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Layered materials when thinned down to their monolayer limit exhibit remarkable proper-

ties owing to their two-dimensional nature and strong electron confinement. In particular

this class of materials displays strong optical properties, showing promise for applications

towards future optoelectronic devices; however, due to their relative recent isolation, the

optical properties of these monolayers have been largely unexplored. This thesis focuses

on the interaction of these layered materials with incident optical radiation, with the focus

being on monolayers of WSe2 and graphene.

In the first half of this thesis the strong excitonic physics of semiconducting WSe2 mono-

layers is investigated. These excitons exhibit large interaction effects due to the strong 2D

confinement which are further explored here using ultrafast pump probe techniques. Ad-

ditionally these excitons possess a unique quantum degree of freedom, known as the valley

pseudospin. It has been shown that this pseudospin can be optically addressed and readout

using its unique circular dichroism. Here the degenerate pseudospin is controlled using an

external magnetic field coupled to its valley pseudospin magnetic moment. From this work

the valley pseudospin in monolayer WSe2 can be further explored as a possible qubit in

future quantum computing and quantum information applications.

Graphene photodetectors are the focus of the second half of the thesis. Monolayer

graphene is a gapless semi-metal that has been shown to display an ultrafast optoelectronic

response that is dominated by hot carriers. Here these effects are investigated as a band gap



is generated through the application of a perpendicular electric field in bilayer graphene and

through the application of a perpendicular magnetic field in monolayer graphene inducing

a Landau level quantization of the band structure. It is observed that in both cases the

disruption of the continuous band structure has profound impacts on the photo-excited hot

carriers. This work helps lay the foundation for future ultrafast photodetectors made out

of graphene.
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Chapter 1

INTRODUCTION TO 2-DIMENSIONAL MATERIALS

Since the isolation of a single layer of graphene from a layered graphite source in 2004

[55, 53], the study of two-dimensional layered materials has exploded with both popularity

and beautiful results. Bulk crystals of these layered materials can be thought of like a ream

of paper: composed of many individual sheets which are strongly bound in-plane, though

only weakly bound, via van der Waals forces, between sheets. These crystals have interesting

properties in their own right, but with minimal effort, using mechanical exfoliation (the so

called “scotch-tape method” [54]), a single layer may be isolated displaying remarkably

different properties than the host crystal.

Electrons in these materials are absolutely confined in the out of plane direction leading

to some very interesting quantum physics arising from their two-dimensional nature. Addi-

tionally, since these materials are all surface area they are particularly sensitive to changes

in their environment; for instance as sensors for chemicals absorbed onto their surfaces,

or, as will be the focus of this thesis, as sensors for incident light. Finally, they may be

easily stacked on top of each other to form vertical heterostructures [19, 60]. Since dif-

ferent layered materials act as metals, insulators, semiconductors, or superconductors in

their monolayer limit [55], different heterostructures of different materials can run the full

spectrum of imaginable device architectures [16, 26].

Two of the most interesting of such materials for optoelectronic applications will be

investigated in this thesis: graphene and semiconducting transition metal dichalcoginides,

namely WSe2 .

1.1 Graphene

Monolayer graphene is composed of a single sheet of carbon atoms arranged in a honeycomb

lattice. It has been shown over the years to display many remarkable electronic properties [8,
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18] such as world record electron mobilities [16] and a unique quantum hall effect (which has

even been demonstrated at room temperature [56]). Additionally it can easily be fabricated

into, even complicated, device architectures using standard clean room techniques.

It is not obvious, however, that graphene would respond well to optical excitation,

being only one atom thick. Remarkably, graphene has been shown to display a broadband

absorption of 2.3% [5], which, obviously, isn’t acceptable for an energy harvesting application

but is surprisingly large for being only one atom thick. Graphene photodetectors have

been shown to exhibit reasonable responsivities and ultrafast response times to optical

excitation [36, 50, 82, 97], making them promising candidates for ultrafast photomodulators

and detectors.

Graphene’s biggest weakness for its use in converting absorbed radiation to an electrical

signal is its lack of a band gap. Photoexcited electron/hole pairs have little inhibiting them

from recombining and wasting their absorbed energy into heating the lattice. However gaps

in the continuous band structure can be produced by applying a perpendicular electric field

in bilayer graphene [47] or a perpendicular magnetic field in monolayer graphene [20]. The

optoelectronic properties in these regimes will be investigated in this thesis.

1.2 TMDs

Monolayer transition metal dichalcoginides (TMDs), such as WSe2 , are a semiconducting

cousin of graphene. In these materials a layer of group VI transition metal atoms (such as W

or Mo) is sandwiched between two layers of chalcogen atoms (S or Se) in a hexagonal lattice

[55], explicitly breaking inversion symmetry resulting in a band gap in the 1.2-2.5 eV (near

IR- visible) range. The presence of the band gap gives these materials a strong absorption

resonance dominated by excitons [25, 59]. These properties have led to the demonstration

of LEDs based on a pn-junction in WSe2 [62].

Additionally, electrons in TMDs have an extra quantum mechanical degree of freedom,

the valley index, which can be described in a similar manor as the spin, giving rise to the so

call “valley pseudospin” [92]. Already much work has been done in demonstrating a valley

polarization, coherence [95], and even the valley hall effect [41]. With further develop-

ment this pseudospin can be expanded into a qubit for quantum computing or information



3

applications.

1.3 Thesis Organization

This thesis explores several different responses of these 2D materials to optical excitations.

In Part I different spectroscopic methods are used to examine the excitonic nature of mono-

layer WSe2 . Chapter 2 will cover the basic properties of TMDs, namely WSe2 , including

its excitonic and valley physics. In Chapter 3 the lifetimes and many-body interactions of

excitons in WSe2 are explored using an ultrafast resonant pump-probe spectroscopy exper-

iment. The final chapter of Part I covers the use of an external magnetic field to control

the valley pseudospin in WSe2 . Part II covers the optical excitation of photocurrents in

graphene FETs, particularly their ultrafast generation, using a pump-probe photocurrent

experiment. Chapter 5 explores this effect in semi-metallic single layer graphene PN junc-

tions. What happens to the photocurrent generation when the continuous band structure

of semi-metallic graphene is broken is investigated in Chapters 6 and 7 by opening up a

band gap in bilayer graphene and by forming discretely quantized Landau Levels using an

external magnetic field, respectively.
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Part I

VALLEY EXCITONS IN MONOLAYER TUNGSTEN DISELENIDE
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Chapter 2

EXCITONS AND VALLEY PSEUDOSPIN IN TMDS

TMDs are layered semiconductors that show rich optical properties as monolayers. This

chapter will explore some of these fundamental characteristics from the literature including

the direct band gap, bright excitons, and valley pseudospin. Much of this work was done in

the Xu lab. While most of these properties are true for many different species of TMDs, the

work of this thesis will focus entirely on WSe2 as it displays some of the best excitonic lines

with large circular dichrosim. In the next chapter the lifetime and ultrafast interactions of

excitons in WSe2 will be measured. Chapter 4 will then look at using an external magnetic

field as a knob to control the valley pseudospin.

2.1 Structure

When thinned down to a single layer, TMDs are three atoms thick: composed of a group VI

transition metal atom sandwiched in between two sheets of chalcogen atoms in a honeycomb

lattice. This is shown in the Fig 2.1 for WSe2 .

Figure 2.1: Schematic of WSe2 structure from the top (top figure) and the side (bottom

figure). Hexagonal lattice has inversion symmetry explicitly broken.
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Figure 2.2: DFT calculation of TMD band structures. Red lines are full first principle

calculations, blue curves are from simplified tight binding model, and red dotes are from

the three band model. Image taken from Ref [38]

It is evident that in this form the crystal has broken inversion symmetry. This property

allows for the existence of a direct band gap in the material. Indeed first principle calcula-

tions show this to be the case [38, 106, 9] (see Fig 2.2), with the band extrema at the K points

at the edge of the first Brillouin zone. Additionally, this optically active direct band gap

has been confirmed in several materials using photoluminescent spectroscopy [45, 72] (see

section 4.1 for experimental details of PL spectroscopy). Fig 2.3 shows the spectra obtained

from molybdenum disulfide crystals of various thicknesses [45]. Clearly the signal from the

monolayer sample is pronounced compared to the thicker samples demonstrating that only

with inversion symmetry strongly broken, as in the monolayer case, will an optically active

band gap form and photoluminescence appear. In the presence of inversion symmetry, as
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Figure 2.3: Photoluminescent spectrum taken from 1- and 2-layer MoS2 samples. Inset

shows strong quenching of the PL peak with increasing layer thickness. Image taken from

Ref [45]

for thicker samples, the crystals form an indirect band gap that is not optically active.

Unique physics arises from the fact that the band edges are at the edge of the first

Brillouin zone. These points, called the K points in crystallography, at the corners of

the hexagonal lattice form two inequivalent, but degenerate sets: the +K and -K points.

This added two-fold degeneracy can be treated as a spin-1/2 pseudospin, σ̂, dubbed the

valley pseudospin after the electronic energy valleys of the band structure at these points

[99, 93, 95, 92]. As will be shown in the following sections these valleys can be individually

addressed with circularly polarized light and the energy degeneracy can be controlled with

an externally applied magnetic field. With this addressability and control one can imagine

using the valley pseudospin as an information carrier, analogous to the electron spin in the

burgeoning field of spintronics, to form valley-based electronics systems, or valleytronics.
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TMDs appear to the be ideal platform for developing such systems, but there is much

investigative work to be done first to define and explain the properties of their valleys.

Figure 2.4: Relative contributions of individual atomic orbitals to the band structure of

MoS2. Image taken from Ref [38]

Low energy physics around the K points can be describe very effectively using a three

band model [38]. Fig 2.4 shows the band structure of MoS2 where the relative contribution

of each of the individual atomic orbitals to the total band structure is portrayed by the dot

size. Near band edges at the K points the dominant contributions are from the dz2 (red) and

the dxy+dx2−y2 (blue) orbitals in the left subfigure. By just considering these atomic contri-

bution in the DFT calculations a very accurate representation of the whole band structure

can be computed (see Fig 2.2). Additionally, these d orbitals contain significant amount

of angular momentum. Since these crystal are monolayers, the symmetry is broken such

that the magnetic quantum number, m, of these orbitals describes the amount of angular
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momentum in the z-direction (out of plane). The dz2 (red) orbitals which predominately

make up the conduction band have m = 0, whereas the dxy + dx2−y2 (blue) orbitals which

comprise the valence band have |m| = 2. In addition to this extra angular momentum in the

out of plane direction associated with these parent atomic orbitals, the bands also acquire

a nonzero magnetic moment which will be of particular interest for magnetic control of the

valley pseudospin as described in Chapter 4.

Figure 2.5: Low energy band structure of WSe2 showing band splitting due to spin orbit

coupling. The blue (red) bands are spin up (down).

Thanks in part to the high-Z nucleus of the transition metal atoms, spin orbit coupling

effects play a major role in TMDs [38, 106]. Both the conduction and valence band are spin

split, with opposite splitting of the bands in the opposite valleys. The splitting of the low

energy band structure around the K points for WSe2 is shown in Fig 2.5, where the blue

(red) bands denote spin up (down). Clearly the band gap is the largest energy scale here

(∼2 eV); however, the splitting of the valence band is so large (∼400 meV) that for most low

energy optical excitations we can neglect the lower spin split valence band. The conduction

band splitting of ∼30 meV is much smaller, and one must still consider the higher energy

band; especially since optical transitions in WSe2 conserve spin. Therefore, the dominate
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low energy, optical transition in the +K valley is from spin up band (blue) to spin up as

shown in the left panel of Fig 2.8.

2.2 Excitonic Properties

Optical excitation above the band gap in direct gap semiconductors leads to the formation of

an electron population in the bottom of the conduction band and a population of positively

charged holes in the top of the valence band. The Coulomb attraction between these two

types of particles can result in a neutral bound state called an exciton (denoted Xo) with

energy less than the band gap energy by the exciton binding energy, EB. The formation of

excitons is typically very fast, so the optical properties of these types of semiconductors are

dominated by the excitons. Furthermore, if the semiconductor is heavily doped, say with

extra electrons, when forming excitons after optical excitation there will be leftover electrons

who, when unscreened, have strong Coulomb repulsion. It becomes energetically favorable

at some doping level for excitons to bind an extra electron (see Fig 2.6), to benefit from the

Coulomb screening of the hole, and form a charged, three-body bound state, the electron

trion (X−), with an energy of the exciton energy less a charging energy, EC . Similarly in

Figure 2.6: Schematic of electron and hole configuration in neutral and charged excitons

versus the doping of the crystal. Relevant energies are denoted: band gap energy,EBG;

exciton binding energy, EB; trion charging energy, EC ; exciton and trion energies.



11

a hole doped system a positively charged hole trion (X+) can form. The charging energy

of these two charged exciton species, in general, need not be the same, and is given by the

relative effective mass of the electron and the hole.

Figure 2.7: Photoluminescence of exciton species in MoSe2. Left: typical PL spectra near

neutral doping showing an exciton (right) and trion (left). Spectra is expanded in the inset

for clarity. Right: PL map as a function of the gate voltage showing the transition between

dominant exciton species. Image taken from Ref [63]

In TMDs, strong excitonic properties have been observed. Due to their 2-D nature the

Coulomb interaction is exceptionally strong, resulting in very large binding energies and

sharp, well-defined exciton/trion spectra typically measured with PL spectroscopy[43, 63,

28]. In Fig 2.7, the typical low temperature (T=20K) PL spectrum of monolayer MoSe2 is

shown in the left panel [63]. Two well defined peaks are observed which can be attributed

to an exciton and trion. By applying a gate voltage to dope the system from a near neutral

state to either a strongly p or n doped system the trion signal becomes more prominent

than the exciton. This is shown in the right panel of Fig 2.7. The vertical axis is the energy

of PL emission, while the bottom axis is voltage applied to the gate. The different excitonic

species present at each doping (gate) level are clearly marked. The lowest energy peak,

denoted XI is thought the be result of impurity bound excitons. In MoSe2 the emission
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energy of both the X- and X+ peaks are identical, indicating that the effective mass of the

electron and the hole are the same in this system, again, this is not strictly necessary.

As was mentioned before these excitons can exist in one of two valleys at the K points,

forming a degenerate pair. The Coulomb exchange interaction between the electrons and

holes of the excitons in the two valleys will act to couple the two valley configurations [100].

This leads to an effective interaction between the exciton’s center of mass momentum,

k, and its valley pseudospin, σ̂, shown in the left panel of Fig 2.8. The strength of this

interaction, Vk, is given by the product of the momentum squared and the Fourier transform

of the Coulomb potential, VC(k) (See Ref [100]). In TMDs the Coulomb potential takes its

unscreened form: VC(k) ∝ 1
k . This leaves the potential energy in the pseudospin basis as

V =

 0 Vk

Vk 0

 (2.1)

Vk = J ∗ k2 ∗ 1

k
= J

k

K
(2.2)

Where K is the momentum associated with the K points, and J is the energy scaling factor,

calculated to be approximately 1 eV.

