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Abstract 

Models of human causal learning: review, synthesis, generalization. 

(A long argument for a short rule) 

 

Chair of the Supervisory Committee: 

Professor John M. Miyamoto 

Department of Psychology 

 

This dissertation is composed of three major components. The first reviews models of causal 

learning with special emphasis given to Bayesian approaches. The second component joins 

algorithmic and computational models by defining the free parameters of the former in terms of 

the theoretical constructs of the latter. Specifically, the weighted Δ𝑃 model can be naturally 

expressed as an estimator of Cheng’s (1997) causal power. This allows for a computational 

analysis of weighted Δ𝑃 that results in a number of insights. The analysis suggests that previous 

formulations of preventive weighted Δ𝑃 have been misspecified. With the correct specification, 

weighted Δ𝑃 is shown to be the best fitting model when entered in to Perales and Shanks (2007) 

model competition study. The analysis also facilitates a novel derivation of a more general 

Rescorla-Wagner model that attains a causal power equilibrium. Weighted Δ𝑃 is non-Bayesian, 

though it shares some characteristics with Bayesian estimators. Like the posterior mean, weighted 

Δ𝑃 can be interpreted as a compromise between a prior expectation and sample information. As 

such, it is also a low variance estimator of causal power. In contrast to Bayesian models, weighted 

Δ𝑃 predicts deterministic strengths of 0 or 1 in certain experimental conditions. Experimental 

results support these predictions and lead to the discovery of a “deterministic bias” in causal 

judgments. This phenomenon is strongly inconsistent with Bayesian models, though it also poses 

problems for point prediction models more broadly. The third component of the dissertation 

proposes capacity and response probability (CARP), a latent variable framework for models of 

causal inference. Under CARP, causes are associated with latent capacities. Conjoined causes are 

assumed to combine additively in their capacities. A response function maps capacity to the judged 

probability of the effect. Different response functions imply different models of causal judgment. 

After establishing the framework, response functions are derived for the ΔP rule and causal power, 

and a number of additional applications of CARP are proposed. 
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Introduction. 

What are people doing when they form judgments of causal strength? How do they use evidence 

to form these judgments? In attempting to answer these questions, the field of causal learning has 

enjoyed a spirited debate between several distinct research approaches, with each giving different 

emphasis to the preceding two questions. Indeed, one can roughly categorize different research 

traditions in psychology based on the varying weight they give to “what” versus “how” questions. 

Explanations in cognitive science often take the form of input-output models in which the 

stimulus information is the input while an assessment or action is the output. Models systematically 

differ according to their level of abstraction. Some models are specified as functional relations 

between high-level constructs while other models are meant to be descriptions of the actual 

information processing steps. Much work has been done to distinguish between different types of 

explanations in psychology (J. R. Anderson, 1990; Marr, 1982; Newell, 1982; Oaksford & Chater, 

2007; Pylyshyn, 1984). One of the best known accounts is found in Marr (1982), who distinguishes 

between three levels of analysis: computational, algorithmic and physical.  

Computational explanations describe what the system is doing and the logic of why that 

strategy is appropriate. A computational explanation specifies the ideal solution to an abstract 

problem. It should be mentioned that Marr’s “computational” terminology has been criticized as a 

misnomer since at the computational level, the problem and solution are characterized 

mathematically and without any reference to computations (J. R. Anderson, 1990). For this reason, 

some prefer to describe these as “functional” explanations. 

Algorithmic explanations are more specific, detailing the representations and the 

transformations used to execute the function. Historically, most work in cognitive science has 

occurred at the algorithmic level. The physical or implementational level concerns how the process 

is implemented by the underlying material architecture. So for human cognition, the physical 

explanation is in terms of neural processing.  

Marr’s work broadly describes different types of explanations but, as Sloman and Fernbach 

(2008) observe, it does not offer specific guidance for how to construct models of cognition. In 

particular, it does not specify which of the three levels take precedence. Should one begin with a 
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functional analysis of the task, or should one first focus on describing the operations actually being 

performed? 

With his influential method of “rational analysis,” Anderson (1990, 1991a) does propose a 

model building procedure. He is unequivocal about where to start: one should begin with an 

analysis of the task that the cognitive system is trying to solve. A foremost requirement is the 

precise characterization of the inferential problem. In practice, this means that rational analysis 

nearly always starts with computational level explanations. A guiding assumption of the rational 

approach is that cognitive processes are well-adapted to their environment of application. 

Accordingly, cognitive processes should produce near optimal solutions to the particular tasks that 

they face. Anderson’s claim is that rational analysis is the best method for discovering and 

characterizing these optimal solutions. 

Rational analysis has antecedents in “ideal observer theory,” an influential a research 

approach in the study of psychophysics. For a given sensory task, an ideal observer gives the 

optimal performance that can be achieved for a specific set of stimulus inputs and processing 

constraints (Geisler, 1989, 2011; David M. Green, 1960; David Marvin Green, 1966; Swets, 

Tanner, & Birdsall, 1961). Anderson’s rational analysis can be understood as an attempt to 

generalize ideal observer theory beyond basic sensory tasks to higher level cognitive processes, 

such as memory, categorization, and causal inference. 

Anderson (1990, 1991a) presents the general steps of rational analysis. First, one must specify 

the goals of the cognitive system. Next is to give an account of the capacities available for pursuing 

these goals. Anderson argues that only minimal assumptions should be made concerning cognitive 

resources. Specifically, the assumptions should only rule out strategies that require search over a 

vast solution space. He justifies this position by arguing that human cognition is extremely plastic, 

so almost any function should be considered as a candidate explanation. Finally, one creates a 

formal model of the environment to which the system is adapted.   

With a description of goals, capacities and the environment in place, it will then be possible 

to derive an optimal solution for the task so long as the solution space is "well behaved" (e.g. if 

the solution space is convex). The optimal solution will describe how psychological inputs (sense 

data) should be transformed into outputs (behavior) according to some function. Importantly, the 

rational model is not intended as a description of the underlying psychological process or 

mechanism. As such, model complexity is not viewed as problematic for the rational approach.  
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To provide a simple example, suppose we wish to model the behavior of a rat. The goal is to 

travel as quickly as possible from its starting position A to some food source B. The environment 

is a flat plane. Then we can derive the optimal solution: a straight line path from A to B. 

So a description of an agent, its goals, and the environment allows for the derivation of a 

model. Yet on Anderson’s (1990, 1991a) view, the task is still not complete. Anderson proposes 

rational analysis as an iterative procedure. After the initial solution is derived, model predictions 

are compared to behavior. If there are discrepancies, then the model is revised by revisiting the 

first steps of the model-building process. Amendments may be made to assumptions about agent 

goals and capacities, or the structure of the environment, in order to find a model with better 

empirical performance.  

Rational models are sometimes described as normative, though this identification is 

contentious and can be somewhat confusing. A normative explanation shows the best way to 

perform some task, so it determines how one ought to proceed for a given problem. A rational 

model will be normative when its description of the environment holds and when it correctly 

describes the inferential goal of the agent. As will be seen at length, establishing a faithful 

representation of the environment and the agent’s goals is a very difficult task. 

From its inception, rational analysis has been paired with Bayesian inference (J. R. Anderson, 

1990). This is a natural combination. Many problems in cognition require inductive inference. 

Bayesian inference, given certain assumptions, can be shown to be normative for such problems. 

As Bayesian methods have increased in popularity, the connection between rational analysis and 

Bayesian models has become stronger. More recent model building accounts have the Bayesian 

framework taking precedence (Griffiths, Kemp, & Tenenbaum, 2008; Griffiths & Tenenbaum, 

2006). Accordingly, many researchers now refer to a general "probabilistic" or "Bayesian" 

approach to the study of cognition. 

Thus, computational models are principally concerned with the “what” and “why” questions 

of cognition. Algorithmic or mechanistic models, in contrast, emphasize the “how” questions. 

They are meant to be descriptions, or close approximations, of the actual psychological processes 

employed. Algorithmic models are typically formulated to explain specific sets of experimental 

data. The upshot is that they necessarily provide good descriptions of behavior. 

A guiding assumption of the algorithmic approach is that simple operations are better 

candidates for psychological processes, or close proxies thereof. The preference for simple models 
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is driven, in part, by an emphasis on the cognitive agent’s computational limitations. Memory, 

attention, time, and processing power are all finite and costly resources. Accordingly, preferred 

algorithmic models are predictively strong while placing minimal demands on cognitive resources. 

By making resource considerations central, the algorithmic approach clearly departs from rational 

analysis. 

An algorithmic model, like a rational model, can be thought of as a solution to an optimization 

problem: the optimum maximizes predictive power while minimizing psychological complexity. 

The trouble is that neither predictive power nor psychological complexity are well-defined. 

Predictive power is not defined since algorithmic models are not explicit about the inferential 

target. In addition, there are no clear standards for assessing psychological complexity, or 

equivalently, the costs and constraints imposed by the learner’s cognitive infrastructure (Danks & 

Eberhardt, 2011). The upshot is that the "algorithmic approach" has not been explicitly codified 

like Anderson's rational analysis. Instead, it refers to a general research orientation that emphasizes 

psychological mechanism. 

Rational and algorithmic approaches are each concerned with different aspects of cognition, 

so it is unsurprising that they each have their own merits. A strength of rational analysis is in its 

precision. The explicit assumptions of rational models allow for models to be clearly distinguished 

according to their theoretical commitments. But since rational models are almost always 

computational, an additional challenge is to identify plausible mechanisms that can execute 

rational strategies. The algorithmic approach, beginning with mechanism, faces the inverse 

problem of explaining why the mechanism performs as it does. Ideally, an explanation of a 

cognitive process would span the computational and algorithmic levels, incorporating the merits 

of each. To date, there has not been much work connecting rational and mechanistic models of 

behavior (for exceptions, see attempts by Sanborn, Griffiths & Navarro (2010) or Oaksford & 

Chater (2010)). 

A major goal of this dissertation is to work towards a tighter integration of rational and 

algorithmic models of causal learning. This is the primary focus of chapters 1 through 4. Progress 

may be achieved with current experimental paradigms and existing models of causal learning, but 

certain barriers persist. So in Chapter 5 an attempt to expand the study of causal learning is made 

with the formulation of a latent variable framework. The outline of the dissertation is as follows: 
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Chapter 1 reviews the causal learning experimental paradigm and discuss a number of 

influential models that have been proposed in the area. 

Chapter 2 closely examines the mechanics of Bayesian models of causal learning. I then 

review the larger debate on the use of Bayesian models to describe cognitive behavior. I argue that 

the causal learning task is amenable to a Bayesian analysis, but that the evidence is equivocal on 

whether people’s behavior is Bayesian. 

Chapter 3 investigates the weighted ΔP rule as an alternative to Bayesian models of causal 

learning. I propose a novel strategy for bridging levels of analysis, which I use to connect the 

algorithmic weighted ΔP rule to the computational causal power model. This allows for an 

investigation of weighted ΔP as an estimator of causal strength. I show that weighted ΔP is a low 

variance estimator of causal strength in the context of parameter and model uncertainty. I also 

demonstrate that an iterative version of weighted ΔP converges to causal power. 

Chapter 4 closely examines causal learning data in order to better distinguish between the 

weighted ΔP model and Bayesian models of causal learning. I document the existence of a 

“deterministic bias”, which is generally incompatible with Bayesian models of strength estimation. 

In contrast, the weighted ΔP model does predict the deterministic bias for the two conditions in 

which it is most commonly observed. 

Chapter 5 takes a general view of rational models of causal learning. I construct a latent-

variable framework for causal models, which is called capacity and response probability (CARP). 

On this approach, a response function maps latent causal capacity to an effect probability. Different 

functions correspond to different assumptions about the causal system. The two primary rational 

models, the ΔP rule and causal power, are shown to be two particular models along a continuum 

of models. I then speculate on how CARP may be used to measure actual causal environments. I 

also show that the latent-variable formalism allows for new intuitions and insights about causal 

learning. 

Chapter 6 concludes the dissertation.
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Chapter 1.  

 

Causal learning models and evidence 

1.1 Causal learning paradigm 

The problem of elemental causal induction concerns the relationship between a single binary cause 

and a single binary effect (Griffiths & Tenenbaum, 2005). The focus of this dissertation is on 

models that explain judgments for this basic relationship. Clearly, many factors influence causal 

judgments, such as temporal and spatial contiguity, and domain-specific knowledge (Einhorn & 

Hogarth, 1986). Research on elemental causal induction attempts to hold these other factors 

constant in order to isolate the influence of contingency.  

For elemental causal induction problems, learning information can be characterized with a 

2x2 contingency table (Table 1.1). The four frequencies are often represented by the variables a, 

b, c and d beginning in the top-left cell and moving down by rows. In causal learning experiments 

the contingency table outcomes are presented in one of three formats. The summary format simply 

presents the table as the experimental stimulus, or as a graph that conveys the same information. 

For example, Ward and Jenkins (1965) presented information in a contingency table while 

Buehner and Cheng (1997) used a pair of pie-charts to represent the 𝑐+ and 𝑐− conditions. 

The sequential or online format presents outcomes trial-by-trial. Arkes & Harkness (1983) 

assert that trial-by-trial presentation provides a closer analog to how people estimate contingency 

in natural settings in which they must rely on their memory. 

Table 1.1. A 2x2 contingency table 

 Effect  

Present (𝑒+) 
Effect 

Absent (𝑒−) 
 

Cause Present (𝑐+) 𝑁(𝑒+, 𝑐+) 𝑁(𝑒−, 𝑐+) 𝑁(. , 𝑐+) 

Cause Absent (𝑐−) 𝑁(𝑒+, 𝑐−) 𝑁(𝑒−, 𝑐−) 𝑁(. , 𝑐−) 

 𝑁(𝑒+, . ) 𝑁(𝑒−, . ) 𝑁(. , . ) 
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The list format, found in more recent experiments, shows the individual cases simultaneously 

in a single array or list. This format reduces memory demands while preserving the structure of 

individual learning trials. Lu, Yuille, Liljiholm, Cheng & Holyoak (2008) favor simultaneous 

presentation as they believe that memory effects should be minimized in order to isolate causal 

inference. It is questionable, though, whether the same reasoning strategy is used in both the 

sequential and simultaneous formats. For instance, experiments by Perales and Shanks (2008) 

suggest that the list format does not just reduce cognitive demands, but also changes the reasoning 

strategy as well. 

After presentation of the learning data, participants are asked to make a causal strength 

judgment. Traditional wording of the question is along the lines of "judge the extent to which the 

cause C produces the effect E" (Perales & Shanks, 2008). The phrasing of the question has been a 

point of controversy, which will be discussed further below. 

1.2 Rational models 

Several rational models of causal learning have been proposed, each giving different “optimal” 

solutions for the same learning environments (see the introductory chapter for a description of 

rational analysis). Only one can truly be optimal, so it is instructive to examine the commitments 

of a particular model. The argument for a given rational model rests on two premises: 1) The given 

model will be the best at discovering causes and their magnitudes as they exist in the real world 

and 2) human causal judgments are well-adapted, so they should conform to rational inference. 

All rational models share the second premise, so it is on the first where the disagreement resides. 

The first premise has been argued on a priori grounds, as to be seen momentarily. Additionally, 

the two premises taken together imply specific predictions about human judgment. Section 1.6 

reviews work that has attempted to empirically distinguish between various models of causal 

learning. 

