©Copyright 2014

Meghana Rawal
Cross-Conjugated Moieties as Design Motifs for a Class of Novel Electro-Optic Chromophores

Meghana Rawal

A dissertation
submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

University of Washington
2014

Reading Committee:
Larry Dalton, Chair
Samson Jenekhe
Bruce Robinson

Program Authorized to Offer Degree:
Department of Chemistry
University of Washington

Abstract

Cross-Conjugated Moieties as Design Motifs for a Class of Novel Electro-Optic Chromophores

Meghana Rawal

Chair of the Supervisory Committee:
Professor Larry R. Dalton
Department of Chemistry

Organic electro-optic materials are at the forefront of current photonics applications that enable high speed data transmission, micro-scale sensors, and terahertz applications. Typically linearly conjugated push-pull type chromophores are the primary molecules of choice for various second and third order non-linear optical (NLO) applications. However, intra-molecular charge transfer responsible for many NLO properties can take place in molecules through other means such as \(\sigma \)-conjugation, cross-conjugation and omniconjugation as well. In Chapter 2 a study of electronic transitions, excited states and first hyperpolarizibility (\(\beta \)) of a series of molecules with a cross-conjugated bridge functionalized with a dialkylaminobenzene donor on one end and varying strength acceptors on the other end is reported. A lowered excited state dipole moment compared to the ground state dipole was indicated for an asymmetric cross-conjugated molecule with a relatively stronger acceptor confirming that the cross-conjugated bridge does in fact break the over-all molecular dipole into two constituent parts. The primary charge-transfer transition was, however still identified to occur from the donor across the cross-conjugated bridge to the acceptor. X-ray diffraction (XRD) found the molecules to be twisted significantly resulting in further isolation of the highest occupied molecular orbital (HOMO) and the lowest unoccupied
molecular orbital (LUMO). This reduced overlap of the HOMO and the LUMO in cross-conjugated systems may in fact enable independent modulation of donor and acceptor strengths while minimizing unfavorable effects on electronic transitions and dipole moments. Comparison of hyperpolarizabilities with a control molecule found that cross-conjugation did not completely diminish β.

In Chapter 3, a tricyanopyrroline (TCP) type acceptor was substituted on the cross-conjugated molecules to observe the effects of cross-conjugation on the molecular structure, the ground and excited states of the molecules and consequently β. Through XRD the cross-conjugated motif was found to be perpendicular to the conjugated TCP chromophore and the TCP acceptor was twisted out of plane from the donor despite being conjugated to the donor. Further the aromatic substituents on the cross-conjugated side group were found to interact with each other influencing crystal packing. The dihedral twist and the aromatic interactions are indicated as the cause of reduced aggregation behavior. Hyper-Raleigh scattering measurements found the compounds to have β values comparable to their fully conjugated control molecules. The β values were expected to be influenced by the cross-conjugated side groups acting as auxiliary acceptors as well as by the dihedral twist observed in these molecules resulting in larger spatial isolation between the HOMO and LUMO.

In conclusion the use of a cross-conjugated motif by itself (Chapter 2) and in conjunction with a conjugated chromophore (Chapter 3) was studied and found to be useful towards affecting aggregation, solubility and hyperpolarizability of NLO chromophores.
Table of Contents

List of Figures	iv
List of Tables	vii
List of Abbreviations	viii

Chapter 1
Introduction ... 1
1.1. Objective and Perspective: ... 1
1.2. Nonlinear Optics ... 3
1.3. Materials used for EO applications 5
1.4. Fundamentals of Optical Nonlinearity 7
1.4.1. Microscopic and Macroscopic Polarization and Electro-Optic Coefficient r_{33}: 7
1.4.2. Structure Property Relationships for Electro-Optic Effect r_{33} 10
1.4.2.1. Optimizing β: Modifying Donors, Acceptors and Bridges........ 10
1.4.2.2. Alternate strategies towards improving β: Bond Length Alternation Theory . 12
1.4.2.3. Alternate strategies towards improving β: Twisted intramolecular charge transfer (TICTOID) structures: ... 15
1.4.2.4. Optimizing Loading Parameter $(N < \cos 3\theta >)$ 17
1.5. References .. 20

Chapter 2
Study of Cross Conjugated Systems .. 26
2.1 Introduction: ... 26
2.2 Proposed Molecules and Synthesis: .. 30
2.2.1 Synthesis of cross-conjugated chromophores: 32
2.3 UV-vis Spectroscopy: ... 35
2.3.1 Cross-conjugated series: Comparison of UV-vis spectroscopy in chloroform...... 35
2.3.2 UV-Vis spectroscopy: Comparison with calculated values in chloroform:.............. 37
2.3.3 UV-vis spectroscopy in cyclohexane:.. 43
2.3.3.1 Cross-conjugated series: Comparison of λ_{max} in cyclohexane and chloroform 45
2.3.4 Cross-conjugated series: polarity study 47
2.3.5 UV-vis spectroscopy: Control molecule (C-NO2) and comparison with cross-conjugated molecule 1-NO2: ... 49
2.3.6 UV-vis spectroscopy - Summary: .. 52
3.5.3 Discussion of Theoretical Trends: ... 159
3.5.4 Discussion of experimental trends: .. 162
3.6 Conclusions to Chapter 3: .. 165
3.7 Appendix to Chapter 3 .. 168
 3.7.1 Synthesis of cross-conjugated chromophores: ... 168
 3.7.2 Nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry data: 173
 3.7.3 X-ray diffraction data: .. 180
 3.7.4 Hyper-Rayleigh scattering data: ... 184
3.8 References: .. 190
List of Figures

Figure 1.1: A list of second order non-linear effects .. 2
Figure 1.2: Simplified Schematic of a Mach-Zehnder Modulator ... 5
Figure 1.3: Structure of Disperse Red 1 (DR1) chromophore ... 8
Figure 1.4: Molecular structures of some important chromophores in electro-optics 12
Figure 1.5: (left) The molecule used to study the change in BLA with donor and acceptor strengths. (right) Example of a cyanine type molecule with two degenerate resonance structures .. 13
Figure 1.6: Dependence of β (-)μee-μgg (-), μge2 (-) and 1/ΔEge2(…) on bond length alternation ... 14
Figure 1.7: Examples of X- and λ–shaped molecules ... 16

Figure 2.1: Various cross-conjugated motifs ... 26
Figure 2.2: Tetrathiafulvalene vinylogs .. 27
Figure 2.3: Dicyanovinyl substituted 2,3-diphenyl-1,4-butanediene derivatives 28
Figure 2.4: Structures of iso-polydiacetylenes ... 29
Figure 2.5: Structure of 1,1-diphenylethenes (11 and 12) and TICTOID molecules (13) 29
Figure 2.6: Cross-Conjugated Chromophores .. 31
Figure 2.7: Synthesis of Cross-Conjugated Chromophores ... 33
Figure 2.8: Synthesis of C-NO2 ... 34
Figure 2.9: UV-vis spectra of cross-conjugated chromophores in chloroform 35
Figure 2.10: High energy peak of cross conjugated chromophores in chloroform 36
Figure 2.11: Low energy peak of cross conjugated chromophores in chloroform 37
Figure 2.12: HOMO to LUMO transition for (a) 1-Net2 and (b)1-Me 38
Figure 2.13: HOMO to LUMO transition for (a) 1-Ph and (b) 1-F 40
Figure 2.14: HOMO to LUMO transition for (a) 1-CN and (b) 1-NO2 41
Figure 2.15: HOMO-1 to LUMO transition for (a) 1-Ph and (b) 1-F 42
Figure 2.16: HOMO-1 to LUMO transition for (a) 1-CN and (b) 1-NO2 42
Figure 2.17: UV-vis spectra of cross-conjugated chromophores in cyclohexane 44
Figure 2.18: 1-Net2 Solvatochromism study ... 47
Figure 2.19: 1-Me Solvatochromism study ... 48
Figure 2.20: 1-CN Solvatochromism study ... 48
Figure 2.21: 1-NO2 Solvatochromism study ... 49
Figure 2.22: UV-vis spectra of control (C-NO2) chromophore in chloroform 49
Figure 2.23: UV-vis spectra of control (C-NO2) chromophore in chloroform (Normalized absorbance Vs Energy) .. 50
Figure 2.24: Comparison UV-vis spectra of control C-NO2 and 1-NO2 in chloroform 51
Figure 2.25: Normalized fluorescence for 1-Net2 ... 54
Figure 2.26: Normalized fluorescence for 1-Me ... 54
Figure 2.27: Solvatochromic trends of the emission spectra .. 56
Figure 2.28: Neutral and charge separated states for 1-NEt2 (top), 1-Me (bottom) .. 57
Figure 2.29: Stokes shifts trends for the cross conjugated dyes ... 58
Figure 2.30: Normalized fluorescence for 1-NO2 ... 59
Figure 2.31: Neutral and charge separated states for 1-NO2 ... 59
Figure 2.32: Normalized fluorescence for C-NO2 ... 60
Figure 2.33: Neutral and charge separated states for C-NO2 ... 61
Figure 2.34: HOMO and LUMO diagrams for C-NO2 ... 61
Figure 2.35: Cross-conjugated molecules; Possible rotational isomers .. 63
Figure 2.36: Possible twisted structure for cross conjugated molecules ... 64
Figure 2.37: Optimized geometries of cross conjugated molecules from B3LYP calculations ... 65
Figure 2.38: Optimized geometry of conjugated molecule C-NO2 from B3LYP calculations... 66
Figure 2.39: (a) ORTEP of the structure of 1-NEt2 with thermal ellipsoids at the 50% probability level. (b) Packing diagram of 1-NEt2, omitting hydrogen for clarity .. 67
Figure 2.40: (a) ORTEP of the structure of 1-Me with thermal ellipsoids at the 50% probability level. (b) Packing diagram of 1-Me ... 68
Figure 2.41: (a) ORTEP of the structure of 1-CN with thermal ellipsoids at the 50% probability level. (b) Packing diagram of 1-CN ... 69
Figure 2.42: (a) ORTEP of the structure of 1-NO2 with thermal ellipsoids at the 50% probability level. (b) Packing diagram of 1-NO2 .. 70
Figure 2.43: Scheme of disorder in the molecule 1-NO2; bonds of the minor part are shown with dashed lines ... 71
Figure 2.44: (a) ORTEP of the structure of C-NO2 with thermal ellipsoids at the 50% probability level. (b) Packing diagram of C-NO2 ... 72
Figure 2.45: Dihedral angles between phenyl groups on either side of cross-conjugation center of molecules 1-NEt2 and 1-CN ... 73
Figure 2.46: Dihedral angles between phenyl groups on either side of cross-conjugation center of molecules 1-NO2 and C-NO2 ... 74
Figure 2.47: Structures for pNA, 1-NO2 and C-NO2.. 77

Figure 3.1: (a) Synthesis of 2Na-TCP and Cl-TCP, (b) Reaction of Cl-TCP with an electron rich aromatic molecule .. 125
Figure 3.2: Synthesis of TCP acceptor and its subsequent reaction with an aromatic aldehyde 126
Figure 3.3: TCP chromophore with side groups on the conjugated backbone 128
Figure 3.4: Structures of Chromophores Synthesized and Studied .. 129
Figure 3.5: Synthesis of TCP-1 .. 130
Figure 3.6: Chlorinated TCP (Cl-TCP) .. 131
Figure 3.7: Synthesis of substituted TCP chromophores .. 131
Figure 3.8: Possible isomers of the TCP chromophores: (a) TCP group cis to the donor (b) TCP group trans to the donor ... 132
Figure 3.9: B3LYP Optimized geometries of TCP chromophores .. 135
Figure 3.10: (a) ORTEP of the structure of TCP-Me with thermal ellipsoids at the 50% probability level. (b) Packing diagram of TCP-Me ... 137
Figure 3.11: (a) ORTEP of TCP-Ph with thermal ellipsoids at the 50% probability level. Disorder omitted for clarity (b) Packing diagram of TCP-Ph... 138
Figure 3.12: (a) Side profile of the crystal structure of TCP-Me showing the dihedral twist between donor and acceptor as well as puckering of the aromatic ring. (b) Top profile of TCP-Me showing twist of the methyl ketone... 140
Figure 3.13: (a) Side profile of the crystal structure of TCP-Ph showing the dihedral twist between donor and acceptor as well as puckering of the aromatic ring. (b) Top profile of TCP-Ph showing twist of the phenylvinyl ketone... 141
Figure 3.14: UV-vis spectra of TCP chromophores in chloroform .. 144
Figure 3.15: HOMO and LUMO diagrams for TCP-1 ... 147
Figure 3.16: HOMO-2 to LUMO transition for (a) TCP-Me, (b) TCP-Ph and (c) TCP-PhF 148
Figure 3.17: UV-Vis of TCP-Me and 1-Me in Chlororform ... 149
Figure 3.18: UV-Vis of TCP-Ph and 1-Ph in Chlororform .. 150
Figure 3.19: UV-Vis of TCP-PhF and 1-F in Chlororform ... 150
Figure 3.20: HOMO to LUMO+1 transition for (a) TCP-Ph and (b) TCP-PhF 151
Figure 3.21: Polarity plot of TCP-1 chromophore ... 152
Figure 3.22: Polarity plot of TCP-Me Chromophore ... 153
Figure 3.23: UV-vis of TCP-Me in DMSO showing the two possible rotamers responsible for the two peaks ... 155
Figure 3.24: Structures of Chromophores Used in HRS Measurements .. 158
Figure 3.25: HOMO to LUMO+1 transition for (a) TCP-Ph and (b) TCP-PhF 164
List of Tables

Table 2.1: Absorbance maxima of cross-conjugated chromophores in chloroform ... 35
Table 2.2: Absorption maxima λ_{max} of chromophores in chloroform: Experimental Vs Calculated values ... 39
Table 2.3: Absorbance maxima of cross-conjugated chromophores in cyclohexane .. 44
Table 2.4: Difference in λ_{max} in chloroform and cyclohexane for the high energy peaks ... 45
Table 2.5: Difference in λ_{max} in chloroform and cyclohexane for the low energy peaks ... 46
Table 2.6: λ_{max} values in chloroform for C-NO2 and 1-NO2 51
Table 2.7: Fluorescence emission data for cross-conjugated chromophores 55
Table 2.8: Experimental and Calculated Frequency Dependent β_{HRS} values 78
Table 2.9: Experimental and Calculated β_0 values .. 79
Table 2.10: Experimental and Calculated Frequency Dependent β_{HRS}/β_{pNA} values ... 80
Table 2.11: Experimental and Calculated Static β_{HRS}/β_{pNA} values 80

Table 3.1: Absorbance maxima of TCP chromophores in chloroform 144
Table 3.2: Absorption maxima λ_{max} of chromophores in chloroform: Experimental Vs Calculated values ... 146
Table 3.3: Experimental and Calculated Frequency Dependent β_{HRS} values 161
Table 3.4: Experimental and Calculated β_0 values .. 161
Table 3.5: Experimental and Calculated Frequency Dependent β_{HRS}/β_{pNA} values ... 162
Table 3.6: Experimental and Calculated Static β_{HRS}/β_{pNA} values 163
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,2-TCE</td>
<td>1,1,2-trichloroethane</td>
</tr>
<tr>
<td>2PF</td>
<td>two photon fluorescence</td>
</tr>
<tr>
<td>APC</td>
<td>amorphous polycarbonate</td>
</tr>
<tr>
<td>B3LYP</td>
<td>a hybrid DFT functional</td>
</tr>
<tr>
<td>BCOG</td>
<td>binary chromophore organic glasses</td>
</tr>
<tr>
<td>BLA</td>
<td>bond length alternation</td>
</tr>
<tr>
<td>CAM-B3LYP</td>
<td>a range separated DFT functional</td>
</tr>
<tr>
<td>CHCl$_3$</td>
<td>chloroform</td>
</tr>
<tr>
<td>CPKS</td>
<td>coupled-perturbed Kohn-Sham</td>
</tr>
<tr>
<td>CS</td>
<td>charge separated</td>
</tr>
<tr>
<td>Cy</td>
<td>cyclohexane</td>
</tr>
<tr>
<td>DFG</td>
<td>difference frequency generation</td>
</tr>
<tr>
<td>DFT</td>
<td>density functional theory</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethylsulfoxide</td>
</tr>
<tr>
<td>DR1</td>
<td>Disperse Red 1, a chromophore with an azo bridge and nitro-benzene acceptor</td>
</tr>
<tr>
<td>EO</td>
<td>electro-optic</td>
</tr>
<tr>
<td>E_p</td>
<td>electric field poling voltage</td>
</tr>
<tr>
<td>$E_T(30)$</td>
<td>empirical solvent polarity parameter</td>
</tr>
<tr>
<td>EZ-FTC</td>
<td>chromophore with thiophene bridge and dimethyl-TCF acceptor</td>
</tr>
<tr>
<td>GC-MS</td>
<td>gas chromatography-mass spectrometry</td>
</tr>
<tr>
<td>HF</td>
<td>Hartree-Fock</td>
</tr>
<tr>
<td>HOMO</td>
<td>highest occupied molecular orbital</td>
</tr>
<tr>
<td>HRMS (ESI)</td>
<td>high-resolution mass spectrometry (electrospray ionization)</td>
</tr>
<tr>
<td>HRS</td>
<td>hyper-Rayleigh Scattering</td>
</tr>
<tr>
<td>iso-PDA</td>
<td>iso-polydiacetylenes</td>
</tr>
<tr>
<td>LUMO</td>
<td>lowest unoccupied molecular orbital</td>
</tr>
<tr>
<td>MP2</td>
<td>second-order Møller-Plesset perturbation theory</td>
</tr>
<tr>
<td>NLO</td>
<td>nonlinear optics</td>
</tr>
<tr>
<td>NMR</td>
<td>nuclear magnetic resonance</td>
</tr>
<tr>
<td>OEO</td>
<td>organic electro-optics</td>
</tr>
<tr>
<td>PCM</td>
<td>polarizable continuum method</td>
</tr>
<tr>
<td>PMMA</td>
<td>polymethyl methacrylate</td>
</tr>
<tr>
<td>pNA</td>
<td>para-nitroaniline</td>
</tr>
<tr>
<td>SHG</td>
<td>second harmonic generation</td>
</tr>
<tr>
<td>TCF</td>
<td>tricyanofuran, a strong electron accepting moiety</td>
</tr>
<tr>
<td>TCP</td>
<td>tricyanopyrroline, a strong electron accepting moiety</td>
</tr>
<tr>
<td>T_g</td>
<td>glass transition temperature</td>
</tr>
<tr>
<td>THF</td>
<td>tetrahydrofuran</td>
</tr>
<tr>
<td>TICTOID</td>
<td>twisted intramolecular charge transfer systems</td>
</tr>
</tbody>
</table>
TLM two-level model
TTF tetrathiafulvalene
XRD X-ray diffraction
YLD-124 chromophore with isophorone bridge and CF3-phenyl TCF acceptor
YLD-156 chromophore with thiophene bridge and CF3-phenyl TCF acceptor

Units
µm micrometer
Å Angstrom
D Debye
dB decibel
Gbit gigabit
GHz gigahertz
mm millimeter
nm nanometer
ns nanosecond
pm picometer
ps picosecond
THz terahertz
V volts

NMR
CDCl₃ deuterated chloroform
d doublet
dd doublet of doublets
DMSO-d₆ deuterated dimethyl sulfoxide
J coupling constant in Hz
m multiplet
MHz megahertz
s singlet
t triplet
δ chemical shift in parts per million
Acknowledgements

Foremost, I would like to thank my advisor Prof. Larry R. Dalton for supporting me and allowing me the opportunity and the freedom to work on projects that interested me. I also thank Dr. Dinesh Patel who was my first mentor in graduate school and his patient yet rigorous mentoring was essential to my conversion from a polymer engineer to an organic chemist.

During my time as a graduate student, many people guided me and sowed seeds of ideas that would later create the basis of some of my thesis work. Dr. Arumugasamy Elangovan provided me with ideas for my first projects in the Dalton lab and his synthetic guidance and confidence in me allowed me the courage to try new ideas. Dr. Bruce Eichinger’s expertise in theoretical chemistry, his ability to explain intricate quantum mechanical concepts in simple terms and his enthusiasm towards research were a great resource and an inspiration to me. Dr. Eichinger’s theoretical predictions were driving force for most of my research. Working with Prof. Bruce Robinson taught me the elegance of asking simple questions to problems with convoluted solutions. His approach to problem solving was very insightful and showed me a different way of approaching synthetic strategies.

Nathan Sylvain has been an amazing colleague. His bold and creative approach to organic chemistry helped me overcome many synthetic hurdles. Kerry Garret performed all the quantum mechanical calculations presented in this thesis. I am thankful to her for her patience and her rigorous scientific approach towards the theoretical predictions. Prof. David Shelton at the University of Nevada, Las Vegas performed all the hyper-Rayleigh scattering experiments and I am grateful to him for collaborating with us as well as for his time and expertise in the matter. Dr. Denise Bale not only helped me find direction in my work but also painstakingly helped me understand hyper-Rayleigh scattering experiments and data thereof. Crystallographers Evgheni Jucov and Prof. Tatiana Timofeeva from New Mexico Highlands University and Dr. Werner Kaminsky at University of Washington were very instrumental in my understanding of structure property relationships of organic materials.

I’d like to thank Dr. Ilya Kosilkin for being a great friend and a very supportive lab-mate and for encouraging me through all my ups and downs in graduate school. Many important scientific discussions with Andreas Tillack guided my final thesis work and his critical reading
of the many drafts is highly appreciated. Monte-Carlo simulations by Andreas provided an important outlook for my research.

Prof. Phil Sullivan provided many hours of education on the basics of electro-optics and was always eager to explain the fundamentals. Dr. Delwin Elder and Dr. Jinsheng Song provided many valuable scientific discussions on organic synthesis. My research would not have been possible without the excellent work that Dr. Martin Sadelik, Loren Kruse, Dr. Rajan Paranji and Dr. Paul Miller do in our department in the instrumentation labs. Many undergraduates that I mentored contributed indirectly to the work presented here; most notably I’d like to thank Terry Villarreal and George Kimpel for their significant contributions to my research projects and for allowing me the opportunity to both teach and learn from them by constantly asking great questions.

I’d like to thank both old friends from India and new friends I made in Seattle that supported and motivated me including Vikram Nair, Sharbari Dey, Ravi Ravichandran, Elena Wendelyn and Julie Steele. And finally I thank my parents Asha and Dr. Shuban Rawal and my brother Dr. Aditya Rawal for their confidence in me and for always pushing me to follow my ideas!

I have had many wonderful teachers along the way; I am ever in their debt and to them ever grateful.
Dedication

Dedicated to my grandfather Pt. Prem Nath Rawal and my Guru for being my guides through life.

And also to my parents Asha Rawal and Dr. Shuban Kishen Rawal for teaching me to persevere and be independent.
Chapter 1 Introduction

1.1. Objective and Perspective:

The focus of this thesis is the experimental study of cross-conjugated molecules and the potential for the use of cross-conjugated motifs in non-linear optical chromophores. Due to the time and expense involved in the synthesis of novel chromophores, close collaboration between the experimental and theoretical fields of research is essential both for theoretical guidance of design as well as for understanding observed experimental phenomena. This allows for the creation of significantly improved electro-optic materials. Organic electro-optic materials have the potential to become critical components of next generation computer, telecommunication, and sensor technologies. As will be discussed in more detail shortly, organic electro-optic materials offer clear advantages over competing technologies (inorganic electro-optics, inorganic electro-absorptive, organic liquid crystalline technologies, silicon devices based on free-carrier depletion or injection in pn-diode or metal-oxide semiconductor structures) in terms of one or more of the following properties: response time, electro-optic activity, optical loss, and/or processability. Large macroscopic electro-optic activity deriving from large molecular hyperpolarizability has permitted operational voltages required to convert electronic data into data encoded on optical transmissions to be as low as 0.5V for a 1 mm device. Such low voltages permit record energy efficiency of 0.6 femtojoules/bit to be achieved for digital signal transduction. The short device lengths permit low insertion loss and operational bandwidths of 100 Gbit/s to be achieved for digital signals and 100 GHz bandwidths to be achieved for analog signal processing. Compared to the voltage-length parameter (Vπ) value of 500 V-mm for 40 Gbit/s lithium niobate devices, organic electro-optic materials currently offer a thousand fold improved Vπ of 0.5 V-mm. Such small voltage-length parameters, made possible by large
Electro-optic activity (180 pm/V) of organic materials are critical for chipscale integration of electronics and photonics as well as for nano-antenna sensitivity used in phased array radar and cell phone applications. Continued improvement in electro-optic activity will permit even smaller and more energy efficient devices to be developed and is the fundamental motivation for this thesis research.

Electro-optics is one class of second-order nonlinear optics. Second order nonlinear optics can be broken down into the following effects (classified according to frequency of the applied electric fields):

Figure 1.1: A list of second order non-linear effects
While the motivation for this thesis is the potential improvement of organic electro-optic materials it is important to understand other second order effects as these can be used to measure second order nonlinear optical susceptibility. In the subsequent sections of this chapter, a general discussion of nonlinear optics is presented alongside further insights into the importance and impact of organic electro-optic materials to modern information technology.