Figure 2.8: Left: excitons in both valleys using exciton basis. Right:exciton dispersion with

the valley-orbit interaction Hamiltonian. The eigenstates of the Hamiltonian for the upper

and lower branch of the dispersion are denoted by their color: blue and red for |σ+〉 and

|σ−〉, and purple and green for their linear superpositions.
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The eigenstates of the Hamiltonian with potential matrix given by Eq. 2.1 are no longer

the individual pseudospins, but rather a linear combination of the two: |ψ±〉 ∝ |σ+〉± |σ−〉.

Fig 2.8, in the right panel, plots the eigenvalues of this new valley-orbit coupled exciton

Hamiltonian as a function of the exciton momentum, k, where the color of the upper and

lower branch represents its eigenstate– being a superposition of |σ+〉 (blue) and |σ−〉 (red).

This model has many interesting features in its own right, particularly the implied

degeneracy of the two pseudospins and the linear exciton dispersion for small momentum.

In Chapter 4, this exciton Hamiltonian will be expanded upon to include the valley Zeeman

effect to help explain some of the exciton physics in a magnetic field.

2.3 Berry Curvature and Valley Physics

The breaking of the crystal inversion symmetry in TMDs, along with strong spin-orbit cou-

pling, leads to some very profound consequences to the valley pseudospin, namely the two

valleys become distinguishable [99, 93, 92]. While the two valleys are degenerate, inver-

sion symmetry allows for pseudovectors, such as the Berry curvature and orbital magnetic

moment, to be nonzero with opposite sign in opposite valleys[92, 95]. For instance, the

Berry curvature of MoS2 is calculated under the three band model[38] in Fig 2.9. The first

Brillouin zone is highlight with the dark black line. The Berry curvature reaches a maxi-

mum value around the K points, where it is equal, but with opposite sign, between the two

valleys. This Berry curvature leads to the valley Hall effect recently observed [41].

Similarly the orbital magnetic moment of electrons at the K points is found to be nonzero,

with opposite signs in opposite valleys. Using the simple Dirac fermion model for the

electrons at the K points, this “valley magnetic moment” can be shown[95] to take the form

m = −ẑτzµ∗B where µ∗B = eh̄/2m∗ is the Bohr magneton with the reduced electron mass

and we define τz = ±1 as the valley index for the ±K valley. The ramifications of this effect

are explored more in Chapter 4.

As mentioned in Section 2.1, the valence bands in TMDs are primarily composed of the

dxy + dx2−y2 atomic orbitals with magnetic quantum number |mAO| = 2. The inversion

symmetry dictates that this, too, must have opposite sign between the two valleys: mAO =

2τz. Therefore, the magnetic moment associated with this angular momentum of the valence
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Figure 2.9: Map of the Berry Curvature in the first Brillouin zone for MoS2. Image taken

from Ref [38]

band due to the parent atomic orbitals is also valley selective.

This last valley asymmetry also has a very interesting consequence on optical absorption

in TMDs. The conduction and valence bands at the K points have magnetic quantum

number mAO,C = 0 and mAO,V = 2τz, respectively. The selection rules for optical dipole

transitions dictate that ∆m = ±1, 0, modulo the degree of rotational symmetry (which

in the case of hexagonal TMDs is 3). Therefore, only the ∆m = +1 transition, or σ+

circularly polarized optical excitation, is allowed in the +K valley, and similarly ∆m = −1

(σ− polarization) in the -K valley. So optical excitation with circular polarization of one

handedness will result in excitation of electron/hole pairs in only one valley [92]. Using this

valley selective circular dichroism a valley polarization can be created.

2.4 Valley Selective Circular Dichroism

Experimentally the creation of a valley polarization using circularly polarized excitation has

been demonstrated using polarization resolved PL in MoS2 [7, 101, 44, 90] and WSe2 [28].

In this experiment a circularly polarized laser is used to excited electron/hole pairs in one
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Figure 2.10: Circular polarization resolved PL of WSe2 . Saturation of cross polarized

detected peak is indicative of valley polarization.

valley. These optically excited particles will preferentially form excitons in the same valley,

since the large momentum difference between the K points makes them robust to scattering.

The emitted PL spectra for both circular polarizations are then detected. Stronger emission

is observed in the co-polarized spectra than the cross polarized spectra (see Fig 2.10),

indicating that, indeed, the photo-excited carriers preferentially formed excitons in the

valley they were excited in creating a valley polarization. The valley polarization is defined

as ρσ+ =
(
PL(σ+)−PL(σ−)

)
/
(
PL(σ+)+PL(σ−)

)
, and has values for the exciton typically

around 0.3-0.4 for WSe2 , but have been reported at nearly 1 [89]. Both species of trions

also display valley polarization under circularly polarized excitation as shown in Fig 2.10.

Using circularly polarized light to create a valley polarization is an important first step

towards creating a valleytronic system. To use the valley pseudospin as a qubit, though,

one must be able to create a coherent superposition of the pseudospin states. Linearly

polarized light, being a superposition of σ+ and σ− light, has been shown to excite a linearly

superposition of valley pseudospin[28], as shown in Fig 2.11. Vertically polarized light is

incident on the sample and the detected PL spectra for the exciton shows a saturation of the
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cross-polarized signal compared to the co-polarized one, again indicating that the excited

quantum state is more populated than the orthogonal one. This is a demonstration of the

creation of a coherent superposition of valley pseudospin. Notice, however, that the trion

peak shows no polarization dependence. This is due to the fact that when the trion emits

a photon it leaves behind an extra particle. The state of this particle for a |σ+〉 trion and

a |σ+〉 trion are orthogonal, therefore destroying the coherence of the emitted photon. A

more detailed discussion of this is available in Ref [28].

Figure 2.11: Linear polarization resolved PL of WSe2 . Saturation of cross polarized detected

peak is indicative of valley coherence.
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Chapter 3

ULTRAFAST DYNAMICS OF EXCITONS IN MONOLAYER WSe2

As discussed in Chapter 2 the optical properties of monolayer WSe2 are dominated

by its bright excitons. Using PL and linear absorption spectroscopies many interesting

properties have been explored [95], particularly the gate tunability of trion species and the

valley pseudospin. More recently many ultrafast optical experiments have been performed to

investigate the exciton lifetime [13, 67, 40], exciton/trion coupling [68], and valley scattering

dynamics [33, 85, 86, 87]. In this chapter nonlinear, ultrafast pump probe techniques will be

used to investigate the interactions between excitons and other particles during their brief

lifetimes.

3.1 Ultrafast Resonant Pump Probe Spectroscopy

Ultrafast resonant pump probe spectroscopy is used to measure the dynamics of exciton

interactions. A schematic view of the optical setup is shown in Fig 3.1.

This process starts with an ultrafast pulsed laser: Coherent MIRA Ti:Sapphire laser

pumped with a 10W Verdi. The pulses are approximately 200 fs wide with a repetition

rate of 76 MHz. A beamsplitter is used to separate the pulse train into two nearly identical

pathways, creating degenerate pump and probe beams. The probe beam traverses a fixed

path length, while the pump beam’s path is variable using a mechanical delay stage. When

the two beams are recombined using another beamsplitter there will be a variable time

delay, τ , between the pulses from each beam depending on the position of the delay stage.

Data is taken with a fixed delay between the pulses. The pump pulse comes in and excites

the exciton population, which then is free to interact and decay. After the delay time τ

has passed the probe pulse comes in and measure the dielectric constant of the sample,

which carries information about the exciton population and energy. The temporal delay

can range from tens of fs to ns with a meter long delay stage, making this technique capable
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Figure 3.1: Schematic of the optical setup for ultrafast resonant pump probe spectroscopy.

of measuring timescales much shorter than detectable with even the fastest electronics using

basic DC techniques.

In this experiment the laser frequency (of both the pump and the probe) is swept across

the resonance of the WSe2 exciton and the intensity of the probe pulse after it is reflected off

of the sample is measured on an amplified photodiode to determine the dielectric constant

of the sample under those excitation conditions. The pump and probe beams are cross

linearly polarized using linear polarizers placed right before the recombining beamsplitter.

This reduces optical interference between the two beams when τ = 0, and allows the pump

beam to be filtered out with another linear polarizer placed in the reflected beampath before

the photodiode. Both beams are individually modulated with an acousto-optical modulator

(AOM) at frequencies around 100 KHz. The signal from the photodiode is then fed into a

lockin amplifier detecting at the difference frequency of the two beam’s modulations (∼30

KHz). In this way the measured signal is only due to nonlinear (third order) effects in the

dielectric constant. The basic properties of the excitons are ignored in favor of the nonlinear

interaction effects.
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3.2 Ultrafast Data from Excitons in WSe2

A WSe2 sample is exfoliated onto a substrate of 300 nm of SiO2 on Si using the “scotch

tape method”. This sample is then mounted into a chip carrier in a closed cycle, liquid

helium cryostat, cooled down to a temperature of 20K and a pressure of several tens of

micro-torr. The pump and probe beams are colinearly incident onto a high numerical

aperture, long working distance, 40x microscope objective which focuses both beams to

coincident spots, with radii of 1-2 µm, onto the sample. The reflected signal passes through

a 50/50 beamsplitter, a linear polarizer to remove the pump beam, and then is focused onto

an amplified photodiode. The differential reflectivity signal, dR, is recorded in one lockin

amplifier at the frequency ω1−ω2, while the total reflectivity of the probe beam, R, used to

normalize the reflected signal, is detected from another lockin amplifier at only the probe

modulation frequency, ω1.

Figure 3.2: Differential reflectivity signal versus the optical excitation energy and the pump-

probe time delay. On the left are line cuts of the exciton resonance for constant time delay,

on the right is the full 2D map.

The laser excitation wavelength is swept across the exciton resonance while the pump

probe time delay is also swept. In this was a 2-dimensional map of the exciton resonance



20

as a function of time is mapped out. This is shown in Fig 3.2, for an incident laser power

of 10 µW for both the pump and the probe beams.

There are several readily identifiable features present in the data. This first is the change

from a relatively plus/minus symmetric, dispersive signal at low time delay, to a solely

positive peak at longer time scales. The second is a general blue shift in the resonance with

increasing time delay. To explain these features a theory must be developed to describe

the exciton lifetimes and interactions in WSe2 and how they related to the overall changed

in the measurable dielectric constant. An initial theory and its applicability to the data is

explored in the next section.

3.3 Model of Nonlinear Exciton Interactions

To develop a theoretical model to describe the dielectric constant of WSe2 , a Hamiltonian

for the exciton must be written down which includes the interaction effects of not only the

exciton with the optical fields, but also other excitons and free carriers. While, in this

experiment, the optical fields are resonant with the exciton, and therefore too far below

the band edge to excite free carriers directly, higher order Auger processes can create free

electron/hole pairs through nonradiant exciton annihilation [80, 84, 88]. This Hamiltonian

is shown in Eq 3.1 below, where B and B† are the lowering and raising operators which

destroy or create a k = 0 exciton.

H = EXB
†B + uB†B†BB + (1−N0)(Ω(t)B† + h.c.)− f(Ω(t)B†B†B + h.c.) (3.1)

The first term in the Hamiltonian is the single exciton energy, EX ; the second term de-

scribes exciton/exciton interactions, parameterized by u; the third term is the exciton/laser

interaction, where Ω(t) is the laser Rabi frequency and (1 − N0) accounts for the phase

space filling of the excited free carriers, N0; and the last term accounts for higher-order ex-

citon/photon interactions due to the phase space filling from other excitons, parameterized

by f . From Ref [78] u ∼ 6Eba
2
B/A and f ∼ 4

7πa
2
B/A, with Eb the exciton binding energy,

aB the exciton Bohr radius, and A the illuminated area.
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Let P ≡ 〈B〉 and n ≡
〈
B†B

〉
be the optical polarization and the exciton population

[61], respectively, then the Heisenberg equation of motion for the polarization can be found

to be the following:

i
d

dt
P = EXP + 2unP + (1−N0 − 2fn)Ω(t) (3.2)

The exciton number excited by the pump laser, n, is assumed to be known and slowly

varying over the duration of the pump pulse.

Assuming a harmonic dependence to P and Ω, i.e. P (t) ≡ δP (ω)e−iωt and Ω(t) ≡

δΩ(ω)e−iωt, then the total optical susceptibility can be given by

χT (ω) ≡ δP (ω)

δΩ(ω)
=

1−N0 − 2fn

ω − EX − 2un+ iγ
(3.3)

Define x ≡ πa2Bn/A = ρexπa
2
B as the exciton density induced by the pump pulse, then

2fn ≈ x. The exciton/exciton Coulomb interaction strength is given by the parameter

κ ≡ un/x ∼ 2Eb ≈ 1eV .

The linear susceptibility can be expressed as

χL(ω) =
1

ω − EX0 + iγ0
(3.4)

where EX0 and γ0 are the equilibrium exciton energy and resonance width, respectively.

To find the nonlinear susceptibility, which is the quantity measured in Section 3.2, the

linear susceptibility in Eq 3.4 can be subtracted from the total susceptibility in Eq 3.3 to

give

χNL(ω, t) ≡ χT (ω, t)− χL(ω) =
1−N0(ω, t)− 2x(ω, t)

ω − EX(N0)− 2κx(ω, t) + iγ
− 1

ω − EX0 + iγ0
(3.5)

where the population variables x and N0 are functions not only of time, but also of the laser

excitation frequency, ω. Both populations are excited by the pump pulse and therefore

will decay with their own time dependence. Additionally, one would expect that the initial

populations would depend on were they pump frequency lies within the exciton resonance:

x(ω, t) ∝ γ
(ω−EX0)2+γ2

and similarly for N0.
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The dependence on N0 is twofold. First is the phase space filling effect explicitly de-

noted in the numerator of Eq 3.5. Secondly is a band gap renormalization effect where

excess free carriers narrows the exciton energy [30], implicitly denoted EX(N0). By defining

∆EX(N0) ≡ EX(N0)−EX0 as the change in the exciton resonance from its equilibrium en-

ergy, the excitation energy dependence can also be extracted ∆EX(N0) = γ
(ω−EX0)2+γ2

∆EX(ω).

Coulomb screening by these free carriers should be a negligible effect since, as a 2D material,

most of the electric field lines from the carriers in WSe2 are out of the plane of the sample

where there are no charges to screen the field.

Combining all of these results into Eq 3.5 gives a final equation for the nonlinear sus-

ceptibility where all frequency dependence is explicitly stated, and the time dependence is

located completely within the population variables.