The discussion of rational models uses notation that will be found throughout the dissertation. 

This is summarized in Table 1.2 below. 
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Table 1.2. Notation for causal learning models 

Notation Definition 

E effect (binary) 

C candidate cause (binary) 

B background cause or context (binary)  

𝑒+ effect occurs 

𝑒− effect does not occur 

𝑐+ candidate cause is present 

𝑐− candidate cause is absent 

𝑏+ background cause is present 

𝑏− background cause is absent  

𝑤0 causal strength of B (edge weight from B to E) 

𝑤1 causal strength of C (edge weight from C to E) 

𝑤𝑇 combined or “total” causal strength of C and B 

 

1.2.1 The 𝛥𝑃 rule 

The Δ𝑃 rule is a prominent rational model of causal learning. The counts from Table 1.1 can be 

used to find the conditional probabilities 𝑃(𝑒+|𝑐+) and 𝑃(𝑒+|𝑐−). The Δ𝑃 rule is just the 

difference in the conditional probabilities: 

 
Δ𝑃 = 𝑃(𝑒+|𝑐+) − 𝑃(𝑒+|𝑐−) (1.1) 

Many have argued that Δ𝑃 is a normative measure of causal strength (Allan, 1980; Jenkins & 

Ward, 1965; Ward & Jenkins, 1965). The Δ𝑃 rule is also attractive in its simplicity. The model 

requires only the simple operations of frequency encoding (Hasher & Zacks, 1984) and forming a 

difference. The Δ𝑃 model does not require that a causal direction be specified (Shanks, 1995). 
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Another appeal is its relationship to the well-known Rescorla-Wagner (1972) model, which is 

elaborated in Section 1.5.1 below. 

Patricia Cheng (1997) argues against Δ𝑃 as a normative model, asserting that it only measures 

association, not causation. To give one example, white hair is reliably associated with heart 

disease, but this does not imply that white hair causes heart disease. Association may instead be 

due to a shared common cause. In this example, white hair and heart disease share the common 

cause of aging.  

A related criticism of Δ𝑃 concerns how the strength estimates depend on the context. Suppose, 

for example, that country A has a very high infant mortality rate of 20%. In addition, suppose a 

rare genetic disorder has been discovered in country A. Infants who test positive at birth have a 

mortality rate of 100%. For country A, the Δ𝑃 rule returns a strength estimate of 80% for the 

disease as a cause of death. Now imagine country B with an infant mortality rate of 1%. The Δ𝑃 

model predicts that 81% of infants who test positive in country B will die from the disease. 

Intuition suggests this prediction is much too low. Most people would probably predict a country 

B mortality rate of around 100%. 

1.2.2 Power PC theory 

The examples above suggest that people distinguish between covariation and causation. Cheng 

constructs a formal distinction between association and causation with her seminal power PC 

theory, which is meant to replace Δ𝑃 as the normative model of causal inference. On Cheng’s 

account, people interpret covariation information with respect to a framework of beliefs. These 

beliefs include a notion of “causal powers” that determine how causes influence their effects. The 

goal of causal induction is to estimate these powers.  

More specifically, suppose that a person is interested in the relationship between a candidate 

cause C and its purported effect E. One assumption of the power PC model is that if the effect E 

occurs then it must have been caused by either the observed candidate cause C or by some 

background cause B (Figure 1.1, Graph 1). The background or context B comprises all other causes 

that might possible influence the effect. The edge weights 𝑤0 and 𝑤1 in Graph 1 represent the 

causal strengths or “powers” of the background cause B and the candidate cause C, respectively. 
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Figure 1.1. Directed graphs with 𝐵 representing background variables, 𝐶 as the candidate cause and 𝐸 as the effect 

of interest. 

Holyoak and Cheng (2011) list the four primary assumptions of causal power as: 

1) B and C influence the effect E independently. 

2) B could produce E, but not prevent it. 

3) Causal powers are independent of the frequency of occurrences of the causes. 

4) E does not occur unless it is caused. 

The first two assumptions are taken as default hypotheses adopted by the judge, which may be 

revised in the face of conflicting evidence. Assumption 1 is sometimes referred to as the “no 

confounding” assumption. Assumptions 3 and 4 are argued to be fundamental to causal inference. 

From these assumptions, Cheng derives her power PC model of causal strength. Appendix A 

argues that Cheng’s assumption 3 is problematic. In order to resolve this difficulty, the appendix 

presents a modified derivation that only requires assumptions 1, 2, and 4. 

An additional detail is that the background causes that comprise B are not observed (or they 

ignored). Indeed, if they were observed then these factors would constitute additional candidate 

causes. A practical assumption is often made to facilitate accounting for the influence of the 

context. That is, the background cause B is assumed to be always present so that 𝑃(𝑏+) = 1. This 

assumption will be adopted throughout this dissertation unless explicitly stated otherwise. As a 

consequence, some notation will often be abbreviated. Namely, the truncated expressions 

𝑃(𝑒+|𝑐+) and 𝑃(𝑒+|𝑐−) should be interpreted, respectively, as 𝑃(𝑒+|𝑐+, 𝑏+) and 𝑃(𝑒+|𝑐−, 𝑏+) 

unless specifically stated otherwise. 

The power PC model requires first determining the candidate cause’s direction. The sign of 

Δ𝑃, which can be inferred from the observed data, determines causal direction (Buehner, Cheng, 
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& Clifford, 2003). When Δ𝑃 is positive the cause is considered “generative” of the effect, and 

generative causal power (henceforth, abbreviated as “generative power”) is given by: 

 

generative causal power =
Δ𝑃

1 − 𝑃(𝑒+|𝑐−)
 (1.2) 

From (1.2) we can see that for a fixed Δ𝑃, generative power will return increasing judgments of 

causal strength as the base rate of the effect 𝑃(𝑒+|𝑐−) increases. When the effect always occurs 

𝑃(𝑒+|𝑐+) = 𝑃(𝑒+|𝑐−) = 1 and generative power is undefined with a denominator equal to 0. The 

intuition is that if the effect always occurs there is no opportunity for the cause to demonstrate its 

influence and so no inference can be made. 

An interesting bit of trivia is that generative power is given by the same equation as Cohen's 

kappa (Cohen, 1960). Kappa is used to measure agreement between two raters. In the equation for 

kappa, 𝑃(𝑒+|𝑐+) corresponds to the observed agreement among raters and 𝑃(𝑒+|𝑐−) corresponds 

to the hypothetical probability of chance agreement. 

With a negative Δ𝑃 the candidate cause is “preventive”, and the power PC model takes the 

form: 

 

preventive causal power =
−Δ𝑃

𝑃(𝑒+|𝑐−)
 (1.3) 

Similar to the generative case, preventive power is undefined when 𝑃(𝑒+|𝑐−) = 0.  

Causal power is a context-independent measure of causal strength, wherein context refers to 

the varying assemblage of background causes (Cheng, 2000). This is achieved in the denominator 

of (1.2) and (1.3), which normalizes Δ𝑃 by the base-rate of the effect 𝑃(𝑒+|𝑐−). A causal power 

gives the probability that a given cause “working in isolation” will produce the effect. Cheng’s 

model is inspired, in part, by Nancy Cartwright’s (1989) work on causality. The connection to 

Cartwright’s work will be explored in more depth in Chapter 5. Cartwright (2007) gives extensive 

treatment of the conception of causal powers and what it means for a cause to be isolated. 

1.3 Causal graphical models 

Rational models of causal learning have benefitted from connections made to work in computer 

science and statistics. Clark Glymour (1998, 2000) showed that the causal power model could be 
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represented using the formalism of graphical causal models. These models consist of a set of nodes 

or variables and a set of directed edges between nodes. Directed edges travel from “parent” nodes 

to their “child” nodes. In graph 1 of  Figure 1.1, B and C are the parents of E, and so E is the child 

of B and C. A graph is “causal” by virtue of a specific set of assumptions that have been formulated 

so that the directed links are meant to represent causal relationships (Glymour, 2002; Pearl, 2009; 

Spirtes, Glymour, Clark, & Scheines, 1993).  

The structure of a graph is given by the edges between the variables. Graphical structure 

implies general information about the joint probability distribution, namely the pattern of 

dependence between variables. However, a specific joint distribution is determined by a graph’s 

parameterization or functional form. The parameterization specifies how the variables influence 

one another. Different assumptions about causal relationships can be expressed using various 

functional forms. 

The 𝑤0 and 𝑤1 in Figure 1.1 are edge weights, which are used to describe the parameterization 

of a graph. Different parameterizations embody different causal hypotheses, and the edge weights 

emerge as measures of causal strength in the context of a specific model. In Graph 1 there are two 

edges into the effect node, and so the parameterization must account for how C and B interact to 

produce the effect E. In particular, Graph 1 has 𝑃(𝑒|𝑐, 𝑏) = 𝑓(𝑤0, 𝑤1), where 𝑓(. ) is some 

unspecified function mapping into the [0,1] interval. Below it will be shown how different 

assumptions concerning B and C lead to different choices of 𝑓(. ). In contrast, Graph 0 only has 

one edge from B into E, and the parameterization only requires specifying the conditional 

probability 𝑤0 = 𝑃(𝑒+|𝑐−, 𝑏+). 

Graph 1 in Figure 1.1 is known as a common-effect causal graph. From the properties of causal 

graphs one can conclude from the graph that C and B are statistically independent. This is because 

no edges directly connect C and B and because they have no common parents. Tenenbaum and 

Griffiths (2001) show that the Δ𝑃 and causal power models correspond to different functional 

forms on a common-effect graph. In particular, these models give maximum-likelihood estimates 

(MLEs) for the value of the edge weight 𝑤1 under different parameterizations of Graph 1. 
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1.3.1 Linear parameterization 

The Δ𝑃 rule gives the MLE for causal strength 𝑤1 assuming a linear parameterization of Graph 1 

(Griffiths & Tenenbaum, 2005). The linear parameterization assumes the probability of the effect 

in the presence of the background B alone is 𝑤0 and that the cause C changes this probability by a 

constant amount: 

 
𝑃(𝑒+|𝑐, 𝑏) = 𝑤0×𝑏 + 𝑤1×𝑐 (1.4) 

Where 𝑐+ means 𝑐 = 1, 𝑐− means 𝑐 = 0, and 𝑒+, 𝑒−, 𝑏+ and 𝑏− are defined correspondingly. 

Note we must also have 𝑤0 + 𝑤1 ∈ [0,1] to obtain a legal probability. It is straightforward to see 

that Δ𝑃 equals the edge weight 𝑤1 under the linear parameterization. Since 𝑤0 = 𝑃(𝑒
+|𝑐−, 𝑏+), 

we obtain: 

 
𝑃(𝑒+|𝑐+, 𝑏+) = 𝑃(𝑒+|𝑐−, 𝑏+) + 𝑤1 

𝑤1 = 𝑃(𝑒+|𝑐+, 𝑏+) − 𝑃(𝑒+|𝑐−, 𝑏+) = Δ𝑃 

 

When Δ𝑃 is computed from a sample, as from Table 1.1, the sample proportions are used to 

estimate the conditional probabilities with �̂�(𝑒+|𝑐−, 𝑏+) =
𝑁(𝑒+,𝑐−)

𝑁(𝑒+,𝑐−)+𝑁(𝑒−,𝑐−)
 and �̂�(𝑒+|𝑐+, 𝑏+) =

𝑁(𝑒+,𝑐+)

𝑁(𝑒+,𝑐+)+𝑁(𝑒−,𝑐+)
. Since the sample proportions are the MLEs for the corresponding population 

probabilities, Δ𝑃 is the MLE for the causal strength parameter 𝑤1. 

1.3.2 Noisy-OR parameterization 

The Noisy-OR parameterization involves a different set of assumptions for how C and B interact. 

First, both causes are assumed to be generative, meaning that they can only increase the probability 

that the effect occurs. The other key assumption is that when both B and C are present, they each 

have an independent opportunity to produce the effect. This set of assumptions yields the Noisy-

OR model: 

 
𝑃(𝑒+|𝑐, 𝑏) = 1 − (1 − 𝑤0)

𝑏(1 − 𝑤1)
𝑐 (1.5) 
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Again, with only the background present, 𝑃(𝑒+|𝑐−, 𝑏+) = 𝑤0. But now both causes present gives 

the conditional probability 𝑃(𝑒+|𝑐+, 𝑏+) = 𝑤1 + 𝑤0 − 𝑤1×𝑤0. Following the same strategy as 

above and solving for 𝑤1 results in the expression for generative power from (1.2). If the 

contingency data are used to find the sample proportions �̂�(𝑒+|𝑐−, 𝑏+) and �̂�(𝑒+|𝑐+, 𝑏+), then the 

generative power equation with these quantities gives the MLE for the strength parameter 𝑤1 

(Griffiths & Tenenbaum, 2005). 

1.3.3 Noisy-AND-NOT parameterization 

If cause C is preventive then 𝑤1 is the probability that C prevents E. In this case, the effect will 

occur if it is generated by B and not prevented by C. Independence of B and C gives the Noisy-

AND-NOT parameterization: 

 
𝑃(𝑒+|𝑐, 𝑏) = 𝑤0

𝑏(1 − 𝑤1)
𝑐 (1.6) 

With both causes present 𝑃(𝑒+|𝑐+, 𝑏+) = 𝑤0×(1 − 𝑤1). Again, solving for 𝑤1 gives the 

expression for preventive power. And using the sample proportions for the conditional 

probabilities in (1.6) will give the MLE for the strength parameter 𝑤1. 

1.3.4 Additional parameterizations 

This causal graph formalism can also be extended to additional models. For instance, examine the 

parameterization: 

 
𝑃(𝑒+|𝑐, 𝑏) = 𝑤0×𝑏 + 𝑤1×𝑐 − 𝑤0(𝑐×𝑏) (1.7) 

This model yields a causal strength of 𝑤1 = 𝑃(𝑒
+|𝑐+, 𝑏+) =

𝑁(𝑒+,𝑐+)

𝑁(𝑒+,𝑐+)+𝑁(𝑒−,𝑐+)
. This has been 

referred to by Ward and Jenkins (1965) as “Per Cent Success” and by Klayman and Ha (1987) as 

“+Htesting”. It is an algorithmic model of inference wherein participants completely ignore the 

base rate of the effect. The model in (1.7) is a special case of the 1-parameter weighted Δ𝑃 model: 

 
𝑃(𝑒+|𝑐, 𝑏) = 𝑤0×𝑏 + 𝑤1×𝑐 − 𝑘×𝑤0(𝑐×𝑏) (1.8) 
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where 𝑘 ∈ [0,1]. Though weighted Δ𝑃 can be expressed as a parameterization of a common effect 

graph, it can easily be shown that (1.8) makes a very poor candidate as a rational model. 

1.4 Bayesian models of causal learning 

Bayesian methods have been influential throughout the development of rational models, with their 

impact continuing to grow, especially over the last ten years. Early applications are found in the 

work of Anderson (1990) and Fales and Wasserman (1992). Griffiths and Tenenbaum (2005) were 

novel in their union of Bayesian methods to the Δ𝑃 and causal power models. Recent Bayesian 

models posit that human inference proceeds as if people use the learning data to form a posterior 

distribution for causal strength. Causal judgments are then constructed as some function of the 

posterior distribution. Typically, the judgment is given by the posterior expectation, though some 

models use only a few or even one sample from the posterior (e.g. (Vul, Goodman, Griffiths, & 

Tenenbaum, 2014)). 