1.2. Nonlinear Optics

Electro-optics lies at the intersection of electronics and photonics and organic electro-optics (OEO) in particular studies the interaction between electrical (low frequency) and optical (high frequency) electromagnetic fields mediated by an organic material. Nonlinear optics (NLO) focuses on the creation of systems where the optical properties of a material are modified by electrical fields through a nonlinear perturbation of the charge density of the material.

Advances in the field of photonics have led to the use of light to carry data through fiber optic cables for telecommunications. The use of light to transmit data has significantly increased bandwidth and allowed for the possibility of transmission of hundreds of terabits/s of data\(^4\). Signal processing and transduction have seen tremendous improvements in the last few decades driven by advances in computer chip technology. The doubling of the number of transistors per chip every two years (Moore’s Law)\(^5\) has resulted in a large increase in information processing speeds in silicon-based circuits. Silicon devices continue to become smaller and their architectures more complicated while processor chips are becoming more powerful, energy efficient and less expensive\(^6\). They are however reaching a fundamental physical limit with respect to transistor scaling. As gate length gets smaller, quantum tunneling is likely to occur between the source and drain. Also as the density of transistors per chip and operating speeds increase, the removal of heat from the system is expected to become more problematic resulting
ultimately limiting performance. The use of electro-optic (EO) materials and photonics technology for not only long-range transmission but also for routing information between computer processors and between processors and memory elements would result in greatly improved bandwidths as well as reduced power consumption allowing for less complex processor design. This is an important next step in telecommunications and information technology. Electronic to optical signal transduction is central to the application of this technology and is performed by an EO modulator.

EO modulators are based on the principle of Pockels effect (linear electro-optic effect), which is the change in refractive index of a material due to application of an electric field. The Mach-Zehnder modulator (figure 1.2) consists of an optical waveguide made of electro-optic material that is split into two waveguides of equal length and then recombined. One arm is subject to an electric field, which can change the refractive index of the material in that arm. When coherent light is introduced into the waveguide, it travels through one arm unchanged. However, as it travels through the other arm, the change in refractive index causes light to travel more slowly through the material resulting in a phase shift of light in one arm before recombination at the other end. If the appropriate voltage \(V_\pi \) is applied to the active arm, a phase shift of \(\pi \) can be introduced resulting in destructive interference of the two beams of light and the modulator creates a binary 0. When no voltage is applied to the active arm, the interference is constructive creating a binary 1; data is thus coded onto a beam of light. Of course, Mach-Zehnder modulators can be used for both analog and digital signal modulation although this simple illustration has focused on digital signal transduction.
As illustrated in figure 1.1 of the preceding section, electro-optic (second order nonlinear optical) materials also enable various nonlinear optical processes such as second harmonic generation (SHG) and difference frequency generation (DFG) (i.e. terahertz (THz) frequency generation and detection). These are leading to the many applications in the fields of (civilian and military) surveillance, image sensing, detection, etc.

1.3. Materials used for EO applications

Currently most of the materials used for electro-optic applications are inorganic compounds such as crystalline lithium niobate (LiNbO$_3$). As industrial standards, these materials have various advantages such as high optical transparency at the telecommunication wavelengths (0.1-0.2 dB/cm for LiNbO$_3$ at 1.53µm). The Pockels’ effect in inorganic materials arises due to displacement of ions within the crystal due to the applied electric field. The speed of response of the material depends on the speed of movement of ions, which is in the region of 10^{-10}s for inorganics and is fairly fast. Another figure of merit for the application of Pockels’ effect is the electro-optic tensor r which quantifies the phase shift of light in the active arm with respect to the modulating electric field. For LiNbO$_3$ this coefficient is 30pm/V at 1.3µm which is adequate for long (e.g., centimeter) path-length devices. LiNbO$_3$ devices have high dielectric constants ($\varepsilon \sim 28$) which results in a velocity mismatch between the optical and electrical fields leading to lower bandwidths. The large dielectric permittivity of lithium niobate also reduces gain in
signal-concentrating antennae structures. Drive voltages for LiNbO$_3$ devices are often in the range of 2.8 to 6 V for centimeter devices, which is an impediment (both in terms of energy efficiency and size) for VLSI applications7,8. Inorganic materials are typically used as highly polished, optical quality crystals, which require time-consuming and costly processing.

These disadvantages present an opportunity for the replacement of inorganic compounds by organic materials, which have the potential of affording improvements in size, weight, power, performance, cost, and reliability. Many organic EO materials have shown great promise and have been incorporated in electro-optic devices such as ring microresonators and Mach-Zehnder interferometers. Whereas crystalline inorganic modulators are currently working at 40 GHz or less, organic electro-optic modulators with 40-100 GHz bandwidths are already being offered in the market9.

The bandwidth of organic electro-optic devices is currently limited by the conductivity of metal drive electrodes and bandwidths of 30 THz have been observed in THz signal generation and detection applications. The 10 femtosecond response time of the p-electrons of organic electro-optic materials has also been confirmed by pulsed optical measurements and by all-optical modulation experiments10. The advantages of organic modulators over inorganic modulators stem in part from the fact that their EO response results from a distortion in the π electron cloud of the molecules, which occurs in 10^{-14} s as compared to ionic displacement (10^{-10} s) in the case of inorganic devices. Organic materials also allow for better velocity matching of the optical and electric fields due to their low dielectric ($\varepsilon \sim 3$). Through theory-guided design, organic EO materials have steadily improved upon their r values. Numbers as high as 300 pm/V11 have been reported with 500-1000 pm/V12 being theoretically possible. Such electro-optic coefficients permit drive voltages (V_π) below 1V for millimeter length devices and thus
allow for organic EO materials to be integrated quite easily into VLSI systems13. Organic molecules possess tunable properties that can be designed into the molecular structure such as ease of processability, crosslinking or hydrogen-bonding and liquid crystalline groups to improve performance through soft interactions that are not possible with inorganic crystals.

1.4. Fundamentals of Optical Nonlinearity

1.4.1. Microscopic and Macroscopic Polarization and Electro-Optic Coefficient r_{33}:

In order to understand the origins of nonlinear optical effects one must delve into the influence of an intense electromagnetic field (such as a laser) on the polarization response of these materials. The polarization response of nonlinear materials is defined both micro- and macroscopically; \mathbf{p} and \mathbf{P} respectively are described by the following power series expansions of the electric field:

$$p = p_0 + \alpha_{ij} E_j + \beta_{ijk} E_j E_k + \gamma_{ijkl} E_j E_k E_l + \cdots$$ \hspace{1cm} (1)

$$P = P_0 + \chi_{ij}^{(1)} E_j + \chi_{ijk}^{(2)} E_j E_k + \chi_{ijkl}^{(3)} E_j E_k E_l + \cdots$$ \hspace{1cm} (2)

In equation (1) the term p_0 is the polarization at zero field, α_{ij} is the linear polarizibility and the terms β_{ijk} and γ_{ijkl} are the first and second order molecular hyperpolarizabilities. Higher order terms beyond γ_{ijkl} are negligible and are ignored. The β tensor describes second order processes such as Pockels effect (EO), sum frequency generation (SFG) and difference frequency generation (DFG) (see figure 1.1). In this thesis, we ignore γ_{ijkl} and higher order effects.
Similarly, in equation (2), P_0 is the intrinsic bulk polarization, $\chi^{(1)}_{ij}$ is the linear optical susceptibility and $\chi^{(2)}_{ijk}$ and $\chi^{(3)}_{ijkl}$ are the second order and third order nonlinear optical susceptibilities respectively. In both equations, E_j, E_k and E_l are vectors of the applied electric field within the molecular framework.

In equation (1), all even terms become zero for molecules in which polarization in either direction of the molecular axis is equal and opposite. This is the case for centrosymmetric molecules whose β is therefore zero. For a molecule to exhibit any second order effects, it must possess a non-zero β which is induced by possessing a non-centrosymmetric molecular electronic structure. An example of such a chromophore is shown in figure 1.3. The basic motif in these molecules is an electron donor-\pi bridge- electron acceptor type structure and the dominant tensor element of the first hyperpolarizability β_{zzz} is along the molecular dipolar axis.

Figure 1.3: Structure of Disperse Red 1 (DR1) chromophore
At the bulk level, the material must also be ordered anisotropically for the second order susceptibility $\chi^{(2)}_{ijk}$ to be non-zero. Since they are designed as donor-π-acceptor systems, most chromophores are highly dipolar in nature and centrosymmetric dipole-dipole interactions are favored in the bulk phase between chromophores. They are therefore only weakly acentrically aligned in the bulk phase. Therefore their order parameter $<\cos^3\theta>$ which indicates the degree of non-centrosymmetric alignment along the z direction will be low. A few other factors also affect χ^2 under bulk conditions. Most devices are made by preparing an NLO chromophore guest-polymer host solution followed by a film forming process such as spin-casting. As would be expected therefore, the number density (N) of chromophores in the polymer matrix is important as is the dielectric of the surrounding medium, in this case the polymer and the Lorentz-Onsager field factor $f(\omega)$ takes this into account.

The term r_{33}, known as the EO response coefficient ties together all the molecular parameters and can be understood as the control of the index of refraction of a material by application of a voltage. The application of an electric field causes a change in the charge distribution of a molecule thereby causing a change in the velocity of light propagating through it. In the bulk, randomly ordered chromophores will cause this effect to cancel out as the light propagates through the material. However if all the molecules are ordered anisotropically then the effect will be augmented as light travels from chromophore to chromophore through the material. r_{33} is defined as follows:

$$r_{33}(\omega) = \frac{-2\chi_{zzz}^{2}}{\eta_{\omega}^{4}} = \left| \frac{2N f(\omega) \beta_{zzz}(\omega,\epsilon) <\cos^3\theta>}{\eta_{\omega}^{4}} \right|$$ \hspace{1cm} (3)
Where \(N \) is the chromophore number density (molecules/cm\(^3\)), \(f(\omega) \) is the Lorentz-Onsager local field factor (at operating frequency \(\omega \)) that accounts for change in applied field due to the dielectric of the media surrounding the chromophores and \(\eta_\omega \) is the refractive index of the material. The degree of acentric alignment of the chromophore in the matrix is given by the order parameter \(< \cos^3 \theta > \) where \(\theta \) is the angle between the axis of the molecular dipole and the poling axis.

1.4.2. Structure Property Relationships for Electro-Optic Effect \(r_{33} \)

1.4.2.1. Optimizing \(\beta_{zzz} \): Modifying Donors, Acceptors and Bridges

As inferred from equation (4), one way to optimize \(r_{33} \) would be to design and chromophores with higher molecular hyperpolarizibility (\(\beta_{zzz} \)) values. Oudar and Chemla\(^{14} \) in 1977 developed the two-level model (TLM) to determine theoretically the total \(\beta \) of a given molecule. They found that enhanced \(\beta \) occurs due to intra-molecular charge transfer between the electron donor on one end and the electron acceptor on the other end of the molecule and could be described by a two-level system in which the ground and first excited states are influential. The ground and excited state dipole moments \(\mu_{gg} \) and \(\mu_{ee} \), the transition dipole moment \(\mu_{ge} \) (which is related to the oscillator strength) and the molecular bandgap \(\Delta E_{ge} \) (energy difference between highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) levels of the molecule influence \(\beta \). This relationship is given by equation (5) which is known as the two level charge-transfer model, where

\[
\beta_{zzz} \propto \frac{(\mu_{ee} - \mu_{gg})(\mu_{ge})^2}{(\Delta E_{ge})^2}
\]

(5)
Strong donors typically increase the energy of the HOMO whereas strong acceptors decrease the energy of the LUMO. In either case, this leads to a reduction in ΔE_{ge} thereby increasing β. Indeed strong donor (arylamines and triarylamines) and strong acceptor (2-(dicyanomethylene)-2,5-dihydro-4,5,5-trimethylfuran-3-carbonitrile (dimethyl-TCF) and 2-(dicyanomethylene)-2,5-dihydro-4-methyl-5-oxo-1H-pyrrole-3-carbonitrile (TCP)) moieties are typically part of the structure of some of the current high β molecules that have been developed (figure 1.4). The drawback however, is that lowering of the band gap results in a bathochromic shift of the maximum absorption wavelength of the molecule. As this wavelength approaches telecommunication wavelengths (1310nm and 1550nm), absorptive losses within the electro-optic device become significant. Modification of the bridge by increasing the conjugation length (polyene type bridge) also leads to higher hyperpolarizibilities (via reduction in band gap). As the bridge length increases, however, it reduces the photo- and thermal stability of the molecule. This is overcome by using ring-locked (CLD type and substituted) isophorone bridges as seen in YLD-124. Heteroaromatic thiényl-vinylene bridges (FTC type) as seen in YLD-156 and EZ-FTC offer high thermal and photostability without significant loss in β along with relatively easier syntheses (figure 1.4). Thiophene moieties also offer a point of substitution for further modification of the chromophore. These organic molecules can be modified not only towards the goal of higher β but also towards other favorable properties such as better photo-, thermal-, and temporal stability, reduction of optical loss at telecommunication wavelengths and much improved processability.

Although great strides have been made in the improvement of β by this method, there is still a gap between the quantum limit and the experimentally observed hyperpolarizibilities that must be bridged.
1.4.2.2. Alternate strategies towards improving β: Bond Length Alternation Theory

Polyene chromophores consisting of π-conjugated bridges are the mainstay of organic EO chromophores. As discussed in the previous section, their modification by changing the length and chemical composition has a significant effect on the molecular hyperpolarizibility of the molecule. The bridge connects the donor and acceptor within the molecule plays a role in determining the degree of charge separation in the ground state of the molecule which is essential to the understanding of β. Bond length alternation (BLA) has furthered the realization of the structure-property relationships within polyene molecules and the use of optimal donor and acceptor strengths for a given bridge$^{24-27}$. BLA parameter $<\Delta r>$ is defined as the average difference in length between adjacent carbon-carbon bonds of a molecule. In the case of conjugated bridges these adjacent bonds are alternating single and double bonds24. For the
simplest case the BLA is calculated as $1.45\text{Å} - 1.34\text{Å} = +0.11\text{Å}$ which is the largest positive $<\Delta r>$ possible. Marder and coworkers used this parameter to explain why increasing the donor and acceptor strengths for a given bridge does not always increase molecular hyperpolarizibilities. They used the sum-over-states model to observe the effect of an external static field on a simple donor-acceptor molecule, 9-(dimethylamino)nona-2,4,6,8-tetraenal (DAO) with a polyene bridge (figure 1.5) and the resulting change in hyperpolarizibility. The change in electric field would effectively simulate the change in the strength of the donor and acceptor. They proposed that for weak values of donor and acceptor strengths, the ground state was neutral (figure 1.5, (left) structure (a)) and $<\Delta r>$ large ($\sim 0.1\text{Å}$). This implies that since the large difference in energy between the two resonance states results in very little mixing of the two states. Therefore, even though $(\mu_{ee} - \mu_{gg})$ would be high, β values would be small due to high ΔE_{ge}.

![Diagram](image)

Figure 1.5: (left) The molecule used to study the change in BLA with donor and
acceptor strengths. *(right)* Example of a cyanine type molecule with two
degenerate resonance structures
As the strengths of the donor and acceptors increased, BLA decreased causing a
reduction in ΔE_{ge} due to increased mixing of the resonance states thereby increasing β. In other
words, initially as the contribution of the charge separated resonance structure to the ground state
increased, β increased until it peaked at an optimum BLA parameter (in this case $<
\Delta r >$~0.04Å). As the contribution of the two resonance forms to the ground state becomes
equivalent, BLA becomes zero. This however translates to a zero β value as well since the term
$(\mu_{ee} - \mu_{gg})$ becomes zero due to degeneracy of the two states. This trend is shown in figure 1.6
below. This limit at which BLA becomes zero is known as the cyanine limit after the cyanine
type molecules that are represented by two degenerate resonance forms *(figure 1.5 (right))*.

![Dependence of β, $\mu_{ee} - \mu_{gg}$, μ_{ge}^2 and $1/\Delta E_{ge}^2$ on bond length alternation](chart.png)

Figure 1.6: Dependence of β (---), $\mu_{ee} - \mu_{gg}$ (-----), μ_{ge}^2 (-----) and $1/\Delta E_{ge}^2$ (-----) on bond length alternation
On the other side of the cyanine limit, the charge separated state dominates the ground state while the neutral state has higher energy. Such molecules are categorized as “zwitterionic ground state” molecules and their ground states are more polar than their excited states. This leads to a negative BLA with an increase in β in the negative direction where it once again reaches a maximum (negative) value at optimal $<\Delta r>$.

Molecular hyperpolarizability can thus be influenced and tuned to large values by changing the relative contribution of the neutral form or the charge separated form to the ground state.

1.4.2.3. Alternate strategies towards improving β: Twisted intramolecular charge transfer (TICTOID) structures:

Theory has also predicted that the degree of the HOMO-LUMO orbital overlap between donor and acceptor to be dependent on the twist angle with the optimal dihedral angle (θ) being 70°-85°31. The dihedral angle between the donor and acceptor parts of these molecules serves to modulate the magnitude of the response by changing the nature of the bond between quinoid and aromatic states. Quinopyran and merocyanine type twisted intramolecular charge transfer (TICTOID) type structures have been shown to demonstrate some of the largest non-linear responses to date. The molecules are reported to show high $\mu\beta$ values of -488000×10^{-48} esu (at 1907nm) compared to that of CLD (35000×10^{-48}esu at 1907nm). They also however possess large ground state dipole moments in the region of 50D32. While this results in significant aggregation and solubility issues, never the less r_{33} values of 300 pm/V (Teng-Man at 1.33 microns, $E_p = 100$V/micron) have been reported. The biggest drawback for these molecules however is aggregation caused by the high dipoles in the aromatic states. An increase in the first order molecular hyperpolarizability by modification of the π orbital strengths and overlap
typically results in high dipole moments (13-30 Debye and as high as 50.6 Debye for the TICT chromophores).

While a large body of research is based on one dimensional (1D) dipolar chromophores described above, multiple donor/acceptor substitution creates X- and λ–shaped molecules (figure 1.7) with a two dimensional β tensor character. In most dipolar molecules, an increase in β, brought about by increasing donor/acceptor strengths or increasing bridge length, inevitably leads to a bathochromic shift of the charge transfer band. Two dimensional and multipolar strategies become relevant when the trade-off between nonlinearity and transparency becomes important since these compounds combine larger molecular non-linearities with hypsochromic shifts of the charge transfer band relative to corresponding control (1D) molecules. It has been shown that the larger β associated with X-shaped chromophores is possibly related to maximum conjugation of the two donor groups and the two acceptor groups respectively and larger spatial
asymmetry between the HOMOs and the LUMOs to promote charge transfer in the excited state35. Second harmonic generation (SHG) is an example of such an application where the conversion of light to its second harmonic frequency must be efficient but reabsorption of the generated frequency must be low.

1.4.2.4. Optimizing Loading Parameter \((N < \cos^3 \theta >)\)

While considerable attention has been paid to the prediction, understanding and improvement of \(\beta_{zzz}\), this has not translated into equivalent gains in terms of macroscopic properties. High dipole moments in organic NLO materials result in strong electrostatic dipole-dipole interactions which prevent the molecules from ordering non-centrosymmetrically. Improving the acentric order \((< \cos^3 \theta >)\) or more accurately the loading parameter \((N < \cos^3 \theta >)\) of the current organic NLO materials would be advantageous for commercializing these systems. One must recognize however that the two terms \(N\) and \((< \cos^3 \theta >)\) are interdependent as an increase in the number density causes increased dipolar interactions between chromophores and making the realization of improved \(< \cos^3 \theta >\) more difficult.

Attempts at increasing the loading parameter fall into two categories: (1) processing methods such as electric field poling and laser assisted electric field poling and (2) variation in the chromophore structure towards either reduced dipole-dipole interactions or introduction of soft interactions that direct acentric order.

Electric field poling is one of the most commonly used methods for inducing order. In this technique, the NLO active material is spun cast (neat or in a polymer host) on to a glass slide followed by vapor deposition of gold electrodes. This device is heated to and held at just below the glass transition temperature \((T_g)\) of the polymer to soften the matrix followed by application of a strong electric field of voltage \(E_p\). The soft matrix allows the chromophores to align with the
applied field and the device is then cooled in the presence of the electric field to preserve the order achieved. The efficiency of this poling method is measured as a ratio of r_{33} obtained to the electric field applied E_p. Current work in our group shows the highest poling efficiency (r_{33}/E_p) for a guest/host system of a chromophore guest at 25 wt.% loading in a polymethyl methacrylate (PMMA) host to be approximately 1.5 nm2/V2.

Laser assisted electric field poling utilizes the cis-trans photoisomerization of low β azo-chromophores such as Disperse Red 1 (DR1) to induce order in a higher β chromophore such as YLD-124. Up to 2.5 fold increase in poling efficiencies have been reported with this technique as compared to electric field poling36.

The concept of shape engineering of chromophores takes into account that the design of the chromophore itself not only affects β_{zzz} but also the electrostatic interactions between chromophores. Substitution of bulky side groups onto a chromophore bridge has shown to reduce chromophore dipole-dipole interactions resulting in improved electro-optic activity37. Isolation of chromophores by attachment of dendritic38,39 units changes the shape of the molecule towards more spherical dimensions. This strategy has been employed with significant success towards improving poling efficiencies. In an approach similar to dendronized chromophores, multi-chromophore dendrimer systems are molecules in which multiple chromophores are attached to a single dendritic core$^{16,24,40-42}$. Dendritic NLO systems easily exhibit high poling efficiencies and are often cast as neat films with high number densities$^{43-45}$ as high as $\sim 6 \times 10^{20}$ molecules/cm3. These materials have also been designed to exhibit high thermal stability46 and by substituting with photo-crosslinkable groups, highly improved temporal stability44,46.

Dendronized polymers18 and hyper-branched polymers41,44,45 are another class of shape engineered molecules that have resulted in an improvement of poling efficiencies 2 to 2.5 times.
higher than guest-host systems. These polymeric systems also allow for improvement of thermal and temporal properties.

Introduction of soft interactions such as hydrogen bonding47,48, aryl-fluoroaryl interactions11, liquid crystalline mesogens49–53 and as binary chromophore organic glasses54,55 (BCOG) help increase the concentration of the chromophore (N) in the bulk and can even enhance $<\cos^3\theta>$. In these materials, a competing interaction is introduced into the bulk system to induce a reduction in dimensionality (degrees of freedom) of the material. Enhancements in efficiencies of as high as 3 times that of chromophores in simple polymeric materials have been reported12,50,56.
1.5. References

Chapter 2 Study of Cross Conjugated Systems

2.1 Introduction:

In the field of non-linear optics, linearly conjugated push-pull type chromophores are the primary motifs of choice for various second and third order applications. The ground state and the excited state configurations, the transition dipole moment and the energy gap between the two states are of consequence in defining the non-linear properties of such molecules. It has been hypothesized and observed in many cases however, that charge transfer can occur in molecules through other means such as σ-conjugation through sp3 carbons, cross-conjugation and omni-conjugation57. Cross-conjugated frameworks (figure 2.1) especially are seen extensively in molecules comprising dendralenes (1), benzoquinonedimethanes (2), radialenes (3), fulvalenes (4), azulenes (5) etc. The term “cross-conjugation” typically refers to molecules that contain three groups, two of which are conjugated to the third but not to each other. Cross-conjugation has, however, come to cover molecules where this definition is not strictly applied; e.g. fulvalenes, where the cyclic structure creates conjugation between the two groups that would otherwise not be connected.

Figure 2.1: Various cross-conjugated motifs
The effect of broken conjugation and cross-conjugation on the molecular first and second hyperpolarizibilities, β and γ has been studied by several groups in the past. Theoretical calculations led by the Brédas and Marder58 groups investigated the relationship between the length of a saturated spacer group in a push-pull polyene chromophore and the degree of π-conjugation on molecular hyperpolarizibilities. It was reported that charge transfer did indeed occur at a certain applied external field from the donor to the acceptor and larger spacer groups (two carbons long) caused more abrupt charge transfers resulting in large predicted β values. In 2000, Brédas and coworkers59 published theoretical and experimental work on oligo vinylthiophenes in which an electron donating segment and an electron withdrawing segment were separated by various spacers in the bridge to gauge the modulation of charge transfer by the spacers.

A study of [3]dendralenes by Almenningen and coworkers60 showed that these molecules do not adopt a planar conformation as would be expected for the molecules to maintain a conjugated network. The molecules were revealed to exist in an anti, skew conformation with a dihedral angle of 40°. Ultra violet-visible (UV-vis) spectroscopy study of [3]dendralenes oligomers by Grubbs and Swager61 also pointed to a twisted backbone with the largest conjugation length consisting of a triene unit. Increasing the length of the polymer did not significantly influence the absorbance spectra of the molecules.

Figure 2.2: Tetrathiafulvalene vinylogs
Various tetrathiafulvalene [TTF] analogues of dendralenes (figure 2.2) have also been studied by Cava and coworkers and found to be strong electron donating groups62. Studies by Bryce and coworkers found dendralene based TTF molecules also to be slightly twisted with little electron delocalization along the main backbone63.

Diederich and coworkers reported on the synthesis and electronic characterization of a series of cross-conjugated dicyanovinyl substituted 2,3-diphenyl-1,4-butadiene derivatives (figure 2.3) in which they found efficient intramolecular charge transfer interactions and high third order nonlinear responses64,65 in spite of a substantial twist66 between the two adjacent dicyanovinyl groups.

