applicable to this project.  
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Lubini and Fuamba (2011) model the deterioration timeline of sewers using linear and 

exponential regression models as well as neural networks and fuzzy set theory. Structural aspects 

of the sewer system including age, diameter, length, slope and material were included in the 

regression models. While measuring deterioration is not directly applicable to measuring aspects 

of sewer backup claims, this is one of the few examples of a study that uses regression models to 

measure aspects of a sewer system.  

Hall et al. (2007) measure flood risk using hydrological models by analyzing the variance of 

parameters including pipe size, permeable areas and river bottom width. Their expected 

attributable damage function is a function of rainfall as well as loading and resistance (dike 

capabilities). Their measures of risk reinforced the use of explanatory variables and added 

conceptual ideas to this project related to risk such as risk being a common currency and 

attributing risk based on the capacity to reduce risk.  

Spekkers et al. (2012) used rainfall intensities from 10 minutes to 4 hours to investigate whether 

high numbers of water-related damage claims from a Netherlands insurance database were 

associated with high rainfall intensities using logistic regression. They found that rainfall 

intensities were a significant damage predictor but much of the variance in damage amounts 

remained unexplained.  

Zhou et al. (2011) use GIS to measure flood vulnerability and risk to calculate an Expected 

Annual Damage amount. With a given extreme external loading, the key principle is to assess 

and quantify the hazard and vulnerability characteristics of an area and then link both hazard and 

vulnerability information in a GIS-based risk model (Zhou et al., 2011).  This thesis will apply 
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similar methods in terms of measuring sewer backup hazard and vulnerability as hazard and 

vulnerability are conceptually synonymous with probability and potential damage1.  

Spatial Econometric Model Applications 

Spatial dependence reflects a situation where values, observed at one location or region, depend 

on the values of neighboring observations at nearby locations (LeSage and Pace, 2009). Many of 

the claims in the dataset were clustered and that suggests that many claims may be caused by the 

same problem within the system. Introduction To Spatial Econometrics by LeSage and Pace 

(2009) serves as a useful reference for implementing and interpreting spatial models and was 

referred to often during this project.  

Two potential sources of spatial dependence can cause econometric problems: structural spatial 

dependencies across observations on the dependent variable and spatial dependence among the 

error terms (Bell and Bockstael, 2000). The former can be corrected for using a spatial lag model 

while the latter can be corrected for using a spatial error model. When a spatial relationship 

results from a biophysical process (e.g. water flowing across a landscape) or because of behavior 

of neighbors, there exists spatial lag dependence (Pattanayak and Butry, 2002). Due to the nature 

of the sewer system and the clustering of the claims, the spatial econometric specifications 

should be able to adequately account and adjust for spatial dependence accordingly. 

                                                           
1 The MIKE URBAN hydrologic model that Zhou et al. (2011) use was investigated but cannot 

be applied to sewer backups as it is not setup to measure the proper dynamics of a sewer backup 

occurrence. Perhaps the volume of flow in the sewer can be measured within the model and used 

as a structural variable but this thesis project did not pursue the use of this model. 
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Correcting for spatial autocorrelation can also add to the goodness-of-fit of the model. Griffith 

and Layne (1999) report that exploiting [autocorrelation] tends to increase the R-squared value 

by about 5%, and obtaining 5% additional explanatory power in this way is much easier and 

more reliably available than getting it from collecting and cleaning additional data or from using 

different statistical methods. For this project, the goodness of fit for the OLS model used to 

determine which variables should be used in the spatial econometric model was low (~ 0.2). 

Applying the corrections for spatial autocorrelation was helpful in this project. 

Spatial econometric models can be used in the estimation and inference regarding parameters, 

prediction, and out-of-sample forecasting as well as model comparison of alternative 

specifications to answer the question regarding observed spatial dependence in dependent 

variables from our models and residuals (LeSage and Pace, 2009). While the lack of studies that 

have applied econometric modeling to sewer backup or other storm-induced claims, it is believed 

that an OLS model will explain some of the variance of sewer backup claims and, if spatial 

autocorrelation is present, a spatial econometric model will correct for spatial autocorrelation and 

produce more robust results that can be used to attribute damage caused by other storms via out-

of-sample forecasting.  

Rare Events Logistic Regression Model Applications 

King and Zeng (2001) wrote the explanation of the rare events logistic regression model 

specification and Tomz et al. (2003) wrote the code for use in Stata and Gauss. Imai et al. (2007) 

wrote the code for use in R. King’s website describes the rare events specification as such: “How 

to save 99% of your data collection costs; bias corrections for logistic regression in estimating 

probabilities and causal effects in rare events data; estimating base probabilities or any quantity 



14  
 

from case-control data; automated coding of events (King, 2013).” These authors provide many 

applications and evidence for effective bias corrections.   

King and Zeng applied the rare events logistic regression model specification to international 

relations including examining causes of interstate conflicts (2001a) as an application of the 

methods in King and Zeng (2001) and predicting state failure (2001b) using case-control data. 

Their methods in King and Zeng (2001a) allow them to examine interstate conflicts using 

conflicts that already occurred and a sample of dyadic (two country) relationships that did not 

result in conflicts. With all of the countries in the world, modeling relationships with every 

country and every other country created a large amount of dyadic relationships. In King and 

Zeng (2001b), different status measures including infant mortality, trade openness and level of 

democracy.  

There are other applications of rare events logistic regression models besides international 

relations and many of them involve natural resource applications. Many studies examine factors 

that cause landslides in forests and greenspaces. These studies use LIDAR images and GIS data 

to examine the areas. Qualitative data seems to be prevalent in these studies. A good example of 

this is Guns and Vanacker (2012), who use Monte Carlo simulation to replicate landslide 

conditions in the Andes. These methods are helpful for examining characteristics that cause 

landslides in places that cannot be directly surveyed but the remote data exist such as slope, 

proximity to watercourses and land use changes. 

Another study related to natural resources is Vospernick (2006), who uses Austrian National 

Forest Inventory data to examine which tree species red deer prefer to strip bark (with their 

antlers) in Austrian forests. This is another example of remotely examining a problem that is 
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occurring to provide an explanation for the problem. Vospernick (2006) use the weighted 

correction specification.  

Many of the above studies had rare events but were not as rare as this study’s rare events in 

terms of available ones (from the dependent variable perspective). King and Zeng (2001) define 

a rare event as an event with an occurrence rate under 5%. King and Zeng (2001b) explain that 

the rare events assumption states that τ (tau, the true frequency of the rare event) is arbitrarily 

small [while P(X) stays bounded away from zero, or instead that Pr(𝑌𝑖 = 1|𝑋𝑗) → 0 for j = [0, Ɩ]. 

This assumption is not merely that cases are ‘‘rare,’’ but that they occur, at the limit, with zero 

probability (King and Zeng, 2001b).2  

Such conditions allow for the use of risk ratios, odds ratios and first differences to analyze how 

changes in variable amounts affect changes in probabilities that the rare events models project. 

These methods are especially useful for estimating susceptibility to diseases and viruses by 

examining those characteristics. King and Zeng (2002) explore how these methods can be 

implemented in case control studies and such studies apply to the medical field.  

Braitman and Rosenbaum (2002) look at how these ratios apply to the prediction of rare 

outcomes. In the medical field, a disease with a small probability of occurrence still has the 

potential to affect a large portion of the population when the probabilities apply on a continental 

or global scale. The way these problems are examined aided in the application of first differences 

and risk ratios in this thesis. The conclusions drawn from calculated probabilities and changes in 

the variables that induce estimated changes in probabilities should be closely analyzed for bias 

and context and such considerations were taken for this project.  

                                                           
2 Pr (𝑌𝑖 = 1)  is the probability that the dependent variable, 𝑌, equals one and 𝑋𝑗 (where j = [0, Ɩ]) 

represents the change from one value of 𝑋(0), an explanatory variable, to another (Ɩ).  
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The rare events assumption is logical when applied to sewer backups. Not all rainfall events 

produce sewer backups but, when rainfall events occur with higher rainfall intensity and volume 

than normal, backups can occur. Even the largest events still bring about a small amount of 

claims and the absolute probability of a backup occurring is still very low for most areas within 

the City of Seattle, rendering sewer backup occurrences rare events.  

Finally, spatial effects for the use of rare events logistic regression model in this project were not 

examined beyond a Moran’s I test. Robertson et al. (2009) investigated the influence of spatial 

effects and how to correct for it. They state that while spatial effects might be expected in the 

consideration of land use decisions as well as other discrete choice settings, how to go about 

specifying such effects in practice has been challenging (Robertson et al, 2009) The most 

prevalent workaround in the literature is the idea of reducing the data set by systematic 

geographic subsampling in hopes of avoiding spatial effects (Robertson et al, 2009).  

The random stratified sample used in this project should eliminate significant clustering. The 

Moran’s I test for spatial clustering on the sample parcels and the largest claim-producing storm 

allayed any concerns about spatial effects.  

Pacific Northwest Climate Research 

Since this thesis examines damage due to extreme rainfall amounts, it is worth examining future 

expectations for the frequency of extreme rainfall events. The design of stormwater 

infrastructure is based on an underlying assumption that the probability distribution of 

precipitation extremes is statistically stationary (Rosenberg et al., 2010). If the rainfall frequency 

changes, this may present capacity concerns for the combined portions of the sewer system in 

Seattle.  
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Forecasts of global climate change are largely driven by global climate circulation models. 

Global models do not represent local terrain and mesoscale weather systems well, owing to their 

coarse horizontal resolution (150– 300 km, Dulière et al., 2008). Dulière et al. (2008) examined 

whether or not regional climate models can represent the intensities and frequencies of extreme 

events in the Pacific Northwest at the scale important for climate impacts assessment.  

They found that extreme precipitation can be adequately simulated in regional models given 

boundary conditions from the reanalysis. The large-scale conditions that control the spatial 

distribution of heavy precipitation are well represented by the reanalysis, and the regional models 

can simulate the local effects (such as orographic enhancement and mesoscale weather patterns) 

that produce heavy precipitation (Dulière et al., 2008). 

Having these capabilities allows for the results of regional simulations to inform decision makers 

about the expectations of claim-producing storms occurring in the future. Both simulations in the 

Salathé Jr. et al. (2010) yielded an increase in the measures of extreme precipitation even though 

one simulation produced mostly reductions in total precipitation during winter and spring. 

Consistent with previous findings, these results suggest that extreme precipitation changes are 

more related to increased moisture availability in a warmer climate than to increases in climate-

mean precipitation (Salathé Jr.  et al., 2010).  

Rosenberg et al. (2010) examined historical precipitation levels and simulations of future rainfall 

to evaluate past and prospective changes in the probability distributions of precipitation extremes 

across Washington State. In the Puget Sound region, statistically significant increases in annual 

maxima were observed at the 24 hour duration, which is the interval most frequently used for the 

design of stormwater infrastructure (Rosenberg et al., 2010). This suggests that the sewer system 
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in Seattle has in fact received increased inputs into the system. The system may already be under 

capacity to handle current rainfall inputs and may further be unable to handle higher rainfall 

intensities and amounts in the future.  

Zhu (2012) examined historical and future scenario model runs at many different time intervals 

with updated information and calculated a 13% increase in rainfall intensity. Seattle was the only 

region (of the six US regions studied) with the average AF (Adjustment Factor, the difference 

between historical and future scenario model runs) being greater than one and its significance 

level being small (<0.02, Zhu, 2012). Rainfall intensity differences from the simulations Zhu 

(2012) used were significant at all intervals from two years to 100 years.  

While a comparison between the HH (Hadley RCM and GCM used in this study) historical runs 

and the future scenario runs generally indicated a greater increase in magnitude at longer return 

periods, the percentage increase was similar for most return periods (Zhu, 2012). Such forecasts 

suggest that longer, more intense storms can be expected at all different return periods. This also 

implies that the return periods established may not be valid going forward into the future. 

The timing and the importance of this research suggests that there will be more studies on future 

projections of Pacific Northwest rainfall intensity at the regional level. More knowledge on this 

subject may better inform decisions on the implementation of system upsizing and measures to 

prevent or mitigate issues resulting from high intensity rainfall events.  
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Chapter 3: Methodology 

For the methodology section, the research questions will be stated, the data collection and 

processing methods will be explained, the dependent and explanatory variables will be 

explained, the specification of the models will be explained and the process that produced the 

model results will be explained. 

These results can be calculated for each sample parcel and these parcels can be converted to 

raster files.3 They can be used to extrapolate the values of explanatory variables as well as 

extrapolate sample measures of risk across the city of Seattle to attribute risk for the entire city 

and can be displayed on maps to be used as risk analysis tools. 

Research Questions 

Here are the research questions that this project sought to answer:  

1. What meteorological, environmental, demographic and structural variables explain the 

cause of sewer backups that are settled with a positive claim being paid out by the City of 

Seattle? 

2. What meteorological, environmental, demographic and structural variables explain the 

amounts of settled positive sewer backup claims?  

3. If these variables explain the cause of sewer backups and amount of sewer backup 

claims, what is the expected damage of sewer backups at the parcel level and the 

neighborhood level in Seattle given the characteristics of prominent rain storms that 

occurred within the timeframe of the data set?  

                                                           
3 Raster files are collections of pixels that represent different levels of spatial information. 
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Data Collection and Processing Methods 

The claim dataset was procured from the claims manager at Seattle Public Utilities. This dataset 

was exported into a spreadsheet from a shapefile in GIS. All names and addresses were removed 

from the dataset and the claims were identified by the remaining characteristics in the database 

file, mostly from the claim number. The dataset contained sewer and flood claims and the flood 

claims as well as non-sewer backup claims were removed so that only definitive sewer backup 

claims (as defined by the brief description in the claims shapefile) with positive payout amounts 

remained.  

The sewer backup claim dataset contained 459 positive sewer backup claims that were due to 

sewer backup damage that occurred between September 2004 and May 2011. While citizens 

have three years after the date of loss to file a claim with the city (Martin, 2012), the list 

contained no new claims within the aforementioned timeframe when updates were sought.  

The meteorological data were gathered from the City of Seattle’s rain gauges. Data were 

exported from the Hydstra (2012, the rain gauge database where rainfall information is imported) 

for the periods of the claim data set. The data were exported to spreadsheets at the following 

intervals available: 5 minute, 10 minute, hour and day. For the damage model, Thiessen 

polygons4 were generated for the existing rain gauges in ArcGIS for every year in the dataset. 

These polygons were joined to the claims using the Identity tool5. The rain gauge domains were 

joined with the claims and imported to a spreadsheet. Special case Thiessen polygons were 

generated when a rain gauge generated bad results or was out of commission by omitting the rain 

                                                           
4 Polygons that represent the spatial coverage of rain gauges given location of other rain gauges 
5 The Identity tool transfers information from one shapefile that is overlaid on another shapefile 
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gauge with erroneous results. The rain gauge domains were used to manually enter the rain 

gauge information into the claims spreadsheet. 