The posterior distribution is found by combining a prior distribution and a sampling model, 

which is also referred to as a likelihood. These two components will be briefly described in turn 

(see Hoff (2009) for a detailed treatment). The prior encodes beliefs about parameter values before 

any data have been observed. The height of the prior is used to find absolute levels of belief for 

different regions of the parameter space. Suppose we have a prior for the parameter 𝜃 given by a 

continuous probability density function 𝑝(𝜃). For a continuous density, the probability of 𝜃 taking 

any specific value �̃� is zero. However, we can find the probability that 𝜃 takes a value within some 

small neighborhood of 𝜃. If the length of the neighborhood is 𝜖, then the probability is 

approximately Pr(𝜃 = �̃�) ≈ 𝜖×𝑝(�̃�), or the length multiplied by the height. The shape of the prior 

density also determines relative levels of belief. For example, 
𝑝(𝜃𝑎)

𝑝(𝜃𝑏)
= 2 indicates that the value 𝜃𝑎 

is considered twice as probable as the value 𝜃𝑏.  

The sampling model 𝑝(𝐷|𝜃) describes the belief that the data 𝐷 would be observed for a fixed 

parameter value 𝜃. We can also think of the data as fixed and examine the sampling model as a 

function of 𝜃. This relationship is described by the likelihood function, typically written as 

𝐿(𝜃|𝐷) = 𝑝(𝐷|𝜃). The shape of the likelihood function 𝐿(𝜃|𝐷) conveys how the data inform the 

parameter estimates. The maximum likelihood estimate is the just the value 𝜃MLE that maximizes 

the function 𝐿(𝜃|𝐷) for the observed data. While the location of the peak of 𝐿(𝜃|𝐷) determines 
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the MLE, the shape of 𝐿(𝜃|𝐷) at the MLE reveals how informative the data are. Specifically, the 

likelihood function can be used to estimate uncertainty regarding  𝜃MLE (Cramer, 1986). If the 

likelihood is highly curved at 𝜃MLE, then the function is changing rapidly and nearby likelihood 

values quickly become much lower than 𝐿(𝜃MLE|𝐷). On the other hand, if the likelihood is nearly 

flat, then nearby 𝜃 values give likelihoods that are almost as good as 𝐿(𝜃MLE|𝐷). Consequently, 

high curvature near 𝜃MLE is associated with low variance while a flatter likelihood corresponds to 

a higher variance for 𝜃MLE. 

With the prior and the likelihood, the posterior distribution 𝑝(𝜃|𝐷) is found using Bayes rule: 

 

𝑝(𝜃|𝐷) =
𝑝(𝐷|𝜃)×𝑝(𝜃)

𝑝(𝐷)
 

 

Since the probability of the data 𝑝(𝐷) does not depend on the parameter 𝜃 we can write     

𝑝(𝜃|𝐷) ∝ 𝑝(𝐷|𝜃)×𝑝(𝜃). This says that the posterior is proportional to the likelihood multiplied 

by the prior. The posterior, then, is a sort of compromise between the likelihood and the prior. In 

practice, it can often be difficult or impossible to find an exact expression for the posterior. For 

these cases Monte Carlo methods can be used to numerically approximate the posterior 

distribution. 

Specific to the problem of elemental causal induction, the prior distribution 𝑝(𝑤0, 𝑤1) is for 

𝑤0 and 𝑤1, the background and candidate causal strengths respectively. The data D are the 

frequencies from a 2×2 contingency table. The likelihood 𝑝(𝐷|𝑤0, 𝑤1) can be specified as a 

binomial distribution. Thus, one must assume a parameterization for how B and C combine in their 

strengths 𝑤0 and 𝑤1 to give the binomial probability for each of the four trial types. The 

parameterization is referred to as the generating function in the Bayesian context. Griffiths and 

Tenenbaum (2005) show that generating functions can be chosen to reflect either Δ𝑃 or causal 

power as the underlying model. Specifically, they show that the linear generating function 

corresponds to the Δ𝑃 rule. And for causal power, the Noisy-OR and the Noisy-AND-NOT are the 

generating functions for generative and preventive causes, respectively. 

In their Bayesian model of “causal support”, Griffiths and Tenenbaum (2005) emphasize the 

distinction between causal strength and causal structure. The causal support model formulates 

judgment as a Bayesian decision about whether a causal relationship exists. That is, causal support 
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gives Bayesian confidence for the hypothesis that strength 𝑤1 is not equal to 0. Equivalently, this 

is the hypothesis test on whether a set of observations were generated from Graph 1, in which C 

causes E, or were generated from Graph 0 in which C does not influence E. One can find the 

posterior probability of each hypothesis given the data and compare them by taking their ratio. If 

prior belief for the two hypotheses is equal, then the posterior ratio is just equal to the likelihood 

ratio of 
𝑃(𝐷|Graph 1)
P(D|Graph 0)

. Finding the likelihoods takes some work, especially for 𝑃(𝐷|Graph 1), as 

it requires integration over the (𝑤0, 𝑤1) parameter space. In their appendix Griffiths and 

Tenenbaum (2005) provide an algorithm to approximate this integral. 

More recent models assume that people do in fact assess causal strength, but that they use 

Bayesian inference for their judgments. On this perspective, causal learning is akin to parameter 

estimation for the causal graph edge weight 𝑤1. These models assume that people implicitly draw 

a random sample of values from their posterior distribution of 𝑤1 in order to form strength 

judgments (Lu, Yuille, Liljiholm, Cheng, & Holyoak, 2007). For this reason, the posterior 

expectation of  𝑤1 is used to make model predictions.  

One Bayesian model of causal strength assumes a joint uniform prior over the background 

and focal strengths so that 𝑝(𝑤0, 𝑤1) = 1 for all 𝑤0, 𝑤1 ∈ [0,1]×[0,1]. The uniform prior is 

popular since it is agnostic in belief: any pair of values (𝑤0𝑖, 𝑤1𝑗) is viewed as equally probable 

as any other pair (𝑤0ℎ, 𝑤1𝑘). 

Lu et al. (2006, 2007, 2008) claim that people have generic priors for sparse and strong (SS) 

causes.  The SS prior distribution reflects a preference for sole strong causes. For the generative 

case this entails a prior distribution with peaks over (𝑤0, 𝑤1) at (0,1) and at (1,0), which 

respectively attributes C or B as the sole strong cause. Thus, the candidate and background causes 

compete as explanations for the effect. The model contains a single free parameter 𝛼, which 

determines how strongly SS priors are preferred. An 𝛼 = 0 gives a uniform distribution and no 

preference for an SS prior. As 𝛼 becomes more positive, the heights of the peaks over (0,1) and 

(1,0) grow, reflecting a stronger belief in sparse strong causes. Lu et al. (2007) found that 𝛼 = 5 

provides a good fit to human causal judgments. 

Yeung and Griffiths (2015) investigate Bayesian models also using causal power generating 

functions. However, instead of assuming a particular prior distribution they seek to estimate its 

shape from data. They use a Markov-chain Monte Carlo (MCMC) technique of iterated learning 
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(Griffiths, Christian, & Kalish, 2008; Griffiths & Kalish, 2007). If model assumptions hold, then 

once the process has converged they can obtain many samples from peoples’ prior distributions. 

In the paper they use a smooth non-parametric surface to fit the prior samples. The surfaces they 

obtain look markedly different from the shape of SS priors. It is difficult to confidently draw 

conclusions from the fitted surfaces since they are non-parametric. However, the general shape 

appears to reflect a prior belief in strong causes, with the density much higher for large values of 

𝑤1 (both for generative and preventive causes). In contrast to the SS priors, the 𝑤1 and 𝑤0 look to 

be relatively independent. That is, the shape of the 𝑤1 distribution is fairly similar at different 

levels of the 𝑤0 distribution. 

To achieve predictions, all of the above Bayesian models require integration over the posterior 

for which there is no analytic solution. Instead, the integrals must be approximated numerically. It 

is important to emphasize that the Bayesian models, like all rational models, make no claims about 

representation or implementation. As such, technical challenges of finding model predictions, such 

as the representation of a complex posterior distribution, are not viewed as problematic for the 

Bayesian approach. The chief concern is whether the Bayesian predictions capture key patterns in 

judgment. That said, there has been increasing emphasis on mechanistic models that can 

approximate Bayesian inference. The details of this research will be discussed in the next two 

chapters. 

1.5 Algorithmic models 

An abundance of algorithmic models of causal judgment have also been proposed, and this 

continues to be an active area of research. Perales and Shanks (2007) distinguish algorithmic 

models as either rule-based or associative. Rule-based models assume that the learner explicitly 

stores all outcome frequencies, which are then combined according to some rule. Associative 

models claim that the causal strength judgment is formed via the incremental accumulation of 

association strength. Rule-based and associative models are now examined in turn. 

1.5.1 Rule-based models 

A number of proposed models are just simple rules applied to the frequencies of Table 1.1. These 

include “Cell A” strategies wherein causal judgment is simply an increasing function of the cell a, 
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or the 𝑁(𝑒+, 𝑐+) frequency (Nisbett & Ross, 1980; Smedslund, 1963). The “A versus B” rule uses 

the entire top row of Table 1.1 and predicts strength judgments from the difference 𝑁(𝑒+, 𝑐+) −

𝑁(𝑒−, 𝑐+) (Arkes & Harkness, 1983; Kao & Wasserman, 1993). The Per Cent Success rule from 

above also restricts attention to the top row only.  

The Δ𝐷 or sum of diagonals rule is another model that has received extensive study (Arkes & 

Harkness, 1983; Inhelder & Piaget, 1958; Jenkins & Ward, 1965; Kao & Wasserman, 1993; 

Shaklee & Tucker, 1980; Shanks, 1987; Wasserman, Chatlosh, & Neunaber, 1983; Wasserman, 

Dorner, & Kao, 1990). The Δ𝐷 rule uses all entries from the contingency table by predicting 

judgments with: 

 
Δ𝐷 = [𝑁(𝑒+, 𝑐+) + 𝑁(𝑒−, 𝑐−)] − [𝑁(𝑒−, 𝑐+) + 𝑁(𝑒+, 𝑐−)] 

= [a + d] − [𝑐 + 𝑏] 

 

White’s (2003) pCI rule is closely related to the sum of diagonals rule. White normalizes Δ𝐷 so 

that it ranges from −1 to 1. He does this be specifying pCI =
Δ𝐷

𝑁(.,.)
 , so that it is normalized by the 

sample size. When the number of observations in the 𝑐+ and 𝑐− trials are equal, pCI is identical to 

the Δ𝑃 rule. 

Finally, the Δ𝑃 rule, and even causal power, can be considered rule-based algorithmic models 

as they each provide a rule for combining cell frequencies to arrive at a causal strength judgment. 

Whether these models are rational, algorithmic, or both or neither, ultimately depends on 

theoretical commitments of the researcher. For instance, a researcher may claim that typical causal 

systems (for binary causes and effects) are best characterized by a linear parameterization over a 

common-effect causal graph. The very same researcher may also claim that when people are 

presented with learning trials they use it to construct internal representations 𝑃(𝑒+|𝑐+) and 

𝑃(𝑒+|𝑐−), and then they take the difference of these conditional probabilities. For this researcher, 

then, the Δ𝑃 rule serves as both a rational and an algorithmic model. Whether the researcher is 

justified in this belief is a separate matter. Indeed, there are strong reasons to doubt both claims. 

The rule-based models discussed thus far are unweighted since they use the objective 

frequencies from the cells of the contingency table. Yet people do not appear to give equal weight 

to the different trial types (Allan, 1993; Einhorn & Hogarth, 1986; Kao & Wasserman, 1993; 

Levin, Wasserman, & Kao, 1993; Ward & Jenkins, 1965; Wasserman et al., 1990). In order to 
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improve descriptive power, numerous weighted models have been proposed. These models have 

one or more free parameters that are estimated from human data.  

The free parameters, or weights, are believed to reflect a number of psychological factors. For 

instance, they could represent differences in attention that are driven by the beliefs of the judge or 

the salience of the stimuli (Busemeyer, 1991). Further, weights are often interpreted as distortions 

of the normative model. As a result, no computational analysis of the weights is attempted beyond 

a simple comparison with the normative standard. 

The weighted Δ𝑃 rule forms a class of causal judgment models. Several versions of weighted 

Δ𝑃 have been posited by various researchers (J. R. Anderson & Sheu, 1995; Busemeyer, 1991; 

Kao & Wasserman, 1993; Lober & Shanks, 2000; Wasserman, Elek, Chatlosh, & Baker, 1993) 

The two parameter weighted Δ𝑃 rule is: 

 
wΔ𝑃 = 𝑘1𝑃(𝑒

+|𝑐+) − 𝑘2𝑃(𝑒
+|𝑐−) 

 

where 𝑘1 and 𝑘2 are the weights for the two conditional probabilities. A typical finding is that 

𝑘1 > 𝑘2 gives a good description of observed data.  

Another well-known model is the Evidence Integration or EI rule, which is a weighted version 

of the pCI rule. The EI rule has a total of four weights, one for each cell in Table 1.1 (Perales & 

Shanks, 2007). 

1.5.2 Associative models 

Many researchers consider rule-based models to be implausible as proper algorithmic models. 

They believe rule-based models assume processes and representations that are too complex for an 

algorithmic implementation. Shanks (1995), for instance, is skeptical that responses are derived 

from an explicit version of the Δ𝑃 rule, even though he does favor Δ𝑃 as descriptive of judgments. 

For subjects to use an explicit version of Δ𝑃, they would need to continuously maintain probability 

estimates of 𝑃(𝑒+|𝑐+) and 𝑃(𝑒+|𝑐−), which would be updated and contrasted on a trial-by-trial 

basis. Causal power is even more complex since it includes the additional step of norming the 

contrast by the base rate of the effect. 

Associative models are intended to be more faithful representations of psychological 

processes. As such, they are specified to make minimal memory and computational demands on 
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the learning agent. Skepticism about an animal’s ability to sort and count events over large blocks 

of time motivated, in part, the Rescorla-Wagner model (R-W model) of associative learning 

(Rescorla & Wagner, 1972). To wit, Wagner (1969) states that sensitivity to correlation between 

cue and reinforcement is “…not as a consequence of some complex experiential contrast between 

the probabilities…but rather as a consequence of the resulting trial-by-trail signal value…” (p.33). 

While originally developed to explain animal learning, the R-W model has also been proposed as 

an account of human contingency learning (Shanks, 1995; Shanks & Dickinson, 1987; Wasserman 

et al., 1993). On this account, causal reasoning is just a manifestation of associative learning. 

The R-W model only requires the representation of association strengths which are 

incremented up or down on a trial-by-trial basis. This eliminates the need to maintain a memory 

of all previous trials. In the R-W model, causal strength is equated with association strength. The 

model assumes an always present context or background cause 𝐶0 (denoted above as 𝐵). A cause 

𝐶𝑖 that appears on trial 𝑡 will experience a change in its association strength 𝑉𝑖. This change is 

given by: 

 

 Δ𝑉𝑖
𝑡 = 

 𝛼𝑖𝛽
+ [𝜆 −∑𝑉𝑗]    if both 𝐶𝑖  and 𝐸 appear in trial 𝑡                          

𝛼𝑖𝛽
− [0 −∑𝑉𝑗]    if 𝐶𝑖  appears and 𝐸 does not appear in trial 𝑡 

 

The parameter 𝛼𝑖 describes the salience of the cause 𝐶𝑖. The 𝛽+ and 𝛽− are the respective learning 

rates for trials when the effect 𝐸 does or does not occur. The 𝜆 gives the maximum possible 

association strength. For human contingency learning 𝜆 is typically set to 1.  