![Figure 2.3: Dicyanovinyl substituted 2,3-diphenyl-1,4-butadiene derivatives](image)

The Tykwinski group started studies on iso-polydiacetylenes (iso-PDA) (figure 2.4) with the synthesis of isopropylidenic small molecules and oligomers67,68 followed by more complex cyclohexylidene69 and adamantylidene70 type iso-PDAs and found the π electron communication to extend along the enyne backbone. Evidence for intramolecular charge transfer through cross-conjugation was also seen in donor-acceptor type monomeric iso-PDAs71 (10) (figure 2.4) but was absent in the case of the oligomers.
Using fluorescence and UV-vis spectroscopy experiments van Walree and coworkers72 have shown the existence of charge separated states with charge transport occurring through a cross-conjugated bridge in donor-acceptor substituted 1,1-diphenylethenes (11,12) (figure 2.5). The weak ground state interactions in these molecules cause a larger degree of charge separation than the corresponding stilbenoid chromophores.

![Chemical structures](image)

Figure 2.4: Structures of *iso*-polydiacetylenes

Quinopyran and merocyanine type twisted intramolecular charge transfer (TICTOID) type structures (13) (figure 2.5) have been shown to demonstrate some of the largest molecular non-linear responses to date. The dihedral angle between the donor and acceptor parts of these molecules serves to modulate the magnitude of the response by changing the nature of the bond between quinoid and aromatic states. The biggest drawback for these molecules however is aggregation caused by the high dipoles in the aromatic states31,73–76.

![Chemical structures](image)

Figure 2.5: Structure of 1,1-diphenylethenes (11 and 12) and TICTOID molecules (13)
A theory paper by Ratner et al. studied the difference in electron transfer between cross-conjugated and linearly conjugated molecules77. They found strong quantum interference effects to be dominant in cross-conjugated molecules suggesting that the prediction of charge transfer in these molecules may not be straightforward.

In summary the class of cross-conjugated molecules hold promise for overcoming the drawbacks in linearly conjugated molecules such as electronic transparency in the visible region78, low dipole moments as well as independent modulation of donor and acceptor functionalities with minimal effect on the electronic transition energy; it is of importance to study the photo-physics of such molecules and how variation in structure affects properties.

2.2 Proposed Molecules and Synthesis:

Herein we report on the theoretical simulation of electronic transitions as well as the molecular first hyperpolarizability β and comparison with experimental results of a series of cross-conjugated molecules shown in figure 2.6. In each case, the cross-conjugated spacer carbonyl group was functionalized with a donor (dialkylanilino) on one end and varying strengths of acceptor on the other end. Here the donor and acceptor are linearly conjugated to the carbonyl group but not to each other. Control molecules consisting of simply the donor or acceptor were either purchased or synthesized. Further, as discussed in Chapter 3 tricyanopyrroline type acceptor was substituted on each of the cross-conjugated molecules to observe the effects of a strong electron withdrawing group on the ground and excited stated of the molecules and their effect on β.
Figure 2.6: Cross-Conjugated Chromophores
2.2.1 Synthesis of cross-conjugated chromophores:

The reaction schemes for synthesis of the cross-conjugated molecules are shown in figure 2.7\(^79\). Compound 1-NEt2 was synthesized in one step via aldol condensation of 4-(diethylamino)benzaldehyde and acetone in 2-butanol without need for further purification. Using other solvents, ethanol, isopropanol or 1-butanol, or reducing the reaction time gave a mixture of mono- and di substituted acetone. 1-Me was prepared in good yield by reacting 4-(diethylamino)benzaldehyde and excess acetone at 60°C in 24h. Compound 1-Ph, 1-F and 1-NO2 were synthesized from 1-Me which was deprotonated using sodium methoxide in ethanol followed by an aldol condensation with benzaldehyde (A) to give 1-Ph, 4-fluorobenzaldehyde (B) to give 1-F and 4-nitrobenzaldehyde (C) to give 1-NO2. Reaction times and yields varied depending on the electronegativity of the benzaldehydes (A, B and C) used; with strong electron-withdrawing groups allowing for shorter reaction times and greater yields than the weaker electron-withdrawing groups. Heating reduced yields possibly from decomposition of products or generation of side products. 1-CN was synthesized from the aldol condensation of 1-Me with 4-cyanobenzaldehyde using piperidine as base and a 1:1 mixture of acetonitrile/ethanol as solvent. The control molecule C-NO2 was synthesized as shown in figure 2.8\(^80\) by reacting 4-(dimethylamino)cinnamaldehyde with 4-nitrophenylacetic acid in piperidine at 100°C. The condensation proceeds rapidly followed by decarboxylation to produce the final product in good yield after purification. Synthetic details, NMR and ESI/MS spectra are given in appendix to Chapter 2
Figure 2.7: Synthesis of Cross-Conjugated Chromophores
Figure 2.8: Synthesis of C-NO2
2.3 UV-vis Spectroscopy:

2.3.1 Cross-conjugated series: Comparison of UV-vis spectroscopy in chloroform

![UV-vis spectra of cross-conjugated chromophores in chloroform](image)

Figure 2.9: UV-vis spectra of cross-conjugated chromophores in chloroform

<table>
<thead>
<tr>
<th>Name</th>
<th>1-NEt2</th>
<th>1-Me</th>
<th>1-Ph</th>
<th>1-F</th>
<th>1-CN</th>
<th>1-NO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wavelength λ_{max} (nm)</td>
<td>455</td>
<td>390</td>
<td>310</td>
<td>341</td>
<td>312</td>
<td>322</td>
</tr>
</tbody>
</table>

Table 2.1: Absorbance maxima of cross-conjugated chromophores in chloroform
UV-visible spectroscopy of cross-conjugated dyes in chloroform ($E_T(30) = 39.1$ kcal/mol) shows two $\pi \rightarrow \pi^*$ transition absorbances (figure 2.9, table 2.1) for the molecules with weak acceptors; benzene (1-Ph) and fluorobenzene (1-F), as well as strong acceptors; cyanobenzene (1-CN) and nitrobenzene (1-NO2). The high energy peaks range (figure 2.10) from 310nm to 340nm. A bathochromic trend is observed for these peaks with the fluorophenyl acceptor absorbance being an outlier to the trend. The low energy peaks range (figure 2.11) from 436nm to 464 nm showing a red (bathochromic) shift with increasing acceptor strength. The symmetric donor substituted molecule, 1-NEt2 and the methyl substituted 1-Me both show a single ($\pi \rightarrow \pi^*$ transition) peak situated around 455nm and 390nm respectively. A comparison with the theoretically predicted absorbance values in the next section will help with understanding the experimental UV-vis plots for these cross conjugated molecules.

Figure 2.10: High energy peak of cross conjugated chromophores in chloroform
2.3.2 **UV-Vis spectroscopy: Comparison with calculated values in chloroform:**

Quantum chemical calculations were performed using the Gaussian-09 package. Molecular geometries were optimized using the B3LYP hybrid functional with the 6-31+G* basis set (B3LYP/6-31+G*). Electronic transitions and respective oscillator strengths in chloroform (with the polarization continuum model (PCM) reaction field) were calculated using the long-range corrected hybrid functional CAM-B3LYP with the 6-31+G* basis set (CAM-B3LYP/6-31+G*).

The results are compared in table 2.2 with experimental optical data in chloroform. The molecules are listed going from the symmetric donor substituted 1-NEt2 to the asymmetric molecules with increasing acceptor strengths going from 1-Ph (with a weak phenyl acceptor) to 1-NO2 (with a stronger nitrophenyl acceptor). The theoretical values for the major transitions for
the cross conjugated molecules are all blue shifted by around 21 to 36 nm. The primary transitions indicated by density functional theory (DFT) for all the cross conjugated molecules are from the highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO) (HOMO→LUMO transitions). These are the lower energy transitions around 409nm to 478nm (theoretical) and 436nm to 465nm (experimental). The theoretical values follow the experimental trend and show a bathochromic shift with increasing acceptor strength from 1-Ph to 1-NO2.

The HOMO for 1-NEt2 lies on the diethylamino benzene donor on either side of the carbonyl carbon at the center while the LUMO lies largely on the carbonyl carbon (figure 2.12). Since the ketone moiety is only weakly electron withdrawing, the LUMO appears to be quite delocalized. 1-Me is quite similar to 1-NEt2 except for the absence of the second diethylamino benzene group. The HOMO is located on the donor and the LUMO while delocalized, extends across the carbonyl to the methyl group.

Figure 2.12: HOMO to LUMO transition for (a) 1-Net2 and (b) 1-Me
<table>
<thead>
<tr>
<th>Name</th>
<th>Experimental λ_{max} (nm)</th>
<th>CAM-B3LYP/6-31+G* λ_{max} (nm)</th>
<th>f^a</th>
<th>Transition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-NEt</td>
<td>455</td>
<td>358.75 419.94</td>
<td>0.2035 2.1009</td>
<td>HOMO-1\rightarrowLUMO HOMO\rightarrow LUMO</td>
</tr>
<tr>
<td>1-Me</td>
<td>390</td>
<td>363.00</td>
<td>1.1906</td>
<td>HOMO\rightarrow LUMO</td>
</tr>
<tr>
<td>1-Ph</td>
<td>310 436</td>
<td>309.38 409.70</td>
<td>0.4679 1.5379</td>
<td>HOMO-1\rightarrowLUMO HOMO\rightarrow LUMO</td>
</tr>
<tr>
<td>1-F</td>
<td>341 436</td>
<td>308.51 410.77</td>
<td>0.4717 1.5285</td>
<td>HOMO-1\rightarrowLUMO HOMO\rightarrow LUMO</td>
</tr>
<tr>
<td>1-CN</td>
<td>312 458</td>
<td>311.00 427.04</td>
<td>0.6968 1.5008</td>
<td>HOMO-1\rightarrowLUMO HOMO\rightarrow LUMO</td>
</tr>
<tr>
<td>1-NO2</td>
<td>322 465</td>
<td>317.68 327.28 440.21</td>
<td>0.3983 0.4926 1.4113</td>
<td>HOMO\rightarrowLUMO+1 HOMO-1\rightarrowLUMO HOMO\rightarrowLUMO</td>
</tr>
</tbody>
</table>

Table 2.2: Absorption maxima λ_{max} of chromophores in chloroform: Experimental Vs Calculated values

a: calculated oscillator strengths

The HOMOs on the asymmetrical acceptor substituted molecules 1-Ph, 1-F, 1-CN and 1-NO2 are quite identical and are once again located on the donor side of the molecules (figure 2.13 and figure 2.14). The change in LUMO is where the major difference lies in these molecules. The LUMOs on 1-Ph and 1-F (figure 2.13) are only slightly biased towards the phenyl and fluorophenyl groups respectively. They are in fact quite delocalized and extend beyond the cross-conjugated center to the diethylamino benzene group. The LUMOs on 1-CN and 1-NO2 on the other hand are localized primarily on the cyanobenzene and the nitrobenzene groups respectively.
The existence of these HOMO→LUMO transitions in the experimentally observed spectra indicates that the major charge transfer in these cross conjugated molecules occurs from the donor on one side of the cross-conjugated center across to the acceptor on the other side. The cross-conjugated center does not truly break the conjugation between the donor and acceptor groups across the molecules.

Figure 2.13: HOMO to LUMO transition for (a) 1-Ph and (b) 1-F
For the acceptor substituted cross-conjugated molecules 1-Ph, 1-F, 1-CN and 1-NO2, secondary transition are predicted by DFT. These correspond to the absorbances around 310 nm to 341 nm (experimental) and 308 nm to 322 nm (theoretical) and are HOMO-1\(\rightarrow\)LUMO transitions. The HOMO-1 for all four molecules are located primarily on the acceptor side of the cross-conjugated center (figure 2.15 and figure 2.16). The absolute values for the secondary transitions for 1-Ph, 1-CN and 1-NO2 are predicted quite accurately by theory. Theory also predicts a bathochromic shift with increasing acceptor strengths for this transition in going from 1-Ph (310 nm (theoretical) and 309 nm (experimental)) to 1-CN (311 nm (theoretical) and 312 nm (experimental)) and finally to 1-NO2 (327 nm (theoretical) and 322 nm (experimental)). This can be explained by the fact that the energy of the HOMO-1 orbital would in fact increase with an increase in the strength of the donor thus reducing the HOMO-1\(\rightarrow\)LUMO gap resulting in a bathochromic trend. The value of 308.5 nm predicted for 1-F is red shifted in the experimental spectra (341 nm) and the experimental data does not fit in the theoretically predicted
bathochromic trend. It is unclear at this point why 1-F would be an outlier to the trend observed in theory.

Figure 2.15: HOMO-1 to LUMO transition for (a) 1-Ph and (b) 1-F

Figure 2.16: HOMO-1 to LUMO transition for (a) 1-CN and (b) 1-NO2
The prediction of a secondary transition for 1-Net2 at 358nm by DFT is not clearly observed in the experimental spectra (figure 2.10) although a broad absorbance around 280nm and also a shoulder around 400nm is observed in the experimental plot. It is possible that due to the low calculated oscillator strength, the peak might be one of the two peaks mentioned above.

2.3.3 UV-vis spectroscopy in cyclohexane:

UV-vis spectra of the dyes in a non-polar solvent like cyclohexane (E_{T}(30) = 30.9 kcal/mol) (figure 2.17 and table 2.3) are similar to those in chloroform. However, in cyclohexane, many of the peaks have shoulders predominantly on the red side of the main peak. This could signify presence of J-aggregates. 1-NEt2 also has shoulders on both blue and red side of its main absorbance peak suggesting the presence of both H and J aggregates. Once again, the trend observed is a bathochromic shift for the asymmetric molecules with acceptors for both the low energy as well as the high energy absorbances. 1-F is once again an outlier to the trend. With the exception of 1-NO2, all the peaks are blue (hypsochromic) shifted compared to those in chloroform. These shifts are more pronounced for the low energy peaks than the high energy peaks (table 2.4 and table 2.5). The spectrum for 1-NO2 is unusual in that not only is the low energy peak red shifted in cyclohexane compared to chloroform but also that the relative intensities of the two peaks are reversed.
Table 2.3: Absorbance maxima of cross-conjugated chromophores in cyclohexane

<table>
<thead>
<tr>
<th>Name</th>
<th>1-NEt2</th>
<th>1-Me</th>
<th>1-Ph</th>
<th>1-F</th>
<th>1-CN</th>
<th>1-NO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wavelength λ_{max} (nm)</td>
<td>413</td>
<td>371</td>
<td>296</td>
<td>331</td>
<td>305</td>
<td>331</td>
</tr>
<tr>
<td></td>
<td>371</td>
<td>408</td>
<td>409</td>
<td>430</td>
<td>430</td>
<td>427</td>
</tr>
</tbody>
</table>
2.3.3.1 Cross-conjugated series: Comparison of λ_{max} in cyclohexane and chloroform

The shifts in absorbance for the series in going from cyclohexane to cyclohexane are listed in tables 2.4 and 2.5. The shifts seen for the high energy peak of the asymmetric molecules 1-Ph, 1-F, 1-CN and 1-NO2 are comparable to that seen for 1-Me with reducing difference seen as the acceptors get stronger. 1-Ph, 1-F and 1-CN display positive solvatochromism while 1-NO2 displays negative solvatochromism in going from cyclohexane to chloroform.

Such behavior is atypical of most $\pi \rightarrow \pi^*$ transitions seen in polar chromophores. As discussed previously this high energy peak is a transition from the HOMO-1 (on the acceptor) to the LUMO of the cross conjugated dyes. It appears that although the HOMO-1 energy levels for the molecules decreases with a decrease in polarity of the solvent causing the positive solvatochromism as expected (1-Ph, 1-F and 1-CN), this decrease in the energy level diminishes with the strength of the acceptor ultimately resulting in the negative solvatochromism observed for 1-NO2.

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Wavelength λ_{max} (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1-NEt2</td>
</tr>
<tr>
<td>Cyclohexane</td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td></td>
</tr>
<tr>
<td>Difference</td>
<td>$\lambda_{\text{max(CDC13)}}$</td>
</tr>
<tr>
<td></td>
<td>42</td>
</tr>
</tbody>
</table>

Table 2.4: Difference in λ_{max} in chloroform and cyclohexane for the high energy peaks
The shifts seen in low energy peaks are more comparable to that seen for 1-NEt2. All the shifts in absorbance in going from cyclohexane to chloroform show a positive solvatochromic trend. In going from 1-Ph to 1-F to 1-CN the amount of shift observed remains the same. It is only with the stronger acceptor (1-NO2) and the stronger donor (1-NEt2) that is the solvatochromism more pronounced suggesting that the low energy electronic excitations for these molecules are likely more complex than typical HOMO→LUMO transitions seen in most push-pull type molecules.

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Wavelength λ_{max} (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1-NEt2</td>
</tr>
<tr>
<td>Cyclohexane</td>
<td>413</td>
</tr>
<tr>
<td>Chloroform</td>
<td>455</td>
</tr>
<tr>
<td>Difference $\lambda_{max(CHCl3)} - \lambda_{max(Cy)}$</td>
<td>42</td>
</tr>
</tbody>
</table>

Table 2.5: Difference in λ_{max} in chloroform and cyclohexane for the low energy peaks
2.3.4 Cross-conjugated series: polarity study

In general the dyes show bathochromic shifts with increase in solvent polarity. Dyes with strong donors (1-NEt2) (figure 2.18) and strong acceptors (1-NO2) (figure 2.21) show the largest shifts of the HOMO→LUMO transition compared to the molecules with a weaker donor (1-Me) (figure 2.19) and weaker donor (1-CN) (figure 2.20).

![Figure 2.18: 1-NEt2 Solvatochromism study](image-url)
Figure 2.19: 1-Me Solvatochromism study

Figure 2.20: 1-CN Solvatochromism study
2.3.5 UV-vis spectroscopy: Control molecule (C-NO2) and comparison with cross-conjugated molecule 1-NO2:

Figure 2.22: UV-vis spectra of control (C-NO2) chromophore in chloroform
The fully conjugated control molecule C-NO2 was synthesized for comparison with cross-conjugated molecule 1-NO2. UV-vis spectrum in chloroform shows two peaks at 323 nm and 452 nm (figure 2.22). Comparing the molar absorptivity and the energies of the two peaks (figure 2.23) however, it is observed that the molar absorptivity at 323 nm is half that observed at 452 nm and energy at 323 nm is approximately double the energy at 452 nm. It is most likely that the 323 nm peak is a vibronic absorption.

![Figure 2.23: UV-vis spectra of control (C-NO2) chromophore in chloroform (Normalized absorbance Vs Energy)](image)
Comparing C-NO2 to 1-NO2 and 1-Me in chloroform (figure 2.24), it is clear that the low energy (HOMO→LUMO) absorbance is red shifted for 1-NO2 (464nm) compared to that of C-NO2 (452nm). It is unclear why a red shift of 12nm would be observed in absorbance in going from a conjugated system to a cross-conjugated system.

![Comparison UV-vis spectra of control C-NO2 and 1-NO2 in chloroform](image)

Figure 2.24: Comparison UV-vis spectra of control C-NO2 and 1-NO2 in chloroform

<table>
<thead>
<tr>
<th>Name</th>
<th>C-NO2</th>
<th>1-NO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wavelength λ_{max} (nm)</td>
<td>323, 452</td>
<td>322, 464</td>
</tr>
</tbody>
</table>

Table 2.6: λ_{max} values in chloroform for C-NO2 and 1-NO2
2.3.6 UV-vis spectroscopy - Summary:

The asymmetric acceptor substituted cross-conjugated molecules 1-Ph, 1-F, 1-CN and 1-NO2 exhibit two absorbances in their experimental UV-vis spectra. The major transitions are the lower energy absorbances around 436nm to 465nm. Theoretical values for these transitions are only slightly blue-shifted and correctly predict the bathochromic trend observed with increasing acceptor strength. These are HOMO→LUMO charger transfer transitions. The HOMO in these molecules is located on the donor while the LUMO is located across the cross-conjugated bridge on the acceptor. This picture is especially clear in the case of the molecules with relatively strong acceptors (1-CN and 1-NO2)

The high energy secondary absorbances around 310nm to 341nm arise from HOMO-1→LUMO transitions and both their values as well as red-shifted trends are accurately predicted by theory.

In summary, based on the experimental UV-vis data and theoretical calculations, a major charge transfer transition is indeed observed in cross-conjugated molecules. This occurs from the diethylamino benzene donor on one side of the cross-conjugated center to the acceptor on the other side of the cross-conjugation (especially in 1-CN and 1-NO2) indicating that the carbonyl carbon does not prevent charge transfer even though it isolates the HOMO and the LUMO.
2.4 Fluorescence Spectroscopy:

When obtaining fluorescence data, the fluorophore is typically excited to the first singlet state (S1) of the molecule within which it relaxes to the lowest vibrational state, followed by emission from the excited state. The excited states of typical fluorophores exhibit larger dipole moments than the ground states. Since fluorescence lifetimes (1-10ns) are at least an order of magnitude slower than solvent relaxation times (10-100ps), the dipole of the excited fluorophore can therefore be affected by the dipole moment of the surrounding solvent. Solvent dipoles can orient themselves along the dipolar axis of the excited molecule thereby reducing its energy and lowering the emission wavelength. Solvatochromic effects in fluorescence spectra for polar molecules are often significantly pronounced compared to non-polar molecules. The study of fluorescence data and the shifts observed thus gives us important information about the excited state of the molecules.

Four compounds were picked for fluorescence measurements to cover the range of molecules from those cross-conjugated with a strong donor, weak donor and strong acceptor; 1-NEt2, 1-Me and 1-NO2 respectively and the fully conjugated molecule C-NO2.

Due to the presence of strong electron donors, 1-NEt2 demonstrates strong fluorescence intensity in all solvents (figure 2.25 and table 2.7) and increasing quantum yields with increase in solvent polarity. In non-polar solvents (cyclohexane and toluene), red shoulders are seen suggesting possible J-aggregates. While 1-Me is not very fluorescent and has low quantum yields in all solvents (figure 2.26 and table 2.7), its quantum yields increase with increasing solvent polarity before dropping off again in higher polarity solvents.
Figure 2.25: Normalized fluorescence for 1-NEt2
Solvents in the key are listed in order of increasing $E_T(30)$

Figure 2.26: Normalized fluorescence for 1-Me
Solvents in the key are listed in order of increasing $E_T(30)$
Fluorescence emission data is listed in Table 2.7 below for comparison.

<table>
<thead>
<tr>
<th>Solvent</th>
<th>$E_T(30)$</th>
<th>1-Net2 λ_{em}</th>
<th>1-Me λ_{em}</th>
<th>1-NO2 λ{em}</th>
<th>C-NO2 λ{em}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyclohexane</td>
<td>30.9</td>
<td>451 (0.8)</td>
<td>(b)</td>
<td>503 (0.3)</td>
<td>527 (b)</td>
</tr>
<tr>
<td>Toluene</td>
<td>33.9</td>
<td>488 (3.0)</td>
<td>480 (0.0)</td>
<td>579 (4.0)</td>
<td>593 (54.2)</td>
</tr>
<tr>
<td>Diethylether</td>
<td>34.5</td>
<td>480 (2.4)</td>
<td>474 (0.2)</td>
<td>607 (0.8)</td>
<td>612 (38.4)</td>
</tr>
<tr>
<td>1,4-dioxane</td>
<td>36.0</td>
<td>499 (13.2)</td>
<td>502 (0.4)</td>
<td>607 (1.6)</td>
<td>616 (37.7)</td>
</tr>
<tr>
<td>Tetrahydrofuran</td>
<td>37.4</td>
<td>508 (11.1)</td>
<td>507 (0.5)</td>
<td>562 (0.1)</td>
<td>670 (6.7)</td>
</tr>
<tr>
<td>Chloroform</td>
<td>39.1</td>
<td>543 (17.1)</td>
<td>543 (0.5)</td>
<td>563 (0.2)</td>
<td>595 (2.0)</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>40.3</td>
<td>544 (7.1)</td>
<td>536 (1.0)</td>
<td>601 (0.3)</td>
<td>608 (29.4)</td>
</tr>
<tr>
<td>Acetone</td>
<td>42.2</td>
<td>545 (19.9)</td>
<td>535 (1.1)</td>
<td>582 (0.1)</td>
<td>608 (1.1)</td>
</tr>
<tr>
<td>N,N-dimethylformamide</td>
<td>43.2</td>
<td>555 (14.5)</td>
<td>546 (2.3)</td>
<td>c</td>
<td>617 (0.8)</td>
</tr>
<tr>
<td>Dimethylsulfoxide</td>
<td>45.1</td>
<td>566 (13.5)</td>
<td>562 (2.1)</td>
<td>586 (0.1)</td>
<td>613 (0.3)</td>
</tr>
<tr>
<td>Acetonitrile</td>
<td>45.6</td>
<td>561 (20.1)</td>
<td>552 (1.3)</td>
<td>c</td>
<td>610 (0.2)</td>
</tr>
<tr>
<td>Isopropanol</td>
<td>48.4</td>
<td>583 (32.6)</td>
<td>577 (0.6)</td>
<td>587 (0.2)</td>
<td>c</td>
</tr>
<tr>
<td>Ethanol</td>
<td>51.9</td>
<td>605 (20.4)</td>
<td>592 (0.6)</td>
<td>617 (0.1)</td>
<td>606 (0.2)</td>
</tr>
</tbody>
</table>

Table 2.7: Fluorescence emission data for cross-conjugated chromophores

a: Percent quantum yields in parentheses

b: Omitted due to aggregation.

c: No fluorescence data due to low fluorescence intensity or low solubility.
Figure 2.27: Solvatochromic trends of the emission spectra. The linear fits are shown only to guide the eye.