The sole environmental variable was the tree density variable, though other variables such as soil 

corrosivity and soil type were considered but neither variables seemed to be applicable to the 

study. Soil type could be a good variable but Seattle is an urban area and much of the soil has 

been altered and replaced over the years it has been developed.  

The tree density was calculated through the use of a raster file obtained from the 1-meter LIDAR 

and Imagery Land Use Land Change (LULC) raster dataset developed by Dr. Monika Moskal’s 

Remote Sensing and Geospatial Analysis lab at the University of Washington. The raster was a 

binary dataset where a pixel is deemed as either containing a tree or trees or not containing a 

tree. The raster was converted to a polygon and then reconverted to a raster format (the original 

file was in TIFF format). Then, the raster values were aggregated to different sizes so that the 

values were percentages that represented tree densities. The different raster files were compared 

against an aerial image of Seattle and the chosen raster represented the tree density well and had 

a pixel size that was large enough to adequately represent the scale of tree density for an 

individual household and its connection to the system. 

The structural characteristic data (sewer pipe data) were gathered from Drainage and Wastewater 

mainline shapefile in GIS. For the damage model, this data were manually attached to the claims 

by using the side sewer and laterals layer in GIS to see where the building or parcel connects to 

the system. The unique ID number of the sewer pipe was entered in the claim table so that the 

structural characteristics could be joined to the claim dataset.  
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For the probability model, the claims were added to a sample of non-claim parcels where the 

structural variables were joined using the Spatial Join tool in ArcGIS. This tool joins the parcel 

to the nearest pipe from the randomly generated point. Though this may not be as accurate as 

manually joining the claim to a sewer pipe, the manual process would be too time-consuming 

and most of the variables do not vary much from their connected neighbors due to the nature of 

sewer infrastructure installation.  

The demographic variables consist of restaurant, household and population densities as well as 

parcel values. Restaurant density data, used as a proxy for potential grease in the sewer system, 

were collected by Seattle Public Utilities’ F.O.G. (Fats, Oils and Greases) restaurant inspection 

program. This data were in raster format and were attributed to parcels and claim points in 

ArcGIS. 

Parcel values and lot sizes were obtained from spreadsheets at the King County Assessor’s 

Office website and joined to a parcel shapefile obtained from King County GIS Data Center 

(2013). Parcels that did not have values were manually obtained from the King County 

Assessor’s Office.  

Household and population data were obtained from King County GIS Data Center (2013) and 

were calculated from the 2010 Census and were conflated to census blocks by the King County 

GIS Data Center. The data were exported from the Data Center and imported into ArcGIS and 

joined with a census block layer (also obtained from the King County GIS Data Center). The 

joined data were then converted to raster files using the Feature To Raster tool in ArcGIS. This 

allows for more of a robust sampling of household and population densities than a direct transfer 

of the information using the Identity tool in ArcGIS.  
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Dependent and Explanatory Variables  

Many of the explanatory variables were used in both models while others could not be used in 

both models or were the same variables but were attributed at different spatial resolutions. While 

this is a long list of variables, many were eliminated due to their insignificance in trial runs 

conducted to find the best-fitting models. Non-rainfall summary statistics for the rare events 

logistic regression dataset are in Table 1 and the spatial econometric model dataset summary 

statistics are in Table 2. The rainfall summary statistics for the rare events logistic regression are 

in Figure 2 in Chapter 2 and on Figure 4 later in this chapter.   

Variable Description Unit Mean 
Std. 
Dev. 

Min Max Type 

Claim_Y Claim Variable (1 = claim) Binary 0.040 0.197 0 1 Binary 

grid_pct Tree density Percentage 0.285 0.245 0 1 Percentage 

GRIDCODE Restaurant density 
Density 

Level 
41.165 35.714 0 199 Categorical 

ln07TOTVAL Log 2007 parcel value  Dollars 13.640 1.478 6.215 20.729 Continuous 

PPHH People per household  - 2.060 0.407 1.082 3.179 Continuous 

lnPPSQMI Log population per sq. mi. - 9.182 0.611 6.178 10.668 Continuous 

lnHHSQMI Log households per sq. mi. - 8.480 0.711 5.279 10.414 Continuous 

AGE Pipe age Years 70.725 26.672 0 118 Categorical 

DEPTH Pipe depth Feet 11.594 5.344 -41 77.55 Categorical 

ELEV Pipe elevation Feet 186.117 120.788 -19.055 494.95 Categorical 

MNL_LENGTH Pipe length Inches 242.814 207.035 2.32 8740.96 Categorical 

MNL_WIDTH_ Pipe width Inches 12.681 14.129 0 150 Categorical 

MNL_HEIGHT Pipe height Inches 12.710 13.947 0 144 Categorical 

MNL_SLOPE_ Pipe slope - 3.610 5.741 0 80.8 Continuous 

CLAYD Clay pipe dummy variable  0 or 1 0.395 0.489 0 1 Binary 

CONCRETED 
Concrete pipe dummy 

variable  
0 or 1 0.532 0.499 0 1 Binary 

PROBSAND 
Sanitary flow dummy 

variable 
0 or 1 0.374 0.455 0 1 Binary 

PROBCOMD 
Combined flow dummy 

variable 
0 or 1 0.626 0.500 0 1 Binary 

Table 1: Summary statistics for the non-rainfall variables used in the rare events logistic 

regression models (Claim_Y statistics are in reference to the December 14th, 2006 storm) 
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Variable Description Unit Mean Std. Dev. Min. Max. Type 

Amount_Pai Claim amount dollars $16,519 $24,914 $50 $195,000 Continuous 

LN_AMT Log claim amt. log dollars 8.70 1.57 3.89 12.18 Continuous 

PROBSAND 
Sanitary dummy 

variable 
0 or 1 0.23 0.42 0 1 Binary 

PROBCOMD 
Combined 

dummy variable 
0 or 1 0.77 0.42 0 1 Binary 

CLAYD 
Clay dummy 

variable 
0 or 1 0.54 0.50 0 1 Binary 

CONCRETED 
Concrete dummy 

variable 
0 or 1 0.41 0.49 0 1 Binary 

MNL_FCNLEN Pipe length feet 302.91 98.59 5.58 845.20 Continuous 

WIDTH Pipe width inches 11.54 8.22 6.00 54.00 Discrete 

SLOPE Pipe slope unitless 2.40 3.42 0 47.90 Continuous 

DEPTH Pipe depth feet 11.62 3.41 0 25.81 Continuous 

ELEV Pipe elevation feet 184.04 112.45 3.91 466.95 Continuous 

CCTVYN 
CCTV dummy 

variable 
0 or 1 0.05 0.21 0 1 Binary 

AGE Pipe age years 76.54 23.82 11.00 115.00 Discrete 

RINT 
Rainfall intensity 
on date of loss 

(DOL) 
inches/hour 0.10 0.07 0.00 0.23 Continuous 

RDOL 
Rainfall amount 

on DOL 
inches 1.34 1.30 0.00 5.33 Continuous 

RDUR 

Amount of hours 
where rainfall 

was recorded on 
DOL 

hours 10.56 5.96 0 24 Continuous 

L3 
Prev. 3 day 

rainfall 
inches 1.22 0.81 0 2.64 Continuous 

N15 
Prev. 4 to 18 day 

rainfall 
inches 1.45 1.24 0 7.19 Continuous 

SSAT Soil saturation percentage 0.44 0.24 0 1.37 Continuous 

GREASE_COD 
Restaurant 

density  
density units 73.67 43.03 5 194 Discrete 

grid_pct Tree density percentage 0.27 0.20 0 0.94 Discrete 

lnHH 
Log household 

density  
log 

HH/sqmi. 
8.50 0.53 5.90 10.10 Continuous 

lnPOP 
Log population 

density 
log 

pop/sqmi. 
9.22 0.44 6.55 10.43 Continuous 

sqftlot parcel area square feet 19484 54341 873 344323 Continuous 

lnYOLVAL 
Log property 

value in year of 
loss 

log dollars 13.29 1.22 11.29 17.94 Continuous 

Table 2: Spatial econometric model variable summary statistics 
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Dependent Variables 

The damage model uses log claim amounts because the log distribution is more normal 

distributed than the actual dollar values. The dependent variable for the probability model is a 

binary variable and zeros were attached to the sample parcels and ones were attached to the 

claim parcels for the specific storm events. The sample parcels will be discussed later in the 

chapter. 

The three highest claim-producing storms were the May 27th, 2006 storm, the December 14th, 

2006 storm and the December 3rd, 2007 storm. These storms produced 32, 147 and 48 positive 

sewer backup claims respectively, which is nearly half of all sewer backup claims in the dataset. 

These claims are the ones in the binary dependent variable and the zeros are a sample of parcels 

where claims did not occur and the latter will be discussed later in this chapter.  

Meteorological Variables 

For the damage model, the sewer backup claims were due to dozens of storms that occurred in a 

period of seven years, so creating raster files for every storm was not feasible. The only 

information available for the timing of the storm in the dataset was the date of loss. As a result, 

rainfall intensity was calculated as the amount of rain on the date of loss divided by the number 

hours of positive recorded rainfall. It is postulated that higher rainfall intensity should correlate 

with higher damage amounts.  

Soil saturation was another postulated explanatory variable for why backups occur and no direct 

measure was found. However, the USGS (2012) has a measurement that portrays the level of 

susceptibility to landslide events called the Cumulative Precipitation Threshold (Figure 3). One 
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of their study areas is Seattle, so the application for this proxy variable should be adequate for 

measuring soil saturation. The equation for this threshold is shown in Equation 1: 

(1)                          (3-day precip) = 3.5 – 0.67*(previous 15-day precip) 

The precipitation values in Equation 1 are the previous rainfall recorded in the last three days and 

the fifteen days before the previous three days of a given examined time respectively.  

As one can see from the graph, this threshold is used to predict when conditions are such that 

landslides are likely to occur. This threshold allows for previous four to eighteen day rainfall 

amounts and previous three day rainfall amounts to influence landslide susceptibility at different 

levels. More recent rainfall (previous three day rainfall) is weighted higher than rainfall that 

occurred in the more distant past (previous four to eighteen day rainfall). Though this study is 

not concerned with landslides, the threshold can be used as an indicator of soil moisture 

conditions. The threshold levels can be measured as an explanatory variable for malfunctions in 

the sewer system. 

The measurement would ideally be the cumulative density based on where the precipitation 

values are on the x and y axes and the resulting values. However, some of the dataset contains 

claims where no rainfall was recorded in either the three previous days before the date of loss or 

the previous fifteen days before the three day period. The probability model uses the cumulative 

density since the storm events examined had rainfall in both periods and this density (the 

triangular area created by positive previous three day and previous four to eighteen day rainfall 

amounts divided by the area of the “landslides unlikely” triangle, 9.1875) is measured using 

Equation 2: 

(2)    [0.5 ∗ (15 𝑑𝑎𝑦 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑐𝑖𝑝) ∗ (3 𝑑𝑎𝑦 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑐𝑖𝑝)]/9.1875 
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For the damage model, the higher number between the two threshold percentages (the three-day 

rainfall period divided by 3.5 inches or the fifteen-day rainfall divided by 5.25 inches) will be the 

soil saturation measure. This does allow for a percentage above the threshold in cases where such 

rainfall previous to the sewer backup claim occurred. In both calculations, higher soil saturation 

levels should translate to higher damage amounts as, the closer the level gets to landslide danger, 

the less room there is for water in the soil.  

 

Figure 3: Cumulative Precipitation Threshold graph (Courtesy of USGS) 

 

It may also be possible that soil saturation has no effect on the damage amounts at all. The sewer 

system is not completely sealed off from groundwater leakage and soils saturated at the depth 

level of the pipes may add to the flow in high levels of rainfall. Soil saturation is a variable worth 

measuring given the subterranean location of the system and the tendency for soils to be 

saturated during the period of the year when heavy rain storms occur. The soil saturation 
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densities for the three major storms are displayed in Figure 4. They will apply to the analysis and 

the results in Chapter 4. 

 

Figure 4: Soil saturation densities for the three major storms 

 

Rainfall variables are specific to a specific rainfall event so the production of rainfall rasters is 

justified. For the probability model, rasters were created for the following variables using the 

Inverse Distance Weighting tool in ArcGIS: peak five-minute rainfall, peak ten-minute rainfall, 

peak hour rainfall, peak three hour rainfall, rainfall intensity in the period when the storm 

occurred, soil saturation (same specification of the damage model), previous 1, 2 and 3 day 

rainfall as well as the previous 15-day rainfall period before three day interval previous to the 

storm occurred (the x-axis component on the Cumulative Precipitation Threshold graph). The 

rainfall intensity period was established as the beginning to the end of the recorded rainfall 
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period where the peaks were recorded and was calculated by dividing the amount of rain 

recorded during the period by the number of hours in the period.  

The rainfall variables in the damage model were, in addition to soil saturation and rainfall 

intensity, the previous three days of rainfall (as a percentage of the threshold), the next fifteen 

days previous to the three-day period (also as a percentage of the threshold) and rainfall duration 

on the date of loss and total rainfall on date of loss.  

Tree Density Variable 

The densities were measures of tree cover between 0 and 1, with 1 being all trees and 0 being no 

trees. Vegetation can have much influence on the system, directly and indirectly. Directly, trees 

can sprout roots that will work their way into the system through cracks or by biological 

processes. Once inside the pipe, the roots expand and take up space in system, lowering the 

capacity of flow and collecting material such as grease, floating solids and trash in the system.  

Indirectly, trees can delay stormwater from entering the system, which can help the system 

conduct rain water more steadily and not create the pressure and capacity issues that cause 

backups. Trees also retain water that falls through their leaves, which can reduce the amount of 

rain water in the system.  

Naturally, the direct and indirect effects counteract one another. Roots in the system may cause 

more backups than if the roots were not present. Vegetation may reduce the amount of backups 

by reducing peak flows. The sign of the coefficient for this variable should indicate which effect 

has a stronger influence on the system.  

Structural Variables 
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Since the structural data, also known as sewer pipe data, were attached to the claims manually, 

every pipe contained descriptive information in the shapefile including its age (in years), length 

(feet), width (diameter, in inches), material, slope, elevation (feet), depth (feet) and probable 

flow in the system. Probable flow is defined by what is supposed to be flowing in the system; 

wastewater flow (sewage only) is called sanitary flow and sewage and stormwater which is 

called combined flow.  

The types of pipe materials were vitrified clay, reinforced concrete, concrete, brick, asbestos 

cement, PVC and ductile iron, though brick and both concrete materials made up the vast 

majority (~ 93%) of the pipes, so those materials were the only ones examined. A dummy 

variable was created for clay and for concrete (concrete and reinforced concrete pipe were 

coupled for the concrete variable).  