The ∑𝑉𝑗 is the sum of association strengths for all causes 𝐶𝑗 that also appear in trial 𝑡. In the 

elemental causal induction task, this will only include two quantities: the association strength 𝑉1 

for the candidate cause 𝐶1 and the strength 𝑉0 for background cause 𝐶0. The sum of association 

strengths ∑𝑉𝑗 can be thought of as the expectation for trial 𝑡. The difference 𝜆 − ∑𝑉𝑗  or 0 − ∑𝑉𝑗  

gives the deviation from expectation. The difference is then used to update the association 

strengths in a process called “error correction.” Thus, the R-W algorithm learns incrementally in 

response to prediction error. At equilibrium the expected change in association strength is 0, or 

𝐸[Δ𝑉𝑖
𝑡] = 0. 
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Different assumptions about the learning rates give different versions of the R-W model. The 

restricted version sets 𝛽+ = 𝛽− = 𝛽, while the unrestricted version allows the learning rates to 

differ. With a single candidate cause the restricted R-W will reach an equilibrium equal to the Δ𝑃 

rule (Chapman & Robbins, 1990); see Cheng (1997) and Danks (2003) for more general results. 

Hence, the R-W model gives one possible algorithmic implementation of the Δ𝑃 rule. If one 

assumes judgments have reached equilibrium, the two models give identical predictions in the 

aggregate. 

It has been argued that associative models are applicable only to trial-by-trial presentation 

formats (Kao & Wasserman, 1993; Lober & Shanks, 2000). Association weights are built 

gradually using single increments and decrements. Such a process is impossible with the summary 

format since individual trials are not available. With the list format, sequential processing is 

possible, leading some to argue that associative models are still appropriate (e.g. Buehner et al., 

2003). This argument seems implausible, though, when one considers how much more quickly 

participants proceed through list format conditions relative to trial-by-trial designs. 

While the Rescorla-Wagner model is the most influential associative account, others have also 

been proposed. Busemeyer (1991) describes how to incrementally update weighted-averaging 

models. Pearce (1987) proposes an associative model of stimulus generalization. Researchers have 

also attempted to adapt Pearce’s model to human causal learning (Baker, Vallée-Tourangeau, & 

Murphy, 2000; Perales & Shanks, 2003; Vallée-Tourangeau, Murphy, Drew, & Baker, 1998). 

1.6 Empirical findings 

There has been much empirical work investigating models of causal learning. A number of 

experiments have contrasted the predictions of causal power with the Δ𝑃 model. A standard 

strategy has been to test conditions in which causal power predictions are held constant while Δ𝑃 

is varied, or vice-versa. Evidence in support of the two models has been mixed, and there have 

been various proposals to resolve findings that disagree with one’s preferred model. 

1.6.1 Early investigations of causal power 

Buehner and Cheng (1997) compared causal power and Δ𝑃 in a number of experiments. In their 

generative experiment they tested conditions in which Δ𝑃 was equal to a positive constant while 
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the base rate of the effect 𝑃(𝑒+|𝑐−) varied. Consistent with causal power, they found that human 

causal judgments, as measured by the standard probe, increased with increasing 𝑃(𝑒+|𝑐−). 

Similarly, in their preventive experiment they found that when Δ𝑃 was equal to a negative constant, 

human judgments increased with decreasing 𝑃(𝑒+|𝑐−).  

In six experiments Lober and Shanks (2000) further investigated causal power. They used an 

online format for the first three experiments and a summary format for the latter three. Lober and 

Shanks held causal power constant and varied Δ𝑃 in four of the experiments. In all of these they 

found that judgments significantly increased with increasing Δ𝑃. Judgments conformed to causal 

power predictions only in experiment 3, which varied power while keeping Δ𝑃 constant. Lober 

and Shanks ventured that an unrestricted R-W model could also explain these findings, which was 

applicable since experiment 3 used an online format.  

To explain the influence of the base rate, Lober and Shanks (2000) specify an unrestricted R-

W model that allows unequal learning rates across the 𝑒+ and 𝑒− trials with 𝛽+ < 𝛽−. For a fixed 

Δ𝑃, this unrestricted R-W model predicts larger absolute magnitudes of judged strengths as the 

base rate of the effect 𝑃(𝑒+|𝑐−) increases. Note that this is the same ordinal prediction as causal 

power. Lober and Shanks argue that the for experiments using a generative context, the 𝛽+ < 𝛽− 

ordering is reasonable since participants will expect the effect to occur. The absence of the effect, 

then, will cause greater surprise and attention, which is reflected in the learning rates. A parallel 

argument can be made for experiments using a preventive context for why the occurrence of the 

effect will be more surprising, implying the reverse ordering of 𝛽− < 𝛽+. This implies larger 

judged magnitudes with a decreasing base rate, again the same as causal power. Taken together, 

Lober and Shanks conclude that associative learning can explain key findings from studies of 

causal judgment. 

Buehner et al. (2003) explored whether unequal learning rates in the R-W model could, in 

fact, account for causal judgments. They performed experiments with a neutral background context 

that included both positive and negative contingencies. Since a single context was used, they argue 

that a single set of R-W learning rates should apply across the positive and negative Δ𝑃 conditions. 

The unrestricted R-W model should then predict the same influence of the base rate across positive 

and negative contingencies. Buehner et al. (2003) found that the effect of the base rate still reversed 

across positive and negative Δ𝑃, in agreement with causal power. For this reason, among others, 

Buehner et al. (2003) argue that causal power is the best descriptive model and the unrestricted   
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R-W model should be rejected. Indeed, Perales and Shanks (2003) experiment 1 results were also 

inconsistent with the unrestricted R-W model. 

While some results have supported causal power and others have favored Δ𝑃, there are certain 

findings that contradict both models. One serious problem is that human judgments are 

significantly non-zero for noncontingent conditions (i.e. conditions with Δ𝑃 = 0). In fact, there is 

a reliable pattern to these judgments: when participants are primed with a generative cause and 

Δ𝑃 = 0, judgments of strength increase with an increasing base-rate of the effect. A similar but 

opposite pattern consistently emerges when participants are primed with a preventive cause—now 

strength ratings increase with a decreasing base rate of the effect. The phenomenon of nonzero 

judgments in Δ𝑃 = 0 conditions has been referred to as the “frequency illusion” or the “outcome-

density bias”. The frequency illusion has been consistently observed in many studies (e.g. Allan 

& Jenkins, 1983; Buehner & Cheng, 1997; Jenkins & Ward, 1965; Shanks, Lopez, Darby, & 

Dickinson, 1996). 

The upper left panel of Figure 1.2 shows data from Buehner and Cheng’s (1997) generative 

component of experiment 1 (data obtained from Buehner et al. (2003)). The frequency illusion is 

seen in the first five conditions of experiment 1, as human judgments are reliably non-zero while 

Δ𝑃 = 0. And as the base-rate of the effect decreases, so do strength judgments. 

Advocates for both Δ𝑃 and causal power have attempted to explain the frequency illusion by 

focusing on various aspects of the experimental method. For instance, Shanks (1995) hypothesizes 

that the illusion may be due to measurement of judgments before they reach equilibrium. He shows 

that in non-contingent conditions, and with a certain choices of parameters, Rescorla-Wagner 

learning will initially assign nonzero association strength before eventually reaching an 

equilibrium of 0. 

Proponents of causal power argue that the frequency illusion, as well as other deviations from 

power, are experimental artifacts (Buehner & Cheng, 1997; Buehner et al., 2003; Liljeholm & 

Cheng, 2009). Accordingly, they contend that proper revisions to the experimental method will 

minimize the influence of so-called extraneous factors, so as to better isolate the causal judgment 

process. Memory biases and ambiguity of the casual strength question are identified as two 

potentially important extraneous factors. To minimize the influence of memory effects, Buehner 

et al. (2003) conducted several of their experiments using the list format. Supporting their 

hypothesis, results from these conditions were in better accord with causal power predictions. 
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Figure 1.2. Predictions of causal learning models compared to human judgments from Buehner & Cheng (1997, 

Experiment 1B). Numbers at the top show stimulus contingencies. Error bars indicate one standard error. 

The wording of the causal probe question has also been a target of revision. Recall that the 

standard wording asks how strongly the cause produces the effect. Buehner et al. (2003) identify 

several ways in which this standard question may be deficient. They argue that the “how strongly” 

formulation is ambiguous and could imply either (a) the current learning context or (b) a 

counterfactual context in which “there are no alternative causes of like kind,” (Buehner et al., 2003, 

p. 1126). Buehner et al. (2003) go on to assert that the first interpretation supports a Δ𝑃 judgment 

while the second interpretation is consistent with causal power. 

Another potential problem is that ambiguity in the causal question could cause participants to 

conflate causal strength judgments with confidence judgments. The concept of a virtual sample 

size is used to explain how confidence will vary across conditions in which causal power is fixed 

(Liljeholm & Cheng, 2009). Following Liljeholm & Cheng's example, suppose there is a particular 
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mineral in an allergy medicine that causes headaches as a side effect. Now consider two 

hypothetical scenarios: 

Scenario A: Headaches occur on 15 out of 20 trials before taking the mineral (the 𝑐− trials) 

and 20 out of 20 trials after the mineral is given (the 𝑐+ trials). 

Scenario B: Headaches occur on 5 out of 20 trials before taking the mineral (the 𝑐− trials) 

and 20 out of 20 trials after the mineral is given (the 𝑐+ trials). 

If one assumes no confounding—that all alternative causes are independent across scenarios—

then power-PC theory may be applied. Causal power is equal to 1 in both scenarios. In contrast, 

Δ𝑃 differs with Δ𝑃 = 1/4 for Scenario A and Δ𝑃 = 3/4 for Scenario B. Sample sizes are equal 

for both scenarios, with 𝑁(. , 𝑐+) = 𝑁(. , 𝑐−) = 20 and 𝑁(. , . ) = 40. Yet Scenario B would seem 

to give stronger evidence that causal power equals 1. 

Liljeholm & Cheng (2009) define virtual sample size as, "the estimated number of trials on 

which the production of headache can be unambiguously evaluated," (p. 159). The virtual sample 

size for Scenario A is 5, since these are the only trials in which the cause can demonstrate its 

efficacy. And for Scenario B the virtual sample size is 15.  

The concept of virtual sample size is used in the conflation hypothesis, a two-part explanation 

for why judgments deviate from causal power (Buehner & Cheng, 1997; Buehner et al., 2003; 

Liljeholm & Cheng, 2009). The conflation hypothesis posits that: 1) confidence in causal strength 

judgment is an increasing function of virtual sample size and 2) measured causal strength and 

confidence judgments are conflated due to ambiguities in the experimenter’s question.  

Suppose causal power is fixed across several generative experimental conditions while Δ𝑃 

varies. Then the conflation hypothesis predicts that deviations from causal power will track the 

magnitude of Δ𝑃. In particular, as Δ𝑃 decreases the virtual sample size decreases, and so people 

will be less confident in their causal judgments.  

If the conflation hypothesis is correct, and confidence infiltrates strength judgments, then 

careful measurement is necessary to disassociate the two. A number of studies have argued that a 

counterfactual or suppositional question wording better isolates strength judgments. In the revised 

questions participants are asked to imagine a baseline in which the effect never occurs, and then 
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predict the frequency of the effect once the cause is introduced. An example of the revised format 

from Liljeholm & Cheng (2009) is: 

 Suppose that there are 100 people who do not have headaches. 

 If this mineral was given to these 100 people, how many of them would have a 

headache? 

A number of researchers using this type of format have found judgments that better conform to 

causal power predictions (Buehner & Cheng, 1997; Buehner et al., 2003; Collins & Shanks, 2006; 

Liljeholm & Cheng, 2009). 

Unsurprisingly, critics of causal power have not been persuaded by the conflation hypothesis. 

Perales and Shanks (2003) use a different paradigm to test the conflation hypothesis by having 

participants make causal strength judgments at different levels of confidence. In “high confidence” 

conditions, participants were instructed to continue studying butterfly records until they were 

100% confident with their ratings. In these high confidence conditions, contingency was found to 

still influence judgment when causal power was held constant. Consequently, Perales and Shanks 

(2003) reject the conflation hypothesis.  

There is also debate concerning the adequacy of the counterfactual question. Perales and 

Shanks (2008) speculate that the complex wording may lead to a non-normative interpretation by 

participants. Specifically, participants may believe they are being asked to imagine that the base 

rate 𝑃(𝑒+|𝑐−) is equal to 0 and then to estimate the conditional probability 𝑃(𝑒+|𝑐+). Results 

from Perales and Shanks (2008) were consistent with this hypothesis. The authors tested several 

versions of the counterfactual question in conjunction with both sequential and list presentation of 

the learning trials. For the counterfactual question they found that judgments were highly 

influenced by 𝑃(𝑒+|𝑐+) while the base rate 𝑃(𝑒+|𝑐−) was largely neglected. The standard causal 

probe, in contrast, produced judgments that were a function of both conditional probabilities 

𝑃(𝑒+|𝑐+) and 𝑃(𝑒+|𝑐−). Chapter 5 returns to the discussion of the causal probe question and 

demonstrates conceptual problems with the counterfactual or suppositional wording. 
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1.6.2 Empirical performance of algorithmic models 

Perales and Shanks (2007, 2008) have found the EI rule to provide a good description of causal 

judgments. The weighted Δ𝑃 rule gives similar predictions to the EI rule, though Chapter 3 will 

more closely compare these two models. For now, it suffices to note that the weighted Δ𝑃 rule has 

good empirical fit to the Buehner & Cheng (1997) data, capturing the major qualitative trends 

including the frequency illusion. This is can be seen in the bottom right panel of Figure 1.2. The 

weighted Δ𝑃 rule also gives similar predictions to one of the two Bayesian models discussed in 

the next section. 

1.6.3 Empirical performance of Bayesian models 

We have seen that the causal power model has empirical shortcomings and attempts to resolve 

them through changes to the experimental design have had mixed success. Another response to 

the problematic findings has been the development of Bayesian models, which were described 

above. The top right panel in Figure 1.2 shows predictions from a Bayesian model of causal power 

with a joint uniform prior. One can see that the uniform Bayesian model does an excellent job 

capturing the major qualitative trends, including the frequency illusion. The model also nicely fits 

data from the Lober and Shanks (2000) experiments discussed above (Griffiths & Tenenbaum, 

2005). 

Yet the machinery of Bayesian inference alone is not sufficient to produce a satisfactory 

model. Figure 1.2 also shows predictions from the SS prior model with Lu et al.’s (2007, 2008) 

preferred 𝛼 = 5. One can see that it misses the qualitative pattern of the frequency illusion. The 

SS prior predicts nonzero judgments, though they do not decrease with a decreasing base rate of 

the effect. Of course, this result may not seem troublesome for those who are dubious about the 

reality of the frequency illusion. Yet more problematic are the predictions for conditions 6 through 

9 in which Δ𝑃 is fixed at ¼ while power systematically decreases, as do human judgments. Again, 

the SS prior model misses this ordinal prediction while the uniform prior model does predict this 

trend. 