χNL(ω, t) =
1− γ

(ω−EX0)2+γ2

(
N0(t) + 2x(t)

)
ω − EX0 − γ

(ω−EX0)2+γ2

(
∆EX(t) + 2κx(t)

)
+ iγ

− 1

ω − EX0 + iγ0
(3.6)

This equation can now be used to fit the data presented in Fig 3.2 for constant time delay.

Eq 3.6 has five fitting parameters: an overall scaling factor A, such that dR/R = A ∗ χNL;

the equilibrium exciton energy, EX0; the resonance width, γ; the unitless term in the

numerator, N(t) ≡ N0(t) + 2x(t); and the energy shift term in the denominator (in eV),

d(t) ≡ ∆EX(t) + 2κx(t). The first two terms here are sample dependent only; while the

third term is not dependent on the time delay, but is dependent on the pump power as

we shall see in Section 3.5. It is only the last two terms, N(t) and d(t), that are time

dependent. So for a complete 2-D scan, like in the right panel of Fig 3.2, A, EX0, and γ

are global parameters, while N(t) and d(t) will be individually fit for each line of constant

time delay. The time dependence of both of these parameters will fall out of the fits.

Physically, N(t) describes either the filling of phase space, from either free carriers or

other excitons, or the transfer of optical oscillator strength of the exciton to trion species in

the presence of the optically excited free carriers—both of which limit further excitation of

excitons in the sample. The other term, d(t), describes a shift in the resonance energy of the

exciton either due to the renormalization of the single particle band gap due to the presence
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Figure 3.3: White light linear absorption of WSe2 fit with Eq 3.4 to extract out the equi-

librium exciton energy and the optical system scaling factor.

of optically excited free carriers or from the Coulomb repulsion between excitons. Both of

these terms describe the interaction of optically excited excitons with other particles, and

their ultrafast time dependences is of fundamental interest.

The A and EX0 parameters can be nailed down by separately measuring the linear

absorption with white light reflectivity (see Ref [63] for details). By taking the difference

in the light reflected from a white light source illuminating the sample from that just

illuminating the substrate, a spectra of the band edge and exciton absorptions can be found

as shown in Fig 3.3. This spectra is fit with the linear susceptibility (Eq 3.4), added to a

linear offset to account for the tail of the band edge absorption. From this the parameters

are found to be A = 0.0034 and EX0 = 1.747 eV. The width turns out to be power

dependent, and so the value of γ used to fit the ultrafast differential reflectivity data cannot

be determined from the linear reflectivity measurement.

Armed with these fixed parameters, the rest of the 2D data can be fit, line by line, by

varying N(t) and d(t) and a global best fit of γ. Therefore, all the variation present within

Fig 3.2 can be expressed with only two fitting parameters. With this in mind, Equation 3.6
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Figure 3.4: Fit of Eq 3.6 to constant time line cuts of the exciton resonance.

Figure 3.5: Differential reflectivity signal versus the optical excitation energy and the pump-

probe time delay. On the left is the raw data, on the right is the interpolated 2D map from

the fit resonance curves.
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fits the data remarkably well, as shown in Fig 3.4. Indeed, by plotting the fitted curves in

2D along side the raw data in Fig 3.5 the agreement is striking.

3.4 Time Dependence of Exciton Interactions

Based on the agreement of the fit to the data alone, the theory presented in Section 3.3

seems to be a remarkable success. The next step is to extract out the time dependence

of the N(t) and d(t) parameters and see if physical sense can be made — particularly if

nonlinear interaction effects can be observed.

Remember the two time dependent fitting parameters are actually the sum of two in-

dividual terms: N(t) = N0(t) + 2x(t) from the phase space filling and oscillator strength

transfer (OST), and d(t) = ∆EX(t) + 2κx(t) describing the resonance shift. While the

population variables N0 and x are strictly positive, as well as κ, ∆EX should be entirely

negative since the free carriers result in a band gap narrowing upon renormalization [30].

From this analysis, one would expect N(t) to be composed of two positively decaying ex-

ponentials, while d(t) should have a positive and negative one. Extracting out the best fit

values of these parameters as a function of the time delay confirms this fact (Fig 3.6).

In both cases there exists a fast component which can be attributed to the exciton

population effects (x(t) and 2κx(t)), with lifetimes around 10 ps comparable with those

reported elsewhere [13, 67, 40], and a slow component that can be attributed to the free

carrier effects (N0 and ∆EX(t)), that has a lifetime of several tens of ps. Importantly both

fit constants approach zero at large time delay as the system tends towards its equilibrium

value.
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Figure 3.6: Extracted time dependence of fit parameters from Eq 3.6. On the top is the

phase-space filling factor, on the bottom is the resonance energy shift (in meV). The red

curves are double exponential fits to the data.
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3.5 Power Dependence of Exciton Interactions

To really determine the nonlinear nature of these interactions the effect on the time depen-

dence is monitored as a function of the pump power, which modulates the excited carrier

populations. For each power a full 2D map, similar to Figure 3.2, is created. Again the

scaling factor, A, and the equilibrium resonance energy, EX0, are independent of the pump

power. However the resonance width, γ, and the time dependent parameters, N(t) and

d(t), will be a function of the excited carrier populations. The time dependence of the

two fit parameters are extracted as a function of the pump power, as shown in Figure 3.7.

Qualitatively all the curve show similar features as a function of the incident pump power,

though the effects obviously become larger with increasing power.

Figure 3.7: Temporal evolution of the fit parameters d(t) and N(t) describing the resonance

peak shift (left) and the oscillator strength transfer (OST, right) as a function of the incident

pump power.

Each curve can be fit nicely to a double exponential, similar to Figure 3.6, where fit

constants are described by the following equations

d(t) = D1e−t/R1 +D2e−t/R2 (3.7)

N(t) = N1e−t/T1 +N2e−t/T2 (3.8)
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The power dependence of these eight fit parameters are extracted and shown in Figure 3.8,

with the parameters for the resonance peak shift, d(t), shown on the left and the oscillator

strength transfer, N(t), shown on the right. The red data points are those attributed to

the free carrier population dependent terms (N0(t) and ∆EX(t)) and the black data points

from the exciton population dependent terms (x(t) and 2κx(t)).

The free population variables, N0(t) and x(t), are both present in the OST fit on the

right. The power dependence of their populations makes rough sense. At low pump powers

the exciton population, depicted as N1, grows linearly while the free carrier population,

N2, is approximately zero. It is only at high pump powers that the excitation population

saturates and the free carrier population begins to rise. Here the exciton population has

become large enough that the Auger process rates begin to become appreciable and excitons

are destroyed in favor or promoting electron/hole pairs to the band edge. Some modeling

needs to be done to verify that these relative populations make sense, but qualitatively the

process seems reasonable.

The exponential lifetimes of these populations generally show faster decay rates with

increasing pump power, and with the free carrier lifetime much longer than the exciton one.

The fact that the lifetimes decrease with power hints at interaction effects: large populations

promote faster recombination. Again, the decay times of the exciton population, T1, of ∼10

ps is consistent with other measurements [13, 67, 40], which is a reassuring test of the theory.

The terms that make up the d(t) fitting parameter are functions of the exciton and free

carrier populations. The D1 parameter is describing the power dependent amplitude of

2κx(t), and the fact that it behaves differently than the bare x(t) from N1 implies a power

dependence of κ. This is reasonable, as κ denotes the exciton-exciton Coulomb interaction,

at some large population the effect surely behaves nonlinear. In this case D1 is linear

while N1 is, but then goes superlinear, implying that the Coulomb interaction becomes

increasingly strong as the excitons become more and more densely packed. D2 describes

the band gap normalization,∆EX(t), due to the presence of free carriers. When the free

carrier density becomes strong, behaving superlinear with pump power at higher powers,

so too does the D2 term. Careful analysis of the relationship between these two power

dependences may shed light on the functional form of ∆EX(N0(t)) and the mechanisms of
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band gap renormalization.

Figure 3.8: Power dependence of the fit parameters to the temporal evolution of the reso-

nance peak shift (left) and the oscillator strength transfer (OST, right). The definition of

the fit parameters are given in equations 3.7 and 3.8. The top plots show the amplitude of

the fitted exponentials and the lower plots show the exponential decay time.

Finally the extracted resonance width is plotted as a function of the incident pump

power in Figure 3.9. The width increases rather dramatically, and follows a roughly linear

dependence on the pump power. The precise mechanism for this is not yet known, but it

could arise from excitation induced dephasing [66]. Here the larger populations of excitons

lead to more collisions, creating dephasing between the coherent pump probe signals and a

general increase in an optical resonance width.
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Figure 3.9: Broadening of the exciton resonance width as a function of the incident pump

power. Width is extracted as a best global fit to each line individually in a 2D map like

shown in Figure 3.2.

3.6 Outlook and Future Work

Nonlinear effects are large in WSe2 . The confinement into 2D leads to greater wavefunction

overlap between particles, and the planar nature leaves electric fields unscreened out of the

plane. The aim of this work has been to try to investigate the ultrafast interactions between

photoexcited carriers that stems from these nonlinear effects.

A concise theory has been developed to explain the data in terms of fundamental pho-

toexcited carrier populations. From this theory the time and power dependence of these

populations have been extracted and they show an inherently nonlinear dependence on the

pump power. However, the precise mechanism leading to these nonlinear interactions has

yet to be worked out. Further investigations into the cause of these effect is in order to fully

understand the effect interactions play on the excitonic properties like their lifetime and

scattering. Finally, the theory made several assumptions that have yet to be experimentally

proved, most notably the presence of free carriers. Since the excitation is below the band

gap, there can be no direct excitation of free carriers in this system; however, nonlinear
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Auger processes can promote one photoexcited electron/hole pair to the free carrier contin-

uum via the non-radiative decay of another pair. This process has been the focus of many

other investigations [80, 84, 88], but has not been shown to be definitively occurring here.

A major limitation in this work was the use of a, relatively, large probe power so that

the signal could be detected with high signal-to-noise. However, when the probe field is

too large it creates a significant population of carriers of its own that will in turn effect its

reflectivity. These kinds of effects can lead to extra nonlinearities that can be difficult to

explain, and have been ignored in the theory developed here. Traditionally the probe beam

should be an order of magnitude weaker than the probe to limit these effects. This may be

possible in this experiment by replacing the amplified photodiode detector with a high gain

avalanche photodiode. However, greater care must be taken in removing the pump beam

so small leakage does not overpower the probe.

Additionally the experimental ease of doing this as a degenerate pump probe spec-

troscopy has some complications. It required the theory to assume a particular frequency

dependence to the photo-excited populations to account for the fact that the pump was

sweeping across the absorption resonance. A non-degenerate experiment, with the pump

fixed in the center of the resonance, would provide for a simpler and more easily interpreted

theory.
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Chapter 4

MAGNETIC CONTROL OF VALLEY PHYSICS IN MONOLAYER
WSe2

As was discussed in Section 2.3, due to inversion symmetry breaking in WSe2 the orbital

magnetic moments of low energy electrons at the K points is nonzero, with opposite signs in

opposite valleys. Additionally, the atomic orbitals that make up the valence band structure

also have a nonzero magnetic moment that switches signs between the two valleys. In this

chapter, an external magnetic field is coupled to these magnetic moments and used to break

the valley degeneracy. The magnetic field is shown to be an external control of many of

the valley phenomena which is an important step for valleytronic applications of WSe2 .

The next section describes the experimental techniques. Section 4.2 will demonstrate the

breaking of the valley degeneracy through the valley Zeeman effect. Its consequences on the

valley polarization and valley coherence, as well as the gate dependence of these phenomena,

will then be discussed in the following sections. Much is this work is published in Ref [1],

with similar findings in Refs [37, 39, 73] in both WSe2 and MoSe2.

4.1 Magneto- Photoluminescence

To measure the valley pseudospin properties such as the exciton energy and valley polariza-

tion, a polarization resolved micro- photoluminescence (PL) spectroscopy is used as outlined

in Figure 4.1. The sample is cooled under vacuum to a temperature of around 10 K inside

a superconducting magnet capable of applying bipolar fields of up to 7 T perpendicular to

the plane of the sample (Faraday geometry).

PL spectroscopy is performed by optical excitation of carriers in a material with a

(relatively) high energy laser. These carriers non-radiatively relax down to the band edge,

defect sites, or exciton states. From there they may finally recombine and emit light, below

the energy of the incident laser radiation, with an optical energy describing the energy of

their final state. The resulting spectrum describes the available (semi-) long lived states,
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Figure 4.1: Schematic of the magneto- photoluminescence setup.

their energies, and relative populations.

In this experiment the incident laser has an energy of 1.88 eV (λ=660 nm), denoted by

the green line in Fig 4.1, which is smaller than the band gap energy (∼2 eV) but greater

than the exciton energy (∼1.74 eV) of WSe2 . Therefore, the laser excites virtual electrons

and holes which then bind to form real excitons. The polarization of the incident laser

is set with a high extinction ratio linear polarizer. The beam is then reflected off of a

dichroic mirror, passes through a quarter wave plate (QWP) before being focused to a ∼2

µm spot size on the sample with an aspheric lens. By selecting either “H” or “V” polarized

light with the linear polarizer, the QWP turns the polarization at the sample into σ+ or

σ−. The emitted PL (red line in Fig 4.1) is collected by the same lens, passes through the

QWP (which turns it back into a linear polarization), passes through the dichroic mirror,

and through another high extinction ratio linear polarizer. This polarizer is used to select

the helicity of the emitted radiation. This light is then filtered with a high pass filter (to

remove the residual laser light) and is spectrally resolved onto a liquid nitrogen cooled CCD

through a spectrometer. By varying the two linear polarizers between “H” and “V” the

different valley pseudospin configurations can be measured: σ+excite/σ
+
detect, σ

+
excite/σ

−
detect,

and the similar terms for σ− excitation. These four spectra are measured as a function of
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the applied, out of plane magnetic field to investigate the magnetic properties of the valley

pseudospin.

4.2 Valley Zeeman Splitting

Figure 4.2: Spectra of σ+ (blue) and σ− (red) polarized exciton PL for an applied magnetic

field of +7 T (top), 0 T (middle), and -7 T (bottom). Under an applied field the two spectra

split due to the valley Zeeman effect.

In Figure 4.2 the normalized PL spectra of the neutral exciton for both valley pseudospin

are plotted for select values of the applied magnetic field. With out the field (middle)

the two curves lie directly on top of each other as would be expected from time reversal

symmetry. As a positive field is turned on (top) the two spectra shift, with the σ− polarized

peak appearing at higher energy than the σ+ polarized peak. The opposite is true with
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a negative field (bottom). This is the first observation of a valley Zeeman effect, and by

measuring the splitting as a function of field one can calculate the valley magnetic moment.