Average elevation was measured by adding the upstream elevation and the downstream elevation 

and dividing the sum by two. Average depth was computed in the same way as elevation. 

Probable flow was a dummy variable that can either be sanitary or combined (sanitary and 

drainage water). Age was calculated for the year that the backup occurred.  

The sign of the age coefficient is difficult to project. Age can be a measure of deterioration and 

can assumed to have a positive correlation with probability and damage from backups but the 

condition of the pipe may not be correlated with backup occurrence and damage. The sign of 

pipe elevation should be negative since, as elevation decreases, higher volumes of flow will be 

entering the system. As elevation increases, there is less land area that has rainfall on it, draining 

into the system. 
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Pipe length should have a positive coefficient in both models due to the nature of surveillance 

costs. The longer the pipe, the more costly it is to inspect a pipe since many CCTV (closed-

circuit television recordings via remote cameras) surveillance contracts are charged by the foot 

of pipe inspected. Not all pipes in the system are inspected so length may have no effect on 

claims attached to pipes that would not be inspected no matter what the length. Depth is nearly 

the same case as length. The further the pipe is below the ground, the more expensive it is to 

replace or repair.  

The slope coefficient should be negative since higher slopes should equate to higher velocities of 

water running through the pipe and a lower propensity for the water in the pipe to stagnate and 

be a part of backup flow. The width coefficient should be negative as well. The greater the pipe 

width, the more capacity there is in the pipe, though a better measure might be a measure that 

compares the width to the volume of flow to the relative volume of flow the pipe is expected to 

conduct but that data is not available.  

The material variables, clay and concrete, do not have a clear postulated sign. Clay pipes are 

more resilient to deterioration than concrete pipes (Martin, 2012) but that refers to their 

propensity to deteriorate, not whether or not they will contribute to backup cause or claim 

amounts. The probable flow variables should have different signs. The combined flow dummy 

variable, with 1 being combined and 0 being sanitary, should be positive since combined pipes 

carry waste water and storm water instead of just waste water. The sanitary flow dummy variable 

should then be negative since it is the opposite of the combined variable. These variables could 

be important if they prove to be significant as combined pipes would then have more of a priority 

for maintenance and surveillance. 
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Demographic Variables 

Restaurant density was transferred to all the variables in ArcGIS to be used as a proxy for grease 

in the system. The density units ranged from 0 (lowest density) to 199 (highest density). The 

density data were collected in 2011, so the further the claims are behind this date, the less 

accurate of a portrayal of restaurant density the variable is. Without the raster, there really is not 

a good measure of how much grease is in the system. The author requested CCTV reports for 

pipes that were attached to sewer backup claims and were identified as having heavy amounts of 

grease after being surveyed but only nine pipes fit those criteria.  

The household and population densities are logged estimates of households per square mile and 

population per square mile, respectively. They were converted to log form to better represent 

normally distributed variables. The parcel values are the log total values of the parcel, which 

consists of the addition of appraised land value and appraised improvement value for a parcel. 

Those values appear in the probability model. The damage model utilizes the value per square 

feet, which is the log value of the parcel divided by the log square foot of the parcel, and the log 

square footage of the parcel.  

The sign of the restaurant density coefficient should be positive as higher restaurant densities 

should mean more contributions of grease into the system. Though laws and programs are in 

place to prevent grease from going into the system, the density can act as some kind of proxy for 

the past state when grease into the system was not regulated. In addition, a large amount of 

restaurants in an area will invariably translate into some level of grease into the system. The 

significance level should be a test as to the strength of the proxy.  
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The signs of population and household densities should be positive since higher levels of 

population and households should translate into larger contributions of waste water flow into the 

system. For the parcels, higher parcel values should correlate into higher amounts of possession 

and home values. Hence, for the probability and the damage model, the parcel value coefficient 

should be positive.  

The sign of value per square feet has no intuitive sign to be postulated. Since the distribution of 

parcel values and parcel claims for the entire city resembled exponential distributions, the log 

2007 parcel value was divided by the log square footage of the parcel. In these conversions, 

different scales of parcel sizes (single-family, apartment buildings, commercial buildings and 

museums among others) and parcels should be rendered equal and the measure itself a unitless 

ratio.  

Lastly, for the damage model, log square footage should be a positive coefficient since the 

amount of basement area and bathrooms should correlate with the amount of square footage the 

parcel takes up. This presumption makes more sense in an urban area where residential and 

commercial buildings take up much of the parcel area.  

Spatial Econometric Model Methodology 

The spatial damage model analysis was run using R 2.12.0 and the ‘spdep’, ‘rgdal’ and 

‘maptools’ packages. Since the data are hypothesized to be spatially autocorrelated and 

heteroskedastic, a spatial weights matrix was created to test for the presence of spatial 

autocorrelation and heteroskedasticity.  

The spatial weights matrix was row standardized (the sum of every row in the matrix equals 1) 

with the neighbors defined as the 𝑘 amount of neighbors closest to a certain point with 𝑘 = 15. 
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Spatial autocorrelation was tested for using Moran’s I test (Moran, 1950) and heteroskedasticity 

was tested for using the Breusch-Pagan test (Breusch and Pagan, 1979). 

The Moran’s I statistic is defined by ESRI (2012) as: 

(3)                                                          𝐼 =  
𝑛

𝑆0

∑ ∑ 𝑤𝑖,𝑗𝑧𝑖𝑧𝑗
𝑛
𝑗=1

𝑛
𝑖=1

∑ 𝑧𝑖
2𝑛

𝑖=1
 

where 𝑧𝑖 is the deviation of an attribute for feature i from its mean (𝑥𝑖 − 𝑋), 𝑤𝑖,𝑗 is the spatial 

weight between feature i and j, n is equal to the number of features and 𝑆0 is an aggregation of 

spatial weights:  

(4)                                                            𝑆0 =  ∑ ∑ 𝑤𝑖,𝑗
𝑛
𝑗=1

𝑛
𝑖=1  

The expectation and variance of Moran’s I (ESRI, 2012) are:  

(5)                                                 𝐸[𝐼] =  −1/(𝑛 − 1) 

(6)                                                 V[I] = E[𝐼2] − 𝐸[𝐼]2  

For the Breusch-Pagan test, there exists a linear model represented as such:  

(7)                                                            𝑦𝑖 =  𝑥𝑖
′𝛽 + 𝑢𝑖, 

where 𝛽 is a 𝑘 𝑥 1 vector of coefficient parameters, 𝑥𝑖 is a vector of explanatory variables and 

the disturbances 𝑢𝑖 are normally and independently distributed with a mean of zero and a 

variance: 

(8)                                                           𝜎𝑖
2 = ℎ(𝑧𝑖

′𝛼),  
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where h (۰) is not indexed by t and is assumed to possess first and second derivatives, 𝛼 is a 

𝑝 𝑥 1 vector of unrestricted parameters functionally unrelated to the β coefficients, and the first 

element in 𝑧𝑖  (the same as 𝑥𝑖) is unity (Breusch and Pagan, 1979). The null (homoscedastic) 

hypothesis is 𝐻0 =  𝛼2 = ⋯ =  𝛼𝑝  and the Lagrange Multiplier statistic for testing this 

hypothesis is one-half of the explained sum of squares in a regression of 𝑔𝑖 =  𝜎̂−2𝑢̂𝑖
2 on 𝑧𝑖 

(Breusch and Pagan, 1979). This test statistic is asymptotically distributed as 𝜒2 with 𝑝 − 1 

degrees of freedom under the null hypothesis (Breusch and Pagan, 1979).  

First, the claim damage amounts were regressed on all of the explanatory variables in an OLS 

regression model. Insignificant variables were eliminated and re-added until the best fitting 

model remained given that only fairly significant variables remained in the model. The residuals 

of the remaining variables were tested for spatial dependence using Moran’s I. When spatial 

dependence was detected, a Lagrange Multiplier test was conducted to determine which model to 

use. In this case, the spatial lag model was the obvious choice as can be seen by the Lagrange 

Multiplier results in the Chapter 4 (Table 5). 

The spatial lag model adjusts for spatial autocorrelation and is expressed in matrix form in 

Equation 9 as seen in LeSage and Pace (2009):  

(9)                                   𝑌 = 𝑋𝛽 +  𝜌𝑊𝑦 +  𝜀, 𝜀 ~ 𝑁(0, 𝜎2𝐼𝑛) 

W is an 𝑛 𝑥 𝑛 spatial weights matrix and ρ is a scalar parameter that ranges between (0,1) and 

represents the level of spatial dependence. 𝑌 and ε are 𝑛 𝑥 1 vectors and the latter is a normally 

distributed error term with a mean of 0 and a variance of 𝜎2 times an 𝑛 𝑥 𝑛 identity matrix. 𝑋 is a 

𝑛 𝑥 𝑘 matrix where 𝑛 is the amount of claims and 𝑘 k is the amount of significant variables 
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remaining from the OLS trials. Also, β is a  𝑘 𝑥 1 vector. Equation 9 can be inverted to read as 

such:   

(10)                                    𝑌 = (𝐼𝑛 − 𝜌𝑊)−1𝑋𝛽 + (𝐼𝑛 − 𝜌𝑊)−1𝜀, 

where (𝐼𝑛 − 𝜌𝑊)−1is a geometrically-deteriorating lag function. This model allows for the 

influence of the nearest neighbors of an asset to be weighted the highest and more distant assets 

further away to be weighted less the further they are from the asset in question.   

The spatial lag model was run with the same variables as the best-fitting OLS model. The spatial 

error model was also run and, as anticipated from the Lagrange Multiplier results, did not 

perform as well as the spatial lag model.   

Rare Events Logistic Regression Model Methodology 

The data used in the rare events logistic regression model are variables associated with claims 

from the major storms mentioned earlier and a sample of parcels where claims were not filed 

(and presumably backups did not occur). The model will compare the variables where claims 

happened and did not happen. The differences will aid in the explanation of why backups 

occurred where they did in the city.  

The usual strategy [for sample data collection] is either random sampling, where all observations 

(X, Y) are selected at random, or exogenous stratified sampling, which allows Y to be randomly 

selected within categories defined by X (King and Zeng, 2001). This study uses exogenous 

stratified sampling where the parcels were randomly selected within each neighborhood using 

ArcGIS. This will allow for the creation of a citywide sewer backup risk profile by using the 

sample to forecast probabilities, potential damage and expected sewer backup damage. The  
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                            Figure 5: Random stratified parcel sample displayed as points 
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methods for the calculations are discussed later in this chapter. This random stratified sample of 

parcels is shown in Figure 5. 

There are eighty-nine neighborhoods in Seattle and the first sample collected produced 40 points 

in each neighborhood using the Create Random Points tool in ArcGIS. The points were then 

joined to the Seattle parcel layer using the Spatial Join tool in ArcGIS. Some points were joined 

to the same parcel. When the joined results were exported to Excel, the duplicates were removed. 

A smaller sample of parcels was collected in the same fashion as the first to supplement the loss 

of parcels in the first sample. The parcels from the second parcel were added after being sorted 

by their neighborhood ID so their neighborhood could be identified and sorted by another ID so 

the selection process would be unbiased.  

Once the supplemental parcels were joined to the first sample, a few neighborhoods remained 

under-populated. This was mainly due to the amount of parcels available in the neighborhood. 

The final amount of parcels was 3494, though the goal was 3560 (which would have been 40 

parcels for each neighborhood). The variables attached to the claim parcels were also attached to 

the sample parcels in ArcGIS. The claim parcels and the sample parcels were joined. 

The binary dependent variable consists of zeros (the sampled non-claim parcels) and ones (the 

claims related to a storm). The dependent variable was regressed on the available variables in a 

logit, or logistic regression, model in order to remove insignificant variables. King and Zeng 

(2001) defines logistic regression where a single variable 𝑌𝑖 (𝑖 = 1,...,n) follows a Bernoulli 

probability function (Equation 11) that takes on the value 1 with probability 𝜋𝑖  (Equation 12) 

and 0 with probability of 1 −  𝜋𝑖 . Then 𝜋𝑖  varies over the observations as an inverse logistic 
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function of a vector 𝑥𝑖 , which includes a constant and 𝑘 − 1 explanatory variables (King and 

Zeng, 2001). 

(11)                                               𝑌𝑖  ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝑌𝑖|𝜋𝑖)                                                          

 

 (12)                                                    𝜋𝑖 =  
1

1+ 𝑒−𝑥𝑖𝛽 

𝑌𝑖 is the binary dependent variable and  𝛽 is an estimated vector of coefficients. The probability 

function of the Bernoulli is 𝐿(𝛽|𝑦) =  𝜋𝑖
𝑌𝑖(1 − 𝜋𝑖)

1−𝑌𝑖and the unknown parameter to be solved 

for (𝛽 = [𝛽0,𝛽1
′]

′
) is 𝑘 𝑥 1 vector, where 𝛽0 is a scalar constant term and 𝛽1is a vector with 

elements corresponding to the explanatory variables (King and Zeng, 2001).  

The parameters are estimated by maximum likelihood, with the likelihood function formed by 

assuming independence over the observations ∏ 𝜋𝑖
𝑌𝑖(1 − 𝜋𝑖)1−𝑌𝑖𝑛

𝑖=1  (King and Zeng, 2001). 

Greene (2012) notes that it is simpler to work with the log of the likelihood function. Thus, the 

full and simplified log likelihood function is shown in Equation 13:  

(13)  𝑙𝑛𝐿(𝛽|𝑦) =  ∑ ln(𝜋𝑖) + ∑ ln(1 − 𝜋𝑖) =  − ∑ ln (1 + 𝑒(1−2𝑌𝑖)𝑥𝑖𝛽)𝑛
𝑖=1𝑌𝑖=0𝑌𝑖=1  

The goal is to find the maximum value of the function (𝛽̂) and compute the standard errors with 

the variance matrix, 𝑉(𝛽). The process of running the logit model, removing insignificant 

variables and rerunning the model, was repeated until the best-fitting model remained (based on 

the pseudo R squared value) given that insignificant variables were absent. When that process 

was complete, the rare events logistic regression specification was applied.  
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For the logit model and the Rare Events logistic regression model, Stata 12.1 was used along 

with the ‘logit’, ‘relogit’, ‘setx’ and ‘relogitq’ packages. The rare events logistic regression 

model functions much like the logistic regression model but the rare events model uses statistical 

correction to properly weight the estimates (King and Zeng, 2001). Logistic regression without 

the rare events correction assumes that the number of zeros and ones are proportional to the 

population’s distribution of zeros and ones.  