Fluorescence maxima of compounds 1-NEt2 and 1-Me show strong positive solvatochromic trends (figure 2.27). The maximum shift from cyclohexane to ethanol is 154nm for 1-NEt2 and 141nm for 1-Me. While 1-Me absorbance wavelengths are significantly blue-shifted (between 40-96nm) compared to 1-NEt2, the emission wavelengths in different solvents only differ by 13 nm (seen in ethanol) at the most (table 2.7). This would suggest similar excited state structures from which the molecules emit. An approximation of the charge separated (CS) structure depicted in figure 2.28 (top) for 1-NEt2 has two resonance forms which would account for the slightly lower energy emission wavelength compared to 1-Me but is quite similar to the CS structure (figure 2.28 (bottom)) for 1-Me. While the exact structure of the lowest lying electronically excited singlet (the emissive species) for the molecules in different solvents may be elusive, it is helpful to see the similarities in the two structures based on the CS species.
Figure 2.28: Neutral and charge separated states for 1-NEt2 (top), 1-Me (bottom)
The arrows next to the structures represent dipole moments

Both molecules also show increasing stokes shift with increasing solvent polarity (figure 2.29). The increase in stokes shift is quite pronounced for 1-Me compared to 1-NEt2 suggesting that the difference in ground state polarization and excited state polarization is higher for 1-Me than for 1-NEt2. This is to be expected since 1-NEt2 has two degenerate resonance forms (figure 2.28) in the CS state, delocalizing the charge and reducing the difference between the excited state dipole moment and the ground state dipole moment ($\mu_e - \mu_g$).
As discussed in the previous section, calculations of the HOMO obtained from CAM-B3LYP/6-31G* calculations (figure 2.12) show that the electron density in the ground state is predominantly located on the diethylaminobenzene donor for 1-NEt₂ and the LUMO while significantly delocalized shifts the electron density to the central carbonyl group. The molecule being symmetric, the HOMO is also symmetric on either side of the carbonyl group. This indicates that the individual dipoles on either side of the carbonyl are indeed as depicted in figure 2.28 and that the excited state would have two degenerate resonance structures.

The HOMO for 1-Me (figure 2.12) is present on the diethylaminobenzene donor as anticipated and no electron density observed on the methyl group indicating a lack of conjugation on two sides of the carbonyl group. Since the methyl group isn’t a strong acceptor, the LUMO is more delocalized on the donor part of the molecule.

Figure 2.29: Stokes shifts trends for the cross conjugated dyes. The linear fits are only to guide the eye.
In the case of 1-NO2 the presence of an electron withdrawing group results in significantly lower fluorescence quantum yields than are seen for 1-NEt2 \(\text{(table 2.7 and figures 2.30)}\). Quantum yields drop off quite significantly as solvent polarity increases indicating solvent interaction and quenching of the fluorescent species. The conjugated C-NO2 is a stronger fluorophore \(\text{(table 2.7 and figure 2.32)}\) than 1-NO2 due to its longer conjugation length. However, as seen with 1-NO2 quantum yields drop in more polar and hydrogen bonding solvents.

Figure 2.30: Normalized fluorescence for 1-NO2
Solvents in the key are listed in order of increasing \(E_T(30)\)

Figure 2.31: Neutral and charge separated states for 1-NO2
The arrows next to the structures represent dipole moments
Compound 1-NO2 also shows positive solvatochromism of the emission spectra, however the correlation to solvent polarity (figure 2.27) is more complex than that seen for 1-Me and 1-NEt2. 1-NO2 emission wavelengths are higher than those for 1-NEt2 even though the absorption wavelengths for the two molecules are quite close indicating a lower energy excited state. This also leads to higher observed stokes shifts (figure 2.29) especially in low polarity solvents. Looking at the neutral and CS structures for 1-NO2 (figure 2.31), one can see that the nitro group stabilizes the charge separated state leading to lowering of the energy of the CS state compared to 1-NEt2. While the CS state shown in figure 2.31 is an approximation of the first excited state, it suggests that the as 1-NO2 tends towards an excited state structure, a partial lowering of the dipole is to be expected. This would explain the low energy emission wavelengths observed in non-polar solvents such as toluene, diethyl ether and 1,4-dioxane (table 2.7) as they would better stabilize a lower dipole moment excited state.

Figure 2.32: Normalized fluorescence for C-NO2
Solvents in the key are listed in order of increasing $E_{1}(30)$
Figure 2.33: Neutral and charge separated states for C-NO2
The arrows next to the structures represent dipole moments

Emission wavelength data for conjugated control molecule C-NO2 (table 2.7, figure 2.27 and figure 2.32) shows no clear trend in solvatochromism. It seems to show a positive trend initially in going from cyclohexane to tetrahydrofuran and then a negative trend from tetrahydrofuran to ethanol. As seen in figure 2.32 however, most of emission wavelengths are centered around 600nm except for cyclohexane and THF. While the absorbance wavelengths for 1-NO2 and C-NO2 are similar, the emission wavelengths for C-NO2 are red-shifted due to stabilization by the conjugated bridge. Stokes shift for this molecule does not change a lot signifying that the difference in ground state and excited state dipoles ($\mu_e - \mu_g$) is not high. Both states are expected to be highly polar as depicted in figure 2.33.

Figure 2.34: HOMO and LUMO diagrams for C-NO2
The molecular orbital picture obtained from CAM-B3LYP/6-31G* calculations for 1-NO2 indicate that the HOMO is located on the donor and the LUMO on the acceptor with very little overlap between the two (figure 2.16). This further supports the excited state structure as depicted in figure 2.31. C-NO2 demonstrates a similarly situated HOMO and LUMO but with substantial overlap (figure 2.34) which likely results in high dipole moments in both ground and excited states.

2.4.1 Fluorescence spectroscopy-Summary:

In general the excited state of the donor substituted cross conjugated compounds 1-NEt2 is expected to be very similar to that of the methyl substituted cross conjugated compound 1-Me. 1-NEt2 likely has a lower excited state dipole moment than 1-Me due to the presence of two resonance structures in the possible excited state. 1-NEt2 and 1-Me show strong, positive solvatochromic trends suggesting that the excited states are more polar than the ground states.

Acceptor substituted cross-conjugated compound 1-NO2 exhibits a lower energy excited state than 1-NEt2 due to stabilization of the charge separated species by the acceptor. The dipole of the excited state for this asymmetric molecule, while likely lower than the ground state, is also tuned by the polarity of the solvent. It is important to note that while the possibility of a biradical excited state has not been discussed here, it is conceivable that 1-NO2 may show a propensity for such a species due to dihedral twist between the donor and acceptor parts of the molecule. This may also explain its erratic behavior with regards to solvent polarity. Control molecule C-NO2 shows the lowest energy emission wavelengths as well as low Stokes shifts due to its conjugated bridge.
2.5 X-ray Diffraction (XRD):

Due to the nature of the cross-conjugated center, the groups on either side of the carbonyl carbon can be viewed as independent units; hence the dipoles on cross-conjugated molecules are expected to be weaker than those for conjugated molecules. As seen in the UV-vis and fluorescence experiments, they are also strongly affected by their dielectric environment. Structure elucidation thus becomes essential to the understanding of their behavior.

There are two important components to the structure of these molecules: (a) the stereochemistry of the two vinylic double bonds (depicted as X and Y in figure 2.35) and (b) the dihedral angle between the planes of the phenyl rings (depicted as A and B in figure 2.36) on either side of the ketone.
The double bond stereochemistry (figure 2.35) can either be s-cis or s-trans based on the relative position of the vinylic double bond to the ketone double bond. It must be noted that all the double bonds have trans configurations and are fixed based on lowest energy structures. This creates four possible rotational isomers as shown. The various O---H and H---H interactions from the carbonyl oxygen and the vinylic hydrogens being energetically inequivalent determine the likelihood of the existence of a conformer. For example, isomer 4 (figure 2.35) with two s-trans motifs in the cross-conjugated structure introduces two sterically hindered vinylic hydrogen atoms on the benzylic carbons making this isomer highly energetically unfavorable. Isomers 1, 2 and 3 however are not hindered from inter-conversion as long as they do not go through isomer 4.

![Possible twisted structure for cross conjugated molecules.](image)

Figure 2.36: Possible twisted structure for cross conjugated molecules.

The dihedral angle between the two phenyl groups A and B as shown in figure 2.36 on either side of the cross-conjugation center affects the conjugation from either end of the molecule to the center. The change in shape of molecules is known to affect dipole moments and hyperpolarizability of the molecule. Push-pull molecules that exist in a twisted conformation in the ground state but are planar in the excited state would conceivably have a large change in the dipole moments between ground and excited states. Such a phenomenon can lead to a large molecular first hyperpolarizibility β.
There is often a trade-off between dipole moment and poling efficiency. Typical high β chromophores with higher dipole moments interact more strongly with the applied electric field than chromophores with lower dipole moments. The disadvantage however is that chromophore dipole-dipole interactions are much stronger (as they scale with the square of the chromophore dipole moment (μ)) than dipole-electric field interactions (which scale linearly with μ). A lowering of the dipole moments due to twisted structures and cross-conjugated structures can give rise to higher poling efficiencies due to lower dipole-dipole interactions.

2.5.1 **Calculated geometries:**

Gaussian 09C was used to calculate optimized geometries using the B3LYP hybrid functional and the 6-31+G* basis set (figure 2.37 and figure 2.38). These geometries were further used to calculate molecular hyperpolarizibilities (as discussed in the next section) as well as electronic transition energies (as discussed in the UV-Vis section).

![Figure 2.37: Optimized geometries of cross conjugated molecules from B3LYP calculations](image)
Figure 2.38: Optimized geometry of conjugated molecule C-NO2 from B3LYP calculations

Calculated geometries indicate all s-cis conformations for the vinylic double bonds with respect to the ketone. The dihedral angle between the phenyl rings on either side of the cross conjugation center was found to be zero and the all molecules appear to be planar.

2.5.2 Experimentally determined structures

Crystals were grown of compounds 1-NEt2, 1-Me, 1-CN, 1-NO2 and C-NO2 (figure 2.6) and analyzed using X-ray diffraction. Crystals could not be grown of 1-Ph and 1-F (figure 2.6) as they were viscous liquids.

X-ray crystallographic data was collected at -173°C on a Bruker APEX II single crystal X-ray diffractometer, Mo-radiation. The data was integrated and scaled using SAINT, SADABS within the APEX2 software package by Bruker. Complete crystallographic details and data tables can be found in the appendix to Chapter 2.
Orange crystals of 1-NEt2 were grown from hot ethyl acetate. Figure 2.39(a) shows the crystal structure of 1-NEt2. Trans stereochemistry is observed for both double bonds and s-cis geometries are indicated for double bonds with respect to the central ketone. No other isomers were seen. The two phenyl groups were found to be slightly twisted with respect to each other. Figure 2.39(b) shows the crystal packing of 1-NEt2. It is a centrosymmetric molecule and the molecules in the crystal are connected via week van der Waals interactions. A zigzag plus ca. 90° tilt motif describes the packing structure best.
Ethyl acetate/hexanes (8/2 v./v.) was used for growing yellow-orange 1-Me crystals. 1-Me shows a fairly planar structure (figure 2.40(a)). The double bond stereochemistry is trans and the vinylic double bond is in a s-cis configuration with respect to the ketone. The molecular structure itself is non-centrosymmetric but the crystal is ordered centrosymmetrically and the molecules are aligned with their long elongation parallel. Weak van der Waals interactions between ketones and methyl hydrogen atoms hold the molecules together.
1-CN

![ORTEP and packing diagram of 1-CN](image)

Figure 2.41: (a) ORTEP of the structure of 1-CN with thermal ellipsoids at the 50% probability level. (b) Packing diagram of 1-CN

Dark red crystals of 1-CN were grown from hot ethyl acetate. The X-ray structure (figure 2.41(a)) shows s-cis geometries for both double bonds as well as trans stereochemistries. The cyano-benzene acceptor appears twisted slightly out of plane with respect to the diethylamino benzene donor. A pseudo-translational symmetry is observed between the two slightly different representations of the chromophore in the crystal structure (figure 2.41(b)). The crystal packing is centrosymmetric.
Red 1-NO2 crystals were grown from hot ethyl acetate. Both double bond geometries were found to be trans (figure 2.42(a)). The X-ray data indicates that some parts of molecule are disordered and the crystal is centrosymmetric (figure 2.42(b)). The fragment NO2-Ph-C7-C8-C10-C11 is disordered over two positions (figure 2.43) with the occupancy ratio of 0.797(5):0.203(5). This means that the molecules in crystal statistically occupy two positions with a population of around 8:2. The major structure is the one with s-
trans(C10-C11:C9-O1), s-cis (O1-C9:C8-C7) geometry while the minor structure has s-cis (C10-C11:C9-O1), s-trans (O1-C9:C8-C7) geometry. Both ethyl substituents at N1 atom are also disordered over two positions with the occupancy ratio of 0.896(6):0.104(6).

There also seems to be a substantial rotation of the nitrophenyl group with respect to the diethylaminobenzene. This is discussed later in this section.

Figure 2.43: Scheme of disorder in the molecule 1-NO2; bonds of the minor part are shown with dashed lines.
Toluene was used for recrystallization of C-NO2. Crystal structure (Figure 2.44(a)) shows trans stereochemistry for both double bonds. The terminal NO2 and N(CH3)2 moieties are disordered with each other, where a twofold rotation reproduces the full molecule out of a half one. The molecules are aligned with their long elongation parallel and the crystal packing is centrosymmetric. A zig-zag rotation between neighboring molecules appears perpendicular to that direction. The structure is planar with a dihedral angle of 0°, as would be expected for a fully conjugated molecule.
2.5.3 **Dihedral angles:**

![Dihedral angle: 13.7°](image)

![Dihedral angle: 21.4°](image)

Figure 2.45: Dihedral angles between phenyl groups on either side of cross-conjugation center of molecules 1-NEt2 and 1-CN

The dihedral angle between the planes of the two phenyl rings on either side of the carbonyl was measured using the carbons C3-C4-C12-C13 from crystallographic structures for molecules 1-NEt2, 1-CN. The angle was found to be 13.7° in 1-NEt2 (**figure 2.45(top)**) and 21.4° in 1-CN (**figure 2.45(bottom)**). The dihedral angle between the diethylamino phenyl donor and the nitrophenyl acceptor for 1-NO2 (measured using carbons C4-C5-C12-C13) is
significantly larger at 59.5° (Figure 2.46(top)). C-NO2 has planar geometry with no twisting about any of the phenyl rings (figure 2.46(bottom)).

The lack of planarity between the aromatic rings in the cross-conjugated molecules is an indication of the lack of orbital overlap between the two ends. The twist between the two phenyl rings increases with increasing strength of acceptor. It must be noted that for 1-NO2, the angle between the diethylamino phenyl group and the ketone is 25° and that between the nitrophenyl group and the ketone is 28.5° indicating that the short conjugation existing between the two ends and the bridge is further compromised in the case of 1-NO2.
2.6 Hyper-Rayleigh Scattering (HRS) Measurements:

2.6.1 Experimental details:

All HRS measurements were performed by Prof David Shelton (Department of Physics, University of Nevada, Las Vegas, NV).

The β values for the chromophores in CDCl$_3$ solution were determined from hyper-Rayleigh scattering (HRS) measurements at a laser wavelength of 1064 nm (using a pulsed Nd:YAG laser) and sample temperature 25°C. Calibration of the HRS results used 4-nitroaniline (pNA) in CDCl$_3$ solution as a reference standard. Dilute solutions of pNA (36.4mM), 1-NO$_2$ (38.4µM) and C-NO$_2$ (43µM) in CDCl$_3$ were freshly prepared for each measurement. The solution concentrations were chosen to give comparable signals for the chromophore and reference solutions, and the much smaller HRS signal measured for the neat solvent was subtracted. Sample and reference HRS signals were compared using the same laser focusing, collection optics and polarization configuration, using apparatus and techniques as previously described81. The laser power incident on the sample was adjusted without affecting the alignment or focusing of the laser beam using a half-wave plate and polarizer combination. The sample absorption at the 532 nm second harmonic wavelength was measured and the HRS signals were corrected for the small self-absorption of the scattered light along the 1.5 mm path to the cuvette exit face. The HRS signal at 532 nm was corrected for thermal lensing effect as well as any two photon fluorescence contribution. Further details are provided in the appendix to Chapter 2.
2.6.2 Theory details:

All quantum mechanical calculations for these molecules were performed by Kerry E. Garrett. Quantum calculations for were performed using three levels of theory:

1) The mild hybrid density functional B3LYP, which includes a constant 20% Hartree-Fock (HF) exchange over the electronic interaction range to correct for the asymptotic decay of the exchange potential at long range.

2) CAM-B3LYP which divides the exchange into short-range and long-range parts with 19% and 46% HF exchange respectively and

3) Second order Møller-Plesset perturbation (MP2), a computationally-feasible correlated wavefunction method that was used for comparison with DFT.

The static hyperpolarizabilities, $\beta_{\text{HRS}}(0)$ were corrected for dispersion at 1064 nm with a damping factor, γ, set to 100 nm chosen so to match the full-width at half-maximum of the experimental spectra. The theoretical absorption wavelengths, used in the two-state model were provided using CAM-B3LYP/6-31+G*. Additionally, for comparison with the two-state model, frequency-dependent hyperpolarizabilities, $\beta_{\text{HRS}}(2\omega)$, were calculated at 1064 nm using the coupled-perturbed Kohn-Sham (CPKS) method for both B3LYP and CAM-B3LYP functionals.

All of the above methods – B3LYP, CAM-B3LYP, and MP2 – consistently used 6-31+G* basis and with solvent effects according to the polarizable continuum method (PCM) for all of the properties calculations on PCM-B3LYP/6-31+G* optimized geometries. All quantum calculations were performed using Gaussian 09 Rev. D.01 suite of QM codes.

The experimental HRS measurements give frequency dependent hyperpolarizability values with respect to a reference molecule (pNA in this case) thus the data obtained from HRS experiments are the $(\beta_{\text{HRS}}/\beta_{\text{pNA}})_{1064}$ values in table 2.10. It must be noted that resonance enhancement at the
frequency doubled 532 nm of the β_{HRS} values it is expected for 1-NO2 and C-NO2 although they are likely to be of a similar magnitude for both molecules since their absorption wavelengths and molar absorptivities are are quite similar as observed in their optical transition data (figure 2.24).

To account for any enhancement observed in the measurement, the experimental static hyperpolarizability ratios, $\beta_{\text{HRS}(0)}/\beta_{\text{pNA}(0)}$ (table 2.11) were extrapolated from the frequency dependent ratios using the two level model (TLM) equation developed by Oudar and Chemla14. Extrapolation to the static limit becomes increasingly unreliable however as resonance is approached because line broadening effects need to be taken into account. A correction factor thus applied to the TLM equation to give the damped two level model dispersion fit (see appendix to Chapter 2).

The experimentally obtained value for β_{HRS} at 1064 nm for 4-nitroaniline, 11.4×10^{-30} esu was used to convert the $(\beta_{\text{HRS}}/\beta_{\text{pNA}})_{1064}$ ratios to $\beta_{\text{HRS}(1064)}$ for both molecules (table 2.8). The static $\beta_{\text{HRS}(0,TLM)}$ value for pNa was extrapolated using the TLM expression in a fashion similar to that described above. This value was used multiplied with the $\beta_{\text{HRS}(0)}/\beta_{\text{pNA}(0)}$ values to give the static hyperpolarizibilities for both molecules (table 2.9). Structures for the pNA, 1-NO2 and C-NO2 are shown in figure 2.47 for convenience.

![Structures for pNA, 1-NO2 and C-NO2](image)

Figure 2.47: Structures for pNA, 1-NO2 and C-NO2
2.6.3 **Hyper-Rayleigh scattering - Discussion:**

The frequency dependent hyperpolarizability $\beta_{\text{HRS}(1064)}$ for 1-NO$_2$ was significantly overestimated (by a factor of ~1.73) by B3LYP calculations and largely underestimated by both CAM B3LYP and MP2 calculations by factors of 2.6 and 2.5 respectively. MP2 calculations for C-NO$_2$ were quite accurate however and the CAM B3LYP value was underestimated by only a factor of 1.25.

<table>
<thead>
<tr>
<th>Compound</th>
<th>$\beta_{\text{HRS}(1064)}$ (10^{-30} esu)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Experimental</td>
</tr>
<tr>
<td>pNA</td>
<td>11.4</td>
</tr>
<tr>
<td>1-NO$_2$</td>
<td>627</td>
</tr>
<tr>
<td>C-NO$_2$</td>
<td>700</td>
</tr>
</tbody>
</table>

Table 2.8: Experimental and Calculated Frequency Dependent β_{HRS} values.

For the static values once again B3LYP, overestimating by a factor of 1.25 was found to be a better predictor for 1-NO$_2$ compared to CAM B3LYP and MP2 functionals which underestimate by factors of 2.4 and 2 respectively. B3LYP was found to overestimate static hyperpolarizability values for C-NO$_2$ by a factor of 1.7 and CAM B3LYP and MP2 were found to underestimate this value by factors of 1.8 and 1.4 respectively.
<table>
<thead>
<tr>
<th>Compound</th>
<th>$\beta_{\text{HRS(0,TLM)}}$ (10$^{-30}$ esu)</th>
<th>Experimental</th>
<th>B3LYP/6-31+G*</th>
<th>CAM B3LYP/6-31+G*</th>
<th>MP2/6-31+G*</th>
</tr>
</thead>
<tbody>
<tr>
<td>pNA</td>
<td></td>
<td>6.29</td>
<td>9.21</td>
<td>8.02</td>
<td>7.76</td>
</tr>
<tr>
<td>1-NO2</td>
<td></td>
<td>156.63</td>
<td>196</td>
<td>66.43</td>
<td>77</td>
</tr>
<tr>
<td>C-NO2</td>
<td></td>
<td>197.04</td>
<td>338</td>
<td>111</td>
<td>141</td>
</tr>
</tbody>
</table>

Table 2.9: Experimental and Calculated β_0 values

All three methods do catch the trend of higher hyperpolarizability values for **C-NO2** than for **1-NO2** albeit to different extents.

Hyperpolarizability ratios are often more helpful in analyzing the accuracy and trends of the values obtained by quantum calculations as most calculations may over or underestimate the absolute hyperpolarizability values by a consistent factor.

The experimental values for (β_{HRS}/β_{pNA})$_{1064}$ of **1-NO2** was predicted quite accurately by B3LYP calculations. Both CAM B3LYP and MP2 calculations on the other hand significantly underestimate this ratio by a factor of around 2.9. A similar trend is observed for the static ratios, $\beta_{\text{HRS(0)}}$/$\beta_{\text{pNA(0)}}$ where the B3LYP value (21.3) comes close to the experimental ratio (24.9) while CAM B3LYP (8.28) and MP2 (9.92) once again significantly underestimate the values by factors of 3 and 2.5 respectively.

The frequency dependent ratios for **C-NO2** were underestimated only by a factor of ~1.25 by MP2 and by a factor of ~1.6 by CAM B3LYP calculations while B3LYP overestimated the ratio by a factor of ~1.86. The static ratios for **C-NO2** were better predicted by B3LYP calculations while CAM B3LYP and MP2 calculations were underestimated by factors of 2.27 and 1.7 respectively.
Comparing the $\beta_{\text{HRS}}/\beta_{\text{pNA}}$ values for the conjugated versus the cross-conjugated molecule, the frequency dependent value for \textbf{C-NO2} was found to be higher than that of \textbf{1-NO2} by a factor of ~ 1.12 while the static value was higher by a factor of 1.26. It is therefore safe to say that while the introduction of a cross-conjugated center might reduce the molecular hyperpolarizability β slightly, it is not so detrimental so as to render the motif impractical for use in second order nonlinear materials.
2.6.4 Hyper-Rayleigh scattering measurements - Summary

The frequency dependent $\beta_{\text{HRS}(1064)}$ value for 1-NO$_2$ was not predicted very well by any of the methods investigated here and only the B3LYP functional comes closest to the experimental value. The $\beta_{\text{HRS}(1064)}$ value for the conjugated C-NO$_2$ molecule was predicted accurately by CAM-B3LYP and MP2 methods. The static hyperpolarizability $\beta_{\text{HRS}(0,\text{TLM})}$ value for 1-NO$_2$ was found to be predicted best once again by B3LYP much better than the frequency dependent value. The static value for C-NO$_2$ was found to be predicted most accurately by the MP2 functional albeit off by a factor of 1.4

Overall, B3LYP provided fairly accurate values for static ratios $\beta_{\text{HRS}(0)}/\beta_{\text{PNA}(0)}$ for both the cross conjugated 1-NO$_2$ and the conjugated C-NO$_2$. MP2 calculations were found to be better for the frequency dependent ratios $(\beta_{\text{HRS}}/\beta_{\text{pNA}})_{1064}$ of the conjugated molecule and B3LYP once again worked well for the cross conjugated molecule.