Figure 4.3: Splitting of the exciton resonance (|σ+〉peak−|σ−〉peak) as a function of magnetic

field. The splitting is computed using two different techniques as described in the text. The

measurement error (from the CCD pixel width) is shown in the top right.

The asymmetry of some of the lineshapes are artifacts due, primarily, to sample in-

homogeneity, and make getting a reliable fit to the peaks difficult. To overcome this the

peak position is calculated in two different ways in order to quantitatively determine the

Zeeman shift. The first, the “Max Point” method, takes the fifteen points in the spectra

with the most counts and assigns the peak position to the median point. This method is

insensitive to the sample asymmetry and the presence of the trion peak at lower energy,

but very sensitive to noise in the spectra since it takes into account only a few points.

The second method, the “Weighted Average,” computes the center of mass of the peak∫
Ef(E)dE/

∫
f(E)dE, where f(E) is the PL spectral density and E is the photon energy.

The sensitivity to noise is greatly reduced in this method as it makes use of several hundred

points in the computation of the peak, but peak asymmetry or the presence of a strong
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trion peak at lower energy can skew the calculated position. Using both methods, the peak

splitting of the valley pseudospin (|σ+〉peak − |σ−〉peak) is determined as a function of the

applied field, see Figure 4.3. Both methods of calculation agree well with each other, and

the splitting can clearly be seen to be linear in the applied field. Fitting the noisier “Max

Point” data to a line gives a valley splitting of −0.11± 0.01 meV T−1 = −(1.9± 0.2)µB.

The observed splitting of the valley pseudospin can be explained by the combination of

several magnetic moments in the sample. As discussed in Sec 2.3 the breaking of inversion

symmetry in WSe2 results in a nonzero orbital magnetic moment related to the Berry

curvature called the “valley magnetic moment,” mv [95, 99]. Additionally the valence band

is composed predominately of the high angular momentum d-orbitals of the tungsten atoms,

giving rise to another magnetic moment, mA. Finally, due to the large spin orbit coupling

interaction, the bands are spin split resulting in a spin magnetic moment for each band,

denoted ms. The overall Zeeman shift is due to the sum of these three magnetic moments,

leading to an effective g-factor different than the vacuum value of 2.

The low energy band structure of WSe2 along with the shift of each band due to the three

individual magnetic moments is pictorially shown in Figure 4.4 with the optical transitions

marked. As mentioned in Sec 2.1, optical transition in TMDs conserve spin. While the spin

magnetic moment shifts the individual bands (∆s = 2szµBB, black arrows), and the shift

is opposite for the two valley pseudospins, the shift is the same in the conduction and the

valence band resulting in no change to the valley resonance energy. The magnetic moment

due to the atomic orbitals does result, however, in a shift in the resonance, since only the

valence bands shifts (∆A = 2τzµBB, purple arrows). The net shift in the optical resonance

is then −2τzµBB, where τz = ±1 is the valley index for the ±K valleys.

The shift due to the valley magnetic moment is ∆v = αiτzµBB (green arrows) where αi

is the valley g-factor for each band i = c, v. To leading order the band edge carriers can

be described as massive Dirac fermions[92, 95] with α = (mo/m
∗) and the effective mass,

m∗, the same for both the conduction and valence bands. Within this approximation there

would be no effect from the valley magnetic moment on the optical resonance since all bands

in each valley shift identically. However, corrections beyond the Dirac fermion model give

different masses and magnetic moments for electrons and holes[32, 38]. This would give rise
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Figure 4.4: Low energy band structure of WSe2 showing the effect of the different magnetic

moments on the bands with an applied positive magnetic field. The arrows represent the

shifts due to the spin magnetic moment (black), the valley magnetic moment (green) and

the atomic orbital contribution (purple).

to a shift in the optical resonance of τz∆αµBB, where ∆α = αc − αv.

The net effect is a valley dependent linear shift in the exciton resonance of −τz∆(B)/2,

where ∆(B) = 2(2−∆α)µBB is the exciton valley Zeeman splitting. This implies that for

B > 0 the -K valley exciton (with τz = −1) should have higher energy than the +K valley

exciton (with τz = +1), and vice versa for B < 0, as seen in Figure 4.2. The fits to the data
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in Fig 4.3 gives ∆α = 1.1±0.1, implying that the carriers are indeed not Dirac fermions and

that the valley magnetic moment is definitely nonzero in WSe2 . However, it must be noted

that there was considerable spread in the measured Zeeman splittings of different samples.

This is attributed to the sample doping and will be discussed further in Sec 4.4.

In terms of the valley-orbit coupled exciton theory [100] developed in Section 2.2, the

valley Zeeman effect can be modeled as an extra term in the potential energy matrix

V =

−∆(B)/2 Vk

Vk ∆(B)/2

 (4.1)

With Vk, defined in equation 2.2, describing the coupling between the valley index of the

exciton and its momentum k. The effect on the exciton dispersion relation of an applied

magnetic field is shown in Figure 4.5. For B = 0 the two branches of the dispersion are

described by the two different linear superpositions of the valley pseudospin states, and they

are degenerate at k = 0. When a positive field is turned on (right panel) a gap opens up

at k = 0 of magnitude ∆(B), and the individual valley pseudospins become the eigenstates

at low momentum, with the upper branch gaining |σ−〉 flavor (red) and the lower branch

gaining |σ+〉 flavor (blue). The opposite is true for negative field (left panel). This will have

important ramifications to the valley polarization as described in the next section.

4.3 Magnetic Dependence of Valley Polarization

The breaking of the valley pseudospin degeneracy with an applied magnetic field enables

control of the valley polarization. As described in Sec 2.4 pumping a sample with a circularly

polarized laser, σ±, results in the formation of carriers in the ±K valley. These carriers

preferentially form excitons in the valley they are created in, since the large separation of

the valleys in K-space suppresses scattering, and thus the light emitted will be preferentially

σ± polarized. A saturation of a cross-polarized detected peak (σ±excite/σ
∓
detect) compared to

the co-polarized detected peak (σ±excite/σ
±
detect) is indicative of a valley polarization in the

±K valley, respectively. The degree of polarization for excitation with σ+ is represented as

ρσ+ =
(
PLpeak(σ

+)− PLpeak(σ−)
)
/
(
PLpeak(σ

+) + PLpeak(σ
−)
)

. The aim of this section

is to investigate what effect an applied magnetic field has on ρσ± .
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Figure 4.5: Energy spectra of the exciton in the valley-orbit coupled basis for different

magnetic fields. For B = 0 (center) the case is the same as presented in Fig 2.8. When a

positive field is turned on (right) a gap is opened with the energy eigenstate of the upper

(lower) band taking on that of |σ−〉 (|σ+〉). The opposite is true for negative fields (left).

At zero applied field, inversion symmetry dictates that the degree of polarization for

both σ+ and σ− excitation are equal. Figure 4.6 shows the exciton and negative trion

spectra for the four polarization excitation/detection combinations with B = −7T (top)

and B = +7T (bottom). On the left (right) are the co- and cross-polarized spectra for σ−

(σ+) excitation. Clearly the cross-polarized peak is saturated compared to the co-polarized

peak in both cases; however, the degree of saturation is different. For positive applied field

the saturation with σ+ excitation is less (the cross-polarized peak is larger) than that for σ−

excitation, implying that the valley polarization in the +K valley is less than the -K valley.

The negative applied field case is the time reversed analog of this case with stronger valley

polarization in the +K valley over the -K. This observation implies that, while the helicity

of the emitted radiation is determined by the incident helicity, the degree of polarization is

determined by the relationship between the helicity and the applied magnetic field.

The top panel of figure 4.7 shows the degree of exciton valley polarization for both

σ+(blue) and σ−(red) polarized excitation as a function of the applied magnetic field. Both

helicities show linear behavior, but with opposite sign. This “X” pattern implies that the

magnetic field induces an asymmetry in the valley scattering. At positive field, for example,
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Figure 4.6: PL spectra for four incident/detection polarization configurations at B= -7T

(top) and B= +7T (bottom) of Xo and X−. Left panels are for σ− polarized pump with

co- (red) and cross-polarized (orange) detection. Right panels are the same for σ+ polar-

ized pump. Difference in cross-polarized peak saturation at different fields shows magnetic

control over the degree of valley polarization.

carriers excited in the -K valley are less likely to scatter to the +K valley than vice versa. It

is interesting to note that at positive magnetic field the |σ−〉 state has a higher energy than

the |σ+〉 state, and it also has a larger valley polarization contrary to what would be expected

under simple thermal relaxation. Contrast this behavior to the “V” pattern of the negative

trion valley polarization shown in the bottom panel of figure 4.7, where the application of

a field only serves to decrease valley scattering and enhance valley polarization.

All of these phenomena can be explained by looking at the valley-orbit coupled disper-

sions described by the potential matrix in equation 4.1. Depolarization can occur either in
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Figure 4.7: Degree of valley polarization for the neutral exciton (top) and the negative trion

(bottom). Red (blue) corresponds to the |σ−〉 (|σ−〉) valley. “X” and “V” patterns stem

from different intrinsic depolarization mechanisms for the two exciton states. Lines are fits

to a rate equation model, see Ref [1].

the exciton formation process, or from relaxation between ground states once the exciton

is formed. Detailed rate equations have been formulated for the case of both the exciton

and trion valley polarizations in Ref [1]. Solving these rate equations for the different for-

mation pathways and ground state recombination, taking into account the measured valley

splitting, the data in Fig. 4.7 can be nicely fit.

For neutral excitons it is observed that the higher energy state in all cases has a larger

degree of depolarization than the lower energy one, which is not what would be expected
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from thermal relaxation between the ground states. This implies that the leading order

depolarization mechanism is during the exciton formation. The case for the “X” pattern

of the neutral exciton is due to the easier path of formation of σ−excitons for B > 0 and

σ+excitons for B < 0 because of how the magnetic field shifts the excitonic dispersion.

When B > 0, σ+excitation results in electron/hole pairs created near k=0 in the +K

valley which can relax to form |σ+〉 excitons (in the lower branch of the dispersion) or flip

valley and form |σ−〉 excitons (in the upper branch) as shown in Fig 4.5. The rate of these

two processes is different, as evidenced by the presence of the valley polarization; however,

the effect of the magnetic field on both of these processes will be different. Since, for B > 0,

σ− emission occurs at the minimum of the upper branch we would expect the rates of

processes resulting in a |σ−〉 exciton to increases relative to the B = 0 case. Likewise, since

σ+ emissions occurs at the maximum of the upper branch we would expect the rates of

processes resulting in a |σ+〉 exicton to decrease relative to the B = 0 case. These results

combined would imply ρσ−(B > 0) > ρσ±(B = 0) > ρσ+(B > 0), as observed. The case for

B < 0 is the time reversal of this analysis.

The negative trion picture is a little more complicated due to the presence of the extra

electron. As shown in the top of Fig 4.8 there are four lowest energy combinations of a

valley exciton and an extra electron, which can each be denoted by its valley pseudospin

and electron spin. However, when all three particles have the same spin a large exchange

interaction breaks the degeneracy between the |σ+, ↑〉 (|σ−, ↓〉) and |σ−, ↑〉 (|σ+, ↓〉). At

B = 0, these can be arrange into two degenerate sets of valley-orbit coupled bands with an

opened gap, δ ∼ 6 meV[100], at k=0. Since δ is much larger than the valley Zeeman splitting

at all fields, asymmetry of the exciton formation rates does not dominate the magnetic field

dependence of the valley polarization. Instead, the field breaks the degeneracy between the

two set of dispersion curves and suppresses valley flipping scattering between them. In this

way an applied field of either sign serves to suppress valley flipping and increases the valley

polarization, as observed.

The fundamental difference between the “X” and “V” patterns is the difference in valley

depolarization mechanisms. Depolarization during exciton formation results in and “X”

pattern as formation prefers the lower momentum upper branch. Whereas depolarization
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Figure 4.8: The four different trion configurations are given in the top panel denoted by

the helicity of the initial exciton (blue and red circular arrows) and the spin of the extra

electron (gold up and down arrow). Due to the exchange interaction the states |σ+, ↑〉 and

|σ−, ↓〉 have a higher energy than the other two states. This is shown in the bottom figure

at left, for B = 0, with the two separate trion dispersion curves showing an opened gap

and a different valley trion in both the upper and lower branches of each dispersion curve

(denoted by the red and blue colors at the band edges). The valley Zeeman effect (right

panel) is then a small perturbation on the already present gap, breaking the degeneracy

between the two dispersion curves.

occurring from the ground state will give a “V” pattern since the field only serves to suppress

valley flipping.

For the positive trion, the picture is more like that of the exciton. The large spin

orbit splitting of the valence band results in no holes in the lower band, so there is only

one X+ configuration for each valley, and it has no exchange interaction since the lowest

energy state requires the extra hole in the trion to be in the opposite valley and thus have

the opposite spin as the other two particles in the trion. This would then imply that the

magnetic dependence of the valley polarization should have an “X” dependence, which is

indeed observed (see Figure 4.9b).
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Figure 4.9: Valley splitting (left) and polarization (right) for the positive trion.

As shown in Figure 4.9, the magnetic dependence of the valley physics for the hole trions

show many very interesting features. In (a), the valley splitting as a function of field has

a similar linear trend as for the exciton and the electron trion; the splitting slope, while

being of similar magnitude, is of the opposite sign, however. The polarization “X” pattern

is, again similar to what is seen with the neutral exciton, except the tuning range of the

field is much larger, and even crosses zero. For large fields the dominate polarization of the

emitted PL is no longer set by the incident polarization, but by the sign of the magnetic

field.

This is shown in more detail in Figure 4.10, where the full spectra are plotted at different

magnetic field. In the center at B= 0T, the spectra behave as expected, with the co-polarized

peak (blue in the top row and red in the bottom row) is larger than the cross polarized peak

for both X+ and Xo. At B= +7T (right panels) the dominant X+ emission is σ− polarized

(red) regardless of the incident polarization. While in both pump configurations the cross-

polarized exciton peak is saturated compared to the co-polarized one. The opposite is true

for B= -7T. A theory to explain these observation is still being worked on.
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Figure 4.10: PL spectra for four incident/detection polarization configurations at B= -7T

(left), B= 0T (middle), and B= +7T (right) for X+. Top (bottom) panel shows spectra for

σ+ (σ−) polarized pump, with blue (red) being σ+ (σ−) detected PL. At high field sign of

dominant X+ emission is determined by the field not the pump polarization.