Rare events logistic regression was used because it reduces the amount of data collection 

necessary by adjusting the estimates based on the true population of ones and zeros. Researchers 

can collect all (or all available) ones and a small random sample of zeros and not lose 

consistency or even much efficiency relative to the full sample, drastically changing the optimal 

trade-off between more observations and better variables, enabling scholars to focus data 

collection efforts where they matter most (King and Zeng, 2001).   

The two types of corrections are prior correction and weighted correction. Prior correction 

involves computing the usual logistic regression MLE and correcting the estimates based on 

prior information about the fraction of ones in the population, τ (or tau), and the observed 

fraction of ones in the sample (or sampling probability), 𝑦̅ (King and Zeng, 2001). Since the 

amount of parcels in Seattle is known, the τ is known and is the number of claims produced by 

the storm divided by 177,154 (the number of parcels in Seattle minus Harbor Island and parcels 

outside the bounds of the neighborhoods, which was removed from the analysis due to its 

industrial composition). The respective τ values for the May 2006, December 2006 and 

December 2007 storms are 0.000181, 0.00083 and 0.000271. The correction of the intercept  𝛽0̂ 
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via prior correction is specified in Equation 14 and this correction is consistent for 𝛽0 (King and 

Zeng, 2001):  

(14)                                            𝛽0̂ − 𝑙𝑛 [(
1− 𝜏

𝜏
) (

𝑦̅

1−𝑦̅
)]  

Prior correction can only be used when τ is known or can be estimated. Prior correction is easy 

to use but, if the model is misspecified, estimates of both 𝛽0̂  and 𝛽1̂  are slightly less robust than 

weighting (King and Zeng, 2001; from Xie and Manski 1988). 

Weighted correction involves weighting the data to compensate for differences in the sample (𝑦̅) 

and population (τ) fractions of ones induced by choice-based sampling (King and Zeng, 2001). 

The weighted log-likelihood is then maximized using Equation 15 (from King and Zeng, 2001): 

(15)                  ln 𝐿𝑤(𝛽|𝑦) =   𝑤1 ∑ ln(𝜋𝑖)(𝑌1=1) + 𝑤0 ∑ ln(1 − 𝜋𝑖)(𝑌𝑖=0)   

                                         =  − ∑ 𝑤𝑖  ln (1 + 𝑒(1−2𝑦𝑖)𝑥𝑖𝛽𝑛
𝑖=1 ),  

where the weights are 𝑤1 =  𝜏/𝑦̅ and 𝑤0 = (1 −  𝜏)/(1 −  𝑦̅), and where 

(16)                                     𝑤𝑖 =  𝑤1𝑌𝑖 + 𝑤0(1 − 𝑌𝑖) 

Weighting can outperform prior correction when both a large sample is available and the 

functional form is misspecified (King and Zeng, 2001; from Xie and Manski, 1988).  

The standard errors were computed with the asymptotic variance matrix (King and Zeng, 2001): 

(17)                                        𝑉(𝛽) =  [∑ 𝜋𝑖(1 − 𝜋𝑖)𝑥𝑖
′𝑥𝑖

𝑛
𝑖=1 ]−1 
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In rare events data, ones are more informative than zeros, since the part of the matrix affected by 

rare events is 𝜋𝑖(1 − 𝜋𝑖) and this term will be larger for ones than zeros, thus making the 

contribution to the variance smaller for ones than zeros (King and Zeng, 2001). 

Spatial effects were tested for using Moran’s I test in ArcGIS. It is postulated that the random 

stratified sample would displace the clustered sample of claims from the three major storms per 

Robertson et al. (2009).  

As stated before, the model results were be used to determine a probability of positive sewer 

backup claim damage occurring given the rainfall variables of a specific storm. In essence, this 

means that the probabilities are a prediction of probabilities for a past event. While some of the 

results will explain what caused the backups, it may be more of a portrayal of where the backups 

occurred. Given the importance of rainfall in the occurrences of sewer backups, inconsistencies 

in the postulated signs of the coefficients and the results may be explained by where the rainfall 

occurred and the non-rainfall variables may not directly explain why the backups occurred.  

Expected Sewer Backup Damage Calculations and Maps 

The results of the rare events logistic regression model produce probabilities that a backup would 

occur for all of the sample (or non-claim parcels). The probability was calculated in Equation 18 

(and is the same equation as Equation 12) where the probability of a backup i is a function of the 

variables in parcel i that were used in the rare events logistic regression (RELR) results that 

included the rainfall characteristics from storm s: 

(18)         (𝑃𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦𝑖| 𝑠𝑡𝑜𝑟𝑚 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒) =
1

1+𝑒−𝑥𝑖𝛽𝑅𝐸𝐿𝑅
𝑠

 
 =

𝑒𝑥𝑖𝛽𝑅𝐸𝐿𝑅
𝑠

1+𝑒𝑥𝑖𝛽𝑅𝐸𝐿𝑅
𝑠  
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The spatial econometric model (damage model) provided the framework to project sewer backup 

damage potential for out-of-sample parcels. The results produce a damage amount for parcel i 

and are a function of the variables in parcel i used in the spatial lag model (SLM) and the 

coefficients from the results of the SLM. Since those results are in natural log form, Euler’s 

number (e) must be used to transform the damage into actual dollars in Equation 19: 

(19)                                          𝐷𝑎𝑚𝑎𝑔𝑒𝑖 =  𝑒𝑥𝑖𝛽𝑆𝐸𝑀              

The probabilities and damage amounts were multiplied together in Equation 20 to get an 

expected sewer backup claim damage (ESBD) amounts for each parcel i:  

(20)                              𝐸𝑆𝐵𝐷𝑖 =  𝐸[𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦𝑖 ∗  𝐷𝑎𝑚𝑎𝑔𝑒𝑖] 

The probabilities, damage potential amounts and ESBD results from the December 14th, 2006 

storm were joined with the parcel layer in ArcGIS. The parcels were converted to points and the 

IDW tool was used to create citywide sewer backup probability, damage potential and ESBD 

maps. The ESBD results were transposed onto the Seattle Parcel layer to get a calculation of 

citywide ESBD from the storm.  

First Differences and Risk Ratios 

First difference and rate ratio calculations can be used to see changes in probability and changes 

in magnitudes of probability occur respectively where different variable values can be compared 

with the results. In order to do this, the data must be averaged or aggregated in some other 

manner using ‘setx’ in Stata (rare events software) to make these calculations. Then, two 

different values of x can be compared to calculate these quantities of interest using ‘relogitq.’ 

First difference values (FD) are defined by Imai et al. (2007) in Equation 21:  
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(21)                             𝐹𝐷 = 𝑃𝑟𝑜𝑏(𝑌 = 1|𝑥1, 𝜏) − 𝑃𝑟𝑜𝑏(𝑌 = 1|𝑥, 𝜏) 

Risk ratios (RR) are defined by Imai et al. (2007) in Equation 22: 

(22)                              𝑅𝑅 =  𝑃𝑟𝑜𝑏(𝑌 = 1|𝑥1, 𝜏)/𝑃𝑟𝑜𝑏(𝑌 = 1|𝑥, 𝜏) 

In these cases, 𝑥 is the true value of x and 𝑥1 is some transformation away from 𝑥. The tau 

value, 𝜏, is the same proportion value of ones to the total population of ones and zeroes (in the 

binary dependent variable context). 

These measures will be applied to significant variables that can be conceivably altered in real-life 

or variables that can appear in different variations, the latter being the rainfall variables which 

are specific to a given storm. First difference values show the change in probability of a backup 

occurring as a result of a change in a variable value with all the other variables being constant (in 

their mean-transformed state). Risk ratios show how much more likely a backup is to occur given 

the change in variables with everything else remaining constant.  
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Chapter 4: Results and Discussion 

Spatial Econometric Model Results  

The log claim amounts were regressed on the variables in the sewer backup dataset using 

ordinary least squares (OLS) and the insignificant variables were removed. The results of the 

best-fitting OLS model (given that all significant variables were retained) are in Table 3.  

Variables  Description Coefficient Std. Error z-value Pr(>|z|) 

 Intercept Constant 9.100035 1.353446 6.724 0.000 

RINT Rainfall intensity 4.6776412 1.517188 3.083 0.002 

SSAT Soil saturation 4.149707 0.797756 5.202 0.000 

L3PCT Prev. 3 day rainfall -2.6119691 0.683532 -3.821 0.000 

N15PCT Prev. 15 day rainfall before L3 -4.1040017 0.619467 -6.625 0.000 

grid_pct Tree density -0.745461 0.356909 -2.089 0.037 

lnHH Log household density -0.2926563 0.123201 -2.375 0.018 

CCTVYN Pipe surveyed before date of loss -0.6837433 0.319952 -2.137 0.033 

valsqft Log parcel value/log parcel sq. ft.   -0.0013507 0.000601 -2.249 0.025 

lnsqftlot Log square feet of parcel 0.2689738 0.073261 3.671 0.000 

Residual standard error: 1.41 on 449 degrees of freedom 

Multiple R-squared: 0.213, Adjusted R-squared: 0.1972 

F-statistic:  13.5 on 9 and 449 DF,  p-value: < 2.2e-16 

Table 3: OLS results of the best-fitting model with insignificant variables excluded 

 

The best-fitting OLS model had an R-squared value of 0.213 and an adjusted R-squared value of 

0.1972. It appears that there are many factors that explain amounts of sewer backup claims 

which are not accounted for in the model. Accounting for the assumed spatial autocorrelation 
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would add to the fit of the model if spatial autocorrelation is present as explained in the literature 

review (Griffith and Layne, 1999).  

Moran’s I tests and the Bresuch-Pagan test were run to test for spatial autocorrelation in the 

dependent variable and the residuals of the variables and for heteroskedasticity in the residuals, 

respectively. Table 4 has the results of the Moran tests and the results of the Breusch-Pagan tests. 

Spatial autocorrelation is present in the dependent variable and the residuals, though significantly 

more so in the dependent variable. Slight heteroskedasticity is present in the residuals but, with a 

p-value of 0.08769, it was not deemed significant enough to reduce the level of 

heteroskedasticity through the omission of variables or other means.  

Data Tested  p-value Moran I statistic 

Dependent Variable 0.00000 0.21927 

OLS Residuals 0.02815 0.03175 

   

Data Tested p-value Breusch-Pagan statistic 

OLS Residuals 0.08769 15.1202 

Table 4: Moran’s I and Breusch-Pagan test results 

 

The application of a spatial econometric model that adjusts for spatial autocorrelation was 

necessary. The Lagrange Multiplier test results in Table 5 suggests that the spatial lag model 

should be utilized as the standard and robust results for the lag model were far more significant 

than the error model results. This seems intuitive when the level of spatial autocorrelation results  

Model p-value 

LMerror 0.0443 

LMlag 0.000304 

RobustLMerr 0.05978 

RobustLMlag 0.000398 

Degrees of Freedom: 1 

Table 5: Lagrange Multiplier results 
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for the dependent variable and the residuals are compared.  

Figure 6 shows the Moran scatterplot of the Moran’s I test on the dependent variable. The labels 

on the outliers refer to the neighborhoods where the individual claims resulted from. The 

Harrison/Denny-Blaine neighborhood is where the largest cluster in the dataset is located so it 

stands to reason that the outliers would originate from that neighborhood.        

 

Figure 6: Claim and spatially-lagged claim scatterplot 
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The spatial lag model specifications were used to regress the log claims amount on the variables 

from the best-fitting OLS model to start and variables were removed if they were no longer 

significant in the spatial lag model. The best-fitting model results are the results that were used to 

calculate potential damage. The best-fitting spatial lag model results are shown in Table 6 and 

the correlation matrix with these variables is shown in Table 7. 

Both the RINT (rainfall intensity) and the SSAT (soil saturation) variable from the OLS model 

and in the spatial lag model are positive while the coefficients of the two variables that are used 

Variables  Description Coefficient Std. Error z-value Pr(>|z|) 

 Intercept Constant 6.50696 1.73749 3.745 0.000 

RINT Rainfall intensity 4.27851 1.4963 2.8594 0.004 

SSAT Soil saturation 3.39523 0.81893 4.1459 0.000 

L3PCT Prev. 3 day rainfall -2.24538 0.68608 -3.2728 0.001 

N15PCT 
Prev. 15 day rainfall 

before L3 
-3.39467 0.65208 -5.2059 0.000 

grid_pct Tree density -0.65398 0.3492 -1.8728 0.061 

lnHH Log household density -0.19554 0.12784 -1.5296 0.126 

CCTVYN 
Pipe CCTV'd previous to 

date of loss 
-0.62321 0.31339 -1.9886 0.047 

valsqft 
Log parcel value/log 

parcel sqft   
-0.00119 0.00059 -2.0222 0.043 

lnsqftlot Log sqft of parcel 0.23012 0.07276 3.1628 0.002 

Rho: 0.23604                                     Likelihood Ratio test value: 5.714                               p-value: 0.016830  

Asymptotic standard error: 0.098193, z-value:2.4039, p-value: 0.016223 

Wald statistic: 5.7785, p-value: 0.016223 
Log likelihood: -801.2281 for lag model 

Number of observations: 459 
  

AIC: 1626.5, (AIC for lm: 1630.2) 
LM test for residual autocorrelation 

test value: 0.10472, p-value: 0.74624 

Table 6: Spatial lag model results 
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to compute SSAT are negative. Similar results were seen in the rare events logistic regression 

results. On Table 7, the respective correlations between L3PCT and SSAT as well as N15PCT 

and SSAT are 0.6051 and 0.718. This indicates a strong correlative relationship between the 

L3PCT, N15PCT and SSAT, which was anticipated since L3PCT and N15PCT are used to 

compute SSAT. The countering signs on the coefficients indicate that all these variables are 

significant but the variables’ marginal contributions counteract one another.  

 Variable RINT L3PCT N15PCT SSAT grid_pct lnsqftlot lnYOLTOT valsqft lnHH CCTVYN 

RINT 1 
         L3PCT 0.763 1 

        N15PCT 0.047 0.066 1 
       SSAT 0.4 0.605 0.718 1 

      grid_pct 0.04 0.028 -0.067 -0.01 1 
     lnsqftlot -0.12 -0.06 0.001 -0.1 -0.26 1 

    lnYOLTOT -0.19 -0.25 -0.077 -0.25 -0.25 0.738 1 
   valsqft -0.1 -0.25 -0.113 -0.19 0.05 -0.52 0.192 1 

  lnHH -0.33 -0.34 0.06 -0.32 -0.05 0.147 0.243 0.111 1 
 CCTVYN -0.11 -0.04 0.151 0.08 -0.18 0.014 0.0002 -0.015 0.07 1 

Table 7: Correlation matrix for the spatial lag model results 

The coefficient for tree density (grid_pct) is negative, meaning that higher tree densities 

correspond with lower damage amounts. It appears that the indirect effect of trees and foliage has 

more influence on decreasing the amounts of damage claims than the direct effect of tree roots 

burrowing into sewer pipes and decreasing their capacity.  