There has also been some work comparing Bayesian models using different generating 

functions. Lu et al. (2007, 2008) investigated Bayesian models using the linear and the causal 

power generating functions in conjunction with both SS and uniform priors. They found that 
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models using the power generating functions performed much better than those with a linear 

function. Specifically, the Bayesian models of causal power had a higher correlation and a lower 

root mean-squared error when evaluated against human judgments. In addition, this empirical 

advantage held when using either uniform or SS priors. 

1.6.4 Summary of findings 

On reviewing the totality of the arguments and evidence, most researchers would likely agree that 

causal power is superior to Δ𝑃 as a normative theory of causal judgment. Yet most would also 

agree that neither model is empirically adequate. Problematic findings for causal power include 

the frequency illusion and judgments that reliably vary with Δ𝑃 when power is held fixed. There 

have been two general strategies for dealing with these problems. The first, as exemplified by 

Buehner et al. (2003), is to amend experimental design in order to minimize the influence of so-

called extraneous factors. The second strategy is to embed causal power within a framework of 

Bayesian inference while leaving experimental method alone. Both strategies buy some success, 

though each at its own cost.  

One can argue that some of the above changes to experimental methodology have incurred a 

cost in ecological validity. Greater adherence to causal power was found with a list format, yet it 

seems unlikely that everyday causal judgment occurs over an array of observations. With regards 

to the causal question, there is a risk that the more technical language moves people away from 

making a natural assessment. Indeed, Perales and Shanks hold this view in stating,  

What does seem obvious is that accurate power estimation requires a compatible 

probability-based presentation format and strong guidance by the experimenter. This 

seems to contradict the idea that computing causal power is intuitive and based on the 

existence of a module for detection of causality. (Perales & Shanks, 2008, p. 1493) 

In experimental work it is necessary to strip away some normally occurring factors in order 

to isolate the process of interest. The constant challenge is to distinguish between the factors that 

only add noise or bias and the factors that are necessary for the psychological process to become 

manifest. A researcher may believe that they are only removing the noise or bias factors when in 
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fact they are also eliminating necessary factors. When this is the case, behavior in the amended 

design may be even more artifact than what was observed in the original.  

The application of Bayesian inference also has a price. Most obviously, an additional layer of 

complexity is introduced. Much less obvious are the consequences and their severity. This issue 

will be taken up in detail in the coming chapters. It is first instructive to better understand what the 

Bayesian models are providing beyond a better fit to human data. The basic mechanics of the 

Bayesian approach were shown above, but there was no specific account for why it is useful for 

the problem of causal inference. 

The next chapter illustrates the value of Bayesian inference with a simple example. Lessons 

from the example are then applied to the problem of causal inference, which should make clear 

what the Bayesian model is achieving. It will then be apparent why a rational agent should prefer 

a Bayesian model over the causal power MLE. Nonetheless, controversy surrounding the Bayesian 

approach in cognitive science remains. Chapter 2 also reviews this debate and explore its 

implications for field of causal learning. 
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Chapter 2.  

 

A closer look at Bayes 

2.1 Why Bayes? 

Suppose you just moved to a new city and you hear that the incumbent mayor Nick Nickerson is 

running for re-election against challenger Patti Pattison. You are completely ignorant of the local 

politics, but from previous experience you know incumbent mayors win about 60% of the vote. 

However, there is considerable uncertainty around this 60% average, with both higher and lower 

values being plausible. Over the course of one day, you talk to three self-identified voters and 

discover that one supports the incumbent Nickerson while the other two support Pattison (you are 

quite gregarious, so you assume these three are close to a random sample). 

What is your best guess for the percentage who will vote Nickerson? One option is to guess 

33%, the sample proportion of the voters you talked to. The sample proportion gives the maximum 

likelihood estimate. Another option is to combine your prior knowledge with the sample 

information. As was shown in Chapter 1, Bayes rule gives one method to perform this combination. 

To be more specific, we can describe our prior using a beta(3,2) distribution (Figure 2.1, blue 

curve). This gives a prior expectation of 0.6 (vertical blue line) while the prior mode is 2/3. The 

prior distribution around its mean and mode is relatively flat, reflecting belief that does not change 

much for the values over this range. In other words, there is uncertainty in prior belief since many 

values are almost equally probable. 

The yellow curve plots the likelihood function for our sample (the vertical scale has been 

transformed to be commensurate with the prior). The vertical yellow line is the sample proportion 

of 1/3. The sample proportion occurs at the maximum of the yellow curve and so it gives the MLE. 

Finally, the green curve shows the posterior distribution, which is found by the combination 

of the prior and the likelihood using Bayes rule. The posterior expectation is often used as a 

Bayesian point estimator. The green vertical line in the figure gives the posterior expectation, 

which is equal to 1/2. The posterior expectation will always be intermediate of the prior expectation 

and the MLE. In this example, the posterior mean is closer to the prior mean than it is to the MLE. 
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Figure 2.1. Plots of the prior (blue), likelihood (yellow) and posterior distribution (green). Correspondingly colored 

vertical dotted lines mark the prior expectation, MLE, and posterior expectation. 

Now what should be used as the point-estimate for our election prediction? The MLE, the 

posterior mean, or something else? One way to answer this question is to compare the sampling 

properties of the candidate estimators, which is just the average performance of the estimator 

across many random samples. For instance, we may be interested if, on average, the estimator hits 

the target it is estimating. An estimator is unbiased if, across many repeated samples, its average 

value is equal to the population value.  

Returning to the election example, suppose that 𝜃𝑡 is the true proportion who will vote for 

Nickerson. Denote the maximum-likelihood estimator as 𝜃MLE and the posterior mean estimator 

as 𝜃post. It can be shown that the MLE is unbiased, or formally, 𝐸[𝜃MLE|𝜃 = 𝜃𝑡] = 𝜃𝑡. Another 

important property of an estimator is how close it typically is to the true value. One common way 

to measure this is with the mean-squared error or MSE. An estimator’s MSE can be decomposed 

into a variance and a bias component (Hoff, 2009). For a given estimator 𝜃,  

 
MSE[𝜃|𝜃 = 𝜃𝑡] = Var[𝜃|𝜃 = 𝜃𝑡] + Bias

2[𝜃|𝜃 = 𝜃𝑡] (2.1) 

There is usually a trade-off between the variance and bias of estimators, especially when 

sample information is limited and the true data generating function is complex (Hastie, Tibshirani, 
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& Friedman, 2009). Unbiased estimators will often be high in variance. For instance, if we had 

polled a single person, then the 𝜃MLE would equal 0 or 1, both seemingly implausible estimates 

given what we know about elections in the U.S.  

The posterior mean 𝜃post will be biased towards the prior expectation so that 

𝐸[𝜃post|𝜃 = 𝜃𝑡] ≠ 𝜃𝑡 (it will be unbiased only if the prior expectation exactly equals the 

population value 𝜃𝑡). But so long as the judge has some minimal information about the population 

sampled from, then the reduction in variance will be larger than the increase in squared bias. The 

upshot is that the Bayesian estimate 𝜃post will have a lower MSE than will the sample estimate 

𝜃MLE. 

What happens to the Bayesian estimate as sample information improves? In the simple 

election example the posterior expectation 𝜃post can be expressed as a weighted average of 𝜃MLE 

and the prior expectation 𝜃prior: 

 
�̂�post = (1 − 𝛽)×𝜃prior + 𝛽×�̂�MLE (2.2) 

The weight 𝛽 is a function of the sample size N. As N increases so does 𝛽 and more weight is 

given to 𝜃MLE. This seems sensible since with a larger N the sample estimate 𝜃MLE is more reliable. 

Equivalently, the standard error of 𝜃MLE becomes smaller as N becomes large, and this corresponds 

to high curvature and a peaked likelihood function at 𝜃MLE.  

Returning to the election example, suppose instead that you see the local paper has conducted 

a poll of likely voters for the upcoming election. Out of 300 polled, 100 support Nickerson and 

200 support Pattison. The beta(3,2) prior, the likelihood (again scaled), and the posterior 

distribution are all shown in Figure 2.2. 

With the larger sample size, the 𝜃MLE estimate is much more precise, which is reflected by the 

peaked likelihood. Now the posterior distribution almost overlaps the likelihood and the 

expectations are nearly equal with 𝜃post ≈ 𝜃MLE. When the evidence is strong, belief mainly 

depends on the sample information.  

Thus, a Bayesian estimate can be a good pragmatic choice insofar as it typically has a lower 

average squared distance to the truth than the maximum likelihood estimate. However, one often 

sees much stronger statements for the virtues of Bayesian inference, sometimes describing it as 
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Figure 2.2. Plots of the prior (blue), likelihood (yellow) and posterior distribution (green). Correspondingly colored 

vertical dotted lines mark the prior expectation, MLE, and posterior expectation. 

“optimal” or “normative”. These descriptors reference results from decision theory. On this 

approach, one specifies a “loss function” that returns a penalty whenever the estimate does not 

equal the true value. Specifically, suppose the estimator 𝜃 is used to estimate the true value 𝜃 while 

loss is given by the function 𝐿[𝜃, 𝜃]. Then a standard assumption is that 𝐿[𝜃, 𝜃] ≥ 0 for all 𝜃, 𝜃, 

and that 𝐿[𝜃, 𝜃] = 0, so loss is zero only when the estimate equals the true value (Lehmann, 

Casella, & Fienberg, 1998). If a judge has squared error loss over their posterior, or 𝐿[𝜃, 𝜃] =

(𝜃 − 𝜃)
2
, then the posterior mean will minimize expected loss (Jaynes, 2003). It is in this sense, 

then, that the Bayesian estimate is optimal. Squared error has traditionally been a popular choice 

for the loss function, but there are good reasons for other choices. For instance, if loss is given by 

the magnitude of the error, or 𝐿[𝜃, 𝜃] = |𝜃 − 𝜃|, then the posterior median will minimize expected 

loss (Jaynes, 2003). 

2.2 Bayesian causal power revisited 

Hence, the posterior expectation is a combination of the prior expectation and the MLE, with the 

weight given to each determined by how much information is in the sample. These ideas also 

inform Bayesian models of causal power. In the simple election example, the strength of the 
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sample evidence was determined only by the number of observations. The relationship is a bit 

more complex for causal power. In this case, sample information depends on the number 

observations and, quite crucially, the base rate of the effect. The concept of virtual sample size 

provides intuition for the role of the base rate. 

Recall that virtual sample size is the number of trials on which the cause can be 

unambiguously evaluated. It is easy to see that, for a fixed level of causal power, virtual sample 

size is determined by the base rate of the effect. Return to the example from Section 1.6.1 with 

Scenarios A and B in which power is fixed at 1. Scenario A has a high base rate of 𝑃(𝑒+|𝑐−) =

0.75, which corresponds to a virtual sample size of 5. The low base rate Scenario B of 𝑃(𝑒+|𝑐−) =

0.25 gives a virtual sample size of 15. People’s intuitions seem to reflect that Scenario A gives 

less reliable information, as Liljeholm & Cheng (2009) found that higher confidence ratings were 

recorded for conditions with a larger virtual sample size. 

The influence of the base-rate on the reliability can be characterized precisely. This is most 

clearly demonstrated using the weights notation from common-effect causal graphs. Recall that 

𝑤0 gives the background causal strength for B and 𝑤1 is the causal strength of the candidate cause 

C. Finally, 𝑤𝑇 is the “total” causal strength for the conjunction of the causes C and B. The bottom 

row of the contingency table (Table 1.1) is used to estimate �̂�0 = �̂�(𝑒
+|𝑐−) while the top row is 

used to estimate �̂�𝑇 = �̂�(𝑒
+|𝑐+). Hence, �̂�0 and �̂�𝑇 are both random quantities with 

�̂�0~
1

𝑁
Bin(𝑤0, 𝑁) and �̂�𝑇~

1

𝑁
Bin(𝑤𝑇, 𝑁) when there are N observations for each row. Griffiths 

and Tenenbaum (2005) show that the maximum likelihood estimator for causal power is: 

 
�̂�1 =

�̂�𝑇 − �̂�0
1 − �̂�0

 (2.3) 

 

In order to simplify the exposition, I will assume that background strength 𝑤0 is known and fixed. 

The causal power MLE then becomes: 

 
�̂�1 =

�̂�𝑇 −𝑤0
1 − 𝑤0

 (2.4) 



51 

 

 

While the assumption of a fixed base rate will not describe most applications, all of the essential 

conclusions to follow will still hold for a random base rate �̂�0. However, the treatment of the 

random base rate case will be primarily relegated to Appendix B. 

Now the goal is to understand the relationship between the base rate and the reliability of the 

causal power MLE. As above, the mean squared error is used to measure reliability. Since (2.4) is 

an unbiased estimator of causal power, the MSE will just equal to the variance: 

 
Var[�̂�1] =

(1 − 𝑤1)

𝑁
× [

𝑤0
1 − 𝑤0

+ 𝑤1] (2.5) 

The importance of the base-rate relative to the sample size is made clear from (2.5). As 𝑤0 → 1 

the variance becomes arbitrarily large. If we fix N and 𝑤1, then the variance increases in 𝑤0 at the 

rate of 
∂

∂𝑤0
Var[�̂�1] =

1

(1−𝑤0)2
×𝑐(𝑁,𝑤1), where 𝑐(𝑁, 𝑤1) is a constant based on 𝑁 and 𝑤1. Since 

0 ≤ 𝑤0 ≤ 1, this indicates a quadratic rate of change in 𝑤0. Similarly, for fixed 𝑤0 and 𝑤1, the 

variance decreases in N at the rate of 
∂

∂𝑁
Var[�̂�1] = −

1

𝑁2
×𝑐(𝑤0, 𝑤1), also a quadratic change. 

Thus, the base rate and sample size have commensurate influence on the MSE. 

The derivation for (2.5) is in Appendix B. The random base rate case of (2.3) is a ratio of 

random variables, and in general it is not possible to find exact expressions for its expectation or 

variance. However, approximations can be found, which are also shown in Appendix B. 

The causal power mean squared error in (2.5) is actually a bit of a simplification. It assumes 

that (2.4) is always applied, though no reasonable judge would use the (2.4) estimator for �̂�𝑇 <

�̂�0, when Δ𝑃 is negative. Instead, they would probably apply a mixed strategy, using (2.4) for 

positive Δ𝑃 and either 0 or preventive power for negative Δ𝑃. Within a generative context, such a 

strategy will reduce variance but add bias. The general conclusions of (2.5) still hold for this mixed 

estimator, as shown in Appendix B. 

Recall the relationship between the variance of an estimate and the shape of the likelihood: A 

high variance estimate corresponds to a likelihood with little curvature, which in turn indicates 

that the data do not contain much information. Figure 2.3 gives a visual illustration of how the  

causal power likelihood depends on the base rate of the effect. The likelihood is plotted for six 

different levels of the base rate 𝑤0 while the causal power MLE is fixed at 0.5 and the sample size 

is set to 10 across all of the panels. 
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Figure 2.3. Causal power likelihood functions with MLE �̂�1 = 0.5 (red line), sample size 𝑁 = 10, and with each 

panel conditioned on a different base rate 𝑤0. As the base rate 𝑤0 increases, the likelihood flattens, which indicates 

that there is less information in the sample. 

Figure 2.3 shows that the likelihood quickly flattens as the base rate of the effect increases. 

At 𝑤0 = 1, the likelihood is perfectly horizontal, which shows that the sample contains no 

information. 