4.4 Gate Dependence of Valley g-Factor

Over the course of this experiment many different samples were measured and it was noticed

that there was a significant spread in the measured valley splitting. This is commented on in

Ref [1], but at the time the reason for the spread was unknown. However, a very interesting

trend falls out of the seemingly random spread if the valley splitting is plotted as a function

of the trion-to-exciton ratio, which serves as a proxy for the sample doping. This is shown

in Figure 4.11. The bottom axis, Xi/Xo, is the peak amplitude of the trion species Xi

(i = +,−) divided by the peak amplitude of the exciton in each spectra, for example the

spectra in figure 4.6 have a ratio of ∼0.3. The plot shows data from over a dozen different

samples, and some samples measured on multiple cool downs. This ratio serves as a rough
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identifier with the doping in the sample; however, it must be noted that the doping is not

necessarily linear in this ratio, but it is at least monotonic. A value of 0 corresponds to an

exclusively exciton PL, while ±1 corresponds to equal amplitudes of Xo and X∓.

Figure 4.11: Exciton valley splitting of 15 different samples plotted against the ratio of the

trion amplitude to the exciton amplitude, as a proxy for the sample doping. Valley splitting

shows a clear dependence with the largest splitting at no doping.

Obviously the exciton valley splitting has a strong dependence on this ratio, and thus the

sample doping. Near zero doping the exciton has a g-factor of nearly -3.5 µB, corresponding

to a smaller, but still positive, ∆α than presented in Section 4.2. This indicates that in this

regime the carriers behave closer to massive Dirac fermions and the overall valley splitting

is dominated by the magnetic moment associated with the parent atomic orbitals, ∆A. The

splitting then becomes smaller (closer to zero) as the sample is doped, implying that the

contribution from the valley magnetic moment, ∆v, and subsequently ∆α, grows larger.

This may be due to the presence of extra carriers distorting the band structure and pushing

the carriers away from the simple massive Dirac fermion picture. However, theoretical

simulations of this effect have not yet been performed to confirm this.

For a more complete understanding of this effect a gated sample is measured as a func-

tion of the gate voltage (doping) for a fixed magnetic field, B= +5T in this case. For each
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gate voltage the four combinations of incident/detected polarizations are measured to in-

vestigate the gate dependence of the valley splitting and valley polarization. This is shown

in Figure 4.12. Panel (a) shows the peak amplitude of the different exciton species as a

function of the gate voltage. At large negative bias the sample’s PL is dominated by the

X+ trion (green) as would be expected. Around 0V this gives way to the neutral exciton

(black), Xo. However, the negative trion, X− (purple), does not come in strongly at the

applied voltages, meaning that the measurement is only probing the left half of figure 4.11.

Figure 4.12: Gate dependence of magnetic valley physics at B= +5T. A) amplitudes of

the different exciton species as a function of the gate voltage. B) valley splitting of X0

and X+ shows gate tunability. C) exciton valley polarization and (D) difference in valley

polarization (ρσ+ − ρσ−) is also strongly modulated by the gate.
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Figure 4.12b shows the measured valley splitting for the positive trion (green) and the

neutral exciton (black). The gate clearly has a strong dependence on both of these values,

and the exciton splitting shows as similar range of tunability as indicated in Figure 4.11 for

different samples. However, since the full spectrum of the doping could not be applied to

bring out the negative trion at higher gate voltages, it is unclear yet if the spectrum will

indeed turn around as hinted in Figure 4.11 and what the peak valley splitting will be. This

preliminary data, though, looks very promising.

In Figure 4.12c the valley polarization for both the |σ+〉 and |σ−〉 neutral excitons also

show a strong gate dependence. The difference in the polarization, ρσ+ − ρσ− , is shown in

panel d. Interestingly this shows the |σ+〉 exciton is more strongly polarized at B= +5T

than the |σ−〉 one (positive polarization difference), which is the opposite of what was seen

previously in Figure 4.6 (negative polarization difference). The previous spectra, however,

where taken under electron doping (positive effective gate) whereas this data is taken under

hole doping (negative effective gate). Clearly the gate dependence in Figure 4.12d shows the

polarization difference trending towards a sign switch and negative values at higher gate;

which would agree with the previous observations.

It then appears that the while the magnetic field serves to beak the valley degeneracy,

the sign of the breaking is determined by the doped free carriers in the system, not on the

valley exciton dispersion splitting theory presented in the previous section. This is a very

interesting results and offers yet another method of controlling the valley physics in WSe2 ;

however, more work still needs to be done. As of yet, no theory has been developed to

explain these observations, and a complete set of data must be taken to confirm that the

trends set up in Figure 4.12 continue under electron doping. Unfortunately the cryostat

these measurements are taken in has been found to be hole doping the samples, preventing

the application of gate voltages large enough to reach electron doping. As of the time of

this writing, this issue is currently being investigated.

Previous work [90] investigated the use of an electric field to break the inversion symme-

try in bilayers of MoS2 and thus tune the valley magnetic moment, from positive through

zero to negative values. There the gate serves only to provide a vector to break inversion

symmetry and not for the doping of the sample. Here it seems the magnetic moment’s
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modulation is due to the effects of doping not the applied electric field.

4.5 Magnetic Dependence of Valley Coherence

The presence of a magnetic field breaks the valley degeneracy and introduces an asymmetry

in the valley scattering, this should have an effect on the valley coherence. As discussed in

Section 2.4 a valley superposition can be created through excitation with linearly polarized

light [28, 95], as shown by the saturation of the cross-linearly polarized signal compared to

the co-linearly polarized one. Figure 4.13 shows the linear polarization of the exciton and

negative trion for B = −7T (left), B = 0T (middle), and B = +7T (right) for V polarized

excitation. Clearly in all cases the the cross polarized peak (H, black) is saturated compared

to the co-polarized one (V, purple); however, when the field is applied this saturation is

reduced, indicating a suppression of the valley coherence. This can be seen clearly in the

lower panel where the degree of linear polarization if plotted as a function of the applied

field for both V (purple) and H (green) polarized excitation. Both cases show a “Λ” shape

demonstrating the reduced valley coherence in the presence of the applied field. The fact

that both polarization agree implies that this effect is inherent in the sample, and not

dependent on some particular crystal axis. Also notice that there is still no saturation of

the negative trion signal, implying these states are still not coherent in the applied field.

Decoherence of the valley pseudospin, like valley depolarization, can occur either dur-

ing the formation process or from ground state relaxation. The later process can occur

through the procession of the spin, known as the Hanle process, and is consistent with the

observed “Λ” pattern. In this case the half width of the peak in Fig 4.13 corresponds to

the decoherence rate. However, the extracted value of ∼ 1ps[1] is much faster than those

extracted from time resolved measurements[85]. Therefore, it is like that the exciton for-

mation mechanism is the dominate pathway for valley decoherence. In the presence of a

magnetic field, the pathways through which free electron/hole pairs create k=0 excitons in

either the valley (upper/lower branch) will be different. It is most like this difference that

results in decoherence in the formation of the excitons, and a reduced linear polarization.
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Figure 4.13: Field dependence of valley coherence. Top shows spectra with linear excitation

and detection and -7 T (left), 0 T (middle), and +7 T (right) applied field. The degree of

saturation of the cross polarized peak (which is related to the valley coherence) diminishes

with applied field. Bottom shows this saturation as a function of the applied field strength.

4.6 Outlook and Future Work

The valley pseudospin in WSe2 is a good quantum number as valley excitons are robust

against inter-valley scattering. Through excitation with circularly polarized light a valley

polarization can be established and read-out via the polarization of the emitted PL with

good fidelity [95]. The work presented in this chapter represents the first investigation of the

use of a magnetic field as a way to control these valley properties. With more refinement the

valley pseudospin has a potential use as a qubit in future quantum computers, and external

magnetic fields have now been shown to provide the control needed to perform possible
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quantum operations.

Before that can be a realistic possibility much more work needs to be done in exploring

these magnetic valley properties. As was shown in Section 4.4, these properties are strongly

modulated by a gate, but the mechanism behind that is not fully explained theoretically

and in fact is often at odds with the current explanations for the magnetic valley properties.

Much more experimental and theoretical work is still in need of before these phenomena

can be fully understood. First and foremost in the completion of the gate dependent sweeps

to include all three trion species and fully map out the gate tunability.

Other properties may also play an important role in the observation of these magnetic

properties. The Zeeman splitting is fairly small (≈1 meV) at these fields, so the tempera-

ture of the lattice is very important. At some higher temperature there would be enough

thermal energy to overcome the Zeeman splitting and wash out the magnetic observations.

Additionally it would be of interest to push the field to higher strengths to investigate the

limit to the linearity of the Zeeman effect. At the National High Magnetic Field Lab, a

setup is already in place to measure these phenomena up to fields of 17T. Finally, strain in

the crystal lattice can serve to mix the two valleys which may have interesting consequences

on the Zeeman splitting. Additionally, when under stain the band edges perturb which will

certainly alter the valley magnetic moment.

One of the major limitations of using PL to monitor these magnetic valley effects is that

the width of the standard PL peak (∼5 meV) is much larger than the valley Zeeman splitting

strength, making it difficult to accurately extract out the valley splittings. Especially so,

since the PL peaks do not fit well to a standard Lorentzian or Gaussian profile. Using a

higher resolution spectroscopy could serve to more precisely quantify the splittings in an

applied field.



52

Part II

PHOTOCURRENT GENERATION IN GRAPHENE FETS
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Chapter 5

ULTRAFAST PHOTOCURRENT GENERATION IN GRAPHENE

The second half of this thesis will focus on the generation of photo-excited currents in

graphene FETs. This chapter will describe the general properties of semi-metallic single

layer graphene and investigate the photocurrents create at PN-junctions in this material.

It will be shown that the creation of the photocurrent is dominated by hot carriers and its

subsequent decay characteristics due to the small overlap in phase space of electrons and

phonons, as well as the electronic bottleneck created at the Dirac point where the density

of states goes to zero. The subsequent chapters will explore the effects of breaking the

continuous band structure with small energy gaps on photocurrent generation and lifetimes.

In chapter 6 a band gap of several hundred meV is opened up in bilayer graphene leading to

enhanced photocurrent generation and prolonged lifetimes of the excited carriers. Finally in

chapter 7 a magnetic field is used to create discrete Landau level through which electronic

cooling must take place leading to oscillations in both the photocurrent generation and

cooling times.

There are many excellent reviews of the electrical [8, 20] and optical [5] properties of

graphene, as well as a recent experimental outlook [12, 18], for the interested reader.

5.1 Graphene Stucture and Electronic Properties

5.1.1 Electronic Properties

Graphene is composed of a single layer of carbon atoms arranged into a two-dimensional

honeycomb lattice. Similarly to the TMDs presented in Part I, its low energy band structure

is located at the edges of the first Brillouin zone, at the K points; however, graphene is

inversion symmetric which requires the absence of a band gap. Indeed near the K-points

graphene’s band structure displays a linear, conical shape, with the conduction and valence

bands meeting at a single point, known as the Dirac point, see Figure 5.1. Interestingly
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Figure 5.1: Left: Plot of the low energy electric band structure near the K-point of single

layer graphene, showing the linear dispersion and the Dirac point. Right: Plot of the

corresponding density of states which vanishes at the Dirac point.

due to its linear dispersion and 2-D nature, the density of states in single layer graphene is

also linear in the energy, with a vanishing density of states right at the Dirac point. This

has interesting consequences to photoexcited carriers. Graphene is typically thought of as

a semi-metal– while it in fact does have a continuous band structure, the vanishing density

of states creates an electronic bottleneck which can slow electron cooling.

The presence of inversion symmetry also makes the two valleys, ±K, indistinguishable

as well as degenerate, unlike in TMDs. Additionally since graphene is composed solely of

light nuclei the spin-orbit interaction is negligible, and all bands are spin degenerate as well.

Therefore each band has a four-fold degeneracy from valley and spin. This factor of four

appears in the Landau level spectrum, where each level is separated by four conductance

quanta [20]. Additionally, this degeneracy can be broken upon application of a large mag-

netic field, giving the full-integer Quantum Hall Effect [103]. These effects are discussed in

more detail in Chapter 7.
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5.1.2 Phonons in Single Layer Graphene

Graphene has six phonon modes– 3 acoustic modes and 3 optical modes (transverse, lon-

gitudinal, and out of plane)– which play a major role in the generation of photocurrents

in graphene. The dispersion of these modes are shown in Figure 5.2. Scattering between

low energy carriers and phonons can either be valley conserving (q ≈ 0) or valley flipping

(q ≈ K) and must include an in plane phonon mode (not ZA or Zo) to conserve momen-

tum. It is evident from Figure 5.2 that valley flipping scattering events require an energy

of several hundreds of meV and thus are possible for only extremely hot carriers. Valley

conserving scattering requires a low momentum phonon so that the electron can stay on

the relatively narrow conical dispersion. Near q = 0 the in-plane optical phonon modes

again have an extremely high energy (several hundred meV) and are therefore not avail-

able scatters for lower energy carriers. This leaves only the in-plane acoustic phonons, TA

and LA modes, as participants in low energy carrier phonon scattering, and these phonons

have very little energy. Under these conditions alone there is a very weak coupling between

Figure 5.2: Phonon dispersion of single layer graphene. Plot shows the six different phonon

modes, 3 acoustic and 3 optical phonon modes. Circles are data taken from EELS and solid

lines are DFT calculations. Plot taken from Ref [58].
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optically excited hot carriers and the lattice, which implies extremely long carrier cooling

time[3, 81]. As will be shown later, however, this is not the case.

5.1.3 Graphene Devices

A typical dual gated graphen FET is shown in Figure 5.3. Graphene devices are formed

by mechanically exfoliating (through the so call “scotch tape method”) graphite flakes onto

heavily doped silicon substrates with 300 nm of SiO2 grown on top. The doped substrate

can be used as a back gate with the Sio2 as the gate dielectric. This precise thickness

of the dielectric is required to gain optimal optical contrast of the exfoliated graphene

flakes to facilitate identification of single layer samples [54]. Electron beam lithography

can be used to pattern source and drain electrodes which are deposited via an electron

beam metal evaporator (typically 1 nm Cr and 30 nm Au). Care must be taken during

fabrication for optimal cleanliness, since any residue can severely damage the electrical

characteristics. Boron nitride (BN), a wide bandgap insulating cousin of graphene, is often

used as a substrate or top gate dielectric for graphene devices [16]. As a substrate, BN

serves to smooth the rough surface of thermally grown SiO2 and serve as a lattice match

for the graphene crystal, both of which greatly enhance the electrical performance of the

device. Transfered on top of the graphene, the BN can serve as an encapsulation to prevent

device degradation or serve as a low leakage top gate dielectric. Finally, the heavily doped

substrate can be used a global back gate. Fabrication of pristine graphene devices is the

subject of many publications and entire theses [16, 18], but is not the focus here.