The coefficient for the log household density is negative as well, though the coefficient was 

postulated to have been positive. According to the results, more households in an area mean less 

damage. This may be due to problems inherent in the sewer system where much of the claims are 

clustered. These areas may not be as dense as other areas where fewer problems are observed. 
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Also, areas with higher population densities may be tapped into a system with more capacity and 

more of a maintenance priority, which may suggest some endogeneity with CCTVYN. 

The coefficient for the CCTVYN variable is negative. Since this variable is a binary variable, the 

results suggest that when a pipe was viewed via CCTV before the date of loss, the damage is less 

than if it were not viewed beforehand. Obviously, the act of viewing the pipe does not prevent 

the damage but the results imply that subsequent maintenance actions were taken in places where 

pipes were viewed before the date of loss. Given that the data are backup claims, the backups 

still occurred after these measures were conducted but the damage was lessened as a result of the 

presumed maintenance actions.  

The coefficient for the log square feet (lnsqftlot) of the parcel was positive while the value per 

parcel square feet (valsqft) coefficient was negative. The log parcel value was not a significant 

variable on its own. These results suggest that larger parcels received larger amounts of claim 

damage but parcel value had a very slight negative effect on claim amounts. Damages could be 

mitigated by prioritizing maintenance for sewer pipes that are connected to large parcels and 

presumably large buildings, especially in areas with lower household densities. The same 

counteractive effect can be seen with the lnsqftlot and valsqft variables as their correlation is -

0.52. 

The spatial lag model appears to have reduced the spatial autocorrelation in the dependent 

variable according to the p-value of the likelihood ratio test value (0.01683). While this value 

still suggests that slight spatial autocorrelation is present in the dependent variable, it has been 

significantly reduced from the uncorrected (OLS) state. The p-value of the result of the Lagrange 
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Multiplier test on the residual autocorrelation (0.74624) suggests that spatial autocorrelation of 

the residuals was removed with the spatial lag specification.  

Rare Events Logistic Regression Results - The December 2006 Storm6 

The three storms mentioned in Chapter 2 were analyzed in a logit model but the logit results of 

the December 14, 2006 storm will serve as the example for the purposes of brevity. However, it 

is worthy of note that the logit model in the December 3rd, 2007 storm had a pseudo-R squared 

value of 0.9351. While the results are not adjusted for the true population of sewer backups, this 

result (as well as the other logit results) was encouraging given the goodness-of-fit of the best-

fitting OLS model that is displayed in this section.  

All of the variables were placed in a logit model to eliminate insignificant variables so the 

remaining significant variables can be used in the rare events logistic regression model. The 

results of the first run of the logit model are displayed in Table 8. The peak five minute rainfall 

variable did not allow for an output in the December 14th, 2006 storm due to a lack of variance. 

The previous three days of rainfall was equal to the previous two days of rainfall since no rain 

was recorded on December 11th, 2006, so the variable for the previous three days of rainfall was 

omitted by Stata due to multicollinearity between the previous two and three day rainfall 

variables.   

                                                           
6 88 sample parcel observations were omitted by Stata due to no values in the age variable. The 

other two storms had no observations removed as the age variable was not significant in the 

results of either model and the other variables were not missing any values. 
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The coefficients for 10 minute rainfall and soil saturation are negative while the rest of the 

rainfall variables are positive. This is not meant to be interpreted as 10-minute rainfall and soil 

saturation having a negative effect on whether or not a backup occurs. Instead, it means that 

there exists non-linearity within the various rainfall durations. This can be explained because the 

RL2 and the N15 variables are correlated with the SSAT variable since the combination of the 

two former variables are used to derive the latter 

Variables Description 
Robust 

Coefficient Std. Err. z P>z 
[95% 
Conf. Interval] 

RPK10MIN_121406 
Peak 10 

minute rainfall 
-123.6878 58.87154 -2.100 0.036 -239.0739 -8.3016 

RPEAKHR_121406 
Peak hour of 

rainfall 
50.26696 17.79439 2.820 0.005 15.39059 85.1433 

RPEAK3HR_121406 
Peak 3 hour 

rainfall 
36.05604 3.576258 10.08 0.000 29.0467 43.0653 

RL2_121406 
Previous 2 

days rainfall 
18.97426 9.976632 1.900 0.057 -0.579577 38.5281 

N15_121406 
Rainfall 4 to 

18 days 
before event 

57.38016 13.94567 4.110 0.000 30.04715 84.7131 

SSAT_121406 Soil saturation  -526.9178 158.5381 -3.320 0.001 -837.6467 -216.18 

GRIDCODE 
Restaurant 

density 
0.0114485 0.004497 2.550 0.011 0.0026354 0.02026 

ln07TOTVAL 
Log 2007 

parcel value 
-0.826698 0.141362 -5.850 0.000 -1.103762 -0.5496 

lnHHSQMI 
Log 

households 
per sq. mile 

-1.473217 0.298763 -4.930 0.000 -2.058781 -0.8876 

AGE Pipe age  -0.035070 0.005441 -6.450 0.000 -0.045734 -0.0244 

ELEV Pipe elevation -0.014588 0.002884 -5.060 0.000 -0.020241 -0.0089 

PROBCOMD 
Combined 

flow dummy 
variable 

3.774504 0.560863 6.730 0.000 2.675233 4.87377 

Constant Intercept -35.03142 6.032621 -5.810 0.000 -46.85514 -23.207 

Number of obs   = 3553          Wald chi2(12)   =     201.14             Prob > chi2     =     0.0000 

Log pseudolikelihood = -184.02315                 Pseudo R2  =  0.6994 

 Table 8: Best-fitting logit model for the December 14th, 2006 storm 
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In the same way, the 10 minute peak rainfall is correlated with the one and three hour rainfall 

since the 10 minute peak rainfall occurred within the peak one hour rainfall and the one hour 

peak rainfall occurred within the three hour peak rainfall. When the coefficients are multiplied 

by the variables for the probability calculation, the rainfall has a net positive effect on the 

probability of a sewer backup occurring. The use of many different rainfall variables is 

warranted since they are all significant and hence contribute to the explanation of why backups 

occur.  

The remaining variables in the last logit model run were placed into a rare events logistic 

regression model using both the prior and weighted correction specifications. For the May 2006 

and December 2007 storm, the τ was too low for the weighted correction model, so a higher 

value was placed in the model until results were achieved. However, due to the imposed inflation 

of the tau value for the May 2006 and December 2007 storms, only the prior correction model 

results will be examined.  

The final run of the logit model for the December 2006 storm (Table 8) had a pseudo R-squared 

value of 0.6994 and 12 statistically significant variables remained. The variables were placed in a 

relogit model with the prior correction specification and insignificant variables were removed 

after each output until no insignificant variables remained (variables with a p-value >= 0.1). The 

same process was completed in a rare events logistic regression model with the weighted 

correction specification. The final results of the model using the weighted correction 

specification are displayed in Appendix A, Table A. The model results with the prior correction 

specification applied are displayed in Table 9.  
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Variables Description 
Robust 

Coefficient Std. Err. z P>z 
[95% 
Conf. Interval] 

RPEAKHR_121406 
Peak 1 hour 

rainfall 
11.32741 3.1177 3.63 0.000 5.21668 17.4381 

RPEAK3HR_121406 
Peak 3 hour 

rainfall 
34.54804 3.7414 9.23 0.000 27.2150 41.8811 

N15_121406 
Rainfall 4 to 18 

days before event 
36.83012 4.5139 8.16 0.000 27.983 45.6772 

ln07TOTVAL 
Log 2007 parcel 

value 
-0.86731 0.1469 -5.9 0.000 -1.1552 -0.5793 

lnHHSQMI 
Log households 
per square mile 

-1.34926 0.2530 -5.33 0.000 -1.8451 -0.8533 

SSAT_1214 Soil saturation -349.625 43.128 -8.11 0.000 -434.15 -265.09 

AGE Pipe age -0.03431 0.0052 -6.58 0.000 -0.0445 -0.0241 

ELEV Pipe elevation -0.01381 0.0032 -4.29 0.000 -0.0201 -0.0075 

PROBCOMD 
Combined flow 
dummy variable 

3.593501 0.7132 5.04 0.000 2.19564 4.99136 

Constant Intercept -27.158 4.9085 -5.53 0.000 -36.778 -17.537 

Number of observations: 3553 

Table 9: Results from rare events logistic regression using December 14th, 2006 storm data and 

the prior correction specification                                                                                                                                                                                                                                                                                                                                                                                           

 

It was decided that the prior correction will be the preferred specification for this project since 

the prior correction is the only valid specification for models for other two storms and the true τ 

is known. When the researcher is confident of the functional form and explanatory variables, 

prior correction is called for; otherwise, our corrected version of weighting with rare event 

corrections would seem preferable (King and Zeng, 2001). Since the logit models fit well even 

before being adjusted for the τ level, it can be said that confidence can be placed in the functional 

form and the explanatory variables used in this thesis. Also, weighting is asymptotically less 
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efficient than prior correction, an effect that can be seen in small samples, though the differences 

are not large (King and Zeng, 2001). 

Variable PEAKHR PEAK3HR N15 
ln07 

TOTVAL lnHH SSAT AGE ELEV 
PROB 
COMD 

PEAKHR 1.000 
        

PEAK3HR 0.963 1.000 
       

N15 -0.581 -0.633 1.000 
      

ln07TOTVAL 0.139 0.142 -0.082 1.000 
     

lnHH 0.057 0.053 -0.03 0.123 1.000 
    

SSAT -0.286 -0.356 0.905 -0.102 -0.152 1.000 
   

AGE 0.269 0.282 -0.21 0.065 0.301 -0.253 1.000 
  

ELEV -0.162 -0.18 0.213 -0.254 0.139 0.195 0.021 1.000 
 

PROBCOMD 0.227 0.247 -0.165 0.099 0.132 -0.168 0.386 -0.125 1.000 

Table 10: Correlation matrix for December 2006 storm results 

The claims and the peak three hour rainfall amounts for this storm are displayed in Figure 7. 

Most of the claims seem to lie within the areas where the peak three hour rainfall amounts were 

above 0.8 inches. This subset of claims has two large clusters and two smaller ones; the rest are 

dispersed in the areas elsewhere within the heavy bands of rainfall.  

There were four rainfall variables that were significant in the prior correction results: peak one 

hour, peak three hour, previous 4 to 18 days of rainfall and soil saturation. The coefficients for 

the first three were positive while the soil saturation’s coefficient was negative. As seen in the 

spatial econometric model and the logit model results, the variable that is part of the soil 

saturation equation (Equation 2) and the soil saturation variable itself appear to be counteracting 

one another.  

Table 10 shows high correlation (0.905) between the soil saturation variable (SSAT) and the 

previous four to eighteen day rainfall (N15). This suggests that the other variable (L3) that  
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Figure 7: Claims and peak three hour rainfall amounts from the December 14th, 2006 Storm 
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makes up the soil saturation variable has influence on soil saturation.  The 10 minute rainfall 

variable was no longer significant when the rare events specification was applied.  

The log parcel value and log household density coefficients were negative and such results were 

opposite of was postulated.  An explanation for the negative sign of the parcel value is the 

presence of endogeneity in the model where the parcel value and the error term are correlated. 

As for the sign of the household density, endogeneity could apply to this situation as well. In this 

case, endogeneity manifests itself by suggesting that lower levels of population density predict 

higher probabilities of sewer backups when these areas were more likely to have been 

disproportionately affected by the rain storm. 

The coefficients for pipe age and elevation were negative and were also very low numbers. As 

for age, it may be the case that backups occurred in areas where the infrastructure is younger 

than many of the sample pipes. Backups can occur in pipes of many different ages and the slight 

negative coefficient can be a function of the uneven amounts of rainfall that fell in the city. The 

sign of the pipe elevation coefficient was expected, though the effect was not large. The 

combined flow dummy variable coefficient was positive and this result was expected. The 

significance conveys that the heavy rainfall amounts added to the sanitary flow in the combined 

flow sewer pipes increases the probability of backups.  

Spatial effects in the December 2006 claims and the sample parcels were tested for using 

Moran’s I in ArcGIS. The results are in Figure C in Appendix D. The Moran’s I test reveals no 

significant spatial clustering with a test value of -0.000986 and a p-value of 0.14049. Since the 

December 2006 storm contains the most amount of claims and visibly has the highest amount of 

clustering in the claims, the other results from the other two storms can be considered absolved 
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of significant levels of spatial autocorrelation due to the use of the same random stratified sample 

of parcels.  

December 2006 Model Interpretation: First Differences and Rate Ratios 

First difference values were calculated for the significant variables from the December 2006 

storm that would conceivably vary with an event or could be reasonably altered for the purposes 

of sewer backup damage claim mitigation. The only variables that applied to these criteria were 

the peak one hour, peak three hour, previous four to eighteen day rainfall and soil saturation. The 

first difference values are changes in the probability of a backup occurring given the application 

of the percentage increases or decreases away from the mean and that all the other significant 

variables from the rare events logistic regression results remain constant. These variables are 

recorded in Table 11. 

Changes in the one hour rainfall level in either direction never registered above 0.000005 in 

absolute change. Increases in the three hour rainfall amounts produced higher amounts of 

probability changes than the decreases applied. There were significant increases in sewer backup 

probability with the applied increases in previous four to eighteen day rainfall. A 30% increase in 

the mean previous four to eighteen day rainfall increases the probability of a backup by 66.2%! 

Soil saturation was the only variable with a negative coefficient and positive changes were 

ineffective in influencing backup probabilities while negative changes increased the probability 

of a backup occurring, especially at the 30% decrease.  

The total probability changes were dominated by the probability change of the most influential 

variables. All variable changes suggested that there was a higher probability of a backup 

occurring. The 30% increases and decreases brought about significant positive changes in sewer 
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backup probability. The risk ratios, shown in Table 12, demonstrate how significant those 

changes in probability are. Since these changes are applied to all of the variables at once, each 

risk ratio is the effect of the variable’s change and the total effects are the combinations of those 

ratios.  