This knowledge of the causal power likelihood can now be used to illuminate the mechanics 

of Bayesian models. The posterior judgment for causal power is a combination of prior belief and 

sample information. Denote the prior expectation by 𝑤1.prior, the sample estimate as �̂�1.MLE, and 

the posterior expectation as �̂�1.post. First, consider the Bayesian causal power model with a joint 

uniform prior, so 𝑤1.prior = 0.5. The extent that the posterior judgment reflects the prior 

expectation versus the sample estimate depends on how informative the data are. Equation (2.5) 

shows that, for a fixed level of causal power, the sample size N and the base rate of the effect 𝑤0 

determine the informativeness of the sample. As more observations accrue, the data give stronger 

evidence and �̂�1.post moves closer to �̂�1.MLE. When the number of observations becomes 

arbitrarily large, �̂�1.post will eventually converge to �̂�1.MLE. 

The base rate of the effect has the opposite influence: as 𝑤0 increases, there is less information 

in the data and �̂�1.post will be closer to 𝑤1.prior. This property of Bayesian causal power explains 

why predictions should vary with Δ𝑃. For a fixed level of causal power, a smaller Δ𝑃 corresponds 



53 

 

 

to a higher base rate of the effect 𝑤0. Consequently, as Δ𝑃 becomes smaller, predictions should be 

more regressive to the prior expectation 𝑤1.prior. This explanation also covers the frequency 

illusion. All conditions with Δ𝑃 = 0 give a data estimate of �̂�1.MLE = 0 (so long as 𝑤0 < 1). When 

𝑤0 = 0, the data are most informative and so �̂�1.post should be closest to 𝑤1.MLE = 0. And as 𝑤0 

increases, �̂�1.post will become more regressive to the prior expectation, so predicted judgments 

will increase away from �̂�1.MLE = 0 and towards 𝑤1.prior. Finally, at 𝑤0 = 1, there is no 

information in the sample and the posterior expectation should just equal the prior expectation. 

Thus, we see how a Bayesian causal power model with joint uniform priors can explain key 

patterns in human judgment. 

An essential assumption for the preceding argument is that background and candidate 

strengths are independent in the prior. This implies that 𝑤1.prior does not depend on the level of 

𝑤0. Consequently, prior expected strength remains constant at 𝑤1.prior = 0.5 across varying levels 

of the base rate 𝑤0. The next section examines the implications of the dependence between 𝑤0 and 

𝑤1 in the SS prior model. 

2.3 Trouble with the SS prior model 

The SS prior model does a poor job describing the frequency illusion (Figure 1.2, top-left panel, 

conditions 1 through 5), and it even fails to capture some ordinal predictions of causal power 

(Figure 1.2, top-left panel, conditions 6 through 9). Why is this? Recall that SS priors encode 

beliefs of dependence between strengths 𝑤0 and 𝑤1. Specifically, for a generative SS prior there 

is competition in belief for the two causal strengths with peaks in the 𝑓(𝑤0, 𝑤1) joint density over 

(1,0) and (0,1). When there are two generative causes, and one has a stronger association with the 

effect in the data, the SS prior will enhance this difference by reducing the judged strength of the 

weaker cause. Figure 3 of Lu et al. (2008) nicely shows the influence of the SS prior relative to 

the joint uniform prior.  

Competition in causal strengths explains important empirical difficulties of the SS prior 

model. With an SS prior, an increase in the base rate 𝑤0 influences the posterior estimate in two 

ways. As before, there is less sample information so the estimate becomes more regressive to the 

prior expectation. But in addition, the prior expectation 𝑤1.prior decreases as 𝑤0 increases because 

of the competition between 𝑤0 and 𝑤1. In the case of the frequency illusion, these two influences 
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are opposing since �̂�1.MLE = 0. As 𝑤0 increases, the prior has a larger influence relative to 

�̂�1.MLE = 0. At the same time, the prior expectation is decreasing. As can be seen in Figure 1.2, 

these two influences roughly offset, giving predictions that are fluctuating and relatively flat.  

The same issue occurs in conditions 6 through 9 from Figure 1.2. The causal power MLEs for 

these conditions are, respectively, 1, 0.75, 0.5 and 0.25 while the base rates are 0.75, 0.5, 0.25 and 

0. So the causal power MLE is positively associated with the base rate in these conditions. As 

before, a strong base rate produces greater regression to the prior. But now, competition in the SS 

prior roughly negates the sample evidence. The result is a fluctuating/flat prediction across 

conditions, contrary to the monotonic trend observed in human judgments.  

To summarize, the dependence assumed by the Bayesian SS prior model gives predictions 

that are incompatible with human judgments. Lu et al. (2008) did not account for this empirical 

shortcoming, and I am unaware of any subsequent authors who have. In contrast, a Bayesian model 

with a joint prior that is independent in 𝑤0 and 𝑤1 can explain why human causal strength 

judgments should vary both with changes in causal power and with changes in Δ𝑃. 

2.4 Artifact or rational inference? 

Two competing explanations have been presented for why judgments systematically deviate from 

causal power. On one view, the deviations are experimental artifact to be eliminated. The Bayesian 

framework, in contrast, interprets the deviations as sound judgments in the face of sample 

uncertainty. Reliability is central to both accounts, though it takes a very different explanatory role 

in each. Reliability in the conflation hypothesis, as expressed through confidence, is viewed as a 

confound to be removed. Whereas on the Bayesian view, reliability is an input to optimal inference, 

used to balance prior knowledge with sample information. 

Might there be some way to reconcile these two strategies? Certain elements appear consistent 

across the two accounts. For instance, the list format, by reducing memory demands, may 

effectively increase the sample size. This would make Buehner et al.’s (2003) finding that the list 

format better elicits judgments closer to �̂�1.MLE consistent with predictions of the Bayesian model. 

However, so long as sample information is imperfect, there will be a fundamental disagreement 

between approaches. The conflation hypothesis holds that the true psychological assessment is 

�̂�1.MLE and for the Bayesian model it is �̂�1.post. The disagreement will be most pronounced when 
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the sample size is small or the base rate of the effect is high. As an illustration, imagine a condition 

in which participants are presented learning data in a list format with 99/100 successes in the 𝑐− 

condition and 100/100 successes in the 𝑐+ condition. The causal power MLE in this example is 

�̂�1.MLE = 1 while the joint uniform prior Bayesian model gives �̂�1.post ≈ 0.6.  

The Bayesian explanation appears better justified on two counts. First, Bayesian inference 

will be optimal when model assumptions are met. But even if the model is only approximately 

true, the Bayesian prediction will most likely have a lower mean-squared error than the maximum 

likelihood estimator. On the second count, the Bayesian model describes human judgments from 

the original experimental design with the sequential format and standard causal probe. Most agree 

that this format has higher ecological validity, and so judgments from these experiments will more 

closely correspond to natural assessments.   

It would seem, then, that the Bayesian approach is best for the problem of elemental causal 

induction. On this approach rational Bayesian inference is combined with the normative power PC 

model. The only complication is to use an acceptable prior. As we’ve seen, the joint uniform 

density does quite well and it can also be justified a priori. Alternatively, one can search for the 

appropriate prior using human judgments, as is done by Yeung and Griffiths (2015). 

The combination of Bayesian inference with the rational approach has become increasingly 

widespread. Rational Bayesian models have been proposed for nearly every major phenomenon in 

cognitive science (see Eberhardt & Danks (2011) or Endress (2013) for long lists of references 

across multiple domains). But more recently, there has been criticism of the rational Bayesian 

program. The next section reviews these criticisms and considers how they apply to Bayesian 

models of causal learning. The discussion is then used to guide the task of integrating rational and 

algorithmic approaches, which is taken up in Chapter 3. 

2.5 The rational Bayes debate 

To begin, revisit Anderson’s (1990) conception of the rational approach described in the 

introduction. First, an agent’s goals and its environment are precisely characterized, and then the 

optimal solution is derived using this characterization. Next, model predictions are compared to 

human judgments and the model is revised in order to accommodate discrepancies. The process is 

iterated, and it is assumed that the testing-revision cycles will lead towards a true description of 
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goals and the environment. Accordingly, the models should move closer to an optimality-based 

explanation of behavior. There have been a number of criticisms of the rational Bayesian approach, 

several of which are reviewed below. 

2.5.1 Criticism 1: Optimality claims are not justified 

A number of cognitive science papers have claimed to show that various types of behavior is 

optimal. Yet critics question whether such conclusions are defensible. Danks (2008) asserts that 

the standard rational analysis is missing a crucial component required to justify optimality claims. 

Specifically, it is necessary to show how the cognitive process converged to the specific proposed 

solution. This would typically involve an evolution by natural selection story, or an individual 

development based account. The key issue is that just because some solution constitutes an 

optimum, it does not imply that the solution was available to be selected by the optimizing 

mechanism.  

Sloman and Fernbach (2008) explore the normative implications of model revision. They 

argue that the chief burden of a normative analysis is to show that a particular normative model is, 

in fact, the optimal way to perform a task. On this view, normative analysis is by definition an a 

priori endeavor. Thus, a model loses any claim to normativity once it is amended to better fit the 

data. After revision the model can only be justified as descriptive. 

The problem of revision becomes clear when one reflects on why behavior may deviate from 

the normative model prescriptions. Differences may be due to either: 1) genuine non-normative 

behavior, 2) unfounded assumptions of the analysis, or both 1) and 2). To the extent that the initial 

normative analysis is convincing, one has more confidence that the observed behavior is in fact 

non-normative. Yet for a given normative model and dataset, it is impossible to know with 

certainty where the problem lies. One response to this problem has been to double down on the 

assumption that behavior is optimal. Oaksford and Chater (2007) best exemplify this view, arguing 

that the relevant normative theory will be determined, in part, by empirical human data. Taken to 

the extreme, observed deviations will only be evidence for model misspecification. Though 

clearly, making model revisions to fit the data and then labeling the product rational is circular 

(Sloman & Fernbach, 2008). 
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2.5.2 Criticism 2: Bayesian models are underconstrained 

Several critics believe that the rational Bayesian approach has been falsely advertised as a more 

principled and constrained method for model building (Bowers & Davis, 2012a; Jones & Love, 

2011). If anything, the critics argue, Bayesian models have been particularly susceptible to strong 

fitting of the data. 

A principled approach to Bayesian model construction is to ground the model in objective 

measurements of agent and environmental attributes. However, as Jones and Love (2011) observe, 

this is rarely ever done in practice. In their estimation, the majority of rational analyses do not 

include measurements from the actual environments of interest. Likewise, subjects’ prior beliefs 

are almost never measured independently. Instead, researchers have demonstrated enormous 

leeway in the choice of prior, generative model and utility function. Jones and Love (2011) argue 

this indeterminacy allows for highly flexible models that can fit most any pattern of data. At the 

same time, the model building process is obscured by multiple potential loci of revision. 

Bowers and Davis (2012a) level many similar criticisms as Jones and Love, again 

emphasizing the extreme flexibility of Bayesian models. In fact, they make the stronger claim that 

this flexibility results in models that are unfalsifiable. Bowers and Davis (2012a) supplement their 

critique with many examples, drawing on rational analyses of speed perception, word 

identification and higher level cognition. In each of their examples, they show that empirically 

driven revisions are not small tweaks, but instead are critical to model success. Endress (2013) 

also attacks the flexibility of rational models, claiming that the success of Frank and Tenenbaum's 

(2011) Bayesian model of rule-learning hinges crucially on what, in his view, is an ad hoc 

assumption. 

Marcus and David (2013) look at the performance of rational models over eight different 

cognitive science research domains. They argue that so-called optimal performance often depends 

on post hoc choices for the priors and loss-functions (though see Goodman, Frank, Griffiths, 

Tenenbaum, Battaglia, and Hamrick (2015) for a response). In addition, Marcus and David (2013) 

show that a large proportion of studies in their survey suggest that humans behave non-optimally. 

Of course, whether behavior is optimal is largely in the eye of the beholder, but this difficulty only 

serves to underscore the point. 
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A virtue often attributed to rational analysis is that it can serve to constrain lower level 

psychological theories. Yet if the above criticisms are correct, Bayesian rational models are 

essentially just a re-description of the dataset. Accordingly, the constraints from rational analysis 

will add nothing beyond the constraints implied by the dataset (Bowers & Davis, 2012a). Bayesian 

models may still be useful as descriptive tools (Danks, 2008; Eberhardt & Danks, 2011). However, 

this descriptive job might also be achieved by a class of simpler models (Eberhardt & Danks, 

2011). 

Eberhardt and Danks (2011) present a novel critique in observing that almost all Bayesian 

models of cognition fail to specify how participants make choices based on their posterior 

distributions. This is problematic, as some choice principle must be included to make predictions. 

A seemingly natural principle is the maximization of posterior utility, yet this does not appear to 

be compatible with empirical findings. Namely, it is typically found that the aggregate response 

pattern resembles the predicted individual posterior distribution (e.g see Schulz, Bonawitz & 

Griffiths (2007)). For example, suppose the hypothesis space consists of only two options, A and 

B, and that an agent has a posterior probability of 0.6 for A and 0.4 for B. If utilities are equal 

across options, then an agent should choose A to maximize posterior utility. Notwithstanding some 

measurement error, the aggregate prediction is that everyone should choose A. Instead, what is 

typically observed is that about 60% of people choose hypothesis A and 40% choose hypothesis 

B.  

A potential explanation for the aggregate response pattern is found with the “probability 

matching” hypothesis. Probability matching refers to a choice procedure where individuals 

randomly sample from their posterior distribution in order to choose hypotheses (or they use some 

method that is equivalent to this procedure). Response patterns are consistent with the probability 

matching hypothesis. However, they clearly do not imply probability matching. For instance, the 

aggregate pattern could also result each individual using a heuristic strategy (Mozer, Pashler, & 

Homaei, 2008). 

Thus, additional evidence is necessary to show that people do in fact probability match. 

Eberhardt and Danks (2011) also argue that some account needs to be given for why people would 

probability match instead of maximize posterior utility. Vul, Goodman, Griffiths, and Tenenbaum 

(2014) attempt to provide such an account by showing that taking a few or even one sample from 

the posterior will be optimal when posterior samples are costly. But this is precisely the type of 
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move that causes ire among Bayesian critics. Any behavior can be found to be Bayesian optimal 

by post hoc amendments to model assumptions, such as specifying a cost for obtaining posterior 

samples. This is why Eberhardt and Danks (2011) call for explanations that are established on 

independent grounds for why people might engage in probability matching behavior. 

2.5.3 Criticism 3: Rational approach neglects lower levels of analysis 

Another criticism concerns the explicit agnosticism of the rational approach with regards to 

underlying psychological mechanisms. To justify this omission, the rational analyst’s common 

refrain is that human cognition is extremely flexible, and so it should be able to support the 

sophisticated inferences implied by rational models. Yet closer scrutiny demonstrates the 

inadequacy of such a blanket defense. Kwisthout, Wareham, and Rooij (2011) argue that many 

Bayesian models of cognition require calculations that are computationally intractable. More 

sobering, even approximations for some of these models have been shown to be intractable. The 

authors conclude that for Bayesian models to preserve credibility, they must also include feasible 

algorithmic accounts. 