Most importantly, experimental hyperpolarizability numbers for 1-NO$_2$ were lower than those of C-NO$_2$ only by factors of 1.12 for frequency dependent values and 1.26 for the static values. This suggests that cross-conjugated motifs are reasonable for use in second order non-linear molecules.
2.7 Conclusions to Chapter 2:

The synthesis and characterization of six cross-conjugated molecules 1-NEt2, 1-Me, 1-Ph, 1-PhF, 1-CN and 1-NO2 and one conjugated control molecule C-NO2 has been described. Their electronic properties were investigated using UV-vis spectroscopy and compared with quantum mechanical calculations. The primary optical absorbance of the cross-conjugated molecules was identified as a charge-transfer transition from the HOMO on the diethylamino donor to the LUMO on the acceptor. These transitions were especially evident for 1-CN and 1-NO2 clearly indicating that the primary transition occurs across the cross-conjugated carbonyl bridge.

The presence of the cross-conjugated bridge also causes unusual behavior in the fluorescence spectrum of the asymmetric molecule 1-NO2, i.e. lower energy emission wavelengths in non-polar solvents. This suggests a lower excited state dipole in 1-NO2 that can be explained by breaking the molecular dipole into two constituent parts as shown in figure 2.31.

The crystal structures of the cross-conjugated molecules 1-NEt2, 1-Me, 1-CN and 1-NO2 and the conjugated molecule C-NO2 were studied using X-ray diffraction. It was found that the quite unexpectedly, cross-conjugated molecules exhibited dihedral twists ranging from ~14° (for 1-NEt2) to 59.5° (for 1-NO2)

Finally HRS measurements comparing 1-NO2 and C-NO2 found that the cross-conjugation reduces hyperpolarizability only by about 12-26% compared to the full conjugated molecule.
2.8 Appendix to Chapter 2

2.8.1 Synthesis of cross-conjugated chromophores:

Experimental:

All reactions were carried out under a nitrogen atmosphere in flame-dried glassware. Standard air-free techniques were used for handling air and moisture sensitive reagents. All solvents were used as received from commercial suppliers. All NMR spectra were recorded using Bruker 300 MHz and Bruker 500 MHz spectrometers. Chemical shifts (δ) are given in parts per million (ppm) and measured against residual solvent peaks as internal standards. Coupling constants (J) are given in Hertz (Hz). UV-Vis spectra were recorded on the Agilent 8453 spectrophotometer. Fluorescence spectra were recorded on the Horiba FL3-21tau fluorescence spectrophotometer. Fresh solvents were used for solution preparation.

\[\text{1-NEt2: 4-Diethylaminobenzaldehyde (1.77g, 9.98mmol), acetone (0.29g, 4.99mmol), NaOH (1.4 g 25\% aq., 62.5mmol) and 2-butanol (25 mL) were charged into a 100mL round bottom flask and stirred at room temperature under nitrogen for 5 days. Orange solids had crashed out of solution; these were filtered over a Buchner funnel, washed with 2-butanol and dried under vacuum for 2 days. The solid was then re-dissolved in dichloromethane (100mL), washed with NH}_4\text{Cl (3x100mL) dried over MgSO}_4, \text{filtered and stripped of solvent. The solids}\]
were dried under vacuum to give pure product. (0.4g, 11%). 1H NMR (300MHz,CDCl$_3$): δ 7.67 (d, $J = 15.7$Hz, 1H), 7.49 (d, $J = 8.9$Hz, 2H), 6.86 (d, $J = 15.7$Hz, 1H), 6.65 (d, $J = 8.9$Hz, 2H), 3.41 (q, $J = 7.1$Hz, 4H), 1.2 (t, $J = 7.1$Hz, 6H). HRMS (ESI) (M+, C$_{23}$H$_{32}$N$_2$O): calcd, 376.2515; found, 377.26232 [M+H].

\[
\begin{array}{c}
\text{N} \\
\text{O} \\
\text{O} \\
\text{N} \\
\text{aOH}
\end{array}
\xrightarrow{\text{NaOH}}
\begin{array}{c}
\text{N} \\
\text{O} \\
\text{O} \\
\text{N} \\
\text{aOH}
\end{array}
\]

\textbf{1-Me:} 4-Diethylaminobenzaldehyde (2g, 11.28mmol) was added to acetone (5mL) in a 50mL round bottom flask and allowed to stir until dissolved. 50% aqueous NaOH (2mL) was added and stirred for 5 min followed by addition of deionized water (4mL) and heating at 60°C overnight. Heating was stopped and the solvent was removed by rotary evaporation. The crude reaction was made acidic by dropwise addition of 6M HCl. The reaction was redissolved in CH$_2$Cl$_2$ (150mL) and washed with aq. sat. NH$_4$Cl (4x50mL), dried over MgSO$_4$, filtered and stripped of solvent. Purification was achieved by silica gel chromatography in Ethyl Acetate/Hexanes 2/8 to yield pure product. (1.77g, 72%). 1H NMR (CDCl$_3$): δ 7.45 (d, $J = 15.9$Hz, 1H), 7.41 (d, $J = 9$Hz, 2H), 6.64 (d, $J = 9$Hz, 2H), 6.52 (d, $J = 15.9$Hz, 1H), 3.4 (q, $J = 7.2$Hz, 4H), 2.33 (s, 3H), 1.19 (t, $J = 7.2$Hz, 6H). HRMS (ESI) (M+, C$_{14}$H$_{19}$NO): calcd, 217.1467; found, 218.1564 [M+H].
1-Ph: All glassware was flame-dried prior to use. **1-Me** (0.5g, 2.3mmol) and benzaldehyde (0.465mL, 4.6mmol) were dissolved in ethanol (6mL) in a 25mL round bottom flask. NaOMe solution was prepared by reacting sodium (0.116g, 3.9mmol) with methanol (6mL) in a separate 25mL flask. It was then added to the reaction dropwise and the reaction was allowed to stir at room temperature for 2-3 days. Reaction was monitored via GC-MS until there was no more increase in formation of product was seen. All the solvent was evaporated. The reaction was redissolved in dichloromethane (50mL), washed with aq. sat. NH₄Cl (3x50mL), dried over MgSO₄, filtered and stripped of solvent. Column chromatography (0.5/1.5/8.5 acetonitrile/ethyl acetate petroleum ether) was performed to give final product. (0.14g, 24%). ¹H NMR (CDCl₃) δ 7.75 (d, J = 15.6Hz, 1H), 7.74 (d, J = 15.9Hz, 1H), 7.638 (m, 2H), 7.52 (d, J = 9Hz, 2H), 7.41 (m, 3H), 7.13 (d, J = 15.9Hz, 1H), 6.89 (d, J = 15.6Hz, 1H), 6.67 (d, J = 9Hz, 1H), 3.41 (q, J = 7.06Hz, 4H), 1.21 (t, J = 7.06Hz, 6H). HRMS (ESI) (M+, C₂₁H₂₃NO): calcd, 305.178; found, 306.18849 [M+H].
1-F: All glassware was flame-dried prior to use. 1-Me (0.15g 0.69mmol) and 4-fluorobenzaldehyde (0.111mL, 1.035mmol) were dissolved in ethanol (13mL) in a 25mL round bottom flask. NaOMe solution was prepared by reacting sodium (0.027g, 1.17mmol) with methanol (2.5mL) in a separate 25mL flask. It was then added to the reaction dropwise and the reaction was allowed to stir at room temperature for 2 days. All the solvent was evaporated. The reaction was re-dissolved in dichloromethane (50mL), washed with aq. sat NH₄Cl (3x50mL), dried over MgSO₄, filtered and stripped of solvent. Column chromatography (1/1 dichloromethane/hexanes to 100 % dichloromethane to 5% ethyl acetate/dichloromethane) was performed to give final product. (0.12g,54%). ¹H NMR (CDCl₃, 500MHz) δ 7.71 (d, J = 15.5Hz, 1H), 7.66 (d, J = 16Hz, 1H), 7.588 (dd J = 8.76Hz, J = 8.75Hz, 2H), 7.49 (d, J = 8.94Hz, 2H), 7.08 (dd, J = 8.07Hz, J = 8.09Hz, 2H), 7.02 (d, J = 16Hz, 1H), 6.83 (d, J = 15.5Hz, 1H), 6.65 (d, J = 8.94Hz, 2H), 3.41 (q, J = 7.1Hz, 4H), 1.2 (t, J = 7.1Hz, 6H) ¹⁹F NMR (CDCl₃) δ 110.88. HRMS (ESI) (M+, C₂₁H₂₂FNO): calcd, 323.1685; found, 324.17903 [M+H].
1-CN: 1-Me (0.5g, 2.3mmol) and 4-cyanobenzaldehyde (0.452g, 3.45mmol) were added to a 50 mL round bottom flask and dissolved in 13mL of 1/1 acetonitrile/ethanol solution. Piperidine (15 drops, catalytic) was added, a water jacketed condenser was attached to the flask and the reaction was heated to 90°C for 7 days. Heating was stopped and the solvent was stripped from the reaction. The resulting crude was redissolved in dichloromethane and washed with aq. sat. NH₄Cl (3x75mL). The organic layer was dried over MgSO₄, filtered and stripped of solvent. The product was purified by column chromatography (acetonitrile/ethyl acetate/petroleum ether = 0.5/1.5/8.5) followed by recrystallization in ethyl acetate to give final product (0.2g, 26%). ¹H NMR (CDCl₃) δ 7.73 (d, J = 15.8Hz, 1H), 7.66 (d, J = 15.8Hz, 1H), 7.69 (m, 4H), 7.51 (d, J = 8.83Hz, 2H), 7.16 (d, J = 15.8Hz, 1H), 6.83 (d, J = 15.73Hz, 1H), 6.68 (m, 2H), 3.43 (q, J = 7.1Hz, 4H), 1.21 (t, J = 7.1Hz, 6H). HRMS (ESI) (M+, C₂₂H₂₂N₂O): calcd, 330.1732; found, 331.18401 [M+H].
1-NO2: A 2.6M NaOMe solution was made by reacting sodium (0.24g, 10.4mmol) with methanol (4mL) in a flame dried 10mL round bottom flask. A 500mL rbf was flame dried and charged with 1-Me (2g, 9.2mmol), 4-nitrobenzaldehyde (2.086g, 13.8mmol) and ethanol (185mL). The solution was stirred until all the solids dissolved. The NaOMe solution was added dropwise to the reaction flask over a period of 6-7 min. The solution changed color from reddish orange to dark red. The reaction was stirred at room temperature for 2 days. The solvent was evaporated to give a red solid. This was rinsed with water and hexanes to remove any residual methanol and ethanol. The red solid was dissolved in CH$_2$Cl$_2$ (100mL) and washed with aq. sat. NH$_4$Cl (4x50mL) followed by drying over MgSO$_4$, filtering and removal of solvent by rotary evaporation. Crude was purified on a silica gel column using gradient elution (100% Dichloromethane to 5% Ethyl Acetate/ Dichloromethane). (1.55g, 48 %). 1HNMR (CDCl$_3$) δ 8.29 (d, $J = 8.82$Hz, 2H), 8.05 (d, $J = 8.85$Hz, 2H), 7.78 (d, $J = 15.87$Hz, 1H), 7.74 (d, $J = 15.99$Hz, 1H), 7.58 (m, 3H), 6.98 (d, $J = 15.85$Hz, 1H), 6.72 (d, $J = 8.94$Hz, 2H), 3.42 (q, $J = 6.99$Hz, 4H), 1.12 (t, $J = 6.98$Hz, 6H). HRMS (ESI) (M+, C$_{21}$H$_{22}$N$_2$O$_3$): calcd, 350.163; found, 351.17032 [M+H].
C-NO2: A 25mL rbf was charged with 4-(dimethylamino)cinnamaldehyde (0.5g, 2.85mmol), 4-nitrophenylacetic acid (0.622g, 3.42mmol) and piperidine (5mL). The reaction was heated to 100°C for 3 hr. Heating was stopped and after cooling back down to room temperature all of the piperidine was stripped on a rotary evaporator. Crude reaction mixture was redissolved in dichloromethane (100mL) and washed with DI water (3x100mL). Aq. Sat. NH₄Cl was used to break up any emulsions formed. The organic phase was dried over MgSO₄, filtered and stripped of solvent. Column chromatography was done (3/7/0.1 dichloromethane/hexanes/methanol to 10/0.1 dichloromethane/methanol). Final purification was done by recrystallization from toluene to give red solid. (0.5g, 59.5%). ¹H NMR (CDCl₃) δ 8.16 (d, J = 8.5Hz, 2H), 7.5 (d, J = 8.7Hz, 2H), 7.37 (d, J = 8.66Hz, 2H), 7.1 (dd, J = 15.3Hz, J = 9.3Hz, 1H), 6.77 (m, 4H), 6.59 (d, J = 15.37Hz, 1H), 3.01 (s, 6H). HRMS (ESI) (M+, C₁₈H₁₈N₂O₂): calcd, 294.1368; found, 295.14712 [M+H].
2.8.2 Nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry data:
HRMS (ESI) of 1-NEt2
HRMS (ESI) of 1-Me

![Graph showing HRMS (ESI) analysis of 1-Me]

-
- MRM5.177.1
- 8/30/2013 2:10:14 PM
- R=100K

- Relative Abundance
- m/z
- 218.15636
- 218.15594
- 219.15980
- 219.15730

- NL:
 - 2.30e7
 - MRD5.177.1
 - 1:1.34
 - RT: 0.02; 0.95
 - AV:
 - 34 T: FTMS + p ESI
 - Full ms
 - [150.00-500.00]

- Compositions:
 - C14 H19 NO + H:
 - C14 H30 N1: O1
 - pa Chrg 1
HRMS (ESI) of 1-Ph

D:\calibur\MRD7-10_1
8/30/2013 1:58:27 PM
R-100K

NL:
2.75E6
MRD7-10_14F-36
RT: 0.03-5.98 AV:
36T: FTMS + p ESI
Full mass
[200.00-900.00]

NL:
7.91E5
C20H14NO2H
C15H12N2O3
pH CHg 1
1HNMR of 1-Ph

m.c6-53-f2
in CDCl$_3$
on DRX489
2D-COSY of 1-PhF

mrd6-53-12
in CDCl3
on DRX499
\[^1\text{HNMR of 1-PhF}\]

`mrd6-5941 FNMR
in CDCl3
on AV 301`
HRMS (ESI) of 1-PhF
1HNMR of 1-CN

In CDCl$_3$

on AV 301
$^{1}\text{HNMR of 1-NO}_2$
1HNMR of C-NO$_2$
HRMS (ESI) of C-NO2

NL:
2.65E6
MRD6-75_281.54
RT: 0.02 0.96 AV:
34 T FTMS + p ESI
Full ms
[150.00-350.00]

NL:
8.12E5
C18 H18 N2 O2 + H:
C18 H19 N2 O2
pC Chrg 1

296.15069
296.14712
296.14410
296.14746
2.8.3 X-ray diffraction data:

Experimental:

Crystallographic experiments and structure elucidation of 1-NEt2, 1-Me, 1-CN and C-NO2 were performed by Prof. Werner Kaminsky, Department of Chemistry, University of Washington, Seattle, WA.

Crystallographic experiments and structure elucidation of 1-NO2 was performed by Evgheni V. Juckov, Department of Chemistry, New Mexico Highlands University, Las Vegas, NM.

X-ray crystallographic data was collected at -173°C on a Bruker APEX II single crystal X-ray diffractometer, Mo-radiation. The data was integrated and scaled using SAINT, SADABS within the APEX2 software package by Bruker.
1-NEt2 Crystal Packing Structure
Crystal data for 1-NEt2

Identification code: mrd_6_163_0ma
Empirical formula: C25 H32 N2 O
Formula weight: 376.53
Temperature: 100(2) K
Wavelength: 0.71073 Å
Crystal system: Monoclinic
Space group: P 21/c

Unit cell dimensions:
- a = 10.6803(8) Å, α = 90°
- b = 40.253(3) Å, β = 100.715(4)°
- c = 10.1636(8) Å, γ = 90°

Volume: 4293.3(6) Å³

Z: 8

Density (calculated): 1.165 Mg/m³

Absorption coefficient: 0.071 mm⁻¹
F(000): 1632

Crystal size: 0.20 x 0.17 x 0.10 mm³

Theta range for data collection: 1.94 to 28.56°

Index ranges: -14≤h≤14, -53≤k≤53, -13≤l≤13

Reflections collected: 207280

Independent reflections: 10850 [R(int) = 0.0425]
Completeness to theta = 25.00°: 99.9 %
Max. and min. transmission: 0.9930 and 0.9860

Refinement method: Full-matrix least-squares on F²
Data / restraints / parameters: 10850 / 0 / 513

Goodness-of-fit on F²: 1.028

Final R indices [I>2sigma(I)]: R1 = 0.0401, wR2 = 0.0968
R indices (all data): R1 = 0.0487, wR2 = 0.1034
Largest diff. peak and hole: 0.318 and -0.196 e.Å⁻³
1-Me Crystal Packing Structure
Crystal data for 1-Me

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification code</td>
<td>mrd_5_177_0m</td>
</tr>
<tr>
<td>Empirical formula</td>
<td>C14 H19 N O</td>
</tr>
<tr>
<td>Formula weight</td>
<td>217.30</td>
</tr>
<tr>
<td>Temperature</td>
<td>100(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P 2\text{I}</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>\begin{align*}</td>
</tr>
</tbody>
</table>
| a &= 7.2907(9) \text{ Å} \quad & \alpha = 90^\circ. \\%
| b &= 7.8314(9) \text{ Å} \quad & \beta = 95.859(6)^\circ. \\%
| c &= 10.9265(13) \text{ Å} \quad & \gamma = 90^\circ. \\%
| Volume | 620.60(13) Å\^3 |
| Z | 2 |
| Density (calculated) | 1.163 Mg/m\^3 |
| Absorption coefficient | 0.072 mm\(^{-1}\) |
| F(000) | 236 |
| Crystal size | 0.32 x 0.16 x 0.14 mm\(^3\) |
| Theta range for data collection | 1.87 to 28.59\(^\circ\). |
| Index ranges | -9\(\leq\)h\(\leq\)9, -10\(\leq\)k\(\leq\)10, -14\(\leq\)l\(\leq\)14 |
| Reflections collected | 23647 |
| Independent reflections | 3035 [R(int) = 0.0299] |
| Completeness to theta = 25.00\(^\circ\)| 96.0 \% |
| Max. and min. transmission | 0.9899 and 0.9772 |
| Refinement method | Full-matrix least-squares on \text{F}^2 |
| Data / restraints / parameters | 3035 / 2 / 148 |
| Goodness-of-fit on \text{F}^2 | 1.039 |
| Final R indices [I>2\sigma(I)] | R1 = 0.0525, wR2 = 0.1329 |
| R indices (all data) | R1 = 0.0565, wR2 = 0.1370 |
| Absolute structure parameter | 0.3(18) |
| Largest diff. peak and hole | 0.773 and -0.228 e.Å\(^{-3}\) |
1-CN Crystal Packing Structure
Crystal data for 1-CN

Identification code
mrd_6_95_0m

Empirical formula
C22 H22 N2 O

Formula weight
330.42

Temperature
100(2) K

Wavelength
0.71073 Å

Crystal system
Triclinic

Space group
P -1

Unit cell dimensions
\[a = 10.4577(13) \text{ Å}, \quad \alpha = 97.245(8)^\circ.\]
\[b = 12.0506(15) \text{ Å}, \quad \beta = 98.964(7)^\circ.\]
\[c = 14.4789(18) \text{ Å}, \quad \gamma = 99.147(8)^\circ.\]

Volume
1758.0(4) Å³

Z
4

Density (calculated)
1.248 Mg/m³

Absorption coefficient
0.077 mm⁻¹

F(000)
704

Crystal size
0.17 x 0.10 x 0.04 mm³

Theta range for data collection
2.01 to 26.65°.

Index ranges
-13≤h≤13, -15≤k≤15, -18≤l≤18

Reflections collected
35264

Independent reflections
7249 [R(int) = 0.0507]

Completeness to theta = 25.00°
98.6 %

Max. and min. transmission
0.9969 and 0.9870

Refinement method
Full-matrix least-squares on F²

Data / restraints / parameters
7249 / 0 / 455

Goodness-of-fit on F²
1.017

Final R indices [I>2sigma(I)]
R1 = 0.0613, wR2 = 0.1399

R indices (all data)
R1 = 0.1264, wR2 = 0.1771

Largest diff. peak and hole
0.592 and -0.302 e.Å⁻³
1-NO2 Crystal Packing Structure
Crystal data for 1-NO₂

Identification code
DALTON

Empirical formula
C₂₁ H₂₂ N₂ O₃

Formula weight
350.41

Temperature
100(2) K

Wavelength
0.71073 Å

Crystal system
Orthorhombic

Space group
Pbca

Unit cell dimensions
a = 10.7185(5) Å α = 90°.
b = 12.0728(5) Å β = 90°.
c = 27.9854(12) Å γ = 90°.

Volume
3621.4 (3) Å³

Z
8

Density (calculated)
1.285Mg/m³

Absorption coefficient
0.087mm⁻¹

F(000)
1488.0

Crystal size
0.32 x 0.26 x 0.16 mm³

2θ range for data collection
4.78 to 54°.

Index ranges
-13<=h<=13, -15<=k<=15, -35<=l<=35

Reflections collected
35472

Independent reflections
3918 [R(int) = 0.0381]

Max. and min. transmission
0.9983 and 0.9913

Refinement method
Full-matrix least-squares on F²

Data / restraints / parameters
3918 / 6 / 285

Goodness-of-fit on F²
1.037

Final R indices [I>2sigma(I)]
R1 = 0.0626, wR2 = 0.1558

R indices (all data)
R1 = 0.0807, wR2 = 0.1728

Largest diff. peak and hole
0.44 and -0.36 e.Å⁻³
C-NO2 Crystal Packing Structure
Crystal data for C-NO2

Identification code mrd_6_75_0ma
Empirical formula C18 H18 N2 O2
Formula weight 294.34
Temperature 100(2) K
Wavelength 0.71073 Å
Crystal system Monoclinic
Space group P 2\textsubscript{1}/c
Unit cell dimensions
 a = 17.065(8) Å \(\alpha = 90^\circ \).
 b = 7.198(3) Å \(\beta = 98.66(3)^\circ \).
 c = 6.092(3) Å \(\gamma = 90^\circ \).
Volume 739.7(6) Å3
Z 2
Density (calculated) 1.322 Mg/m3
Absorption coefficient 0.087 mm-1
F(000) 312
Crystal size 0.10 x 0.08 x 0.02 mm3
Theta range for data collection 2.41 to 25.35°.
Index ranges
 -20 <= h <= 20,
 -8 <= k <= 8,
 -7 <= l <= 7
Reflections collected 12293
Independent reflections 1304 [R(int) = 0.1407]
Completeness to theta = 25.00° 96.1 %
Max. and min. transmission 0.9983 and 0.9913
Refinement method Full-matrix least-squares on F2
Data / restraints / parameters 1304 / 34 / 124
Goodness-of-fit on F2 1.027
Final R indices [I>2\sigma(I)]
 R1 = 0.0735, wR2 = 0.1450
R indices (all data)
 R1 = 0.1459, wR2 = 0.1789
Extinction coefficient 0.16(3)
Largest diff. peak and hole 0.261 and -0.287 e.Å-3
2.8.4 **Hyper-Rayleigh scattering data:**

Experimental:

All HRS measurements were performed by Prof David Shelton (Department of Physics, University of Nevada, Las Vegas, NV).

The β values for the chromophores in CDCl₃ solution were determined from hyper-Rayleigh scattering (HRS) measurements at a laser wavelength of 1064 nm (using a pulsed Nd:YAG laser) and sample temperature 25°C. Calibration of the HRS results used 4-nitroaniline (pNA) in CDCl₃ solution as a reference standard. Dilute solutions of p-nitroaniline (pNA) (36.4mM), 1-NO₂ (38.4µM) and C-NO₂ (43µM) in CDCl₃ were freshly prepared for each measurement. The solution concentrations were chosen to give comparable signals for the chromophore and reference solutions, and the much smaller HRS signal measured for the neat solvent was subtracted. Sample and reference HRS signals were compared using the same laser focusing, collection optics and polarization configuration, using apparatus and techniques as previously described²⁶. The laser power incident on the sample was adjusted without affecting the alignment or focusing of the laser beam using a half-wave plate and polarizer combination.

The 532 nm (second harmonic wavelength) HRS light is absorbed by the sample along the 1.5 mm path from the laser focus to the exit window of the cuvette. The self-absorption correction was determined using the 532 nm absorbance measured for the sample in the 10 mm sample cuvette.

The HRS signal at 532 nm selected by the 60 cm⁻¹ bandpass filter may be contaminated with two photon fluorescence (2PF). The fraction of the total signal due to HRS is determined from a spectral scan, where the HRS and 2PF appear as a sharp peak and a flat background,
respectively. The directly measured 2PF fractions for 1-NO2 (MRD6-21) and C-NO2 (MRD6-75) are 65% and 54% respectively.

HRS signal S is measured versus laser power P and S/P^2 is extrapolated to $P = 0$. This extrapolation is necessary since weak absorption of the focused laser beam in the sample heats the sample along the beam path, defocuses the beam, and reduces the HRS signal. In the absence of this thermal lens effect S/P^2 is independent of P. In the usual case of weak linear absorption by the sample at the laser wavelength the extrapolation is done by fitting $S/P^2 = A(1 - B \times P)$ to the data.