Variable 
Mean 
Value 

10% 
increase 

20% 
increase 

30% 
increase 

10% 
decrease 

20% 
decrease 

30% 
decrease 

Peak 1 

hour 

rainfall 

0.54183 0.00000 0.00000 0.00001 -0.00000 -0.00000 -0.00000 

Peak 3 

hour 

rainfall 

0.86922 0.00002 0.00042 0.00821 -0.00000 -0.00000 -0.00000 

Prev. 4-18 

day rainfall 
1.30552 0.00013 0.01558 0.66168 -0.00000 -0.00000 -0.00000 

Soil 

saturation 
0.12781  -0.00000 -0.00000 -0.00000 0.00009 0.00761 0.42532 

Values with all zeros are less than +/- 0.000005 depending upon the values’ sign 

Table 11: First differences of rainfall variables’ change in probability depending upon the 

percentage changes away from mean values 

 

The probability increases in the percentage changes for the peak rainfall variables are small but 

the rate ratios imply that the a 30% increase in the mean value of the peak one hour rainfall 

makes the occurrence for a backup over six times more likely than a peak one hour rainfall 

amount and a 30% increase in the mean value of the peak three hour value makes the probability 

of a backup 8000 times more likely on its own. This implies that a uniform storm (similar to 

December 2007) but with higher peaks may produce more backups than the city is accustomed 

to.  
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Variable 
10% 

increase 
20% 

increase 
30% 

increase 
10% 

decrease 
20% 

decrease 
30% 

decrease 

Peak 1 hour 
rainfall 

1.85996 3.41220 6.18657 0.53862 0.29837 0.15744 

Peak 3 hour 
rainfall 

20.39637 410.00 8000.00 0.05044 0.00251 0.00012 

Prev. 4-18 day 
rainfall 

130.00 14000.00 580000.00 0.00806 0.00007 0.00000 

Soil saturation 0.01124 0.00014 0.00001 88.59306 7200.00 380000.00 

Values with all zeros are less than +/- 0.000005  

Table 12: Risk ratios of rainfall variables (change in variable percentage to mean variable value) 

Given the results of the first difference and risk ratios for the two peak rainfall variables, large 

risk ratios can be expected for the two soil saturation variables due to their much higher first 

difference values. A 30% increase in the previous four to eighteen day rainfall amount makes a 

backup 580,000 times more likely than the mean amount. A 30% decrease in soil saturation 

makes a backup 380,000 times more likely. Given the differences in first difference values and 

risk ratios, it is clear that the two soil saturation variables analyzed here counteract one another. 

It would be even clearer if the previous three day rainfall were significant.  

 As with the ESBD calculations, looking at relative probabilities is more helpful in determining 

where the risks are. Risk ratios allow for the analysis of the sensitivity of the coefficients. The 

coefficients on their own convey little more than their effect on probability, whether that be 

positive or negative. Examining how the probabilities change as a result of marginal changes in 

the variables better informs how the rainfall variables affected the occurrence of backups within 

a given storm. It is clear that, regarding the December 2006 storm, average levels of rainfall did 

not produce the amount of backups that the higher levels of rainfall did. This reinforces what was 

seen in the model results and in Figure 7.  

Model Validation - Predicted Backups for December 2006 Storm 
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The values of the probability raster (displayed in Figure 8) were transferred to every parcel in the 

Seattle Parcel layer and those probabilities were summed to predict the amount of backups 

conditional on the December 2006 storm occurrence. The predicted amount of backups is 75, 

barely more than half of the actual backups (147). The four rainfall variables (one hour peak 

rainfall, three hour peak rainfall, previous four to eighteen day rainfall and soil saturation) were 

increased and decreased by 5% and 10% and the probabilities given those changes (and holding 

all other significant variables constant.  

A 5% and 10% increase in the rainfall variables summed to 592 and 3002 backups, respectively. 

A 5% and 10% decrease in the rainfall variables summed to 8 backups and 1 backup, 

respectively. These results suggest that there is a fine line between a few backups and thousands 

of backups. Considering the fact that the totals estimated from the increases in rainfall variables 

have not been seen while the totals from the decreases are common, it is reasonable to be 

skeptical of the former though the results of Salathe et al. (2010) and Zhu (2012) suggest rainfall 

intensity increases from the December 2006 rainfall variables are possible. 

Other model validation measures were attempted and they include shifting the peak rainfall and 

soil saturation amounts to different parts of the city and using the December 2007 rainfall 

variable results but the results of these model validations were not viable. The results suggest 

that the Stata results for one storm cannot be transferred to another storm but the results of each 

storm produce conditional probabilities for that storm and the accumulation of storm analysis 

should be combined via model averaging. As models from claim-producing storms increase, 

model averaging should reveal what parts of the city experience sewer backups and what parts of 

the city file claims for sewer backup damage. 
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Expected Damage Results and Maps 

As stated in the Methods section, the coefficients of the rare events logistic regression model (in 

Table 9) and the spatial lag model (in Table 6) were multiplied by the relevant variables 

associated with the non-claim parcels in the rare events results from the 2006 storm to derive a 

probability and damage amount, respectively. The probabilities and the damage amounts for each 

parcel were multiplied together to get an expected sewer backup damage (ESBD) amount.  

The citywide probability, damage and ESBD amount IDW rasters are displayed on maps in 

Figures 8, 9 and 10, respectively. While the significant variables can be used as reference for 

newer storms that can be analyzed, the rainfall variables are characteristic of the storm that 

happened and the many of the non-rainfall variables are static or cannot be altered for the 

purposes of lowering backup probability.  

Figure 8 shows the predicted probabilities that were calculated using the variables attached to the 

parcels and the coefficients in Table 9 using Equation 19. The two areas with the highest 

probabilities correspond with the clusters of backups shown in Figure 7. Probabilities of backups 

at the lower end of the spectrum never reached zero though they had as many as eleven zeroes to 

the right of the decimal point.  

The significant variable coefficients from the results of the spatial econometric model with the 

spatial lag specification (Table 6) and the variables from the sample parcels were used to 

calculate potential damage using Equation 19. Figure 9 shows the potential damage extrapolated 

over the entire city of Seattle. The amounts are called potential damage because the amount 

reflects the amount of predicted damage that would occur given the occurrence of a backup and 

corresponding paid claims. The ESBD raster was used to compute the values on every single 
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Figure 8: Sewer backup probability raster using the December 2006 rare events logistic 

regression model results 
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Figure 9: Potential backup damage raster using the spatial lag model results  
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Figure 10: Expected Sewer Backup Damage raster map using results from the December 2006 

rare events logistic regression model and the spatial lag model 
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parcel in the Seattle parcels layer. The total calculated amount of expected damage using this 

method was $6,378. In Table 2, the mean claim amount is $16,519. Given the highest potential 

damage amount in Figure 9, $17,512, along with the fact that the average paid claim amount for 

the December 2006 storm was $26,660, the damage results seem to underestimate high amounts 

of damage. This may mean that high levels of damage are difficult to predict. It may also mean 

that large storms produce a lot of damage and the amounts of damage from many of the 

individual claims resulting from the large storm are above the mean.  

Another explanation of the low amounts of predicted damage may have to do with the resolution 

of the rainfall data used in the spatial econometric model. From a goodness-of-fit perspective, the 

rare events logistic regression model better explains the probability of a sewer backup occurring 

on a parcel than the spatial econometric model explains the variance of damage claim amounts 

resulting from sewer backups. Recalling what was explained in the methods section about the 

level of data collection, the results reinforce that the level of detail in peak rainfall data is the 

difference between the two models. 
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Chapter 5: Implications and Conclusion 

Future Storms and Storm Damage Expectations 

Another element that the asset managers of Seattle’s sewer system may face is planning for the 

probability of a claim producing storm or multiple storms in a given year. Granted, claims are 

produced in every year of the sewer backup claim dataset but the storms that produce large 

amounts of claims may not occur every year yet they pose the largest costs when they occur. A 

study on the changing frequency of claim-producing storms given the assumed effects of global 

climate change may be necessary to obtain the best assessment of risk for planning and 

preventative maintenance.  

The probability and damage models provide expected sewer backup damage provided that the 

storm occurs. Examining the historical distribution of heavy rainfall will reveal areas that are 

geographically-prone to conditions where sewer backups occur. The landscape of Seattle clearly 

is clearly dynamic with the lowest areas lying at sea level and the highest areas lie 500 feet above 

sea level. The highest backup occurred due to a pipe at an elevation of 466.95 feet. 

Another important element of measuring expected sewer backup damage is the knowledge of 

storm frequencies. Finding the likelihood of a storm in a given year may be just as important as 

determining where the risks of potential sewer backup claims. Part of this risk may include 

accounting for the risk of multiple claim-producing storms of the same magnitude or storms of 

different magnitude.  

The equation for estimating the expected sewer backup claim damage in a year t is conditional 

on the amount and severity of claim damage. This equation is derived from the law of total 
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expectations (David, 2008) for a set of various sized storms 𝑆 = ∑ 𝑆𝑛
𝑗=0 𝑗

 (where j is a bin that 

represents an interval of a certain storm magnitude or storm return period i.e. 100 year storms, 50 

year storms, etc.) that can occur in a given year and for expected sewer backup claim damage in 

a given year is 𝐸𝑆𝐵𝐷𝑡 (∑ 𝐸𝑆𝐵𝐷𝑖
𝑛
𝑖=1 =  ∑ 𝑝𝑖𝐷𝑖

𝑛
𝑖=1 ) resulting from the claims i paid produced by 

all the storms and is written in Equation 23:  

(23)                                 𝐸(𝐸𝑆𝐵𝐷𝑡) =  ∑ 𝐸(𝐸𝑆𝐵𝐷|𝑆𝑗)𝑃(𝑆𝑗)𝑗   

Given the recommendations of Salathé Jr. et al. (2010) and Rosenberg et al. (2010), the 

probabilities of various-sized claim-producing storms occurring need to be recalculated. A 

logical next step for accounting for the true risk of backup claims in a given year is to determine 

a probability density function for storm return periods or rainfall intensity. This will allow for a 

better estimate of the set of storms that make up the set of possible storms (∑ 𝑆𝑗)𝑗 . When the set 

of storms is defined in discrete form, as opposed to the continuous form (which is the true 

definition of the probabilistic nature for how storms actually occur), it does diminish the 

probability for multiple storms of the same size occurring.  

An accurate estimate of the preventative mitigation needed for the expected damage from a 

storm of a magnitude level j can cover the expected damage from an infinite amount of storms 

(though the maximum number of mutually exclusive storms that can occur in a given year is 

finite) at the same magnitude level of j by using the Taylor series expansion (Shynk, 2012):   

(24)                                            ∑ ∑ 𝑠𝑗
𝑛∞

𝑛=𝑚𝑗 =  ∑
𝑠𝑗

𝑚

1−𝑠𝑗
𝑗   
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where m is the number of occurrences of a storm and is equal or greater than 1 since no sewer 

backup damage is expected if zero storms occur. Since one storm is the lower bound of storm 

amounts to consider, the true total expectations equation is given in Equation 25: 

(25)                               𝐸(𝐸𝑆𝐵𝐷𝑡) =  ∑ 𝐸(𝐸𝑆𝐵𝐷|𝑆𝑗)𝑃(∑
𝑠𝑗

1−𝑠𝑗
𝑗 )𝑗   

This would allow potential storms to be placed into bins of various magnitudes and allow for 

possibility that more than one of the storms within those bins will occur. Having a well-estimated 

probability density function would help risk managers accurately assess the probabilities of 

storm return periods and rainfall intensities at various levels and combine with the estimates of 

𝐸𝑆𝐵𝐷 to get the best estimate of 𝐸(𝐸𝑆𝐵𝐷𝑡) given the level of information available.  

Regional Models and Further Storm Analysis 

The probability model is limited in extrapolating the results of one storm to another storm. 

Though future storms may fit the archetype of one of the three storms used in this project, claims 

resulting from the storm must be in the dataset along with parcels that did not submit a backup 

claim. The December 2010 storm was not analyzed using the probability model because the 

storm only produced 23 claims. That storm has similar rainfall patterns to the December 3rd, 

2007 storm with 24 hour rainfall amounts ranging between 3 and 4 inches in 2010 compared to 

4.2 to 5.2 inches in a 24 hour period in 2007. This storm was the fourth largest storm from a 

claim-producing standpoint and could be added to the expected sewer backup damage analysis 

provided that the τ level is high enough to be used in the rare events logistic regression model 

specification.  
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The models used in this thesis are models that take into account backups that occurred within 

Seattle. Given the amount of claims that the three most severe storms produced and the levels of 

clustering where these backups occurred, the models could single out backups and events that 

occurred in a particular space and/or a particular time. A regional damage model could analyze 

claims that occurred within a given neighborhood or other type of sub-region of the city. That 

model would analyze specific aspects of the system and would allow for examination of the 

causes in places where claims seem to occur often or a lot of claims occurred all at once. There 

may be some issues with multicollinearity due to the nature of the homogeneity of neighborhood 

sections of the sewer system and populations but not all aspects are homogenous. There may be 

potential for certain sewer system variables to aid in the explaination of sewer backup 

occurrences and damage.  

A damage model could also be applied using the claims that occurred within a given storm. The 

December 2006 storm produced nearly a third of the claims in the claim dataset. Given the level 

of under-prediction of high claim amounts from the citywide damage model, this storm could 

allow for the accurate estimation of damages from future storms of this magnitude. A subset of 

all of the claim producing storms within the sewer backup dataset, including the December 2010 

storm, may be an even more accurate predictor of potential damage.  

Flood Claims 

While this study only applies these methods to sewer backup claims, there were over 200 flood 

claims in the same original database where the sewer backup claims were exported from that 

could be analyzed in the same manner. The flood claims were not analyzed in this project 

because they could not be linked with the sewer system. Given the results of this thesis, the 
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characteristics of the sewer system are largely inconsequential in explaining sewer backup 

damage. This knowledge would aid a future project in terms of measuring flood damage by 

ignoring the fact that some floods are produced by stream overflow and others by system 

overflow.  

New variables may include distance to creek, surface elevations (as opposed to pipe elevations), 

and stream flow data among others. While causes of flood damage are not quite as mysterious as 

sewer backup damage causes, using these same methods to measure flood damage and 

probability would provide some insights on the pattern of damages and what variables may 

portend flood damage claims.  

Adding to the Sewer Backup Occurrence Database 

This project is concerned with measuring probabilities and damages of sewer backups resulting 

in paid claim damage amounts and this damage are ultimately incurred by the city after the 

claims are paid out. Claims that were not awarded were presumably valid but were not awarded 

compensation due to a lack of liability on the part of the city. Beyond those claims, sewer 

backups may have caused damage in Seattle parcels but the parties eligible to make a claim may 

have elected to pay for the damages themselves or they may have made an insurance claim.  

If another study were conducted with the intent to estimate the total recorded damage of backups 

that occurred in the city, water damage cleaning company and insurance records would need to 

be sought to add to the damage model. When paid sewer backup damage claims are the only 

damage accounts in the damage model (as is the case for this study), the results provide a lower 

bound for ESBD estimates as it is known that these backups occurred at the very least and that 
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there were most likely more backups that occurred than just those in the sewer backup claim 

dataset.  