Some critics emphasize that neglecting lower levels of analysis has been detrimental to the 

overall psychological enterprise. Jones and Love (2011) argue that rational analysis alone cannot 

be a sufficient account since psychological mechanisms will, at best, only approximate the optimal 

solution. A key benefit of a mechanistic understanding is that it generates novel predictions in the 

form of characteristic deviations from optimality. Bowers and Davis (2012a) give one example of 

this type: McClelland, McNaughton and O’Reilly’s (1995) prediction of two separate learning 

systems in the hippocampus and neocortex. This prediction was based on the property of parallel 

distributed processing, a mechanistic model of representation. Danks (2008) also argues that 

mechanistic models allow for greater generalization of a cognitive theory. In particular, he 

contends that mechanistic models are better suited to generate predictions for non-standard 

environments or for cognitive systems experiencing deficits. 

Others question the precedence of the computational level under the rational approach. For 

instance, Endress (2013) asserts that algorithmic explanations should come first, with 

computational theories developed only after an understanding of mechanism is in place. Further, 

Endress (2013, 2014) argues that pure computational models prove to be an elusive target. Hidden, 

yet crucial implementational assumptions can often find their way into a rational analysis. Endress 
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(2013) points to at least five implementational assumptions in Frank and Tenenbaum’s (2011) 

computational Bayesian model of rule-learning, which he argues are all crucial for model 

predictions. 

2.5.4 Criticism 4: Bayesian models rarely compared to alternatives 

A fourth major criticism of rational Bayesian models is that they are rarely compared to either 

Bayesian or non-Bayesian alternatives. Jones and Love (2011) observe that for most Bayesian 

models of cognition there are alternative generating functions that can also be given strong 

justification. Consequently, they consider it a serious oversight when a model is presented without 

deliberate consideration and discussion of competitors. Bowers and Davis (2012a) emphasize the 

need to compare Bayesian to non-Bayesian models of the same process. Specifically, they state: 

In sum, given the computational complexity of implementing Bayesian computation in the 

brain, we would argue that the onus is on theoretical Bayesians to show that models that 

do implement such computations can explain human performance better than non-Bayesian 

models. This, as far as we are aware, has never been demonstrated. (Bowers & Davis, 

2012a, p. 402)  

A number of researchers have applied non-Bayesian models to challenge previous findings 

that purportedly demonstrate optimal Bayesian inference. Mozer et al. (2008) argue that a simple 

heuristic model better explains the data of Griffiths and Tenenbaum (2006) when compared to the 

original Bayesian account. For causal structure learning, Fernbach and Sloman (2009) and Bes, 

Sloman, Lucas, and Raufaste (2012) both preferred non-Bayesian over Bayesian models. And in 

his critique of Frank and Tenenbaum's (2011) Bayesian model of rule-learning, Endress (2013) 

proposes that simple psychological mechanisms can better account for the data. 

2.5.5 Defense of rational Bayes 

Naturally, proponents of rational Bayesian models have mounted a vigorous defense to the above 

critiques. These counterarguments are briefly summarized below. 

Bayesian advocates agree that a very high standard must be met to warrant a claim of 

optimality. But they disagree with the charges that 1) the goal of rational analysis is to show that 
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people are optimal or 2) optimality claims are commonplace in the literature (Frank, 2013; 

Griffiths, Chater, Norris, & Pouget, 2012). Indeed, Frank (2013) states that “The standards for 

such a claim are almost never met,” (p420) while Griffiths et al. (2012) hold that “In rare cases 

Bayesian models are used to argue that people behave optimally on a specific task,” (p416). Yet 

Bowers and Davis (2012b) remain unconvinced, accusing Bayesian proponents of moving the 

(optimal) goalposts. 

In her defense of the Bayesian approach, Hahn (2014) describes how a model’s normative 

status is a function of the underlying cognitive task. Specifically, the force of the normative claim 

depends on how plausibly the task may be construed as one of probabilistic inference. If it clearly 

involves inference, then it is safe to assume that the Bayesian model is normative. To take an 

extreme example, the task can just be a formal Bayesian problem. Tversky and Kahneman (1982) 

describe one such problem administered by Casscells, Schoenberger and Grayboys (1978): 

medical students were asked to make a prediction after given all the relevant quantities in order to 

apply Bayes rule. For this example, few would disagree that the Bayesian model is normative 

(though see Gigerenzer (1991) for one of the few). Some tasks, on the other hand, may be plausibly 

construed in multiple ways. When the task is reasonably construed without using inference, a 

Bayesian model will not be inherently more normative or rational. The task of category formation, 

for example, is not obviously one of probabilistic inference. Accordingly, Anderson’s (1991b) 

Bayesian model should not be afforded special normative status relative to non-Bayesian models. 

Thus, Bayesian models may or may not give the normative standard depending on task 

content. Regardless, advocates contend that the Bayesian approach provides a valuable framework 

to construct models of cognitive processing. This claim pertains to criticism 2, wherein Bayesian 

models are charged with being overly flexible and potentially unfalsifiable. Some assert that the 

criticism is misconstrued due to a conflation of models with theoretical frameworks (Frank, 2013; 

Griffiths, Chater, et al., 2012). A model is constructed to account for a specific phenomenon. 

Models are potentially falsifiable since their predictions are tested against measurements. 

Theoretical frameworks, on the other hand, provide a general perspective and a set of tools for 

creating models (Griffiths, Chater, et al., 2012). Theoretical frameworks are either productive of 

unproductive, though they are not directly falsifiable. Productive frameworks create models with 

novel predictions that are confirmed empirically. They unify previously disparate phenomena, and 
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open new domains of theoretical inquiry. In contrast, unproductive frameworks generate few novel 

insights and create models that consistently require ad hoc revisions. 

The essential question, then, is whether the Bayesian approach can be a productive framework. 

Critics can still maintain that the problem of flexibility also applies to the framework level. Their 

examples may be taken to demonstrate that the Bayesian framework is not productive since it is 

used to construct idiosyncratic models that always fit the data while offering little additional 

insight. Yet it is important to consider whether these problems are due to inherent limitations of 

the Bayesian approach, or whether the problem pertains to how it is typically applied. Holyoak 

and Lu (2011) contend that the Bayesian framework has been essential to the study of causal 

learning. This claim is the focus of the next section. Hahn (2014) also uses a number of examples 

to illustrate the productivity of the Bayesian approach. She argues that the Bayesian framework 

has spurred theoretical progress in the study of human reasoning and argumentation, producing 

novel predictions as well as giving rise to new theoretical questions. She also observes that the 

charge of unfalsifiability is belied by the vigorous debate surrounding the empirical adequacy of 

various Bayesian models. Hahn concludes that the Bayesian framework may be subject to abuse, 

but this does not entail the wholesale rejection of the approach. 

With regards to the third criticism from above, advocates of the Bayesian approach argue that 

computational and algorithmic models should not necessarily be viewed as competitors since they 

are proposed at different levels of analysis. Further, there is reason to believe that mechanistic 

accounts will typically provide a better fit than functional accounts (Griffiths, Chater, et al., 2012). 

This is because a correct mechanistic formulation will embody the constraints that a functional 

account ignores. 

Many Bayesian researchers do recognize the importance of developing models at the 

algorithmic and physical levels. Towards this end, recent work shows how Bayesian inference can 

be implemented using various Monte Carlo methods such as with importance sampling (Abbott, 

Hamrick, & Griffiths, 2013; Shi, Griffiths, Feldman, & Sanborn, 2010), the particle filter (Levy, 

Reali, & Griffiths, 2009; Sanborn et al., 2010) and Markov chain Monte Carlo (Gershman, Vul, & 

Tenenbaum, 2012). The general strategy in these papers is to look to the computer science and 

statistics literature to find the best algorithms for approximating statistical inference. Such a 

strategy yields rational process models (Griffiths, Vul, & Sanborn, 2012; Griffiths, Lieder, & 

Goodman, 2015). These process models are rational in two different senses. The first is that, given 
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sufficient processing power, the models will become identical with the ideal Bayesian solution. 

And second, they are the best possible known methods for approximating Bayesian inference when 

computational resources are limited. On this approach, then, the optimality of rational analysis can 

be viewed as being pushed down to the mechanistic level (Griffiths, Vul, et al., 2012). 

2.6 The case of causal learning 

How do Bayesian models of causal learning fare in light of the above debate? Consider the task of 

elemental causal induction. With respect to Hahn’s (2014) continuum, there is a strong case for 

the probabilistic construal of the task. Chapter 1 showed that causal strength can be interpreted as 

a special type of probability. On this interpretation, then, causal strength estimation is a type of 

probabilistic inference. So if it is possible to specify a normative model, the Bayesian approach 

seems well suited to the job. 

Next, consider how Bayesian models of causal learning have been formulated. Proposed 

generative functions include the Δ𝑃 rule (the linear generating function) and causal power (the 

Noisy-OR and the Noisy-AND-NOT). Importantly, these functions were not chosen based on their 

fit to human data. However, they also are not grounded in measurements of the objective 

environment. Indeed, it is not at all obvious what the relevant objective environment is. Is it the 

typical causal environment from our evolutionary history? Or is it the environments encountered 

over our individual life histories?  

The difficulty of specifying the objective environment has led to a different strategy. 

Generative functions have been extensively justified on the basis of a priori argument. Similarly, 

both the uniform and SS priors are given a priori justification. This approach fits with Sloman and 

Fernbach’s (2008) strict view of normative analysis from above. Thus, it seems that proposed 

Bayesian models of causal learning are at least potentially normative. Accordingly, challenges 

against their normative status should be targeted at the justification of these models. This is 

precisely what Cheng (1997) does in her rejection of the Δ𝑃 rule. 

The Bayesian approach to causal learning also redeems itself on the issue of model 

comparison. As Holyoak and Lu (2011) observe, various Bayesian models have been proposed 

with different priors (uniform versus SS priors) and generating functions (linear versus the Noisy-
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OR and the Noisy-AND-NOT ). Bayesian models have also been compared to a plethora of non-

Bayesian models, many of which were described in Chapter 1. 

No specific account has been proposed for the implementation of Bayesian models of causal 

learning. At first blush, this does not appear to be especially problematic. Rational process models 

from above could also be applied to estimate a posterior distribution for causal strengths. But how 

much confidence should be placed in the rational process strategy? It shows one way to bridge 

levels of analysis. Yet independent evidence is still required to show that such algorithms are 

actually employed. Such evidence is necessary to rule-out non-Bayesian heuristic models that can 

mimic the Bayesian solution in key respects.  

Independent supporting evidence can be roughly categorized as direct or indirect. One form 

of direct evidence is behavioral data, which is the standard for most psychological research. 

Behavioral data from causal learning experiments could indicate that judgments are distinctly 

Bayesian. While non-Bayesian models can approximate Bayesian predictions, it should still be 

possible to distinguish them on close examination using careful data analysis and innovative 

experiments. A second source of direct evidence comes from neuroscience. For instance, patterns 

of neural activation might be consistent with what one would expect from a system that is 

performing Bayesian computations. 

Does the direct evidence strongly support a Bayesian model of causal learning? Behavioral 

data does suggest Bayesian-like inference, though it seems far from implying that behavior is 

distinctly Bayesian. At present, Bayesian models are not clearly preferred to non-Bayesian models 

in their empirical performance. Recall, for example, in Figure 1.2 that the Bayesian uniform prior 

and the weighted Δ𝑃 model both capture the dominant trends in human judgment. 

Turning to neuroscience, researchers have explored how Bayesian inference might be 

implemented within the nervous system. The Bayesian coding hypothesis posits that populations 

of neurons represent uncertainty using probability distributions, which can then be used for 

Bayesian computations (Knill & Pouget, 2004). Work by Ma, Beck, Latham, & Pouget (2006) 

provides one solution using linear combinations of groups of neurons. While this work gives a 

potential solution, it does not show that neurons actually perform these computations. When 

Bowers and Davis (2012a) evaluate the neuroscientific evidence, they conclude that it offers little 

to no support of Bayesian theories. Further, they note that their view is shared by Knill and Pouget 

(2004), two key advocates of the Bayesian coding hypothesis (Bowers & Davis, 2012b).  



65 

 

 

Now if the direct evidence is equivocal, there will be considerable uncertainty about whether 

to prefer Bayesian or non-Bayesian models. It becomes necessary to rely more heavily on indirect 

criteria, such as representational commitments, coherence, memory requirements, and so on. If 

two models are equivalent empirically, then the standard preference is for the simpler model. For 

instance, if one model makes fewer representational and memory demands, then, ceteris paribus, 

it will be preferred. Such evaluations will necessarily be coarse, but this does not mean that they 

are arbitrary or ungrounded. Obtaining additional direct evidence from new and better experiments 

is always the long-term goal, but often one must begin with more informal criteria. 

In fact, empirical fit along with informal “simplicity” criteria is what typically guides the 

development of mechanistic models. On such criteria, the weighted  Δ𝑃 model appears to make 

fewer representational commitments than Bayesian models while delivering similar empirical 

performance. For these reasons, weighted  Δ𝑃 merits additional consideration as a viable model of 

causal judgment. This is the focus of Chapter 3, which presents a novel computational treatment 

of weighted Δ𝑃 and shows that it can be naturally interpreted as an estimator of causal power. 

Chapter 4 then takes a closer look at the contrasting predictions of weighted Δ𝑃 versus Bayesian 

models. The conclusion will revisit the role of simplicity criteria in the selection of psychological 

models. 
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Chapter 3.  

 

Bridging levels with weighted ΔP 

3.1 Introduction 

This chapter begins an analysis of weighted ΔP, a rule-based algorithmic model of causal 

judgment. Weighted ΔP is a non-Bayesian model, though it will be shown to share several 

desirable attributes with Bayesian inference. In this chapter I give an explicit computational 

account of weighted ΔP by interpreting it as an estimator of causal power. I then demonstrate how 

it may be implemented as a lower level process model. These findings, taken together, allow for 

novel derivations of Rescorla-Wagner models that attain a causal power equilibrium. Finally, I 

will explore weighted ΔP within the context of model uncertainty and show that it can be a reliable 

estimator when the underlying generative model is unknown. 

3.2 Previous strategies to theory integration 

Most researchers agree that cognitive science would benefit from tighter integration across the 

levels of analysis, as Jones and Love observe:  

The most accurate characterization of cognitive functioning is not likely to come from 

isolated considerations of what is rational or what is a likely mechanism. More promising 

is to look for synergy between the two, in the form of powerful rational principles that are 

well approximated by efficient and robust mechanisms. Such an approach would aid 

understanding not just of the principles behind the mechanisms…but also of how the 

mechanisms achieve and approximate those principles and how constraints at both levels 

combine to shape behavior. (Jones & Love, 2011, p. 186) 

There are different views on the best way to bridge levels of analysis in cognitive science. Two 

general strategies can be distinguished by their choice of starting point: 
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Strategy 1: Begin with a normative computational model. Introduce resource constraints to 

explain deviations from normative predictions. 

Strategy 2: Begin with a heuristic or algorithmic model. Use computational analysis to 

describe environments in which it performs well. 

Variants of the first strategy have been proposed by Hahn (2014), Griffiths et al. (2012), and 

Sloman and Fernbach (2008), among others. The best known account of the second strategy is 

probably the fast and frugal heuristics program. On the fast and frugal approach, researchers begin 

with some heuristic model and then perform a computational analysis to determine the 

environments in which it succeeds or fails (Gigerenzer & Brighton, 2009; Todd & Gigerenzer, 

2007). A heuristic is said to be ecologically rational if it is successful in the context or environment 

in which it is used. Another example of the second strategy is found with Ashby & Alfonso-Reese 

(1995), who begin with heuristic models of categorization and then determine what computational 

problems they appeared to solve. 