The power-normalized HRS signal S/P^2 was independent of laser beam power P for the pNA reference solution, as expected, but S/P^2 for both chromophore solutions exhibited a strong dependence on P. For 1-NO2 (MRD6-21) and C-NO2 (MRD6-75) there is a strong thermal lens effect that appears to be dominated by two photon absorption, so the appropriate extrapolation function is $S/P^2 = A(1 - B \times P^2)$ instead. For these two molecules significant thermal lensing by linear absorption at 1064 nm is ruled out by direct measurements of the linear absorption at 1064 nm and by measurement of the continuous wave thermal lens effect at the same average laser power.
<table>
<thead>
<tr>
<th>Sample</th>
<th>Conc</th>
<th>$A_{532\text{nm}}$ (cm$^{-1}$)</th>
<th>$F = \text{HRS/total}$</th>
<th>$T(z)$</th>
<th>S/P^2 (cps/W2)</th>
<th>D (cps/W2)</th>
<th>E (cps/µM W2)</th>
<th>$\beta/\beta_{\text{PNA}} \pm 2%$</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDCl$_3$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pNA</td>
<td>36.4 mM</td>
<td>0.008</td>
<td>1</td>
<td>0.997</td>
<td>6043(30)</td>
<td>5760</td>
<td>0.15825</td>
<td>1</td>
</tr>
<tr>
<td>MRD6-21</td>
<td>38.4 µM</td>
<td>0.335</td>
<td>0.335(7)</td>
<td>0.889</td>
<td>27540(271)</td>
<td>10696</td>
<td>278.55</td>
<td>42.0</td>
</tr>
<tr>
<td>MRD6-75</td>
<td>43.0 µM</td>
<td>0.297</td>
<td>0.461(9)</td>
<td>0.901</td>
<td>32798(419)</td>
<td>16480</td>
<td>383.26</td>
<td>49.2</td>
</tr>
</tbody>
</table>

HRS Data Table for 1-NO$_2$ (MRD6-21) and C-NO$_2$ (MRD6-75)

$A_{532} =$ absorbance at 532 nm for 1 cm of solution.

$T(z) = 10^{-Az}$

$S/P^2 =$ power-normalized HRS signal extrapolated to $P^2 = 0$

$D = [(F/T)(S/P^2) - (S/P^2)_{\text{CDCl}_3}]$

$E = D/\text{conc}$

$\beta/\beta_{\text{PNA}} = (E/E_{\text{PNA}})^{1/2}$
The experimental static hyperpolarizability ratios, $\beta_{\text{HRS}(0)}/\beta_{\text{pNA}(0)}$, were extrapolated from the frequency dependent ratios, $(\beta_{\text{HRS}}/\beta_{\text{pNA}})_{1064}$, using the two level model (TLM) equation developed by Oudar and Chemla. Extrapolation to the static becomes increasingly unreliable however as resonance is approached as line broadening effects need to be taken into account. A correction factor known as thus applied to the TLM equation to give the damped two level model dispersion fit shown by equations 2.1 and 2.2.

$$\beta^{\text{SHG}}(\omega, \omega_{eg}, \gamma) = g(\omega, \omega_{eg}, \gamma) \ast \beta^{\text{HRS}}(0) \quad \ldots \ldots \text{(2.1)}$$

$$g(\omega, \omega_{eg}, \gamma) = \frac{\omega_{eg}^2}{3} \left\{ \frac{1}{(\omega_{eg} + i\gamma + 2\omega)(\omega_{eg} + i\gamma + \omega)} + \frac{1}{(\omega_{eg} - i\gamma - 2\omega)(\omega_{eg} - i\gamma - \omega)} + \frac{1}{(\omega_{eg} + i\gamma + \omega)(\omega_{eg} - i\gamma - \omega)} \right\} \quad \ldots \ldots \text{(2.2)}$$
These values are tabulated below:

<table>
<thead>
<tr>
<th>Compound</th>
<th>$(\beta_{\text{HRS}}/\beta_{\text{pNA}})_{1064}$</th>
<th>$\beta_{\text{HRS}(0)}/\beta_{\text{pNA}(0)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Experimental</td>
<td>Experimental</td>
</tr>
<tr>
<td>pNA</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1-NO2</td>
<td>55</td>
<td>24.9</td>
</tr>
<tr>
<td>C-NO2</td>
<td>61.4</td>
<td>31.32</td>
</tr>
</tbody>
</table>

Experimentally obtained Frequency Dependent $\beta_{\text{HRS}}/\beta_{\text{pNA}}$ Values and the Corresponding Extrapolated Static $\beta_{\text{HRS}(0)}/\beta_{\text{pNA}(0)}$ Values

The experimentally obtained value for β_{HRS} at 1064 for 4-nitroaniline, 11.4×10^{-30} was used to convert the $(\beta_{\text{HRS}}/\beta_{\text{pNA}})_{1064}$ ratios to $\beta_{\text{HRS}(1064)}$ for both molecules. The static $\beta_{\text{HRS}(0,TLM)}$ value for pNa 6.29×10^{-30} was extrapolated using the TLM expression in a fashion similar to that described above. This value was used multiplied with the $\beta_{\text{HRS}(0)}/\beta_{\text{pNA}(0)}$ values to give the static hyperpolarizibilities for both molecules. These results are tabulated below:

<table>
<thead>
<tr>
<th>Compound</th>
<th>$\beta_{\text{HRS}(1064)}$ (10^{-30} esu)</th>
<th>$\beta_{\text{HRS}(0,TLM)}$ (10^{-30} esu)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Experimental</td>
<td>Experimental</td>
</tr>
<tr>
<td>pNA</td>
<td>11.4</td>
<td>6.29</td>
</tr>
<tr>
<td>1-NO2</td>
<td>627</td>
<td>156.63</td>
</tr>
<tr>
<td>C-NO2</td>
<td>700</td>
<td>197.04</td>
</tr>
</tbody>
</table>

Frequency dependent $\beta_{\text{HRS}(1064)}$ and static $\beta_{\text{HRS}(0,TLM)}$ values
2.9 References:

Chapter 3 Cross-Conjugated Motifs Applied to Tricyanopyrroline Chromophore Systems

3.1 Introduction:

The synthesis of the disodium salt of 4-cyano-5-dicyanomethylene-3-hydroxy-2-oxo-3-pyrolline, 2Na-TCP (figure 3.1 (a)) was first disclosed in a patent in 1961 by Rudolph Carboni. It was prepared by reacting 2-amino-1,1,3-tricyano-1-propene with diethyl oxalate in the presence of sodium methoxide in methanol as base. Upon treating with a chlorinating agent such as oxalyl chloride or phosphorous oxychloride, the hydroxyl group was substituted with a chloride generating the strongly electrophilic Cl-TCP. By reacting this electrophile and its various analogues with electron rich aromatic compounds (figure 3.1 (b)), Carboni created a library of dyes, brilliantly colored ranging from red to green. These dyes were used in the staining of synthetic materials and fabrics made from polymers such as cellulose acetate and nylon.

![Figure 3.1](image)

Figure 3.1: (a)Synthesis of 2Na-TCP and Cl-TCP, (b) Reaction of Cl-TCP with an electron rich aromatic molecule
Since then, much of the work on tricyanopyrroline substituted molecules have used the 2Na-TCP salt to make many chromophores that found applications not only as dyes for textiles83–86 but also for thermal transfer printing87,88 and optical data recording89. The merocyanine analogues of TCP chromophores have also been studied for use as photographic dyes90.

In 2005, Kaneko \textit{et al.} published the first series of TCP based molecules especially geared towards applications as second order non-linear systems and measured their β values using hyper-Rayleigh scattering measurements91. They found that the chromophores bearing the TCP group as an acceptor had higher hyperpolarizability values than corresponding chromophores bearing the dimethyl-TCF acceptors.

More noteworthy work92 on TCP based chromophores by Jang \textit{et al.} provided an alternate route to the synthesis of the TCP acceptor 3-methyl-4-cyano-5-dicyanomethylene-2-oxo-3-pyrroline. (\textit{figure 3.2 (a)}). This methyl analogue of CI-TCP provided a pathway towards synthesizing a new generation of chromophores with TCP acceptors (\textit{figure 3.2 (b)}) via Knoevenagel condensation.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure3_2.png}
\caption{Synthesis of TCP acceptor and its subsequent reaction with an}
\end{figure}
aromatic aldehyde.
Once again a comparative study of the hyperpolarizabilities of TCP substituted chromophores with analogous dimethyl-TCF and CF₃-TCF chromophores indicated that β_{zzz} values of the TCP chromophores were around 1.5 times greater than those of their corresponding CF₃-TCF counterparts. This was also supported by previous theoretical work by Leclercq et al⁹³. A study of the crystal structure of the TCP chromophores found the molecules to be coplanar as would be expected with no appreciable twist between the donor and the acceptor. The crystal packing diagram indicated head to tail alignment of the chromophores resulting in overall centrosymmetric ordering of the crystal.

A major drawback for this class of small molecules has been the formation of strong dipole-dipole aggregates. Formation of aggregates results in a myriad of issues ranging from low poling efficiencies to broadening of the optical spectra of the film resulting in appreciable loss at telecommunication wavelengths, overall resulting in poor device characteristics. While strong electrostatic interactions are often observed in high β donor-π bridge-acceptor type chromophores, the issue is significantly aggravated in the case of the TCP chromophores due to the planar nature of the TCP acceptor compared to CF₃-TCF acceptors. The authors found that substitution of the NH group on the acceptor with bulky groups did not result in any improvement in the dipole-dipole aggregation behavior⁹². This substitution if done with even a weakly electron donating group can also lead to a reduction in hyperpolarizability by reducing the acceptor strength.

Cho et al. synthesized a triphenyl ethane based dendrimer with TCP chromophores in an attempt to enhance r₃₃ with moderate success⁹⁴. They also substituted photo-crosslinkable
chalcone groups onto the chromophores to induce UV-curing and improve thermal resistance of these systems for applications in multilayer fabrication processes.

In a later paper Cho et al. synthesized a short series of chromophores bearing a phenyl or a thienyl side group (figure 3.3 (a)) and found them to maintain high optical quality in films when doped even at 40 wt% in amorphous polycarbonate (APC)95. They investigated the electric field poling characteristics of these materials and measured r_{33} values and found that the introduction of a lateral group to the backbone of the chromophores reduced aggregation and improved the electro-optic coefficient. They also substituted the acceptor with benzyl and perfluorobenzyl groups (figure 3.3 (b) and (c)) but found that this resulted in a reduction in r_{33}.

![Figure 3.3: TCP chromophore with side groups on the conjugated backbone](image)

In summary, the study and application of TCP small molecules has been hampered by strong electrostatic interactions of the chromophore dipoles causing aggregation in the bulk material. Substitution of the chromophore on the acceptor moiety does not seem to significantly
improve film quality or aid in increasing poling efficiencies. A lateral group on the backbone of these molecules has been shown to improve these characteristics. In Chapter 2 the electronic properties of cross conjugated systems were studied using UV-vis, fluorescence and HRS measurements and their structures were elucidated using X-ray crystallography. It was established that the presence of a cross-conjugated moiety did not prevent charge transfer from the donor to the acceptor and that it did not result in a significant reduction of hyperpolarizability values of these simple chromophores.

In Chapter 3 these cross-conjugated systems will be substituted onto TCP chromophores and the electronic and structural properties will be investigated. To that effect the following series of chromophores were synthesized:

![Structures of Chromophores Synthesized and Studied](image)

Figure 3.4: Structures of Chromophores Synthesized and Studied

The effect of a cross-conjugated side group on the electronic properties will be studied via UV-vis spectroscopy and the effect on hyperpolarizability will be investigated by HRS measurements. X-ray crystallography will be used to elucidate the structures of these new
molecules and finally quantum mechanical calculations will be used to help explain their observed behavior.

3.2 Synthesis of TCP Chromophores:

The reaction schemes for the synthesis of the TCP chromophores are given in figure 3.5 and figure 3.7. The synthesis of TCP-1 has been published in literature. Malononitrile dimer and ethyl pyruvate were refluxed in methanol for 30 minutes followed by addition of N,N-diethylamino benzlddehyde (figure 3.7). The reaction was refluxed for another hour following which the product was collected by filtration of the reaction and purified by washing with cold ethanol.

![Figure 3.5: Synthesis of TCP-1](image)

TCP-Me, TCP-Ph and TCP-PhF were synthesized from 1-Me, 1-Ph and 1-F respectively. 2NaTCP was prepared by reacting diethyl oxalate with 1,1,3-tricyano-2-amino-1-propene (malononitrile dimer) in the presence of sodium ethoxide (figure 3.7; scheme (a)). The yellow product that precipitated out of solution after 3 hours was collected by filtration and rinsed with benzene to remove impurities. Synthesis of TCP-Me (figure 3.7; scheme (b)) was carried out by dissolving 1-Me and 2NaTCP in N,N-dimethylformamide (DMF) followed by addition of acetic anhydride. The flask was then cooled and phosphorous oxychloride (POCl₃) was added to the reaction dropwise; this generated a chlorinated electrophilic intermediate Cl-
TCP (figure 3.6) *in situ* which upon reaction with 1-Me for 1 hour generated TCP-Me. The product was precipitated by pouring the reaction mixture over ice.

![Figure 3.6: Chlorinated TCP (Cl-TCP)](image)

<table>
<thead>
<tr>
<th>Figure 3.7: Synthesis of substituted TCP chromophores</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

TCP-Me

TCP-Ph

TCP-PhF

TCP (Cl-TCP)
TCP-Ph and TCP-PhF were synthesized (figure 3.7; scheme (c) and (d)) similarly with shorter reaction times. Shorter reaction times and lower temperatures gave cleaner products but did result in low yields. It must be noted that addition of excess phosphorous oxychloride or increasing reaction times caused decomposition to occur resulting in complicated purification as the final products do not purify well using column chromatography and prep-TLC methods have to be used for separation. The reaction of 1-NEt2 with 2NaTCP under similar conditions resulted in no product and less than 5 % product upon switching from DMF to acetonitrile as solvent. Reacting 1-NO2 similarly gave back starting materials.

3.3 Structure:

TCP-1 is expected to be planar as published in literature92. Based on NMR coupling constants, the double bond geometry is trans. Two possible isomers are possible for TCP-Me, TCP-Ph and TCP-PhF. The TCP group can be either cis or trans to the N,N-dimethylamino donor (figure 3.8).

Figure 3.8: Possible isomers of the TCP chromophores: (a) TCP group cis to the donor (b) TCP group trans to the donor
Both isomers are sterically hindered as the group connected cis to the donor would be in close proximity with the aromatic hydrogens. As a result the cis functional group would likely be out of plane with respect to the rest of the molecule. Cho et al. synthesized a similar chromophore with a thiophene side group (figure 3.3) and found that the reaction produced exclusively the trans TCP product similar to figure 3.8 (b). The X-ray structure published for the thiophene molecule showed the TCP acceptor coplanar to the plane of the donor and the thiophene moiety nearly perpendicular to the plane of the molecule.

3.3.1 Optimized structures from quantum mechanical calculations:

Gaussian 09C was used to calculate optimized geometries (figure 3.9) using the B3LYP hybrid functional with the 6-31+G* basis set. The input structure was limited to the transTCP isomer as this was the expected isomer from the reaction.

A planar geometry was predicted for TCP-1 as expected for this molecule and consequently the dihedral angle between the donor and acceptor was 0°.

In the case of the substituted TCP chromophores TCP-Me, TCP-Ph and TCP-PhF, the plane of the cross-conjugated groups were at 110° to 116° to the plane of the donor moiety. The cause of the significant predicted deviation from a 90° dihedral angle was likely due to Van der Waals interactions between the hydrogens on the α carbon and those on the aromatic ring.

More importantly and unexpectedly, a dihedral angle of between 29° (TCP-Me) to 35° (TCP-Ph and TCP-PhF) was seen between the diethylamino donor and TCP acceptor. This would be quite unusual since the donor and acceptor are conjugated and any deviation from coplanarity would break conjugation. The presence of an auxiliary cross-conjugated group seems
to cause this deviation as it is not seen in TCP-1 or in the thiophene substituted TCP chromophores studied by Cho et al95.
TCP-1
Dihedral Angle: 0°

TCP-Me
Dihedral Angles:
Donor-TCP: 29°
Donor-Methyl ketone: 110°

TCP-Ph
Dihedral Angles:
Donor-TCP: 35°
Donor- Phenylvinyl ketone: 115°

TCP-PhF
Dihedral Angles:
Donor-TCP: 35°
Donor- 4-Fluoro phenylvinyl ketone: 116°

Figure 3.9: B3LYP Optimized geometries of TCP chromophores
3.3.2 X-ray crystallography- Experimentally determined structures:

Crystals were grown of compounds TCP-Me and TCP-Ph and analyzed using X-ray diffraction. X-ray crystallographic data was collected at -173°C on Bruker APEX II single crystal X-ray diffractometer, Mo-radiation. The data was integrated and scaled using SAINT, SADABS within the APEX2 software package by Bruker.

TCP-Me: Lustrous green crystals of TCP-Me were grown from a saturated solution in tetrahydrofuran (THF). The sample, which diffracted rather well, was prepared out of the inside of a larger piece, indicating that the THF solvent may escape easily, since smaller crystals, even if with proper crystalline morphology, would not diffract at all. The oxygen atom, O3 of the THF hydrogen-bonds to nitrogen, N1 on the acceptor moiety. Figure 3.10 (a) shows an ORTEP of the asymmetric unit. The TCP moiety is found to be in a trans configuration with respect to the diethylamino benzene donor whereas the cross-conjugated (methyl ketone) group is found to be cis and perpendicular to the plane of the conjugated section. Quite unexpectedly, only one rotational isomer was observed in the crystal structure in which the methyl ketone moiety is pointed into the plane of the paper (away from the viewer) with the donor to the left and the acceptor to the right. Since both the TCP group and the cross-conjugated group are rotatable about their respective single bonds, it is quite possible that with the methyl ketone group, the barrier for rotation from one rotamer to the other is small enough in solution to allow for interconversion during crystallization resulting in only one rotamer being preferentially crystallized.

Figure 3.10 (b) shows a packing diagram of the crystal. While THF fills the voids between molecules which are reversely aligned towards each other, the molecules appear slightly tilted towards each other but stay mainly parallel aligned with respect towards their longest elongation. The overall packing is centrosymmetric.
TCP-Ph: Green needles of TCP-Ph obtained from precipitation of the reaction solution in ethanol were used as is for crystallography. Figure 3.11 (a) shows an ORTEP of the asymmetric unit. The structure exhibits triclinic symmetry but with significant twinning. In addition, disorder was observed in a terminal phenol (not shown in Figure 3.11 (a)). Once again, the TCP moiety is found to be in a trans configuration with respect to the diethylamino benzene donor and the cross-conjugated (phenylvinyl ketone) group is found to be cis and perpendicular to the plane of the conjugated section. Two rotational isomers were observed in the crystal structure, one in which the phenylvinyl ketone moiety is pointed into the plane of the paper with the donor to the left and the acceptor to the right and one in which the phenylvinyl ketone is pointed out of the plane of the paper (towards the viewer). In this case, the reaction, as expected, generates a 50:50 mixture of each rotamer and since the barrier for rotation of the phenylvinyl ketone and the TCP acceptor in this molecule is expected to be much higher than for the smaller
TCP-Me methyl ketone side group, inter-conversion is prevented in solution during crystallization.

Figure 3.11 (b) shows a packing diagram of the crystal where both rotamers are observed. The phenyl groups on adjacent chromophores lie at a distance of 2.1 Å which indicates that the phenylvinyl group while being perpendicular to the plane of conjugation influences the crystal to crystal distance. At a distance of 2.91 Å the phenyl groups also interact weakly with the diethyl amino groups on the donor. The head to tail orientation results in centrosymmetric packing.

Figure 3.11: (a) ORTEP of TCP-Ph with thermal ellipsoids at the 50% probability level. Disorder omitted for clarity (b) Packing diagram of TCP-Ph
3.3.3 **Dihedral angles:**

TCP-Me: The crystal structure of TCP-Me (figure 3.12) indicates a twist between the diethylamino donor and the TCP acceptor very close to the 29° angle predicted by the optimized geometry obtained from theoretical calculations (Figure 3.9). Such a deviation from co-planarity for similar chromophores (although not with cross-conjugated side groups) has not been observed previously in literature. The dihedral angle between the donor and acceptor was measured to be ~23°. This angle was difficult to measure due to another feature seen on the donor benzene moiety. The aromatic ring was found to be puckered in one direction and the bond lengths within the aromatic ring indicate an almost quinoid system albeit only within the ring. The puckering also causes the nitrogen on the donor to deviate from coplanarity by ~13°. Such effects can be caused by Van der Waals interaction within the crystal although no clear interactions could be identified in the packing diagram.

The plane of the methyl ketone side group was found to be at an angle of 110° with the plane of the donor indicating that it was slightly rotated towards the acceptor.
TCP-Me: The crystal structure of TCP-Me (Figure 3.12) shows a dihedral twist between the diethylamino donor and the TCP acceptor. This twist, however, is much lower than the 35° predicted by the optimized geometry obtained from theoretical calculations (Figure 3.9). The dihedral angle between the donor and acceptor was measured to be ~12°, which is approximately half of that seen in TCP-Me although still significant. The plane of the phenylvinyl ketone side group was found to be at an angle of ~67° with the plane of the donor, indicating that it was slightly rotated towards the donor unlike that seen in TCP-Me.

TCP-Ph: The crystal structure of TCP-Ph (Figure 3.13) once again indicates a twist between the diethylamino donor and the TCP acceptor. This twist however, is much lower than the 35° predicted by the optimized geometry obtained from theoretical calculations (Figure 3.9). The dihedral angle between the donor and acceptor was measured to be ~12°, which is approximately half of that seen in TCP-Me although still significant. The plane of the phenylvinyl ketone side group was found to be at an angle of ~67° with the plane of the donor, indicating that it was slightly rotated towards the donor unlike that seen in TCP-Me.

Figure 3.12: (a) Side profile of the crystal structure of TCP-Me showing the dihedral twist between donor and acceptor as well as puckering of the aromatic ring. (b) Top profile of TCP-Me showing twist of the methyl ketone.

Dihedral Angles:
- Donor-TCP: 23°
- Donor-Methyl ketone: 110°
Dihedral Angles:
Donor-TCP: 16° Donor-phenylvinyl ketone 67°

Figure 3.13: (a) Side profile of the crystal structure of TCP-Ph showing the dihedral twist between donor and acceptor as well as puckering of the aromatic ring. (b) Top profile of TCP-Ph showing twist of the phenylvinyl ketone.
3.4 UV-Vis Spectroscopy of TCP Chromophores:

3.4.1 TCP chromophores: Comparison of UV-vis spectroscopy in Chloroform:

All the TCP chromophores show a strong absorbance around 720-730nm (figure 3.14). Molar absorptivity ε, for this absorbance was calculated to be around 77000 L mol$^{-1}$ cm$^{-1}$ for TCP-1 and 34000 L mol$^{-1}$ cm$^{-1}$ for TCP-Me. The substituted chromophores TCP-Me, TCP-Ph and TCP-PhF have slightly blue shifted peaks compared to TCP-1 by about 8-11nm and the peaks are also slightly broader. The primary transition of TCP-Me, TCP-Ph and TCP-PhF correlate strongly with the main transition of TCP-1 which indicates that the TCP acceptor in these new chromophores is situated trans to the donor whereas the cross-conjugated section is likely cis to the donor as shown in Table 3.1. This was also observed in the X-ray crystal structures shown in figure 3.10 and figure 3.11. Other than the slight hypsochromic shift seen compared to TCP-1, the cross-conjugated substitution on the chromophores does not affect this transition and the λ_{max} values are nearly identical for the three substituted molecules.

While TCP-1 does have some weaker transitions in the 280-500nm region, stronger transitions are indicated in this region for the three substituted chromophores. These higher energy transitions are typically expected to be indicative of cis-trans isomerization within the chromophore. In these new molecules synthesized, however, rotational isomers would be more likely. As indicated in the crystal structure for TCP-Me and TCP-Ph two rotamers are possible for the substituted chromophores (figure 3.11). As the molecules transition from one isomer to another, the cross-conjugated group would transition from being perpendicular to the donor to being parallel and then perpendicular (rotated 180°) again. The TCP group would likewise go from being parallel to the donor to being perpendicular and then parallel (rotated 180°) again.
The absorbances seen in the higher energy regions likely correspond to the donor-cross-conjugated group transitions and are indicative of a distribution of rotational isomers.
Figure 3.14: UV-vis spectra of TCP chromophores in chloroform

<table>
<thead>
<tr>
<th>Name</th>
<th>TCP-1</th>
<th>TCP-Me</th>
<th>TCP-Ph</th>
<th>TCP-PhF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength λ_{max} (nm)</td>
<td>731</td>
<td>412</td>
<td>296</td>
<td>307</td>
</tr>
</tbody>
</table>

Table 3.1: Absorbance maxima of TCP chromophores in chloroform
Quantum mechanical calculations for electronic transitions in chloroform were performed using CAM-B3LYP functional in chloroform on B3LYP/6-31+G* optimized geometries shown in figure 3.9. All the primary transitions (634-647nm) are HOMO to LUMO transitions. The HOMOs for all these molecules lie primarily on the diethylaminobenzene donor while the LUMOs lie on the TCP acceptor and are identical to that shown for TCP-1 (figure 3.15). The primary transition for TCP-1 (647nm) was predicted at ~84nm lower than the experimental value (731nm) and those predicted for TCP-Me (~633nm), TCP-Ph (~635nm) and TCP-PhF (~635nm) are blue shifted from the experimental values by ~87-88 nm.