The linear nature of the low energy electronic dispersion means that the electrons/holes

are best described as massless Dirac fermions. This has interesting ramifications as a

condensed matter analogue to relativistic particle physics. Additionally it gives rise to

graphene’s tremendous electron mobility. Today’s typical samples have electron mobilities

in the range of 104 cm2V −1s−1 with the best devices breaking 106 cm2V−1s−1, compared

to typical values for silicon of 103cm2V−1s−1.

The electron mobility is best calculated by looking at the Hall conductance of a graphene

devices. Typically, however, a capacitive model is used to estimate it. For the typical
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Figure 5.3: Picture of a typical dual gated graphene devices. Graphene appears as thin dark

strip in middle. Source and drain electrodes are created using electron beam lithography

and are marked as “S” and “D”. A piece of thin BN (blue triange) is transfered on as a

top gate dielectric. Top gate is written with a second electron beam lithography step and

marked “TG”. The conducting silicon substrate is used as a global back gate.
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Figure 5.4: Resistance of a typical graphene FET as a function of the global back gate.

The peak value corresponds to neutral doping and is referred to as the Dirac point. Steeper

falloff from this point in indicative of a larger carrier mobility.

graphene device described above, the electron density can be estimated as n = cg(vg −

vDP )/e = cg∆V/e, where cg is the gate capacitance per unit area and ∆V is the deviation of

the gate voltage from the voltage of the Dirac point, with positive (negative) n corresponding

to electron (hole) doping. For 300 nm of SiO2, cg = 115 aF/µm2. The conductivity, σ, is

related to the mobility, µ, by σ = neµ. So from the slope of a typical conductivity versus

gate voltage plot (see Figure 5.4) the mobility can be calculated as

µ =
1

e

dσ

dn
=

1

e

dσ

dvg

dvg
dn

=
1

cg

dσ

dvg
(5.1)

5.2 Photocurrent Generation in Graphene PN Junctions

Due to its linear dispersion and lack of a band gap, graphene has a remarkably broadband

and flat optical absorption. This means that incident optical radiation serves as more
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of a local thermal source rather than to excite a specific optical transition. The specific

mechanism that describes the creation of photocurrents (PC) has been the study of many

different investigations [5, 12]. Clearly for any specific spot to generate PC upon optical

excitation the left/right symmetry must be broken. This can be accomplished through

either a hetero-junction, such as a single/bilayer graphene junction [94] or a metal/graphene

contact junction [36], or at a homojunction in a single material with different spatial doping

profiles [69], such as in a pn-junction [17, 21, 75].

5.2.1 Photocurrent Microscopy

A very useful technique for exploring the spatial dependence of the photo-active areas on a

devices is scanning photocurrent microscopy (see [36, 75]). A laser beam is focused to a tight

spot (∼ 2 µm) onto the surface of the sample. At this point the current generated and the

light reflected are collected. By modulating the incident laser’s amplitude with a mechanical

chopper (f =∼ 1 − 2 kHz) and using lockin techniques the signal-to-noise ratio is greatly

improved. At this point the laser focus can be raster scanned in two-dimensions using a

pair of galvo-scanning mirrors setup in a scanning confocal microscope configurations, see

Figure 5.5. In this way a map of the PC generated at different points on the sample is

obtained, as well as the reflection image which can be used to correlate photo-active hot

spots to physical locations on the device. For all of the work presented in this thesis the

excitation laser, whether CW or pulsed, was in the near IR from a Ti:Sapphire laser with

an energy of 1.65 eV.

Figure 5.6 shows the output maps of a dual gated graphene device (see Figure 5.3) from

the scanning PC microscope. In this image the global back gate has n-doped the entire

device, while the local top gate is set to p-dope the region underneath it. This creates a np-

and pn- junction to the left and right of the top gate, which one would expect to be strongly

photo-active. Clearly the largest generated PC in the right panel appear in lobes of opposite

polarity on either side of the top gated region, as seen by comparison with the reflection

image on the left. Smaller PC spots are generated at the contacts where the graphene/metal

junctions form a Schottkey-junction which is also photo-active. It is important to note that
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Figure 5.5: Schematic of the optical layout for a scanning photocurrent microscope. The

focus of an incident laser beam is scanned across a sample using a 2-D galvo-scanning mirror

while the reflected light and PC are simultaneously recorded.

Figure 5.6: Graphene pn junction measured with the scanning photocurrent microscope.

Left: optical reflection image of the dual gated graphene device clearly showing the contact

(“C”), top gate (“TG”), and graphene channel (dashed white lines). Right: map of the

locally generated photocurrents. Clearly the different peaks can be identified with the pn-,

np-, and graphene/metal junctions.
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the PC generation is highly localized to these specific junction areas, with no PC generated

in the bulk of the device. These maps show that PC generation is a local effect and requires

a mechanism to break the left/right symmetry so as to separate the photoexcited electrons

and holes. The specific mechanism of this generation will be explored in the next section.

5.2.2 Mechanism of Photocurrent Generation

At a pn- or Schottkey- junction the built in electric fields are surely capable of separating

the electrons and holes so as to create a net PC, though there is another effect that one

must also consider: the photothermoelectric (PTE) effect. In this case a current is gener-

ated in response to a laser induced temperature gradient between materials with different

thermoelectric powers, S, also known as the Seebeck coefficient.

I =
(S1 − S2)∆T

R
(5.2)

Where R is the device resistance and S given by the Mott relation[94].

S = −π
2k2T

3e

1

σ

dσ

dE
= −π

2k2T

3e

1

σ

dσ

dVG

dVG
dE

(5.3)

With conductivity σ and dσ/dVG obtained from the resistance measurement (see Figure 5.4)

and E = h̄vf
√
πcgVG/e = 31

√
VG meV is the Fermi energy as a function of gate voltage for

monolayer graphene. The dependence of S on the doping is shown in Figure 5.7, showing

its characteristic nonmonotonic, “S” shape.

The generated PC is proportional on the difference between the Seebeck coefficients in

the two separate regions of the pn-junction. If in one region the doping is constant with a

Seebeck coefficient of, for example, 5 µV/K, then as the carrier concentration is swept in

the other region the generate PC would switch signs twice— at -2.3 and -0.1 V— as the

Seebeck coefficient crosses 5 µV/K.

On the other hand the standard photovoltaic effect at a pn-junction describing the PC

generated by the built in electric field, however, follows a monotonic dependence on the

sample doping. There exists only one sign reversal, when the doping in one region crosses

the doping in the other and the junctions goes from a pn- to a np- junction.
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Figure 5.7: The effect of doping on the Seebeck coefficient calculated for the device shown

in Figure 5.4.

Figure 5.8: Photocurrent generated at a graphene pn-junction as a function of the doping

level in the two regions. The characteristic six-fold pattern, with multiple sign reversals as

a function of the doping, is indicative of a hot-carrier photothermoelectric effect dominating

the PC generation.
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Thus by looking at the PC generated as a pn-junction as a function of the doping in

both regions the mechanism of PC generation should be obvious by the number of sign

reversals [17, 69]. This is shown for a dual gated graphene pn-junction in Figure 5.8 as a

function of the doping inducing electric field inside and outside the top gated region. The

map here shows and interesting 6-fold pattern of positive and negative PC. The multiple

sign reversals are a clear indication that the photothermoelectric effect is the dominant PC

generation mechanism, and the hot carriers dominate the optoelectronic properties.

5.3 Pulsed Excitation of Hot Carriers

Things are different under pulsed excitation where now the energy is compressed into a

short duration. For the same average intensity, pulsed excitation leads to a substantially

higher peak power and long durations of no illumination compared to CW excitation. This

will typically lead to an increase in the hot-carrier temperature as well as a saturation in

the total photoexcited current as shown in Figure 5.9. Clearly there is strong saturation of

the pulsed excited PC compared to the CW excited ones for all temperature due to the fact

that the CW excitation occurs over a longer duration than the pulsed one. The lack of any

temperature dependence to the pulsed excitation is due to the fact that the carriers in this

case are excited to such a high effective temperature (several thousand K) that relatively

small changes in the lattice temperature has no real effect, unlike the case for the cooler

effective temperature (several tens of K) created from CW excitation [21].

5.3.1 Pump-Probe Photocurrent

One method to determine the cooing times of photo-excited hot carriers in a device is pump-

probe photocurrent. Similar to the optical pump probe method described in Section 3.1,

this method utilized two pulses of the same laser separated by a fixed time delay to excite

the system and then measure the response a moment later; however, in this case the readout

will be the photocurrent generated by the probe pulse, i.e. the total current measured at

the modulation frequency of the probe pulse. So for large time delay the signal should be

photocurrent generated by the probe pulse alone. At zero time delay the sample sees a

single laser with the power being the sum of the powers of the pump and probe pulses. In
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Figure 5.9: Generated photocurrent as a function of temperature for both pulsed (black)

and CW (red) excitation with identical average power. Pulsed excitation shows strong

saturation compared to CW excitation and no temperature dependence.

the linear regime this would give the same photocurrent reading as long time delay, since

the measurement is only sensitive to the current generated by the probe pulse; however,

as shown in Figure 5.10a and in the saturated behavior of probe pulses in Figure 5.9 the

response of a graphene device to pulsed excitation is not linear. Therefore the combined

power of the pump and the probe pulse, while indeed exciting net more current than either

pulse alone, excites less per pulse than either pulse alone. In this case the pump probe

signal at zero delay should show a dip corresponding to the saturation of the probe pulse’s

signal in the presence of the currents generated by the pump pulse.

An example time series is shown in Figure 5.10b. The signal is symmetric around

zero time delay, so only part of the negative time delay is scanned. Clearly the signal is

flat for large time delays, and for τ < 20 ps there is a definite dip corresponding to the

saturation effect described above. The depth of the dip tells about the magnitude of the

pump induced saturation. The timescale of the dip tells about the cooling time of the hot

carriers excited by the pump pulse, since it is the presence of these extra carriers that results

in the saturation of the photocurrent generated by the probe pulse. The effects on these

time series of various effects like temperature and doping have been extensively examined in
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Figure 5.10: Pulsed excitation of photocurrent in single layer graphene. Top: saturation of

photocurrent with the incident power of a single excitation pulse. Measured photocurrent

fits well to a power law of P 0.6. Left: pump probe photocurrent time series with pump

and probe powers of 20 µW. At long time delay pulses do not interact and the resulting

photocurrent is the value expected from the probe pulse alone. At zero delay the two pulses

are exciting with a combined power of 40 µW, which from the top plot gives ∼320 pA,

though ∼200pA are generated by the pump pulse, leaving the remaining 120 pA excited by

the probe pulse, as measured. Right: normalized time series plotted on a reciprocal scale.

The time dependence of the saturation shows a clear 1/t dependence, with the red line as

a guide for the eye.
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Ref [75, 21]. In general the cooling time was found to be constant with respects to sample

doping, and decreased with increasing temperature and laser power. In all cases, though,

the cooling time was found to be on the order of several picoseconds.

5.3.2 Hot Carriers

Figure 5.11: Schematic of pulsed photo-excitation in single layer graphene with correspond-

ing time scales. First panel: Initial, cold thermal distribution of carriers in graphene.

Second: optical excitation of non-equilibrium carriers. Third: Thermalization of carriers to

an elevated temperature. Fourth: Cooling of hot carriers to initial state.

For pulsed excitation the process of photoexcitation can be described as in Figure 5.11,

see Ref [3, 74, 76, 77, 79, 81] for more details. Before optical excitation, first panel, carriers

in graphene behave as a degenerate Fermi gas with a temperature Tlattice (10K). Electrons

(dark blue) fill all states below the Fermi energy. Upon excitation, second panel, a non

equilibrium distribution of electrons (holes) is created in the conduction (valence) band at an

energy of half the optical excitation energy. Very quickly, timescales of 10s-100s of fs, carrier-

carrier collisions thermalize the photo-excited carriers to a temperature Tcarriers � Tlattice,

decoupling the hot carriers from the cold lattice. It is a this point that the slow electron-

phonon coupling described in section 5.1.2 comes into play. As the hot carriers begin to cool

down they quickly become low enough energy that scattering off the high energy optical
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phonons becomes impossible. It is then left to the very low energy acoustic phonons to cool

to still hot carriers which is an extremely slow process (100’s of ps), which is at odds with

the measured cooling times from the previous section.

5.3.3 Supercollision Cooling

Clearly the limited phonon phase space available for electrons to scatter from should pro-

vide a substantial bottleneck for hot-electron cooling in graphene, theoretically resulting

in cooling times on the order of 100’s of ps. Experimentally, however, cooling times are

much shorter, indicating there must be a faster, competing mechanism for electron-phonon

scattering. This theory, developed in Ref [70], describes a three particle “supercollision”

which opens up the available phonon phase space allowing for faster hot-carrier cooling.

The source of the electron-phonon bottleneck is the necessity of an electron to scatter

from one side of the Dirac cone to the other— a relatively small change in momentum,

q. This requirement for small q phonons restricts the available phonons eligible to scatter

with electrons to only very low energy acoustic phonons. Therefore to cool down several

hundred meV after optical excitation requires scattering of many such phonons, and raising

the temperature has little effect since the higher energy phonons have too high of energy

for scattering. The competing process makes use of the relatively high disorder in these

monolayer crystals (due to residues from fabrication or the surface roughness of the SiO2

substrate) as local momentum sinks. An impurity atom can act as a third body in an

electron phonon collision and can absorb any residual momentum from the phonon that the

electron is not capable of taking. In this way the full spectrum of phonons may be used in

the scattering process. Obviously the three-body process has a reduced rate compared to

the simple two-body one; however, the available phonon phase space is now vastly increased

and the energy dissipated per collision is similarly enhanced (now of the order ∼kT).

The key premise behind this theory is that the energy loss power goes as the cube of

the temperature, i.e.

Γ = A(T 3
carrier − T 3

lattice) (5.4)
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This pathway was an enhancement factor over the traditional two particle acoustic phonon

cooling pathway (Γ0 = A(Tcarriers − Tlattice)) of as much as 100 times [70]. The scaling

factor, A, is sensitive on the disorder, scaling linearly with the disorder (1/kf l) which agrees

with the experimental results reported in Ref [14]. For an electron density Q = C∆T =

(α/2)T 2
carrier, the electron cooling dynamics follow

dQ

dt
= −Γ− Γ0 (5.5)

Combining equations 5.4 and 5.5 under the condition that Γ � Γ0, the dynamics of the

hot-carrier temperature can be found to be

Tcarrier(t) =
Tcarrier,0

1 + (A/α)(t− t0)Tcarrier,0
(5.6)

Recently several experiments have lent support to this theory. In Ref [21] the profile of

hot-carrier cooling, as measured by pump-probe photocurrent, is found to agree well with the

1/t dependence predicted by the supercollision model (equation 5.6), see Figure 5.12, instead

of an exponential time dependence as would be expected in the two particle process. Indeed,

once a few experimental constants are determined, a parameter free fit to the temperature

dependent cooling profiles shows remarkable agreement between the model and the data.