Another method of ascertaining the level that backups affect the city is by conducting a random 

stratified survey of the entire city about a certain storm soon after it occurs. The rare events 

logistic regression model could be used to compare those that reveal they had backup damage 

and those that did not. The true τ level for the number of backups would not be known but the 

rare events logistic regression specification does allow for a range of tau levels which would 

have to be projected based off of the result. This survey could also seek backup data for storms 

beyond a specific storm and that data could be devoted to strengthening the claim dataset.  

Model Limitations and Interpretations 

When this project was started, the rare events logistic regression model was not a part of the 

research design. The spatial econometric model results were intended to be used with a rainfall 

event simulation model. The data was collected and processed for the spatial econometric model 

first and the idea to integrate peak levels of rainfall at different time periods was not conceived 

until the rare events logistic regression model design was explored. Knowing what was 

discovered through the application of different levels of peak rainfall, such rainfall data would 

have been collected for the spatial econometric model as well.  

What was known during the data collection period for the spatial econometric model was that 

rainfall intensity influences whether or not backups occur and that other factors may be involved 

that could be measured in order to add to the explanation. This statement is still true but, in 

hindsight, dedicating more data collection and processing time to rainfall intensity levels would 

have certainly added to the goodness-of-fit for the model.  
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Before the rare events logistic regression model results were examined, it was assumed that, 

while rainfall intensity explains sewer backup damages, it was not known where in the mass of 

the storm was the catalyst for the sewer backup damage and the practice was to treat the storm as 

a whole and measure the rainfall as a mass rather than measure peak rainfall.  

It can be said that if faced with a problem that can be explained by complex mathematical 

methods and data needs to be collected for such an assignment, investing time appropriate to the 

level of influence one believes has anecdotal knowledge or apparent knowledge that a variable 

has on the cause of the problem would be good practice. In this case, it is apparent that, without 

heavy rainfall, sewer backups are far less likely to occur. While it was apparent that rainfall 

intensity was important, it was not apparent on what level rainfall intensity was important in 

explaining sewer backup claim damage amounts.  

While having more information about what time of day the backup occurred or when it was 

discovered may have led to the conclusion for higher resolution rainfall intensity, that 

information was not available. Given the results from the rare events logistic regression model, 

this information may aid in explaining what causes these backups. While it is known that rainfall 

intensities can explain sewer backup occurrences, having this better resolution of data could be 

used to study sewer backups by using time series data to better explain sewer backup 

occurrences and sewer backup claims.  

Spekkers et al. (2012) had similar goodness-of-fit problems and these problems add to the 

discussion of how difficult it can be to predict damage resulting from storms. They had the 

rainfall variables but did not have a lot of the other types of variables used in this project. Having 
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the combination of high-resolution rainfall density variables and other types of variables may 

better explain the damage that occurs.  

That being said, the damage model may have some useful applications on its own. The relative 

amounts of potential damage projected on the map can be used to prioritize maintenance for a 

given storm. In the same manner, the map displaying ESBD (Figure 10) may also have some 

informative aspects from a relative sense. The sewer pipes in areas with highest amounts of 

potential damage and ESBD would be prioritized for CCTV surveillance and subsequent grease 

and root treatments if deemed necessary given an exogenously determined budget constraint.  

Present Externalities and Mitigation 

The presence of externalities was mentioned in the introduction briefly and it seems that there 

are two present in the occurrence of sewer backups and sewer backup claims. There is a dual 

externality that is both positive and negative, trees, and a strictly negative externality, restaurant 

and residential grease in the system. There were direct and indirect reasons that were postulated 

to counteract one another. The direct effect (the negative portion) is the damage caused by tree 

roots that burrow into the sewer system and decrease the capacity in the system. The indirect 

effect (the positive portion) is the ability of the trees and the greenspaces to delay a portion of the 

high amounts of rain from entering the system.  

Trees have the ability to add to the cause of backups and prevent them during a large rain event. 

The results say that the positives of tree cover outweigh the negatives given the sign of the tree 

density coefficient in the spatial econometric model. Mitigating the negative externality of tree 

cover remains a task of finding the areas at the highest risk of a backup and removing the tree 

roots when found. Tree roots can be removed by a chemical process with an earth-friendly 
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application or by a physical process with a remote saw-like power tool that (temporarily) 

removes blockages in the system (Martin, 2012). These applications are relatively low cost when 

compared to an alternative of complete asset removal. Such mitigation options allow for them to 

be applied in many pipes.  

The other externality present in the sewer backup problems is the strictly negative externality of 

restaurant and residential grease. Though the restaurant density was only significant in the May 

2006 storm results (Appendix A), grease is still present in the system in places and decreases 

system capacity. Seattle Public Utilities has implemented a program called the Fats, Oils and 

Grease (F.O.G.) Disposal program (FOG, 2013). This program inspects restaurants for grease 

disposal methods and promotes awareness of destructive properties of fats, oils and greases.  

Conclusion 

The end goal of risk mitigation for a utility should be to examine and prevent damage from the 

entire suite of risks that are present within a line of business. Sewer backup damage is just one 

risk that affects a utility and its customers. This project’s purpose was to assess the risk of sewer 

backups and claim damage resulting from sewer backups using models that analyze many 

different types of factors that may explain why and how sewer backups occur in Seattle and to do 

so by analyzing the spatial patterns of backup occurrences. Econometric methods used in this 

project have not been applied before to these types of claims.  

This thesis has established the design for efficiently assessing sewer backup claim risk and that 

assessment can be expanded beyond claims with further data collection. As with any project, 

further data will always be more useful and, in this case, more storms will further aid in the 

estimation of sewer backup risk. In terms of future Pacific Northwest rainfall regimes, it is quite 
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possible that higher amounts of excess rainfall may be imposed on Seattle and the Puget Sound 

region more often than they have been in the past and present.  

Mitigating the increased risk of sewer backup damage from claim-producing storms will require 

that, with each additional storm, the level of information added to the assessment through future 

claims and the characteristics of future claim-producing storms will allow for the assessment of 

risk to keep up with the future rainfall regime, whatever that may be. 
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Appendix A: Rare Events Logistic Regression Results - The May 2006 Storm 

The results shown in Table A are the rare events logistic regression model output using the prior 

correction specification and the May 27th, 2006 rainfall variables.  The claims and the rainfall 

amounts for the peak five minute rainfall variable are displayed on Figure A. There were three 

rainfall variables, all peak amounts of rainfall at different periods of return. The sign of the 

coefficient for the five minute and three hour rainfall variables were positive while the one hour 

rainfall variable coefficient was negative, indicating non-linearity within the variables. Given the 

brevity of the storm, the peak five minute rainfall amount is contained within the peak hour 

amount which is contained within the three hour amount, it is clear why one variable is offsetting 

the other two.  

The log parcel value and the log household density coefficients were negative while the log 

population density was positive. It was presumed from the results of the December 2006 storm 

that the backups disproportionally hit areas with lower parcel values and lower household 

densities. Since there is a positive sign on the population density coefficient but a negative sign 

on the household density coefficient, it appears that this storm affected areas where there are 

high population densities within lower household densities. These areas could be characterized 

as residential areas that contain single-family homes. The sign of the parcel value coefficient 

reinforces that hypothesis since single-family homes are less valuable than multi-family 

properties and apartment buildings. 

The restaurant density coefficient was slightly positive indicating that higher restaurant densities 

translate into higher backup probabilities.  This could be a product of where the rainfall fell on  
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Figure A: Claims and peak five minute rainfall amounts from the May 27th, 2006 storm 
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Variable  Description 
Robust 
Coef. Std. Err. z P>z  

 [95% 
Conf. Interval] 

RPK5MIN_052706 
Peak 5 minute 

rainfall  
86.2289 17.0625 5.05 0.000 52.7869 119.6708 

RPEAKHR_052706 
Peak 1 hour 

rainfall  
-78.9521 19.7374 -4.00 0.000 -117.6367 -40.2675 

RPEAK3HR_052706 
Peak 3 hour 

rainfall  
44.7962 10.9443 4.09 0.000 23.3457 66.2467 

ln07TOTVAL 
2007 log parcel 

value 
-0.5022 0.1500 -3.35 0.001 -0.7962 -0.2081 

lnPPSQMI 
Log 

population/sq. 
mi. 

4.8931 1.4902 3.28 0.001 1.9724 7.8138 

lnHHSQMI 
Log 

household/sq. 
mi. 

-3.4359 1.0702 -3.21 0.001 -5.5334 -1.3384 

GRIDCODE 
Restaurant 

density 
0.0320 0.0061 5.28 0.000 0.0201 0.0439 

MNL_LENGTH Pipe length 0.0013 0.0003 4.20 0.000 0.0007 0.0019 

PROBCOMD 
Combined 

dummy flow 
variable 

1.3778 0.5989 2.30 0.021 0.2041 2.5516 

_cons Intercept -23.8209 6.3863 -3.73 0.000 -36.3377 -11.3040 

Number of observations: 3553 

Table A: Results from rare events logistic regression model using May 27th, 2006 rainfall 

variables and the prior correction specification 

 

the city since parts of the city did not receive any rainfall. Given that the coefficient is close to 

zero, the effect cannot be considered a significant factor in why sewer backups occurred. 

The pipe length coefficient is slightly above zero. A similar conclusion to the restaurant density 

could be drawn for this variable’s coefficient. The combined flow dummy variable coefficient 

was positive though not as large or as significant as the variable results for the December 2006 

storm. This may be a function of sample size since there are five times more claims used in the 

December 2006 model as there were in this model. 
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Appendix B: Rare Events Logistic Regression Results - The December 2007 Storm 

The results shown in Table B are the rare events logistic regression model output using the prior 

correction specification and the December 3rd, 2007 rainfall variables. There are three rainfall 

variables in the results of this model with two of the coefficients, the peak one hour and peak 

three hour rainfall amounts, being positive and the other, the previous two day rainfall amount, 

being negative. This establishes an apparent inevitability of non-linearity inherent in variables 

where at least one variable is counteracting the positive influence of rainfall on backup claim 

probability. The claims resulting from this storm along with the peak one hour rainfall amounts 

are displayed in Figure B.  

Variable Description 
Robust 

Coefficient 
Std. 
Err. z P>z 

 [95% 
Conf. Interval] 

RPEAKHR_1203 
Peak 1 hour 

rainfall 
121.6240 57.38 2.1 0.034 9.1613 234.087 

RPEAK3HR_1203 
Peak 3 hour 

rainfall 
-47.6812 19.89 -2.4 0.017 -86.67 -8.6933 

RL2_120307 
Previous 2 day 

rainfall 
-23.1593 2.818 -8.22 0.000 -28.69 -17.635 

MNL_LENGTH Pipe length 0.0029 0.001 19 0.000 0.0026 0.0032 

PROBSAND 
Sanitary flow 

dummy variable 
3.3551 0.976 3.44 0.001 1.4411 5.2691 

ELEV Pipe elevation 0.0045 0.002 2.56 0.011 0.0011 0.0080 

_cons Intercept 32.4356 5.351 6.06 0.000 21.949 42.9226 

Number of observations: 3542 

Table B: Results from rare events logistic regression model using December 3rd, 2007 rainfall 

variables and the prior correction specification 

 

The pipe length and pipe elevation coefficients were barely positive. These results were very 

similar to the results for the same variables in the May 2006 model results. However, instead of  
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Figure B: Claims and peak five minute rainfall amounts from the December 3rd, 2007 Storm 
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the combined flow dummy variable being significant and positive, the sanitary flow dummy 

variable is significant and positive. 

Examining Figure 1, where the various sewer system types are displayed, and Figure B, which 

displays where the claims occurred, it appears that most of the backups occurred in a sanitary 

system. These results show that some of the variables that are significant in the results of the 

three models are more descriptive of the geographic distribution of the storm and less of a 

description of where backups are likely to occur. 
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Appendix C: Weighted Correction Results 

Variables Description 
Robust 

Coefficient Std. Err. z P>z 
[95% 
Conf. Interval] 

RPEAKHR_121406 
Peak hour of 

rainfall 
16.0553 4.3921 3.66 0.000 7.4469 24.66369 

RPEAK3HR_121406 Peak 3 hour rainfall 30.3374 4.66825 6.5 0.000 21.187 39.48702 

N15_121406 
Rainfall 4 to 18 

days before event 
34.5365 4.36361 7.91 0.000 25.984 43.08906 

ln07TOTVAL 
Log 2007 parcel 

value 
-0.6844 0.10581 -6.47 0.000 -0.8917 -0.477 

lnHHSQMI 
Log households per 

square mile 
-1.2787 0.23835 -5.36 0.000 -1.7458 -0.81155 

SSAT_1214 Soil saturation -339.76 42.5202 -7.99 0.000 -423.10 -256.426 

AGE Pipe age -0.035 0.00574 -6.11 0.000 -0.0462 -0.0238 

ELEV Pipe elevation -0.0167 0.00323 -5.17 0.000 -0.0229 -0.01035 

PROBCOMD 
Combined flow 
dummy variable 

3.43629 0.67355 5.1 0.000 2.1161 4.756425 

MNL_LENGTH  Pipe length 0.00073 0.00031 2.38 0.017 0.0001 0.001341 

Constant Intercept -27.286 4.31422 -6.32 0.000 -35.747 -18.8298 

Number of observations: 3553 

Table C: Results from rare events logistic regression using December 14th, 2006 storm data with 

the weighted correction specification 

Looking at the difference in the results in Table C, the pipe length variable was retained in the 

weighted correction model but not in the prior correction model. The coefficients are slightly 

different but the common variable coefficients have the same signs and levels of significance. 