The values predicted for TCP-Me, TCP-Ph and TCP-PhF are ~12-14nm to the blue of that predicted for TCP-1 compared to ~8-11nm seen in the experimental data.

All three cross conjugated chromophores have almost identical primary transitions. All these trends are similar to the trends observed in the experimental data and CAM-B3LYP does a good job of predicting both the trends and the actual values for the major transition.
<table>
<thead>
<tr>
<th>Structure</th>
<th>Experimental λ_{max} (nm)</th>
<th>Theoretical: CAM-B3LYP/6-31+G* λ_{max} (nm)</th>
<th>f^a</th>
<th>Transition</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP-1</td>
<td>731</td>
<td>647.46, 335.68</td>
<td>1.6731, 0.4392</td>
<td>HOMO\rightarrowLUMO, HOMO-2\rightarrowLUMO</td>
</tr>
<tr>
<td>TCP-Me</td>
<td>720, 412</td>
<td>633.44, 339.25</td>
<td>1.6424, 0.3551</td>
<td>HOMO\rightarrowLUMO, HOMO-2\rightarrowLUMO</td>
</tr>
<tr>
<td>TCP-Ph</td>
<td>723, 296</td>
<td>635.44, 392.56, 339.44</td>
<td>1.5772, 0.1803, 0.1026</td>
<td>HOMO\rightarrowLUMO, HOMO\rightarrowLUMO+1, HOMO-2\rightarrowLUMO</td>
</tr>
<tr>
<td>TCP-PhF</td>
<td>723, 307</td>
<td>634.61, 393.67, 339.42</td>
<td>1.5763, 0.1779, 0.1482</td>
<td>HOMO\rightarrowLUMO, HOMO\rightarrowLUMO+1, HOMO-2\rightarrowLUMO</td>
</tr>
</tbody>
</table>

Table 3.2: Absorption maxima λ_{max} of chromophores in chloroform: Experimental Vs Calculated values

a: calculated oscillator strengths
Figure 3.15: HOMO and LUMO diagrams for TCP-1

Theory also suggests secondary transitions from all molecules. A HOMO-2→LUMO is predicted for all chromophores along with HOMO→LUMO+1 predicted for TCP-Ph and TCP-PhF. Considering how close these transitions are in energy and taking into account the error in calculation, if present, they are likely to overlap in experimental optical spectra.

The HOMO-2→LUMO transition predicted for TCP-1 at ~336nm, expected to have a strong oscillator strength of ~0.4 in chloroform is not well defined in the experimental plot. Similar secondary transitions at 339 nm are predicted for TCP-Me, TCP-Ph and TCP-PhF, all from a lower lying HOMO-2 to LUMO (figure 3.16). Based on theoretical calculations, the HOMO-2 orbitals of TCP-Ph and TCP-PhF (figure 3.16) are identical and significantly more delocalized compared to that of TCP-Me (which is identical in configuration to HOMO-2 of TCP-1 (not shown)).
Figure 3.16: HOMO-2 to LUMO transition for (a) TCP-Me, (b) TCP-Ph and (c) TCP-PhF
As a comparison, the UV-vis spectrum of TCP-Me was overlaid with 1-Me (figure 3.17) and the high energy absorbance at 412 nm for TCP-Me was found to overlap with the major absorbance of 1-Me at 390nm.

Figure 3.17: UV-Vis of TCP-Me and 1-Me in Chlororform

Similar comparisons for TCP-Ph overlaid with 1-Ph (figure 3.18) and TCP-PhF overlaid with 1-F (Figure 3.19) indicate clear overlap of the high energy absorbances for 1-Ph(310nm) and 1-F (341nm and shoulder at ~300) with the peak at ~300nm seen for both TCP-Ph and TCP-PhF.
Figure 3.18: UV-Vis of TCP-Ph and 1-Ph in Chlororform

Figure 3.19: UV-Vis of TCP-PhF and 1-F in Chlororform
The HOMO→LUMO+1 transition at ~ 393nm is predicted only for TCP-Ph and TCP-PhF and have higher oscillator strengths than their respective HOMO-2→LUMO transitions. These predicted HOMO→LUMO+1 transitions are very close in energy to the low energy absorbance seen for 1-Ph (theoretical:410nm and experimental:436nm) and 1-F (theoretical:411nm and experimental:436nm) (Table 2.2) (figure 3.18 and figure 3.19). These low energy absorbances in 1-Ph and 1-PhF were attributed to the charge transfer from the donor across the cross-conjugated center to the acceptor. In figure 3.20 it is seen that indeed the LUMO+1 of TCP-Ph and TCP-PhF are located on the cross-conjugated moiety. This suggests that these cross-conjugated groups act as auxiliary acceptors for these molecules.

Figure 3.20: HOMO to LUMO+1 transition for (a) TCP-Ph and (b) TCP-PhF
3.4.2 TCP chromophores: Polarity study:

UV-vis spectrum of TCP-1 chromophore in different solvents (figure 3.21) demonstrates a generally bathochromic shift with increasing solvent polarity. Chloroform and 1,1,2-trichloroethane (112-TCE) however, tend to red shift the transition the most even though they are of medium polarity. This is typically seen in chlorinated solvents due to halogen-aromatic π electron interactions.

![Figure 3.21: Polarity plot of TCP-1 chromophore](image)

More interestingly though, a second high energy peak was seen distinctly in toluene and diethyl ether, both of lower polarity; isopropanol and ethanol, both of high polarity with hydrogen bonding capabilities. The peak shapes are nearly identical in isopropanol and ethanol at 400nm with a shoulder ~440nm. In toluene it appears as two overlapping peaks at ~405nm and
455nm and in diethyl ether as a strong peak at ~390nm with a shoulder at ~430nm. It must be noted that TCP-1 was found to be sparingly soluble in toluene, diethyl ether, chloroform, 112-TCE, isopropanol and ethanol. While it is unclear why the peak emerges in low polarity solvents as well as in high polarity but not in the other solvents it is possible that it is from aggregation caused by low solubility or from preferential stabilization of some higher energy isomer in these solvents.

Figure 3.22: Polarity plot of TCP-Me Chromophore
This plot is normalized at the ~700nm peak to show the comparative intensity of the 400nm peak in different solvents

TCP-Me was chosen for the polarity study because it showed two very clear absorbances unlike TCP-Ph and TCP-PhF. UV-vis spectrum of TCP-Me chromophore in different solvents
exhibits a generally bathochromic shift of the low energy peak at 720nm with increasing solvent polarity. This peak is the major charge-transfer peak from the HOMO on the diethylamino benzene donor to the LUMO on the TCP acceptor and the trend indicates a highly polar molecule as expected from the molecular structure. This peak also broadens in more polar solvents like dimethylsulfoxide, acetonitrile, isopropanol and ethanol. Once again chloroform and 112-TCE tend to red shift the transition the most even though they are of medium polarity.

The high energy peak at 412nm seen in the chloroform spectrum in figure 3.14 and figure 3.22 while blue shifted slightly in all other solvents (except 112-TCE) actually doesn’t show any hypsochromic or bathochromic trends in the other solvents. It does however increase in intensity in going from non-polar to polar solvents with chloroform and 112-TCE once again being outliers to this trend. Such an increase in absorbance of a secondary transition has not been described previously in literature for any TCP chromophore. Based on the discussion on the crystal structure of TCP-Me, since the TCP and the methyl ketone groups are rotatable about their single bonds, rotational isomers are possible for TCP-Me in solution. The simplest explanation for the trend seen in the high energy peak is the preferential stabilization of a rotational isomer in which the TCP moiety is perpendicular (figure 3.23, structure A) and the methyl ketone is in the plane with the diethylamino benzene donor. With this rotamer, the TCP moiety being perpendicular to the donor would be more isolated from the donor. This conformation would cause an isolation of the charge on the acceptor (due to lowering of electron delocalization). Structure A (figure 3.23) would be a higher energy rotamer and it would therefore be stabilized more in more polar solvents due to localization of charges. Thus a change in the polarity of the solvent would result in a change in the ratio of rotamer A and rotamer B (figure 3.23) that would manifest as a change in relative absorbance of the two peaks.
Figure 3.23: UV-vis of TCP-Me in DMSO showing the two possible rotamers responsible for the two peaks. This plot is normalized at the ~700nm peak to show the comparative intensity of the 400nm peak.
3.5 Hyper-Rayleigh Scattering (HRS) Measurements:

3.5.1 Experimental details:

All HRS measurements were performed by Prof David Shelton (Department of Physics, University of Nevada, Las Vegas, NV).

The β values for the chromophores in CDCl$_3$ solution were determined from hyper-Rayleigh scattering (HRS) measurements at a laser wavelength of 1064 nm (using a pulsed Nd:YAG laser) and sample temperature 25°C. Calibration of the HRS results used 4-nitroaniline (pNA) in CDCl$_3$ solution as a reference standard. Dilute solutions of pNA (36.4mM), TCP-1 (12µM), TCP-Me (35.3µM), TCP-Ph (36.1µM) and TCP-PhF (36.6µM) in CDCl$_3$ were freshly prepared for each measurement. The solution concentrations were chosen to give comparable signals for the chromophore and reference solutions, and the much smaller HRS signal measured for the neat solvent was subtracted. Sample and reference HRS signals were compared using the same laser focusing, collection optics and polarization configuration, using apparatus and techniques as previously described81. The laser power incident on the sample was adjusted without affecting the alignment or focusing of the laser beam using a half-wave plate and polarizer combination. The sample absorption at the 532 nm second harmonic wavelength was measured and the HRS signals were corrected for the small self-absorption of the scattered light along the 1.5 mm path to the cuvette exit face. The HRS signal at 532 nm was corrected for thermal lensing effect as well as any two photon fluorescence contribution. Further details are provided in the appendix to Chapter 3.
3.5.2 Theory details:

All quantum mechanical calculations for these molecules were performed by Kerry E. Garret and the details are identical to those elucidated in section 2.6. These are repeated here for convenience.

Quantum calculations for were performed using three levels of theory:

4) The mild hybrid density functional B3LYP, which includes a constant 20% Hartree-Fock (HF) exchange over the electronic interaction range to correct for the asymptotic decay of the exchange potential at long range.

5) CAM-B3LYP which divides the exchange into short-range and long-range parts with 19% and 46% HF exchange respectively and

6) Second order Møller-Plesset perturbation (MP2), a computationally-feasible correlated wavefunction method that was used for comparison with DFT.

The static hyperpolarizabilities, $\beta_{\text{HRS}}(0)$ were corrected for dispersion at 1064 nm with a damping factor, γ, set to 100 nm chosen so to match the full-width at half-maximum of the experimental spectra. The theoretical absorption wavelengths, used in the two-state model were provided using CAM-B3LYP/6-31+G*. Additionally, for comparison with the two-state model, frequency-dependent hyperpolarizabilities, $\beta_{\text{HRS}}(2\omega)$, were calculated at 1064 nm using the coupled-perturbed Kohn-Sham (CPKS) method for both B3LYP and CAM-B3LYP functionals.

All of the above methods – B3LYP, CAM-B3LYP, and MP2 –consistently used 6-31+G* basis and with solvent effects according to the polarizable continuum method (PCM) for all of the properties calculations on PCM-B3LYP/6-31+G* optimized geometries. All quantum calculations were performed using Gaussian 09 Rev. D.01 suite of QM codes.
The experimental HRS measurements give frequency dependent hyperpolarizability values with respect to a reference molecule (pNA in this case) thus the data obtained from HRS experiments are the \((\beta_{\text{HRS}}/\beta_{\text{pNA}})_{1064}\) values in table 3.5. To account for any enhancement observed in the measurement, the experimental static hyperpolarizability ratios, \(\beta_{\text{HRS}(0)}/\beta_{\text{pNA}(0)}\) (table 3.6) were extrapolated from the frequency dependent ratios using the two level model (TLM) equation developed by Oudar and Chemla\(^{14}\). Extrapolation to the static limit becomes increasingly unreliable however as resonance is approached because line broadening effects need to be taken into account. A correction factor thus applied to the TLM equation to give the damped two level model dispersion fit (see appendix for Chapter 3).

The experimentally obtained value for \(\beta_{\text{HRS}}\) at 1064 nm for 4-nitroaniline, \(11.4 \times 10^{-30}\) esu was used to convert the \((\beta_{\text{HRS}}/\beta_{\text{pNA}})_{1064}\) ratios to \(\beta_{\text{HRS}(1064)}\) for the TCP molecules (table 3.3). The static \(\beta_{\text{HRS}(0,TLM)}\) value for pNa was extrapolated using the TLM expression in a fashion similar to that described above. This value was used multiplied with the \(\beta_{\text{HRS}(0)}/\beta_{\text{pNA}(0)}\) values to give the static hyperpolarizibilities for all the molecules (table 3.4). Structures of TCP-1, TCP-Me, TCP-Ph and TCP-PhF are shown in figure 3.24 for convenience.

![Structures of Chromophores Used in HRS Measurements](image)

Figure 3.24: Structures of Chromophores Used in HRS Measurements.
3.5.3 **Discussion of Theoretical Trends:**

The frequency dependent hyperpolarizability values $\beta_{\text{HRS}(1064)}$ ([table 3.3](#)) were found to be most accurately predicted by B3LYP calculations. The B3LYP functional does not however pick up on the trends observed in the experimental hyperpolarizability values. Experimental measurements indicate a decrease in $\beta_{\text{HRS}(1064)}$ upon going from TCP-1 to TCP-Me followed by a steady increase in hyperpolarizability upon going to TCP-Ph and TCP-PhF. B3LYP on the other hand predicted much higher $\beta_{\text{HRS}(1064)}$ for TCP-Me (465.9×10^{-30} esu) than for TCP-1 (369.42×10^{-30} esu) perhaps picking up on the mild electron withdrawing character of the methyl ketone moiety. It is unclear why lower values were predicted for TCP-Ph and TCP-PhF.

A similar but more exaggerated trend is observed in the CAM B3LYP predictions as the values predicted by this functional are highly overestimated. TCP-1 was overestimated by a factor of 2.21, TCP-Me by a factor of 4.6, TCP-Ph by a factor of 2.9 and TCP-PhF by a factor of 2.8. MP2 calculations overestimated the hyperpolarizability values by factors of \sim2 to 2.6 and predicted a steady decrease $\beta_{\text{HRS}(1064)}$ in going from TCP-1 through to TCP-PhF unlike the trend seen in the experimental data.
<table>
<thead>
<tr>
<th>Compound</th>
<th>$\beta_{\text{HRS}}(10^{-30}\text{ esu})$</th>
<th>Experimental</th>
<th>B3LYP/6-31+G*</th>
<th>CAM B3LYP/6-31+G*</th>
<th>MP2/6-31+G*</th>
</tr>
</thead>
<tbody>
<tr>
<td>pNA</td>
<td>11.4</td>
<td>20.2</td>
<td>14.6</td>
<td>13.1</td>
<td></td>
</tr>
<tr>
<td>TCP-1</td>
<td>479</td>
<td>369.42</td>
<td>1057.9</td>
<td>996</td>
<td></td>
</tr>
<tr>
<td>TCP-Me</td>
<td>365</td>
<td>465.9</td>
<td>1646.2</td>
<td>970</td>
<td></td>
</tr>
<tr>
<td>TCP-Ph</td>
<td>465</td>
<td>379.46</td>
<td>1355.7</td>
<td>956</td>
<td></td>
</tr>
<tr>
<td>TCP-PhF</td>
<td>490</td>
<td>383.07</td>
<td>1371.5</td>
<td>956</td>
<td></td>
</tr>
</tbody>
</table>

Table 3.3: Experimental and Calculated Frequency Dependent β_{HRS} values.

<table>
<thead>
<tr>
<th>Compound</th>
<th>$\beta_{\text{HRS}}(0,\text{TLM})$ (10$^{-30}$ esu)</th>
<th>Experimental</th>
<th>B3LYP/6-31+G*</th>
<th>CAM B3LYP/6-31+G*</th>
<th>MP2/6-31+G*</th>
</tr>
</thead>
<tbody>
<tr>
<td>pNA</td>
<td>6.2902</td>
<td>9.21</td>
<td>8.02</td>
<td>7.76</td>
<td></td>
</tr>
<tr>
<td>TCP-1</td>
<td>241.35</td>
<td>131</td>
<td>183</td>
<td>342</td>
<td></td>
</tr>
<tr>
<td>TCP-Me</td>
<td>174.03</td>
<td>137.97</td>
<td>176.76</td>
<td>303</td>
<td></td>
</tr>
<tr>
<td>TCP-Ph</td>
<td>224.61</td>
<td>143.97</td>
<td>177.09</td>
<td>302</td>
<td></td>
</tr>
<tr>
<td>TCP-PhF</td>
<td>236.72</td>
<td>145.33</td>
<td>177.11</td>
<td>302</td>
<td></td>
</tr>
</tbody>
</table>

Table 3.4: Experimental and Calculated β_0 values

The static hyperpolarizability values $\beta_{\text{HRS}(0)}$ (table 3.4) seem to be better predicted by the CAM B3LYP functional although the trends in hyperpolarizability are not predicted well. The B3LYP functional while underestimating the experimental values by factors of ~1.3 to 1.84, once again does pick up on the slight increase in $\beta_{\text{HRS}(0)}$ in going from TCP-Me to TCP-Ph and
TCP-PhF. MP2 values were overestimated by factors of between 1.27-1.74. Based on MP2 methods, the $\beta_{\text{HRS}(0)}$ values for TCP-Me, TCP-Ph and TCP-PhF were estimated to be lower than that of TCP-1 but no difference in values is expected between the three substituted TCP chromophores. This is contrary to what is indicated by the experimental data where an increase in $\beta_{\text{HRS}(0)}$ is expected in the substituted chromophores.

Both the static and frequency dependent ($\beta_{\text{HRS}}/\beta_{\text{PNA}}$) values (table 3.5 and table 3.6) were largely underestimated by B3LYP calculations by factors of as much as 2.7. CAM B3LYP calculations overestimated the frequency dependent ratios with the largest error seen for TCP-Me (overestimated by a factor of 3.5) while the static values were underestimated. This is similar to the trend seen in the CAM B3LYP values of $\beta_{\text{HRS}(0)}$ and $\beta_{\text{HRS}(1064)}$. MP2 calculations grossly overestimated the frequency dependent values by a factor of as much as 2.3 (for TCP-Me). The static hyperpolarizability ratios were predicted to be slightly higher by MP2 calculations for TCP-1 and TCP-Me and quite accurate for TCP-Ph and TCP-PhF.

<table>
<thead>
<tr>
<th>Compound</th>
<th>$\langle\beta_{\text{HRS}}/\beta_{\text{PNA}}\rangle_{1064}$</th>
<th>B3LYP/6-31+G*</th>
<th>CAM B3LYP/6-31+G*</th>
<th>MP2/6-31+G*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Experimental</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pNA</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>TCP-1</td>
<td>42</td>
<td>18.29</td>
<td>72.46</td>
<td>76</td>
</tr>
<tr>
<td>TCP-Me</td>
<td>32</td>
<td>23.06</td>
<td>112.75</td>
<td>74</td>
</tr>
<tr>
<td>TCP-Ph</td>
<td>40.8</td>
<td>18.785</td>
<td>92.86</td>
<td>73</td>
</tr>
<tr>
<td>TCP-PhF</td>
<td>43</td>
<td>18.964</td>
<td>93.94</td>
<td>73</td>
</tr>
</tbody>
</table>

Table 3.5: Experimental and Calculated Frequency Dependent $\beta_{\text{HRS}}/\beta_{\text{PNA}}$ values
<table>
<thead>
<tr>
<th>Compound</th>
<th>(\beta_{\text{HRS}(0)} / \beta_{\text{PNA}(0)})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Experimental</td>
</tr>
<tr>
<td>pNA</td>
<td>1</td>
</tr>
<tr>
<td>TCP-1</td>
<td>38.37</td>
</tr>
<tr>
<td>TCP-Me</td>
<td>27.67</td>
</tr>
<tr>
<td>TCP-Ph</td>
<td>35.71</td>
</tr>
<tr>
<td>TCP-PhF</td>
<td>37.63</td>
</tr>
</tbody>
</table>

Table 3.6: Experimental and Calculated Static \(\beta_{\text{HRS}}/\beta_{\text{PNA}} \) values

Overall, amongst the three theoretical methods, B3LYP was found to be a better predictor of \(\beta_{\text{HRS}(1064)} \) values while CAM-B3LYP was found to be better at predicting \(\beta_{\text{HRS}(0)} \) for the TCP chromophores. The trends observed were not accurately predicted by any of the functionals although B3LYP did predict the slight increase in \(\beta \) values observed with the substituted TCP chromophores.

3.5.4 **Discussion of experimental trends:**

The experimentally determined frequency dependent hyperpolarizability \(\beta_{\text{HRS}(1064)} \) values of the four TCP chromophores vary by ca. \(125 \times 10^{-30} \) esu (table 3.3). TCP-Me demonstrates the lowest \(\beta_{\text{HRS}(1064)} \) while TCP-PhF demonstrates the largest value at \(490 \times 10^{-30} \) esu. Upon substitution with a methyl ketone, the hyperpolarizability drops from \(479 \times 10^{-30} \) esu (TCP-1) to \(365 \times 10^{-30} \) esu (TCP-Me) (a ~24% reduction). Upon further substitution with a phenylvinyl ketone, the hyperpolarizability was significantly recovered (465 \(\times 10^{-30} \) esu for TCP-Ph). The fluorophenylvinyl ketone substituted TCP-PhF was found to have \(\beta_{\text{HRS}(1064)} \) slightly larger
(490×10⁻³⁰ esu) than TCP-1. A similar trend (albeit with lower values) is observed with the experimental static hyperpolarizabilities $\beta_{\text{HRS}(0)}$ (Table 3.4)

The larger loss in β for TCP-Me is unusual since the methyl ketone substituent is a weak acceptor and should not have a strongly negative effect on $\beta_{\text{HRS}(1064)}$ values. This reduction can be explained by the existence of a distribution of two rotational isomers A and B as shown in Figure 3.23 and discussed in section 3.3.2. Rotamer A has the TCP acceptor rotated out of plane with respect to the diethylamino benzene donor and the methyl ketone is closer to a net 0° dihedral angle with respect to the donor. This effectively conjugates the donor to the weak ketone acceptor resulting in a very low hyperpolarizability for rotamer A.

As seen in Figure 3.14, a solution of TCP-Me in chloroform shows absorbances for both rotamers A and B. Thus the effective hyperpolarizability of a mixture of A and B rotamers of TCP-Me in chloroform would be lower than a solution in which only rotamer B existed.

The increase in hyperpolarizability observed in going from TCP-Me to TCP-Ph and finally TCP-PhF can be attributed to two factors:

1) the lower rotational freedom expected for the larger phenylvinyl ketone and the fluorophenylvinyl ketone groups in TCP-Ph and TCP-PhF respectively preventing the formation of corresponding rotamer A (seen in TCP-Me) versions of these molecules which would have reduced hyperpolarizibilities.

2) the stronger electron withdrawing character of the aromatic substituents in TCP-Ph and TCP-PhF compared to the methyl substituent in TCP-Me.

As has already been discussed in Chapter 2 charge-transfer is indeed possible between donors and acceptors across cross-conjugated motifs. As further elucidated in section 3.3.1 a HOMO→LUMO+1 transition is observed for TCP-Ph and TCP-PhF. These are shown again
for convenience in figure 3.25. As this transition occurs from the diethylaminobenzene donor to the aromatic cross-conjugated substituents on TCP-Ph and TCP-PhF, thus indicating that these substituents act as auxiliary acceptors in these chromophores and this effect is indeed observed in the hyperpolarizability trends.

Figure 3.25: HOMO to LUMO+1 transition for (a) TCP-Ph and (b) TCP-PhF
3.6 Conclusions to Chapter 3:

In conclusion, the incorporation of a cross-conjugated motif onto a conjugated TCP chromophore was investigated. Four chromophores TCP-1 (control molecule), TCP-Me, TCP-Ph and TCP–PhF were successfully, characterized and compared.

The crystal structures of TCP-Me and TCP-Ph were elucidated and compared to the optimized geometries obtained through theoretical calculations. The cross-conjugated side groups were found to be oriented approximately perpendicular to the conjugated backbone of the molecule. This was as expected from theory as well as previously published literature. In addition, a twist was observed along the conjugated bridge between the diethylamino donor and the TCP acceptor. A dihedral angle of 23° (29° theoretical) in TCP-Me and 16° (35° theoretical) in TCP-Ph was seen. Such a twist in the backbone of a conjugated TCP chromophore has not been reported before. This deviation from co-planarity of the TCP backbone could result in reduction of aggregation behavior (as described in section 3.1) and improve film quality. Further, the crystal packing of TCP-Ph indicated significant interaction of the perpendicular phenyl side groups between adjacent chromophores. These interactions guide molecular arrangement and could be exploited further and utilized as soft interactions to improve acentric order as described in Chapter 1.