Additionally a second group [2] was able to use noise thermometry to measure the T 3

dependence from equation 5.4.

The next couple chapters explore how this supercollision mechanism holds up in the case

of a band structure broken by a band gap or Landau levels by looking at the functional

form of Tcarrier(t) through pump probe photocurrent.
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Figure 5.12: Hot-carrier cooling rates as a function of the lattice temperature. Solid lines

are parameter-free fits to the data points using the supercollision model. Clearly the time

depenence has a complicated structure in both delay time and temperature that is being

captured extremely well in the model. Figure taken from Ref [21].
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Chapter 6

PHOTOCURRENT GENERATION IN BILAYER GRAPHENE WITH
VARIABLE BAND GAP

AB stacked bilayer graphene is composed of two sheets of single layer graphene stacked

on top of each other, with the top layer 180o rotated from the first. In this configuration

inversion symmetry remains intact and bilayer graphene behaves as a gapless semi-metal

similar to single layer graphene, see Figure 6.1, with the exception of it parabolic bands

leading to massive Dirac fermions [51, 102]. However, applying a perpendicular electric field

breaks the inversion symmetry and opens up a small band gap that is tunable from zero

to several hundred meV with the applied field [47, 48]. In this chapter the optoelectronic

properties of bilayer graphene are explored as a function of this opened gap.

6.1 Gate Tunable Band Gap

As seen in Figure 6.1, unperturbed AB stack bilayer graphene maintains its inversion sym-

metry and thus has no band gap. However when a strong electric field is applied perpen-

dicular the the plane of the graphene the electron cloud is altered between the two layers

and inversion symmetry is broken. At this point a small band gap is created that is tunable

with the applied field [42, 47, 48, 105].

Experimentally this can be achieved with a dual gated bilayer graphene devices similar

to the one shown in Figure 5.3. The top gate dielectric is created by transferring a thin

(∼ 5-10 nm) sheet of BN on top of the bilayer graphene and a gate electrode is fabricated

out of the transparent conductor indium tin oxide (ITO) so that the dual gated region is

optically accessible. The use of two gates allows control of both the doping, through the

capacitive coupling described in section 5.1, as well as the opening of the band gap solely

in the region controlled (underneath) the top gate.

For a given voltage on the top/bottom gate, Vi (i=TG,BG), the electric displacement

field seen at the device is Di = ciVi, where ci = εi/di is the capacitance per unit area for
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Figure 6.1: Right: schematic of stacking of graphene sheets in AB bilayer graphene shows

the presence of inversion symmetry. Center: unperturbed, bilayer graphene’s band structure

shows parabolic bands meeting a single point, the Dirac point. However when an electric

field perpendicular to the plane of graphene is applied, right panel, inversion symmetry is

broken and a gap is opened.

the top/bottom gate dielectric. The total field at the device is the sum of these two fields,

which can be combined in two ways to either dope the sample or to open up a band gap

[105].

Ddope = DBG −DTG (6.1)

Dgap =
DBG +DTG

2
(6.2)

6.1.1 Infrared Detection of Band Gap

In Ref [105] infrared absorption is used to probe the band gap in a similar dual gated bilayer

graphene. When a strong Dgap field is applied a peak in the absorption is seen at a the

band gap energy, and a reduction in the absorption is seen below this band gap level. The

experimentally measured gaps are compared with theoretical models and found to agree

well with a self consistent tight binding model [102]. The results are shown in Figure 6.2.



72

Figure 6.2: Observed band gap as a function of the applied perpendicular electric field

Dgap measured by infrared absorption (red squares). Results match up well with the self-

consistent tight-binding model described in Ref [102]. Image taken from Ref [105].

6.1.2 Resistive Measurement of Band Gap

Obviously the presence of a band gap will lead to an increase in the resistivity of a material

than one without a band gap, so a resistance measurement can be an easy way to confirm

the presence of a field induced gap in a bilayer graphene device. Figure 6.3 shows a two

dimensional map of the resistance as the dual gates are both swept. The horizontal and

vertical axes have been transformed into the two relevant electric displacement fields from

6.1 and 6.2. Immediately obvious is the saddle point in the middle corresponding to the

zero applied field condition. In this case the device is neutrally doped and the gap is

closed. Moving vertically the field induces a widening of the band gap and the resistance

rises dramatically as the gap inhibits conduction of carriers. Moving right (left) causes an

increases in the sample doping, or the Fermi level, which quickly overcomes the gap and fills

electrons (holes) in the conduction (valence band) resulting in a decrease in the resistivity.

In this sample the gap is clearly opened, but estimating the gap size is difficult from

this measurement alone. By comparing the maximum applied Dgap field to Figure 6.2 the
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Figure 6.3: 2D map of the electrical resistance of the dual gate bilayer graphene device as

a function of the applied electric fields Ddope and Dgap. Saddle point in the middle is the

zero field point, resistance grows quickly vertically as a gap is opened and drops off quickly

left/right as the sample is doped.

maximum band gap can be estimated to be ∼100 meV. This gap is much smaller than the

laser energies used in the experiments (∼1.65 eV), so there should be little effect on the

absorption of radiation. However, it is much larger than thermal energy (kBT ≈ 2 meV)

and the available acoustic phonons. It would then be expected that this gap would have

significant ramifications on the cooling of carriers after excitation.

6.2 Spatially Resolved PC

Scanning PC microscopy images were taken of the dual gated bilayer graphene device to

determine the spatial profiles of the photo-active regions once the band gap is opened. Again,

with the use of two gate the band gap and the doping can be independently controlled only

in the region underneath the top gate. Outside of this area, effectively DTG is zero in

equations 6.1 and 6.2 meaning that as the global back gate is tuned, the doping and the

band gap are both changed. So outside of the top-gated region there is less control on
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Figure 6.4: Scanning PC images of the dual gated bilayer graphene device. Top: reflected

laser image of the device, showing the contacts (“C”), top gate (“TG), and graphene channel

(while dashed line). Below are corresponding photocurrent maps for different gate configu-

rations.

these knobs. Still by tuning the gates appropriately a PN junction can be formed at the

edges of the top-gated region and Schottkey junctions can be formed at the graphene/metal

junctions. Now, unlike for single layer graphene, these interfaces are between materials with

a band gap.

In Figure 6.4 the scanning PC microscopy images are plotted for several different gate

configurations. The top image shows the reflected laser map of the device, clearly showing

the two contacts and the top gated region on the left. The graphene channel is highlighted in

the white line. Below are the PC maps, that show the gate tunability of the graphene/metal

contact hotspots, the PN junctions, and an anomalous spot directly underneath the top gate.

This final map is set at low doping and large band gap strength in the top gated region.
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6.3 Gap Enhanced Photoresponse

To investigate the dependence of the gate voltages on the photo-response the laser is fixed

on the PN junction while the gates are swept, see Figure 6.5. In this case since the region

not under the top gate does not have independent control of its band gap and doping there

is not good basis to plot the axes in, so they are left in terms of their gate voltages. In this

case the opening of the band gap in the top gated region is on the major negative diagonal,

while a pure doping of the top gated region is on a positive diagonal.

Figure 6.5: Photo-response of PN junction in bilayer graphene FET as a function of the top

and bottom gate voltages. Left: photocurrent map shows the typical 6-fold pattern indicat-

ing PC is dominated by hot carriers. Right: photovoltage map shows strong enhancement

of the response along the diagonal line, corresponding to the opening of the band gap.

In the left map the PC of the PN junction is plotted. Clearly it shows the signature 6-fold

pattern discussed in Section 5.2, indicating that here, too, hot carriers dominated the PC

response [17, 69]. What is interesting, though, is that along the main negative diagonal, the

generated PC is nearly constant, while this is where the resistance is increasing exponentially
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due to the opening of the band gap. To illustrate this further the photovoltage (PV=PC*R)

is calculated and plotted in the right panel. The PV along the main negative diagonal shows

a very strong enhancement due to the opening of the band gap.

Several papers have discussed the increased thermopower of bilayer graphene when the

gap is opened [24, 29, 83], so this gap enhancement of the PV should be expected.

6.4 Hot-Carrier Cooling with Opened Gap

Finally the hot-carrier cooling time can be measured using the pump probe photocurrent

method described in section 5.3. A time series taken from the top-gated region under zero

applied electric fields is shown in the left panel of Figure 6.6. This curve has a very similar

shape to those from single layer graphene with a flat tail at long time delay when the pulses

are not interacting and a substantial dip near zero time delay corresponding to saturation

in the probe induced photocurrent. The width of the dip is slightly larger than the single

layer case, corresponding to a hot-carrier cooling time closer to 10ps. While this is longer

than that measured in monolayers it is still much less than the theoretical cooling times

(∼100 ps) predicted from models using only two particle electron/phonon cooling.

The most striking difference however is the profile of the dip. In the right panel of

Figure 6.6 the normalized time series is plotted on a logarithmic scale. Clearly this follows

an exponential decay in contrast to the 1/t dependence predicted by the supercollision model

[21, 70], see section 5.3. This hints that in bilayer graphene, with its different electron

dispersion, that the supercollision mechanism is no longer the dominant cooling process.

Indeed the wider electronic dispersion created by the parabolic bands may be less restrictive

for the simpler two-body scattering mechanism for cooling. More work needs to be done to

investigate this possible mechanism.

The previous data was taken without any applied fields to dope the sample or open up

the band gap. It is found that when the gate voltages are turned on the time series maintain

their exponential behavior, so hot-carrier cooling times can easily be extracted as the time

constant of an exponential fit to the t > 0 data.

In Figure 6.7 the sample is held at zero doping (Ddope = 0 V/nm) while the band gap

field (Dgap) is swept from zero upward. The left panel shows the extracted hot-carrier
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Figure 6.6: Pump probe photocurrent time series for unperturbed bilayer graphene. Left:

time series shows similar dip as for the single layer case, timescale of approximately 10ps is

slightly longer. Right: normalized time series on a logarithmic scale shows a clear exponen-

tial dependence in contrast to the supercollision model, see equation 5.6.

cooling times which show a definitive, though not drastic, linear increase with the applied

field. The right panel shows several normalized time series with increasing field strength

plotted on a logarithmic scale. Clearly the curves maintain their exponential character and

the slope gets steadily shallower with increasing field.

From Figure 6.2 the band gap magnitude is roughly proportional to the applied electric

displacement field, Dgap, for fields less than ∼2 V/nm, as is the case here. Therefore, the

cooling time is found to be roughly proportional to the gap size, τ ∝ ∆gap, for small gaps.

This is expected as the opening of the gap provides a barrier holding apart the photo-excited

electron/hole pairs. The linear dependence may provide insight into the mechanism through

which the carriers are able to recombine across the gap.

A cut of constant band gap is taken in Figure 6.8. The gap field is held at Dgap = 0.5

V/nm while the doping field, Ddope, is swept from hole to electron doping. The hot-carrier

cooling time, τ , is extracted and shows no dependence on the doping. The hole in the data

near Ddope = 0 V/nm is due to the fact that the single pulse photocurrent crosses sign there.
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Figure 6.7: Hot-carrier cooling times as a function of the band gap inducing displacement

field Dgap. Left: extracted exponential cooling times as a function of the applied field shows

a clear linear increase. Right: several representative time series normalized and plotted on

a logarithmic scale again show the exponential dependence and the definitive increase in

the cooling times with the band gap. Sample is held at neutral doping, Ddope = 0 V/nm.

Figure 6.8: Hot-carrier cooling times as a function of the sample doping displacement field

Ddope. The data shows no clear dependence. Missing data points in the middle correspond

to a zero crossing in the single pulse photocurrent making the signal unreliable. Dgap = 0.5

V/nm.
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6.5 Outlook and Future Work

In general, there are few exemplary optoelectronic materials in the far IR. Bilayer graphene,

with its tunable band gap, could serve an important niche as a photodetector in these low

energy regimes [29, 97], but first its optoelectronic properties must be investigated. This

work has demonstrated an enhancement of the photo-voltage with the opening of a band

gap through the increased Seebeck coefficient under these conditions. Additionally it shows

the tunability of the device response time, as indicated by the hot-carrier cooling times, by

changing the band gap. For a high speed photodetector [50, 82] once the carriers are excited

they need to be quickly converted to a current and exit the device before the next bit of light

can be absorbed. Faster hot-carrier cooling times allow this reset time between information

bits to be shorter, increasing the detector bandwidth. Luckily, as this measurement shows,

the response time as the gap is opened up does not change dramatically, indicating that a

potential device could still operate very quickly even when working with an open band gap

to increase the photoresponse.

Work still needs to be done to investigate the amplified photo-voltage produced when the

gap is opened up, specifically the development of a concise theory to explain this phenomena.

Additionally the hot-carrier cooling times where found to have a time dependence at odds

with the current supercollision cooling model applicable to monolayer graphene. New theory

must be developed to explain the cooling of hot carriers in this material, including the linear

dependence of cooling time on the band gap, so that future devices may be optimized.

One potential device architecture that may be of particular interest would be a bilayer

graphene FET with the bottom and top gates split into two. This would provide two regions

where the doping and band gap could be completely, and independently, controlled. At their

interface an inhomogeneous pn-junction could be formed, with a tunable band gap on either

side. This architecture would allow for complete investigation of the band gap effects on

the photoresponse and would be an important architecture for a far-IR detector. However,

it is a complicated structure and much would would need to be done to optimize it.
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Chapter 7

PHOTOCURRENT GENERATION UNDER LANDAU LEVEL
QUANTIZATION IN SINGLE LAYER GRAPHENE

In two-dimensional systems in a large out of plane magnetic field the resulting electronic

cyclotron orbits leads to a quantization of the Hall conductivity known as the quantum

Hall effect (QHE). The continuous band structure is condensed into highly degenerate,

discrete Landau levels. In graphene, with its exceptionally large cyclotron gap [23], this

effect is especially pronounced allowing the quantization to occur at lower magnetic fields

and higher temperatures– even having been reported at room temperature [56]. The aim

of this chapter is to investigate the effect of this discretization of the band structure on the

optoelectronic properties of graphene.

7.1 Quantum Hall Effect in Graphene

The QHE was discovered in 1980 in the seminal paper by von Klitzing [31] which would

eventually lead to a Nobel prize. The theory was then quickly worked out by Laughlin

[34]. Upon application of a magnetic field perpendicular to the plane of a 2D electronic

system, the electrons will begin to precess in cyclotron obits with frequency ωc. When

treated quantum mechanically these orbits become quantized, occupying only certain orbits

with discrete energies, known as Landau levels (LLs). In a standard 2D system the energy

spectrum behaves identically to a quantum harmonic oscillator with energy levels

EQHE = h̄ωc(n+ 1/2) =
h̄e

mc
B(n+ 1/2) (7.1)

for integer values of n, corresponding the the Landau level index, and B the magnetic field

strength. The levels are equally spaced and there is no zero energy Landau level. As the

magnetic field strength is increased the spacing increases forming a fan.