The weighted correction model estimates higher probabilities for the sample parcels and the 

differences in the coefficients allow for different estimates in expected sewer backup claim 

damage (ESBD). However, since the other two storms could not be estimated via weighted 

correction and would not be valid if the models were averaged, these results are not displayed.  
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Appendix D: Moran’s I Results For The Sample Parcels 

 

Global Moran's I Summary 

Moran's Index: -0.000968 

Expected Index: -0.000319 

Variance: 0.000000 

z-score: -1.473970 

p-value: 0.140490 

Dataset Information 

Input Feature Class: RELR_Parcels_Points 

Input Field: CLAIM_Y 
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Conceptualization: INVERSE_DISTANCE 

Distance Method: EUCLIDEAN 

Row Standardization: False 

Distance Threshold.: 2000.0 

Weights Matrix File: None 

Figure C: Moran’s I Results for the December 14th, 2006 Paid Backup Claims and the Sample 

Parcels 
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Appendix E: Spatial Lag Model Code (in R) 

#Start code 

library(RODBC) 

channel <- odbcConnectExcel("H:\\SEPOS_012413") 

SEdata <- sqlFetch(channel, "SEPOS_012413") 

odbcClose(channel) 

SEdata$lnsqftlot <- log(SEdata$sqftlot) 

SEdata$valsqft <- SEdata$lnYOLTOT/SEdata$lnsqftlot 

install.packages(“ctv”) 

library(“ctv”) 

install.views(“Spatial”) 

library(maptools) 

library(rgdal) 

library(spdep) 

loc.sp = SpatialPoints(cbind(SEdata$X,SEdata$Y)) 

SE_nbq <- knn2nb(knearneigh(loc.sp,k=15,RANN=T)) 

SEdata_nbq_w<- nb2listw(SE_nbq) 

SEdata_nbq_w 

names(SEdata) 

moran.test(SEdata$OBJECTID_1, listw=SEdata_nbq_w,alternative="two.sided") 

moran.test(SEdata$LN_AMT, listw=SEdata_nbq_w,alternative="two.sided") 

moran.plot(SEdata$LN_AMT, SEdata_nbq_w, labels=as.character(SEdata$LN_AMT), 

xlab=”Log of Claim Amount”, ylab=”Spatially-Lagged Log Claim Amounts”) 

names(SEdata) 

Alm <-lm(LN_AMT~RINT + SSAT + L3PCT + N15PCT + grid_pct + lnHH1 + CCTVYN + 

valsqft + lnsqftlot, data=SEdata) 

Alm  

summary(Alm)  
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SEdata$lmresid<-residuals(Alm) 

moran.test(SEdata$lmresid, listw=SEdata_nbq_w,alternative="two.sided") 

lm.LMtests(Alm,SEdata_nbq_w, test="all") #SARMA has lowest p-value 

install.packages(“lmtest”) 

library(lmtest) 

bptest(Alm) 

SElag<-lagsarlm(LN_AMT~RINT + SSAT + L3PCT + N15PCT + grid_pct + lnHH1 + 

CCTVYN + valsqft + lnsqftlot, data=SEdata,SEdata_nbq_w) 

SElag 

summary(SElag) 

bptest.sarlm(SElag) 

SEerr<-errorsarlm(LN_AMT~RINT + SSAT + L3PCT + N15PCT + grid_pct + lnHH1 + 

CCTVYN + valsqft + lnsqftlot, data=SEdata, SEdata_nbq_w) 

SEerr 

summary(SEerr) 

bptest.sarlm(SEerr)  

#end code 
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Appendix F: Rare Events Logistic Regression code (in Stata) 

import excel "H:\DATASET_121406.xlsx", sheet("Sheet1") firstrow 

logit Claim_Y RPK5MIN_121406 RPK10MIN_121406 RPEAKHR_121406 

RPEAK3HR_121406 RL1_121406 RL2_121406 RL3_121406 N15_121406 RINT_12140 

RSSAT_1214 grid_pct GRIDCODE ln12TOTVAL PPHH lnPPSQMI lnHHSQMI AGE DEPTH 

ELEV MNL_LENGTH MNL_WIDTH_ MNL_HEIGHT MNL_SLOPE_ CLAYD 

CONCRETED PROBSAND PROBCOMD, robust 

outcome = RPK5MIN_121406 <= .0499563 predicts data perfectly 

r(2000); 

logit Claim_Y RPK10MIN_121406 RPEAKHR_121406 RPEAK3HR_121406 RL1_121406 

RL2_121406 RL3_121406 N15_121406 RINT_12140 RSSAT_1214 grid_pct GRIDCODE 

ln12TOTVAL PPHH lnPPSQMI lnHHSQMI AGE DEPTH ELEV MNL_LENGTH 

MNL_WIDTH_ MNL_HEIGHT MNL_SLOPE_ CLAYD CONCRETED PROBSAND 

PROBCOMD, robust /* removing 5 minute variable gave readout */ 

logit Claim_Y RPK10MIN_121406 RPEAKHR_121406 RPEAK3HR_121406 RL1_121406 

RL2_121406 RL3_121406 N15_121406 RSSAT_1214 grid_pct GRIDCODE ln12TOTVAL 

lnPPSQMI lnHHSQMI AGE ELEV MNL_LENGTH MNL_HEIGHT PROBCOMD, robust  

logit Claim_Y RPK10MIN_121406 RPEAKHR_121406 RPEAK3HR_121406 RL1_121406 

RL2_121406 N15_121406 grid_pct GRIDCODE ln12TOTVAL lnHHSQMI AGE ELEV 

MNL_LENGTH MNL_HEIGHT PROBCOMD, robust 

logit Claim_Y RPEAKHR_121406 N15_121406 ln12TOTVAL lnHHSQMI AGE ELEV 

PROBCOMD, robust /* var with low p-values */ 

logit Claim_Y RPK10MIN_121406 RPEAKHR_121406 RPEAK3HR_121406 RL1_121406 

RL2_121406 N15_121406 GRIDCODE N15_121406 ln12TOTVAL lnHHSQMI AGE ELEV 

MNL_HEIGHT MNL_LENGTH PROBCOMD, robust 

logit Claim_Y RPK10MIN_121406 RPEAKHR_121406 RPEAK3HR_121406 RL1_121406 

RL2_121406 N15_121406 GRIDCODE ln12TOTVAL lnHHSQMI AGE ELEV 

MNL_WIDTH_ MNL_LENGTH PROBCOMD, robust 

logit Claim_Y RPK10MIN_121406 RPEAKHR_121406 RPEAK3HR_121406 RL1_121406 

RL2_121406 N15_121406 GRIDCODE ln12TOTVAL lnHHSQMI AGE ELEV PROBCOMD 

CLAYD CONCRETED , robust 
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logit Claim_Y RPK10MIN_121406 RPEAKHR_121406 RPEAK3HR_121406 RL1_121406 

RL2_121406 N15_121406 GRIDCODE ln12TOTVAL lnHHSQMI AGE ELEV PROBCOMD 

CLAYD CONCRETED RPK5MIN_121406 , robust 

logit Claim_Y RPK10MIN_121406 RPEAKHR_121406 RPEAK3HR_121406 RL2_121406 

N15_121406 SSAT_121406 GRIDCODE ln12TOTVAL lnHHSQMI AGE ELEV 

PROBCOMD, robust 

relogit Claim_Y RPK10MIN_121406 RPEAKHR_121406 RPEAK3HR_121406 RL1_121406 

RL2_121406 N15_121406 GRIDCODE ln12TOTVAL lnHHSQMI AGE ELEV PROBCOMD 

grid_pct MNL_WIDTH_ MNL_LENGTH, wc(0.00083) 

relogit Claim_Y RPEAKHR_121406 RPEAK3HR_121406 RL1_121406 RL2_121406 

N15_121406 GRIDCODE ln12TOTVAL lnHHSQMI AGE ELEV PROBCOMD grid_pct 

MNL_WIDTH_ MNL_LENGTH, wc(0.00083) 

relogit Claim_Y RPEAKHR_121406 RPEAK3HR_121406 N15_121406 GRIDCODE 

ln12TOTVAL lnHHSQMI AGE ELEV PROBCOMD grid_pct MNL_WIDTH_ 

MNL_LENGTH, wc(0.00083) 

relogit Claim_Y RPK10MIN_121406 RPEAKHR_121406 RPEAK3HR_121406 N15_121406 

GRIDCODE ln12TOTVAL lnHHSQMI AGE ELEV PROBCOMD grid_pct MNL_WIDTH_ 

MNL_LENGTH, wc(0.00083) 

relogit Claim_Y RPK10MIN_121406 RPEAKHR_121406 RPEAK3HR_121406 N15_121406 

GRIDCODE ln12TOTVAL lnHHSQMI AGE ELEV PROBCOMD grid_pct MNL_WIDTH_ 

MNL_LENGTH, wc(0.00083) 

relogit Claim_Y PCT10MIN PCT1HR RPK10MIN_121406 RPEAKHR_121406 

RPEAK3HR_121406 N15_121406 GRIDCODE ln12TOTVAL lnHHSQMI AGE ELEV 

PROBCOMD grid_pct MNL_WIDTH_ MNL_LENGTH, wc(0.00083) 

relogit Claim_Y PCT10MIN PCT1HR RPEAK3HR_121406 N15_121406 GRIDCODE 

ln12TOTVAL lnHHSQMI AGE ELEV PROBCOMD grid_pct MNL_WIDTH_ 

MNL_LENGTH, wc(0.00083) 

relogit Claim_Y RPEAKHR_121406 RPEAK3HR_121406 RSSAT_1214 RL3_121406 

N15_121406 GRIDCODE ln12TOTVAL lnHHSQMI AGE ELEV PROBCOMD grid_pct 

MNL_WIDTH_ MNL_LENGTH, wc(0.00083) 

relogit Claim_Y RPEAKHR_121406 RPEAK3HR_121406 RSSAT_1214 N15_121406 

GRIDCODE ln12TOTVAL lnHHSQMI AGE ELEV PROBCOMD grid_pct MNL_WIDTH_ 

MNL_LENGTH, wc(0.00083) 
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relogit Claim_Y RPEAKHR_121406 RPEAK3HR_121406 RSSAT_1214 N15_121406 

GRIDCODE ln12TOTVAL lnHHSQMI AGE ELEV PROBCOMD MNL_WIDTH_ 

MNL_LENGTH, wc(0.00083) 

relogit Claim_Y RPEAKHR_121406 RPEAK3HR_121406 RL3_121406 N15_121406 

GRIDCODE ln12TOTVAL lnHHSQMI AGE ELEV PROBCOMD MNL_WIDTH_ 

MNL_LENGTH,  wc(0.00083) 

relogit Claim_Y RPEAKHR_121406 RPEAK3HR_121406 RL3_121406 N15_121406 

ln12TOTVAL lnHHSQMI AGE ELEV PROBCOMD MNL_WIDTH_ MNL_LENGTH,  

wc(0.00083) 

relogit Claim_Y RPK10MIN_121406 RPEAKHR_121406 RPEAK3HR_121406 N15_121406 

GRIDCODE ln12TOTVAL lnHHSQMI AGE ELEV PROBCOMD MNL_WIDTH_ 

MNL_LENGTH, wc(0.00083) /* preferred relogit model for 121406 */ 

relogit Claim_Y RPK10MIN_121406 RPEAKHR_121406 RPEAK3HR_121406 N15_121406 

GRIDCODE ln08TOTVAL lnHHSQMI AGE ELEV PROBCOMD MNL_WIDTH_ 

MNL_LENGTH, wc(0.00083) /* preferred relogit model for 121406 */ 

relogit Claim_Y RPEAKHR_121406 RPEAK3HR_121406 N15_121406 ln08TOTVAL 

lnHHSQMI SSAT_1214 AGE ELEV PROBCOMD MNL_LENGTH, wc(0.00083) 

relogit Claim_Y RPEAKHR_121406 RPEAK3HR_121406 N15_121406 ln07TOTVAL 

lnHHSQMI SSAT_1214 AGE ELEV PROBCOMD MNL_LENGTH, wc(0.00083) 

relogit Claim_Y RPEAKHR_121406 RPEAK3HR_121406 N15_121406 ln07TOTVAL 

lnHHSQMI SSAT_1214 AGE ELEV PROBCOMD MNL_LENGTH, pc(0.00083) 

relogit Claim_Y RPEAKHR_121406 RPEAK3HR_121406 N15_121406 ln07TOTVAL 

lnHHSQMI SSAT_1214 AGE ELEV PROBCOMD, pc(0.00083) 

setx (RPEAKHR_121406 RPEAK3HR_121406 N15_121406 ln07TOTVAL lnHHSQMI 

SSAT_1214 AGE ELEV PROBCOMD) mean 

setx 

relogitq, fd(pr) changex(RPEAKHR_121406 .5418274 .59601014 & RPEAK3HR_121406 

.8692247 .95614717 & N15_121406 1.305519 1.43607 & SSAT_1214 .1278081 .140589) 

/* 10% increase in all rainfall variables */ 

relogitq, fd(pr) changex(RPEAKHR_121406 .5418274 .65019 & RPEAK3HR_121406 .8692247 

1.04307 & N15_121406 1.305519 1.56662 & SSAT_1214 .1278081 .15337) 

/* 20% increase in all rainfall variables */ 
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relogitq, fd(pr) changex(RPEAKHR_121406 .5418274 .70438 & RPEAK3HR_121406 .8692247 

1.12999 & N15_121406 1.305519 1.69717 & SSAT_1214 .1278081 .16615) 

/* 30% increase in all rainfall variables */ 

relogitq, fd(pr) changex(RPEAKHR_121406 .5418274 .48764 & RPEAK3HR_121406 .8692247 

.7823 & N15_121406 1.305519 1.17497 & SSAT_1214 .1278081 .11503) 

/* 10% reduction in all rainfall variables */ 

relogitq, fd(pr) changex(RPEAKHR_121406 .5418274 .43346 & RPEAK3HR_121406 .8692247 

.69538 & N15_121406 1.305519 1.04442 & SSAT_1214 .1278081 .10225) 

/* 20% reduction in all rainfall variables */ 

relogitq, fd(pr) changex(RPEAKHR_121406 .5418274 .37928 & RPEAK3HR_121406 .8692247 

.60846 & N15_121406 1.305519 0.91386 & SSAT_1214 .1278081 .08947) 

/* 30% reduction in all rainfall variables */ 

relogitq, rr(RPEAKHR_121406 .5418274 .59601014 & RPEAK3HR_121406 .8692247 

.95614717 & N15_121406 1.305519 1.43607 & SSAT_1214 .1278081 .140589) 

/* 10% increase in all rainfall variables */ 

relogitq, rr(RPEAKHR_121406 .5418274 .65019 & RPEAK3HR_121406 .8692247 1.04307 & 

N15_121406 1.305519 1.56662 & SSAT_1214 .1278081 .15337) 

/* 20% increase in all rainfall variables */ 

relogitq, rr(RPEAKHR_121406 .5418274 .70438 & RPEAK3HR_121406 .8692247 1.12999 & 

N15_121406 1.305519 1.69717 & SSAT_1214 .1278081 .16615) 

/* 30% increase in all rainfall variables */ 

relogitq, rr(RPEAKHR_121406 .5418274 .48764 & RPEAK3HR_121406 .8692247 .7823 & 

N15_121406 1.305519 1.17497 & SSAT_1214 .1278081 .11503) 

/* 10% reduction in all rainfall variables */ 

relogitq, rr(RPEAKHR_121406 .5418274 .43346 & RPEAK3HR_121406 .8692247 .69538 & 

N15_121406 1.305519 1.04442 & SSAT_1214 .1278081 .10225) 

/* 20% reduction in all rainfall variables */ 

relogitq, rr(RPEAKHR_121406 .5418274 .37928 & RPEAK3HR_121406 .8692247 .60846 & 

N15_121406 1.305519 0.91386 & SSAT_1214 .1278081 .08947) 
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/* 30% reduction in all rainfall variables */ 

 

 

 

 