The UV-vis spectra of TCP-Me, TCP-Ph and TCP-PhF were understood through comparisons with 1-Me, 1-Ph, 1-F and TCP-1 as well as through quantum calculations of the electronic transitions. It was evident especially in the case of TCP-Ph and TCP-PhF that the electronic transitions included charge transfer from the diethylamino donor to the cross-
conjugated moiety (HOMO→LUMO+1, figure 3.20) thus indicating that the cross-conjugated substituent acts as an auxiliary acceptor. In the case of TCP-Me there is a strong indication that the methyl ketone moiety is able to rotate in solution (figure 3.22 and figure 3.23) and this is the reason for the larger twist is observed between the donor and the acceptor in the crystal structure of TCP-Me.

Theoretical calculations of the electronic transitions point towards an increased contribution of the HOMO→LUMO+1 transition across the cross conjugated part of the molecule in going from TCP-Me to TCP-Ph and TCP-PhF resulting in the larger predicted dihedral angles between the donor and the TCP acceptor. This indicates that increasing the electron-withdrawing character of the cross conjugated side group would in fact increase this HOMO→LUMO+1 contribution and make for a higher β chromophore.

HRS measurements of TCP-Me indicate a β_{HRS} reduced by ~25% compared to TCP-1 control molecule. This is unexpected unless one takes into account the 23° dihedral twist observed between the donor and acceptor and the ability of the cross-conjugated methyl ketone group to rotate. This corroborates the expectation of the rotational isomers observed in the UV-vis spectrum of TCP-Me.

TCP-Ph and TCP-PhF have increasing hyperpolarizability values compared to TCP-Me once again confirming the electron withdrawing contribution of the cross-conjugated side groups and the reduced rotational freedom expected for the bulkier side groups.

Finally, the substitution of cross conjugated side groups onto the backbone of the conjugated TCP chromophores provides a new design motif through which the following advantages can be gained:
1) Twisting of the conjugated backbone possibility resulting in the lowering of aggregation phenomenon overcoming a major drawback of TCP small molecule chromophores and allowing for improved processing, film characteristics and reduction of optical loss.

2) Introduction of anisotropic “soft” interactions through aryl and possibly aryl-fluoroaryl interactions to improve number densities, order as well as poling efficiencies.

3) The use of cross-conjugated lateral groups as auxiliary acceptors by increasing the electron withdrawing character of these lateral groups and thereby allowing for improvement in hyperpolarizability.

This new design motif is an addition to the ongoing research towards the new and improved materials for electro-optic applications.
3.7 Appendix to Chapter 3

3.7.1 Synthesis of cross-conjugated chromophores:

Experimental

All reactions were carried out under a nitrogen atmosphere in flame-dried glassware. Standard air-free techniques were used for handling air and moisture sensitive reagents. All solvents were used as received from commercial suppliers. All NMR spectra were recorded using Bruker 300 MHz and Bruker 500 MHz spectrometers. Chemical shifts (δ) are given in parts per million (ppm) and measured against residual solvent peaks as internal standards. Coupling constants (J) are given in Hertz (Hz). UV-Vis spectra were recorded on the Agilent 8453 spectrophotometer. Fluorescence spectra were recorded on the Horiba FL3-21tau fluorescence spectrophotometer. Fresh solvents were used for solution preparation.

TCP-1:

A 250 mL round bottom flask was charged with a stir bar and connected to a jacketed water condenser. The set up was flushed with nitrogen for 10 min. Ethyl Pyruvate (16 mL, 141.043 mmol), and ethanol (56 mL) were combined in the flask and stirred for 5 minutes under a nitrogen atmosphere. 1,1,3-tricyano-2-amino-1-propene (7.454 g, 56.417 mmol) was then added to the stirring solution. The solution was then refluxed for 100 minutes at 90 °C. At the end of the 100 minutes, diethylamino benzaldehyde (7 g, 39.49 mmol) was added to the solution and
refluxed at 90 °C for 24 hours. The heating was then turned off and the reaction was allowed to cool to room temperature. The reaction was filtered and the green precipitate was washed with dichloromethane until the filtrate looked clear. The green product was then transferred to a vial and placed in a vacuum oven for 2 hours. (6.718 g, 50% yield). \(^1\)H NMR (300MHz,DMSO-d6): \(\delta\) 12.427 (s,1H), 8.403 (d, \(J = 15.2\)Hz, 1H), 7.731 (d, \(J = 8.5\)Hz, 2H), 6.959 (d, \(J = 15.1\)Hz, 1H), 6.857 (d, \(J = 8.98\)Hz, 2H), 3.544 (q, \(J = 6.9\)Hz, 4H), 1.166 (t, \(J = 6.9\)Hz, 6H).

\[\text{2NaTCP:}\]

A 50mL round bottom flask was flame dried and charged with a stir bar. The flask was cooled under flushing nitrogen. Sodium (0.55g, 24mmol) was added to the flask followed by ethanol (10mL). More ethanol was added as the reaction between sodium and ethanol slowed to allow completion of reaction. Total ethanol added was 16mL. The reaction flask was cooled to 0°C in an ice bath. 1,1,3-tricyano-2-amino-1-propene (1g, 7.6mmol) and diethyl oxalate (1.54mL, 11.35mmol) were added to the flask. The reaction was stirred at 0°C for 30 min during which time a yellow solid precipitated out. The ice bath was removed and the precipitate was broken up to facilitate stirring. The reaction was stirred at room temperature for 3h. After 3h, the reaction was poured into an Erlenmeyer flask containing 100mL of benzene and stirred vigourously for 5 min. The solids were then filtered and washed with more benzene. The yellow solids were dried under vacuum overnight. (2.271g)
TCP-Me:

A 10mL round bottom flask was flame dried, charged with a stir bar and cooled under flushing nitrogen. **1-Me** (0.15g, 0.69mmol), **2NaTCP** (0.106g, 0.46mmol) and N,N-dimethylformamide (2.3mL) were added to the flask and stirred until all the solids had dissolved. The reaction flask was cooled to -4°C in an ice bath and acetic anhydride (0.044mL, 0.46mmol) was added to the reaction. Phosphorous oxychloride (POCl₃) (0.13mL, 1.38mmol) was added dropwise to the reaction and the reaction was allowed to stir and allowed to warm up. After 1h, the reaction had turned green. The reaction mixture was then poured into ice water (50mL). A green precipitate formed which was filtered over a buchner funnel, washed with water and dried under vacuum overnight. Purification of crude product achieved by re-suspending in a 50/50 mixture of dichloromethane/methanol and filtering and further washing with methanol. The final luminous green product was obtained after drying under vacuum overnight. (0.015g, 8.5%) **¹H NMR** (300MHz,CD₃CN): δ 9.86 (s, 1H), 8.156 (s, 1H), 7.308 (d, J =9.1Hz, 2H), 6.721 (d, J = 9.1Hz, 2H), 3.47 (q, J =7.09Hz, 4H), 2.49 (s, 3H), 1.178 (t, J = 7.09Hz, 6H). HRMS (ESI) (M+, C₂₂H₁₉Ν₅Ο₂) calcd: 385.1539; found, 386.16144 [M+H], 408.1431 [M+Na]
TCP-Ph:

A 10mL round bottom flask was flame dried, charged with a stir bar and cooled under flushing nitrogen. **1-Ph** (0.078g, 0.303mmol), **2NaTCP** (0.059g, 0.256mmol) and N,N-dimethylformamide (0.88mL) were added to the flask and stirred until all the solids had dissolved. The reaction flask was cooled to -4°C in an ice bath and acetic anhydride (0.02mL, 0.211mmol) was added to the reaction. Phosphorous oxychloride (POCl₃) (0.05mL, 0.535mmol) was added dropwise to the reaction and the reaction was allowed to stir at -4°C. After 35min, the reaction had turned purple. The reaction mixture was then poured into ice water (50mL). A purple precipitate formed which was filtered over a buchner funnel, washed with water and dried under vacuum overnight. Purification of crude product achieved by re-suspending in methanol and filtering and further washing with methanol. The final luminous green product was obtained after drying under vacuum overnight. (0.006g, 4%) ¹H NMR (300MHz,CD₃CN): δ 9.704 (s,1H), 8.621 (s, 1H), 7.64 (m, 3H), 7.436 (m, 6H), 6.736 (d, J =9.3Hz, 2H), 3.478 (q, J =7.1Hz, 4H), 1.158 (t, J = 7.12Hz, 6H). HRMS (ESI): (M+, C₂₉H₂₅N₅O₂): calcd: 473.3852; found, 474.194931 [M+H]
TCP-PhF:

A 10mL round bottom flask was flame dried, charged with a stir bar and cooled under flushing nitrogen. **1-PhF** (0.117g, 0.362mmol), **2NaTCP** (0.047g, 0.206mmol) and N,N-dimethylformamide (2mL) were added to the flask and stirred until all the solids had dissolved. The reaction flask was cooled to -4°C in an ice bath and acetic anhydride (0.02mL, 0.211mmol) was added to the reaction. Phosphorous oxychloride (POCl₃) (0.06mL, 0.641mmol) was added dropwise to the reaction and the reaction was allowed to stir at -4°C. After 35min, the reaction had turned purple. The reaction mixture was then poured into ice water (50mL). A purple precipitate formed which was filtered over a buchner funnel, washed with water and dried under vacuum overnight. Purification of crude product achieved by re-suspending in methanol and filtering and further washing with methanol. The final luminous green product was obtained after drying under vacuum overnight. (0.006g, 3.4%) **¹H NMR (300MHz,CD₃CN):** δ 9.686 (s, 1H), 8.617 (s, 1H), 7.688 (dd, J =8.9Hz, 8.7Hz, 2H), 7.59 (d, J =16.145Hz, 1H), 7.44 (d, J =9.3Hz, 2H), 7.165 (dd, J =8.9Hz, 8.8Hz, 2H), 6.74 (d, J =9.3Hz, 2H), 3.481 (q, J =7.1Hz, 4H), 1.16 (t, J = 7.1Hz, 6H). HRMS(ESI) (M+, C₂₉H₂₂FN₅O₂): calcd: 491.1758; found, 492.1852 [M+H], 514.1674 [M+Na].
3.7.2 Nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry data:
1HNMR of TCP-Me

mcrB-151-r1-cd3cn
in CD3CN
on AV 300
HRMS (ESI) of TCP-Me
\(^1\)HNMR of TCP-Ph

mrd-147-r1
in CD3CN
on AV 300
HRMS (ESI) of TCP-Ph

<table>
<thead>
<tr>
<th>Mass (m/z)</th>
<th>Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>474.1949</td>
<td>[M+H]</td>
</tr>
<tr>
<td>215.0553</td>
<td></td>
</tr>
<tr>
<td>59.0626</td>
<td></td>
</tr>
<tr>
<td>197.0444</td>
<td></td>
</tr>
<tr>
<td>237.0381</td>
<td></td>
</tr>
<tr>
<td>291.1664</td>
<td></td>
</tr>
<tr>
<td>471.1205</td>
<td></td>
</tr>
<tr>
<td>475.1981</td>
<td></td>
</tr>
<tr>
<td>507.1920</td>
<td></td>
</tr>
<tr>
<td>532.2504</td>
<td></td>
</tr>
<tr>
<td>431.1256</td>
<td></td>
</tr>
</tbody>
</table>

Cone Voltage: 40.0
Collision Energy: 6.0

1HNMR of TCP-PhF

mrd0-155-f1r1
in CD3CN
on AV 300
HRMS (ESI) of TCP-PhF

Meghana Rawal / Dalton / Chemistry
MRD6-155 18 (0.686) Cm (18)
100

MRD6-155
Cone Voltage 40.0 Collision Energy 6.0
492.1852 \[\text{[M+H]}^+\]
493.1887
514.1674 \[\text{[M+K]}^+\]
515.1724

05-hov-2013
16:12:13
1: TOF NS ES+
2.52e3

m/z
3.7.3 X-ray diffraction data:

TCP-Me Crystal Packing Structure
Crystal data for TCP-Me

Identification code mrd_6_151_0ma
Empirical formula C26 H27 N5 O3
Formula weight 457.53
Temperature 100(2) K
Wavelength 0.71073 Å
Crystal system Monoclinic
Space group P 2₁/c
Unit cell dimensions
 a = 13.755(4) Å \quad \alpha = 90°.
 b = 17.446(5) Å \quad \beta = 103.54(2)°.
 c = 9.867(3) Å \quad \gamma = 90°.
Volume 2302.0(12) Å³
Z 4
Density (calculated) 1.320 Mg/m³
Absorption coefficient 0.089 mm⁻¹
F(000) 968
Crystal size 0.10 x 0.07 x 0.02 mm³
Theta range for data collection 1.92 to 25.52°.
Index ranges -16≤h≤16, -21≤k≤21, -11≤l≤11
Reflections collected 35966
Independent reflections 4255 [R(int) = 0.1130]
Completeness to theta = 25.00° 99.8 %
Max. and min. transmission 0.9982 and 0.9912
Refinement method Full-matrix least-squares on F²
Data / restraints / parameters 4255 / 0 / 314
Goodness-of-fit on F² 1.011
Final R indices [I>2sigma(I)] R1 = 0.0782, wR2 = 0.1530
R indices (all data) R1 = 0.2192, wR2 = 0.2112
Extinction coefficient 0.0109(18)
Largest diff. peak and hole 0.372 and -0.297 e.Å⁻³
TCP-Ph Crystal Packing Structure
Crystal data for TCP-Ph

Identification code: mrd6_147_0ma
Empirical formula: C29 H23 N5 O2
Formula weight: 473.52
Temperature: 100(2) K
Wavelength: 0.71073 Å
Crystal system: Triclinic
Space group: P -1
Unit cell dimensions:
- \(a = 5.778(3) \, \text{Å}\)
- \(b = 14.455(8) \, \text{Å}\)
- \(c = 16.504(12) \, \text{Å}\)
- \(\alpha = 64.94(5)^\circ\)
- \(\beta = 89.61(5)^\circ\)
- \(\gamma = 78.92(3)^\circ\)
Volume: 1221.1(12) \, \text{Å}^3
Z: 2
Density (calculated): 1.288 Mg/m³
Absorption coefficient: 0.084 mm⁻¹
F(000): 496
Crystal size: 0.30 x 0.03 x 0.01 mm³
Theta range for data collection: 2.50 to 25.19°.
Index ranges: -6⩽h⩽6, -17⩽k⩽17, -19⩽l⩽19
Reflections collected: 31155
Independent reflections: 4149 [R(int) = 0.3053]
Completeness to theta = 25.00°: 94.8 %
Max. and min. transmission: 0.9992 and 0.9753
Refinement method: Full-matrix least-squares on F²
Data / restraints / parameters: 4149 / 18 / 254
Goodness-of-fit on F²: 0.861
Final R indices [I>2sigma(I)]: R1 = 0.0791, wR2 = 0.1616
R indices (all data): R1 = 0.2506, wR2 = 0.2211
Largest diff. peak and hole: 0.297 and -0.292 e.Å⁻³
3.7.4 **Hyper-Rayleigh scattering data:**

All HRS measurements were performed by Prof David Shelton (Department of Physics, University of Nevada, Las Vegas, NV). The β values for the chromophores in CDCl₃ solution were determined from hyper-Rayleigh scattering (HRS) measurements at a laser wavelength of 1064 nm (using a pulsed Nd:YAG laser) and sample temperature 25°C. Calibration of the HRS results used 4-nitroaniline (pNA) in CDCl₃ solution as a reference standard. Dilute solutions of pNA (36.4mM), TCP-1 (12µM), TCP-Me (35.3µM), TCP-Ph (36.1µM) and TCP-PhF (36.6µM) in CDCl₃ were freshly prepared for each measurement. The solution concentrations were chosen to give comparable signals for the chromophore and reference solutions, and the much smaller HRS signal measured for the neat solvent was subtracted. Sample and reference HRS signals were compared using the same laser focusing, collection optics and polarization configuration, using apparatus and techniques as previously described¹⁵. The laser power incident on the sample was adjusted without affecting the alignment or focusing of the laser beam using a half-wave plate and polarizer combination.

The 532 nm (second harmonic wavelength) HRS light is absorbed by the sample along the 1.5 mm path from the laser focus to the exit window of the cuvette. The self-absorption correction was determined using the 532 nm absorbance measured for the sample in the 10 mm sample cuvette.

The HRS signal at 532 nm selected by the 60 cm⁻¹ bandpass filter may be contaminated with two photon fluorescence (2PF). The fraction of the total signal due to HRS is determined from a spectral scan, where the HRS and 2PF appear as a sharp peak and a flat background, respectively. The 2PF contribution was less that 7%.
HRS signal S is measured versus laser power P and S/P^2 is extrapolated to $P = 0$. This extrapolation is necessary since weak absorption of the focused laser beam in the sample heats the sample along the beam path, defocuses the beam, and reduces the HRS signal. In the absence of this thermal lens effect S/P^2 is independent of P. In the usual case of weak linear absorption by the sample at the laser wavelength the extrapolation is done by fitting $S/P^2 = A(1 - B \times P)$ to the data.
<table>
<thead>
<tr>
<th>Sample</th>
<th>Conc µM</th>
<th>A_{532nm}</th>
<th>F = HRS/total</th>
<th>T(z)</th>
<th>S/P^2 (cps/W^2)</th>
<th>D (cps/W^2)</th>
<th>E (cps/µM W^2)</th>
<th>β/β_{PNA} ±2%</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP-1</td>
<td>12.0</td>
<td>0.011</td>
<td>0.933(2)</td>
<td>0.966</td>
<td>3897(62)</td>
<td>3350</td>
<td>279.13</td>
<td>42.0</td>
</tr>
<tr>
<td>TCP-Me</td>
<td>35.5</td>
<td>0.025</td>
<td>0.972(1)</td>
<td>0.991</td>
<td>6094(34)</td>
<td>5676</td>
<td>160.80</td>
<td>31.9</td>
</tr>
<tr>
<td>TCP-Me</td>
<td>39.2</td>
<td>0.032</td>
<td>0.972(1)</td>
<td>0.989</td>
<td>6838(96)</td>
<td>6420</td>
<td>163.76</td>
<td>32.2</td>
</tr>
<tr>
<td>TCP-Ph</td>
<td>36.1</td>
<td>0.054</td>
<td>0.947(1)</td>
<td>0.982</td>
<td>10188(77)</td>
<td>9524</td>
<td>263.82</td>
<td>40.8</td>
</tr>
<tr>
<td>TCP-PhF</td>
<td>36.6</td>
<td>0.034</td>
<td>0.941(1)</td>
<td>0.989</td>
<td>11595(125)</td>
<td>10731</td>
<td>293.20</td>
<td>43.0</td>
</tr>
</tbody>
</table>

HRS Data Table For TCP-Me, TCP-Ph and TCP-PhF

A_{532} = absorbance at 532 nm for 1 cm of solution.

\[T(z) = 10^{-A_z} \]

\[S/P^2 = \text{power-normalized HRS signal extrapolated to } P^2 = 0 \]

\[D = [(F/T)(S/P^2) - (S/P^2)_{CDCl3}] \]

\[E = D / \text{conc} \]

\[\beta/\beta_{PNA} = (E/E_{PNA})^{1/2} \]
\(S/P^2 \) versus \(P \) for TCP-1 (TV1-101), TCP-Me (MRD6-151), TCP-Ph (MRD6-147) and TCP-PhF (MRD6-155)
The experimental static hyperpolarizability ratios, $\beta_{\text{HRS}(0)}/\beta_{\text{pNA}(0)}$ were extrapolated from the frequency dependent ratios, $(\beta_{\text{HRS}}/\beta_{\text{pNA}})_{1064}$ using the two level model (TLM) equation developed by Oudar and Chemla. Extrapolation to the static becomes increasingly unreliable however as resonance is approached as line broadening effects need to be taken into account. A correction factor known as thus applied to the TLM equation to give the damped two level model dispersion fit shown by equations 2.1 and 2.2:

$$\beta^{\text{SHG}}(\omega, \omega_{eg}, \gamma) = g(\omega, \omega_{eg}, \gamma) \ast \beta^{\text{HRS}}(0) \quad \text{(2.1)}$$

$$g(\omega, \omega_{eg}, \gamma) = \frac{\omega_{eg}^2}{3} \left\{ \frac{1}{(\omega_{eg} + i\gamma + 2\omega)(\omega_{eg} + i\gamma + \omega)} + \frac{1}{(\omega_{eg} - i\gamma - 2\omega)(\omega_{eg} - i\gamma - \omega)} \right\} \quad \text{(2.2)}$$

<table>
<thead>
<tr>
<th>Compound</th>
<th>$(\beta_{\text{HRS}}/\beta_{\text{pNA}})_{1064}$</th>
<th>$\beta_{\text{HRS}(0)}/\beta_{\text{pNA}(0)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>pNA</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>TCP-1</td>
<td>42</td>
<td>38.37</td>
</tr>
<tr>
<td>TCP-Me</td>
<td>32</td>
<td>27.67</td>
</tr>
<tr>
<td>TCP-Ph</td>
<td>40.8</td>
<td>35.71</td>
</tr>
<tr>
<td>TCP-PhF</td>
<td>43</td>
<td>37.63</td>
</tr>
</tbody>
</table>

Experimentally obtained Frequency Dependent $\beta_{\text{HRS}}/\beta_{\text{pNA}}$ Values and the Corresponding Extrapolated Static $\beta_{\text{HRS}(0)}/\beta_{\text{pNA}(0)}$ Values
The experimentally obtained value for β_{HRS} at 1064 for 4-nitroaniline, 11.4×10^{-30}, was used to convert the $(\beta_{\text{HRS}}/\beta_{\text{pNA}})_{1064}$ ratios to $\beta_{\text{HRS}(1064)}$ for both molecules. The static $\beta_{\text{HRS}(0,\text{TLM})}$ value for pNa 6.29×10^{-30} was extrapolated using the TLM expression in a fashion similar to that described above. This value was used multiplied with the $\beta_{\text{HRS}(0)}/\beta_{\text{pNA}(0)}$ values to give the static hyperpolarizibilities for both molecules. These results are tabulated below:

<table>
<thead>
<tr>
<th>Compound</th>
<th>$\beta_{\text{HRS}(1064)}$ (10$^{-30}$ esu)</th>
<th>$\beta_{\text{HRS}(0,\text{TLM})}$ (10$^{-30}$ esu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pNA</td>
<td>11.4</td>
<td>6.2902</td>
</tr>
<tr>
<td>TCP-1</td>
<td>479</td>
<td>241.35</td>
</tr>
<tr>
<td>TCP-Me</td>
<td>365</td>
<td>174.03</td>
</tr>
<tr>
<td>TCP-Ph</td>
<td>465</td>
<td>224.61</td>
</tr>
<tr>
<td>TCP-PhF</td>
<td>490</td>
<td>236.72</td>
</tr>
</tbody>
</table>

Frequency dependent $\beta_{\text{HRS}(1064)}$ and static $\beta_{\text{HRS}(0,\text{TLM})}$ values
3.8 References:

(2) Cavanagh, D.; James, M. R.; Meyrick, B. H.; Wight, P. Pyrrolinone or -thione dyes with
dicyanomethylene substituents, their mixtures, and their use in dyeing textiles. WO

(3) Li, D.; Zhao, M. Preparation methods of pyrrolinone dye compound and intermediate
thereof. CN103232376 (A), August 7, 2013.

(4) Matsumoto, H.; Imai, H.; Tada, S. Process for manufacture of pyrroline derivatives as dyes

(5) Akahori, K.; Nishikuri, M.; Nakamatsu, T. Dyeing or coloring by heterocyclic compounds.

(6) Shuttleworth, L.; Mcmanus, M. J. In situ dye generation for thermal transfer printing.

(7) Matsumoto, H.; Imai, H.; Hirasawa, Y. Ink sheet for sublimation-type thermal-transfer

(8) Maeda, S.; Kurose, Y.; Ozawa, T. Cyanomethyleneoxopyrroline dye optical information

(9) Nishigaki, J.; Yabuki, Y. Merocyanine photographic dyes and their manufacture. JP

Vita

Meghana Rawal was born in Srinagar, India. She was raised in Pune, India, a city known for both its quality and quantity of academic and research institutes. Her father being a molecular biologist, she grew up in a scientific environment that encouraged curiosity and rational query. Her interests in school included Kathak, an Indian classical dance form and Karate. She competed and won accolades in state and district level martial arts tournaments. Due to an interest in polymers, she pursued an engineering degree and graduated first class with a BE (Polymers) from the Maharashtra Institute of Technology in 2003. In her senior year she and a few classmates spearheaded the organization of a student led national conference for undergraduates in polymers and macromolecules called Affinity 2003. Her final year project at the National Chemical Laboratory (NCL) exposed her to a world at the cross roads of polymers and nano-technology. After graduation she worked as a research assistant in the Polymer Science and Engineering department at NCL, developing synthetic methodologies for generation of meso-porous silica through polymerization. This created an interest in organic synthesis which culminated in a Ph.D. in December 2013 under Prof. Larry R. Dalton at the University of Washington, Seattle. She was the recipient of the B. Seymour Rabinovitch Graduate Student Fellowship Award in 2004. While in graduate school, she continued to pursue her passion for Kathak and her interest in martial arts training morphed into one in yoga. She intends to continue research either in academia or the industry in organic electronics and polymers.