The electron cyclotron orbits are shown schematically in Figure 7.1. In the interior the

electrons follow closed cyclotron orbits (red curves), locking the electrons in their present
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Figure 7.1: Schematic depicts electron cyclotron orbits (red) in a graphene device in an

out of plane magnetic field. In the interior electrons orbits are closed resulting in no net

current; however, on the edges the orbits do not close on themselves due to scattering from

the edges, resulting in a net drift of carriers. This drift generates an edge current that is

canceled out by a similar current on the opposite edge.

position. At the edges the electrons are unable to form a closed orbit due to scatter from

the edges themselves. The combination of edge scattering with the cyclotron orbit results

in a net drift of electrons generating an edge current depicted by the blue arrows. This

effect is opposite on opposite edges, and switches polarity with the magnetic field. Each

Landau level carriers a conductivity quanta, e2/h, in these edge states, so by changing the

Fermi energy to include more Landau levels the edge conductivity increases by ne2/h. This

quantization is extremely precise, even in repetitively dirty condensed matter systems [31],

such that this effect leads to the current precision Ohm standard. It is important to note

that these edge currents flow even in the absence of an applied electrical bias; however,

since the two edges contribute equal and opposite currents there is no net current flow in a

device without some other symmetry breaking process.

Each LL is highly degenerate, with occupation numbers related to the ratio of the phys-

ical sample size times the mangetic field strength to the magnetic flux quantum. When

the field is strong enough that all of the free carriers are concentrated in only a few Lan-
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dau levels, the QHE effect is observed. It is characterized by a quantization in the Hall

conductivity in units of e2/h that steps with increasing sample doping or magnetic field;

corresponding to the change in the number of occupied Landau levels. Additionally the

longitudinal, magneto-resistance shows dips as new Landau levels are filled due to the extra

edge channels.

Graphene, due to its unique massless dispersion and nonzero Berry phase, has an anoma-

lous QHE theorized by Gusynin and Sharapov [23] in 2005 and quickly demonstrated

[53, 104] with the isolation of monolayer graphene, eventually leading to a Nobel prize for

Novoselov and Geim. Instead of the linear spaced quantum harmonic oscillator spectrum

from equation 7.1, graphene’s energy spectra is given by

Egraphene = ±
√

2eh̄v2fnB (7.2)

where again n is the Landau level index (positive integer values), B is the magnetic field

strength, and vf is the Fermi velocity of graphene (∼ 1∗106 m/s). This anomalous nonlinear

spectra in n is due to the linear dispersion of graphene. Additionally this spectra allows

Figure 7.2: Upon application of a perpendicular magnetic field graphene’s continuous band

structure (left) breaks down into highly degenerate, discrete Landau levels (middle). In

graphene these Landau levels have a nonlinear energy spacing and as well as a zero energy

level. Right: simulated density of states for graphene Landau levels at B= 7.5T.
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for a zero energy Landau level unlike in conventional semiconductors. This spectrum is

shown schematically in Figure 7.2, showing the zero energy Landau level at the Dirac point,

and the bunching of Landau level at higher carrier energies. As a function of magnetic

fields these will space out even further, scaling with
√
B. The width of a Landau level is

approximated as Γ ≈ h̄/τ where τ is the scattering time of the particles. Higher mobility

samples have a longer τ , thus narrower Landau levels, and therefore the QHE effect can be

seen at smaller field strengths.

This square root dependence on both the field and the Landau level index have been

investigated using infrared spectroscopies in References [27, 64].

Due to the four-fold (two spin and two valley) degeneracy of carriers in graphene each

Landau level adds 4e2/h to the conductivity when filled. However, the zero energy Landau

level contributes only half of these quantum when filled, contributing half its quanta to

electron and half to hole conductivity. Therefore the conductivity is quantized in units of

Figure 7.3: Two terminal conductivity of a graphene FET for various magnetic fields show-

ing the formation Laundau levels. As the field is increased the conductivity forms plateaus

at values of 2, 6, 10,... e2/h, indicating the addition of an extra Landau level to the con-

ductivity.
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4(n+1/2)e2/h, forming plateaus of conductivity then at 2, 6, 10, ... e2/h. Figure 7.3 shows

the two-terminal conductance of a graphene FET for various magnetic fields. At zero field

(black) the curve shows a smooth dip characteristic of the Dirac point. However, once a

large field is turned on, quantized steps begin to appear at the conductivity quanta. These

plateaus become increasingly wide and more spaces out as the field is further increased.

The four-fold degeneracy can be broken by further increasing the magnetic field or

the sample quality to the point where full integer quantization occurs, effectively Zeeman

splitting the spin and valley degeneracy [103]. Finally with an even further increase in

field or quality extra plateaus with non-integer multiples of e2/h begin to appear, primarily

n=1/3, known as the fractional quantum hall effect [4, 15, 26]. This effect is much more

complicated, but stems from carrier interactions.

Graphene’s unique quantum Hall behavior is explored more fully in the review of Ref [20].

7.2 National High Magnetic Field Lab

To reach magnetic field strength large enough to sufficiently form Landau levels, this work

is done at the National High Magnetic Field Lab, in Tallahassee. There a 17.5T super-

conducting magnet has been built around a two inch bore with an optical window. The

sample is loaded onto a 12 foot long probe which is lowered into the liquid helium magnet

and cooled with a helium exchange gas to 4K. The sample sits, upside down, at the bottom

of the probe. The magnet is suspended off the ground with the optics window underneath,

allowing laser excitation in free space onto the sample from below.

Alignment of the system is especially challenging as the sample is located several feet

inside the bore of the magnet and the last alignment mirror is outside. To allow for precise

focusing of the pump and probe laser beams onto the small exfoliated sample area, a spe-

cial sample mount was developed. Three Attocube nanopositioners are used to move the

sample around and precisely focus it. A low-temperature compatible microscope objective

is attached to the sample mount as well to allow for tight focusing.

The system must be first optically aligned without the sample probe, making sure the

laser light passes all the way through the center of the bore of the magnet. The sample

is positioned and focused at room temperature on the optics table in the probe sample
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mount. At which point the whole probe may then be carefully inserted into the magnet,

maintaining the sample and objectives orientation in the center of the bore. Finally the

optics can be slightly realigned to center the laser light onto the microscope objective to

create the most tightly focused beam. A white-light microscope is also built in conjunction

with the pump probe photocurrent setup to help locate the sample and precisely position

the focused beams.

All in all the system allows for a 1-2 µm focused spot for a pump and probe beam at

1.55 eV, precise (sub 50 nm) position of the sample in 3D, detection of photocurrents below

10 pA, and the ability to measure the ultrafast hot-carrier cooling times through the pump

probe photocurrent method, all at 4K in a bipolar field of amplitudes up to 17.5T.

7.3 Photocurrents in QHE Regime

To separate the photocurrents generated due to the QHE from other currents like those

measured in the previous two chapters, the excitation laser is focused on the edge of the

graphene device, well away from either contact. One contact is grounded, and the photo-

excited current is detected at the other contact using a lockin amplifier at the probe modula-

tion frequency. It is important to note that no electrical bias is applied in this measurement,

and the currents arise solely from the QHE edge currents depicted in Figure 7.1. Previous

studies have explored the spatial nature of these edge currents [52].

The gate dependent PC collected at one of edges for various magnetic fields is shown

in Figure 7.4. At zero applied field (black line) the current is zero as would be expected.

When the field is turned on, however, the QHE effect sets up the DC edge currents, which

by themselves result in no net current since there is an equal but opposite current on either

edge. However, the laser is exciting only one edge, and therefore the left/right symmetry is

broken and a net current flows along one edge as shown in the red and green curves with

the field applied. In both cases the field only has one sign as a function of the gate voltage,

decided by the magnetic field generated edge current. The sign of the PC changes when the

other edge is excited or when the magnetic field is switched in polarity.

The other dominant feature of this PC is that it is periodic in the gate voltage, just like

the conductivity. In fact, by looking at the dominant frequency of the FFT of the PC signal
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Figure 7.4: Photocurrent generated at the edge of a graphene device for various magnetic

fields. No current is generated without applying a field (black). Under high field the current

is oscillatory and also predominantly of a single sign.

Figure 7.5: Period of oscillation of the edge photocurrent (black) and the differential con-

ductance (red) with back gate voltage. Periods determined by FFT of data in Figures 7.3

and 7.4, error bars are from FFT resolution. Linear relationship with B confirms Landau

level origin. Line is best linear fit with slope 1.26 volts/tesla.
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from Figure 7.4 and the same from the differential conductance (dσ/dVg) from Figure 7.3,

they share the same linear relationship with B (see Figure 7.5). The energy spectrum of

the Landau levels is given by equation 7.2 while the change in the Fermi level with gate is

given by E = h̄vf
√
πcgVG/e (from Section 5.2). Combining these two gives

∆VG
∆n

=
2e2

h̄πCg
B = 1.35B(volts) (7.3)

Which agrees very well with the fitted slope from Figure 7.5 of 1.26±0.05 V/T, confirming

the fact that both of these oscillations stem from the underlying Landau level physics.

7.4 Hot-Carrier Cooling in QHE Regime

It was shown in the previous section the the breaking of the band structure into discrete

Landau levels has profound impacts on the excited edge photocurrent. Naively one would

also think that it would cause photoexcited hot carriers to cool more slowly, as shown in

Figure 7.6, and has been reported previously [57]. Whereas in unperturbed graphene, hot

carriers could relax through collisions with available phonons of any energy (with momen-

tum conservation being the only limiting factor), now with the allowed electronic states

condensed into a few Landau levels, only a small subset of the total phonons can scatter

Figure 7.6: Hot-electron cooling is affected by the discretization of graphene’s band structure

in the QHE regime.
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between these Landau level states. This may cause the process to take longer. It would

also be expected that if there were fewer Landau levels below the excitation energy (the

case for high field) this would take even longer as the Landau level spectrum creates an

effective band gap. Additionally by tuning the Fermi level to fill or empty one of the low

lying Landau level, the cooling should quicken or lengthen, respectively.

Figure 7.7: Photo-response of graphene under Landau level quantization. Top: longitudinal

conductivity (σxx) versus gate shows Landau level steps. Middle: single pulse photocurrent

versus gate oscillates with gate, peaking after the addition of each Landau level. Bottom:

hot-carrier cooling time (HWHM) as a function of gate also oscillates, peaking in between

Landau levels. B= 7.5T
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To investigate this, photocurrent pump probe was performed on these edge currents in

the high magnetic field, as shown in Figure 7.7 for B= 7.5T. On the top is the two-terminal

conductivity as a function of the applied gate, from Figure 7.3. The middle is the similar

oscillating single pusle photocurrent from Figure 7.4. And on the bottom is the hot-carrier

cooling time extracted from a pump probe time series (similar to Figure 5.10). However, as

the field is turned on the timeseries no longer conform to either an exponential nor a 1/t

decay, so the cooling time is extracted as the half-width at half-max (HWHM) of the pump

probe dip. Surprisingly, the cooling time as well shows an oscillatory nature, whereas one

might it expect to look as a stair-step as the ground state is brought further/closer to the

hot carriers.

Vertical lines are drawn through all three plots at the points where a Landau level has

been filled (with holes in this case). At this point the conductivity reaches a plateau as

the new edge state is allowed; the single pulse PC reaches a maximum; whereas the cooling

time reaches its middle value. The cooling time, in fact, is the longest when the Fermi

energy (the ground state of the hot-carrier cooling) is in between the Landau level, and its

minimum when the Fermi energy has just reach, but not filled, a new Landau level. Also

note that the cooling times are substantially longer than those measured in either single or

bilayer graphene, ∼80 ps.

It would be interesting to investigate how this cooling time changes as a function of the

Landau level spacing, by increasing the magnetic field. However, this is a much more difficult

experiment. As can be seen in Figure 7.6, there is a large variation in the cooling depending

on the relation between the Fermi energy and the Landau level energies. And since the

Landau level energies change with the magnetic field, to get a good idea how the spacing

plays a role in this the gate voltages need to be precisely set in the same location relative

to the changing Landau levels for each new magnetic field. While technically challenging

this experiment would provide the most concrete insights into how the Landau levels effect

the hot-carrier cooling.
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7.5 Outlook and Future Work

This work investigated the gate dependence of the optoelectronic properties of graphene’s

quantum hall edge currents at large magnetic fields. Both the PC and the hot-carrier cooling

times showed periodic behavior that matched up with the Landau level periods, confirming

the fact that it is the Landau levels that are dominating the optoelectronic properties of

graphene even at optical energies much larger than the Landau level gaps. However, using

PC as a probe for the inner electronic workings is complicated. The measurement integrates

the electronic mechanisms not only over the hot-carrier lifetimes but also over the area of the

device, in addition to being an inherently nonlinear effect. The results is that developing a

model to explain the data can be very difficult. While results presented in this chapter look

beautiful, much work needs to be done now to explain them and draw out the meaningful

physics.

Measurements that are easier to interpret physically are usually much more complicated

to perform. For instance to study the effects of hot-carrier cooling through the Landau

levels a better measurement would be a non-degenerate pump probe spectroscopy experi-

ment. A high energy probe could initially setup a hot-carrier distribution that would effect

the absorption of all of the lower energy Landau levels. A lower energy probe pulse could

investigate this change in absorption as a function of time and energy to discern how carri-

ers are moving through the available states. A similar measurement was performed at THz

excitation looking at Auger process between the n=0 and n=±1 LLs in Ref [49]. These

nondegenerate measurements are tricky, involving multiple synchronized lasers. Also prob-

ing at the low Landau level energies involves using far-IR or THz sources which are very

challenging to work with.

It is also important to remember that in the experiments performed in this chapter it

is the ground state configuration that is swept with the gate voltage. The optical pulses

are exciting carriers to a quasi-continuum, where the Landau level spacing is similar to

the Landau level width, at which point they thermalize and start feeling the effects of

the discretized band structure. By sweeping the gate voltage Landau levels are added or

subtracted from the bottom of the spectrum through which the hot carriers must cool
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through. A different experiment would involve fixing the gate voltage, setting the ground

state configuration, and sweeping the excitation laser frequency to include more or fewer

Landau levels in the cooling process. Again it is tricky working with optics at low enough

energies such that the Landau level spacing is not quasi-continuous, especially sweeping the

laser energy over such a large range in these long wavelength regimes.

All that being said, future optoelectronic devices will most likely operate in the condi-

tions presented here: excitation into the quasi-continuum and control over the ground state

configuration. So these experiments are probing the properties most relevant to those future

applications, despite their relative complications in understanding.
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