In theory, each of the two strategies could produce the same final models. Yet in practice, the 

choice of initial model typically influences the outcome. Bridges travel only so far. Consequently, 

each strategy should produce models that inherit some of the strengths and weaknesses of the 

initial model. The first strategy will generate models with strong justification, though they may be 

less plausible as descriptions of the psychological process. Conversely, the second strategy will 

start with a psychologically plausible model, but a computational analysis committed to this model 

may be elusive or not particularly informative. 

An example of the first strategy is found in the rational process models from Chapter 2, 

wherein Bayesian inference is approximated with sampling algorithms from machine learning and 

computer science. Resource constraints are specified within the Bayesian framework, and the 

resultant process models are still fundamentally Bayesian. Probability matching, for example, can 

be explained by assuming that sampling from the posterior distribution is costly (Vul et al., 2014). 

So for rational process models, the derived algorithmic models inherit the key attribute of Bayesian 

inference from the initial computational model. While algorithmic models will typically mirror the 

character of the initial computational model, it is not the rule. Fernbach and Sloman (2009), for 

example, start with a normative Bayesian model of learning causal structure. Based on deviations 
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from normative predictions, they develop a non-Bayesian heuristic model of structure learning that 

is based on local computations. 

The second strategy of bridging levels has been applied to the take-the-best heuristic. Take-

the-best can be used to choose between two alternatives that are characterized by a number of 

binary cues. The validity of a cue is defined as the percentage of correct inferences that result from 

using that cue to decide between alternatives. Take-the-best first orders cues according to their 

validity. Two options are compared by searching through these ordered cues, and search is 

terminated once a discriminatory cue is found. The heuristic is non-compensatory, since 

information from later cues cannot override the decision made based on the discriminating cue.  

Take-the-best has been shown to be optimal with respect to various environmental structures 

(Dieckmann & Rieskamp, 2007; Katsikopoulos & Martignon, 2006; Martignon & Hoffrage, 1999, 

2002). In general, take-the-best is successful in environments characterized by diminishing returns 

and with correlated information (Lee & Zhang, 2012). Diminishing returns refers to a skewed 

distribution of cue validities, with higher validity cues being followed by cues with much lower 

validities. Correlated information refers to cues that carry redundant information. In general, non-

compensatory strategies are rational when most information is contained in the high-validity cues, 

which is the exactly the finding for take-the-best. 

Computational analysis shows precisely the types of environments in which take-the-best 

performs well. Unlike the first bridging strategy, the final product gives no separate heuristic and 

computational model. Instead, one assumes the heuristic model is adaptive and the only task is to 

precisely characterize the environment to which it is adapted to (Gigerenzer & Todd, 1999). So on 

the fast-and-frugal approach, a bridge is formed between levels, but not between models. The 

computational analysis completely depends on the heuristic model. Answers to “why” questions 

are found only through close study of “what”. Thus, inheritance from the initial model is even 

stronger under the second strategy of bridging levels. 

3.3 A novel strategy for theory integration 

Now which of the two bridging strategies is most promising for models of causal learning? The 

first strategy, using rational process models, would be straightforward. One simply needs to choose 

a preferred Bayesian model and then choose a sampling algorithm to approximate this model. I do 

not use this strategy. One reason why is that rational process models appear implausible as 
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mechanistic models since they make nearly the same representational assumptions as standard 

Bayesian models. In addition, there is reason to be skeptical that rational process models will be 

effective estimators of causal strength, which will be elaborated in section 3.6 below. 

What about the second strategy? Might the proper analysis focus on a strong heuristic model, 

and then work out the computational implications? With a bit of reflection, it is easy to see that 

such a strategy will founder. Recall that the computational problem can be characterized by two 

components: the inferential goal and a formal description of the environment. In the take-the-best 

example, the inferential goal is clear: maximize the number of correct choices (e.g. to choose which 

of two German cities has a larger population). Thus, an essential aspect of the computational 

analysis is already incorporated into the heuristic model. Crucially, this aspect is missing from the 

problem of elemental causal induction. As we’ve seen, the inferential goal is precisely the point of 

contention across competing computational accounts of causal induction. So without a known 

inferential target, it is impossible to precisely characterize the performance of a given heuristic 

model.  

The preceding discussion suggests why there is a paucity of work that attempts to bridge levels 

of analysis for models of causal learning. Fortunately, a novel strategy can be employed to resolve 

this impasse. The strategy can be summarized with a few general steps: 

1. Find (or create) computational model 𝐶(𝛽1, … , 𝛽𝑛) and algorithmic model 𝐴(𝑏1, … , 𝑏𝑛). 

2. Specify correspondence 𝛽1, … , 𝛽𝑛 ⇄ 𝑏1, … , 𝑏𝑛 between variables of the computational 

model and free parameters of the algorithmic model. 

3. Work out implications to determine if step 2 gives useful insights. 

4. Revisit first three steps as necessary. 

The advantage of this approach is that it draws on the strengths of both levels of analysis. 

Namely, it preserves the strong justification of the computational model while maintaining the 

psychological plausibility of the algorithmic model. The next section uses this strategy to 

construct a bridge between the computational model of causal power and the algorithmic model 

of weighted Δ𝑃. 
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3.4 A bridge between causal power and weighted ΔP 

To motivate the connection between the power PC model and weighted Δ𝑃, recall that generative 

causal power corresponds to the noisy-OR parameterization: 

 
𝑤𝑇 = 𝑤1 + 𝑤0 −𝑤1×𝑤0 

 

where 𝑤0 = 𝑃(𝑒
+|𝑐−) and 𝑤𝑇 = 𝑃(𝑒

+|𝑐+) and 𝑤1 is the causal power for some cause C. 

Rearranging terms gives: 

 
𝑤1 = 𝑤𝑇 − (1 − 𝑤1)×𝑤0 

 

The expression can be thought of as a 1-parameter weighted Δ𝑃 model with weight (1 − 𝑤1). On 

first inspection, this does not appear useful: to find 𝑤1 requires already knowing 𝑤1. But what if 

instead of knowing causal power the learner just has a reasonable guess for 𝑤1?  

There is considerable evidence that prior belief influences how people learn from contingency 

information (McKenzie & Mikkelsen, 2007). This prior belief forms the basis for the connection 

between causal power and the weighted Δ𝑃 model. Consider the 1-parameter weighted Δ𝑃 model: 

 
𝑤Δ𝑃 = 𝑤𝑇 − 𝑘×𝑤0 

 

where 0 ≤ 𝑘 ≤ 1. Now suppose that 𝜃 represents the prior expectation for causal power. Define 

𝑘 = 1 − 𝜃. This gives the model: 

 
𝑤Δ𝑃 = 𝑤𝑇 − (1 − 𝜃)×𝑤0 (3.1) 

Finally, the population quantities 𝑤𝑇 and 𝑤0 are typically not available, so instead sample 

estimates �̂�𝑇 = �̂�(𝑒
+|𝑐+) and �̂�0 = �̂�(𝑒+|𝑐−) must be used. Below the estimates are also written 

as �̂�𝑇 = 𝑤𝑇 + 𝜖𝑇 and �̂�0 = 𝑤0 + 𝜖0 with the errors both having an expectation of 0 (see Appendix 

B or C for a description of the error distribution). The weighted Δ𝑃 estimator is then: 

 
𝑤Δ𝑃 = �̂�𝑇 − (1 − 𝜃)×�̂�0  

Weighted Δ𝑃 can now be assessed as an estimator of causal power. To begin, consider a generative 

context in which the base rate �̂�0 is equal to 1. In this instance, Cheng’s (1997) power PC theory 
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asserts that there is no evidence to determine causal strength, and so people should withhold 

judgment. Accordingly, the causal power MLE is undefined at �̂�0 = 1. In contrast, weighted Δ𝑃 

returns a judgment of 𝜃, the prior expectation. This is exactly what the prior expectation is 

supposed to represent—belief before observing the evidence. It also matches with the Bayesian 

concept of a prior expectation.  

Weighted Δ𝑃 can also be characterized with respect to its bias and variance. Let 𝑤Δ𝑃 = �̂�1. 

Then the conditional bias is given by: 

 
�̂�1 = �̂�𝑇 − (1 − 𝜃)�̂�0 

𝐸[�̂�1|𝑤1] = 𝐸[𝑤1 + 𝑤0 − 𝑤1𝑤0 + 𝜖𝑇 − (1 − 𝜃)(𝑤0 + 𝜖0)] 

= 𝑤1 − 𝑤1𝑤0 + 𝜃𝑤0 + 𝐸[𝜖𝑇] + (1 − 𝜃)𝐸[𝜖0] 

= 𝑤1 + (𝜃 − 𝑤1)𝑤0 

 

So conditional on a causal power 𝑤1, the weighted Δ𝑃 estimator is biased. Naturally, the bias is a 

function of the distance between the true value 𝑤1 and the prior expectation 𝜃. Bias is also an 

increasing function of the population base rate 𝑤0. A population base rate of zero implies �̂�0 =

𝑤0 = 0 and an unbiased weighted Δ𝑃 with �̂�1 = �̂�𝑇.  

Similar to a Bayesian estimator, weighted Δ𝑃 provides estimates that are often regressive to 

the prior expectation. For a Bayesian model, the amount of regression depends on the base rate of 

the effect and the sample size. With weighted Δ𝑃, regression to the prior depends only on the base 

rate. To see how, recall that the causal power MLE is given by 

 

�̂�1.MLE =
�̂�𝑇 − �̂�0
1 − �̂�0

 

 

Expanding the weighted Δ𝑃 estimator gives: 
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𝑤Δ𝑃 = �̂�𝑇 − (1 − 𝜃)�̂�0 

= �̂�𝑇 − �̂�0 + 𝜃�̂�0 

=
�̂�𝑇 − �̂�0
1 − �̂�0

(1 − �̂�0) + 𝜃�̂�0 

= �̂�1.MLE×(1 − �̂�0) + 𝜃×�̂�0 

 

And so the 𝑤Δ𝑃 estimator is a weighted combination of the MLE and the prior expectation. As 

the sample base rate �̂�0 increases, more weight is given to the prior expectation. This seems 

reasonable since equation (2.4) shows that there is a quadratic increase in the MLE’s variance with 

increasing 𝑤0. A Bayesian estimator would weigh the combination by both the base rate and the 

sample size, which is sensible since the sample estimate is more reliable with larger N. Though it 

is rational to consider sample size, there is evidence that people in fact ignore it. For instance, 

Anderson & Sheu (1995) found contingency judgments to be insensitive to sample size. Not 

coincidentally, they were also early proponents of the weighted Δ𝑃 rule. 

To facilitate comparisons with results presented in Chapter 2, again assume that the base rate 

𝑤0 is known and fixed. Then the mean-squared error of weighted Δ𝑃 is: 

 

MSE[𝑤Δ𝑃] = ((𝜃 − 𝑤1)𝑤0)
2
+
𝑤𝑇(1 − 𝑤𝑇)

𝑁
 (3.2) 

This is the familiar Bias2 + Variance formula. If one has little prior information, a good choice of 

prior expected power in (3.2) is 𝜃 =
1

2
 since it produces a maximum absolute bias of |𝜃 − 𝑤1| =

1/2.  It can be shown that the MSE of (3.2) only increases linearly as 𝑤0 → 1. It also has a finite 

maximum at 𝑤0 = 1. This is in contrast to the variance for the MLE, which increases quadratically 

and has no upper bound as 𝑤0 → 1. Appendix C gives the derivation for (3.2). It also derives the 

MSE for a random base rate �̂�0, which again shows linear growth as the base rate increases. 

Figure 3.1 compares the approximate MSE of the MLE versus weighted Δ𝑃 across various 

levels of causal power 𝑤1 and at a sample size of 𝑁 = 10. It shows what equations (2.5) and (3.2) 

tell us. The MLE and weighted Δ𝑃 are identical for 𝑤0 = 0. As the base-rate 𝑤0 grows, there is a 

fast increase in the MLE’s mean-squared error while there is only a moderate increase for weighted 

Δ𝑃. Also note that weighted Δ𝑃 performs better when bias is low in the 𝑤1 = 0.4 and the 
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Figure 3.1. Mean-squared error of the causal power MLE (blue circles) and weighted Δ𝑃 (orange triangles) for a 

sample size 𝑁 = 10, and with each panel showing a different level of causal power 𝑤1. The weighted Δ𝑃 prior 

expectation is 𝜃 = 0.5. 

𝑤1 = 0.6 panels. The causal power MLE is superior to weighted Δ𝑃 only in the final panel with 

causal power 𝑤1 = 1. In this case, the MLE always makes the correct prediction of �̂�1.MLE = 1, 

while weighted Δ𝑃 will include error for positive base rates 𝑤0 > 0. 

Naturally, the relative performance of the maximum likelihood estimator improves with a 

larger sample size. Figure 3.2 compares estimators for a sample size of 𝑁 = 20. As N increases, 

variance is reduced and the unbiased MLE converges to the true 𝑤1. Variance is also reduced in 

the weighted Δ𝑃 estimator, but the bias is unaffected. The implication is that the MLE will have 

better relative performance with a larger N. In summary, weighted Δ𝑃 will be a biased estimator 

of causal power, though for small N or for large 𝑤0, it will have a lower MSE than the causal 

power MLE. 
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Figure 3.2. Mean-squared error of the causal power MLE (blue circles) and weighted Δ𝑃 (orange triangles) for a 

sample size 𝑁 = 20, and with each panel showing a different level of causal power 𝑤1. The weighted Δ𝑃 prior 

expectation is 𝜃 = 0.5. 

3.5 Conditional versus unconditional estimators 

The focus thus far has been on causal judgment rules as they pertain to a single candidate cause C 

and its associated causal power 𝑤1. In other words, the evaluation has been conditional on a given 

parameter 𝑤1. Yet over our life history there are presumably many opportunities to make 

judgments over a diverse set of causes {𝐶1, … , 𝐶𝑛}, each associated with distinct causal powers. As 

several authors observe, a strategy that is suboptimal on single occasions may be optimal on 

average (Brighton & Gigerenzer, 2008; Frank, 2013). Thus, it is also important to evaluate average 

performance over the long-run. This pertains to the unconditional properties of an estimator. 

To evaluate performance over repeated samples, we must first characterize the population of 

causal powers. The population need not encompass all conceivable causes, but may rather refer to 

some more circumscribed set that is relevant to a given context, e.g., the set of causal powers that 

might be encountered in the scenario described in the experiment. 
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To begin, assume that candidate causal powers are identically distributed with population 

mean 𝐸[𝑤1] = 𝜃 and population variance 𝑉[𝑤1] = 𝜏
2. It was just shown that weighted Δ𝑃 is a 

conditionally biased estimator of causal power. What about its unconditional bias? The answer to 

this question is less clear cut. If a judge is well-calibrated to the environment, such that their prior 

expectation equals the population mean, then weighted Δ𝑃 will be unconditionally unbiased: 

 
𝐸[𝐸[�̂�1|𝑤1]] = 𝐸[𝑤1 + (𝜃 − 𝑤1)𝑤0] 

= 𝜃 + 𝑤0(𝜃 − 𝐸[𝑤1]) 

= 𝜃 

 

So weighted Δ𝑃 is unbiased when performance is averaged over repeated sampling of causes, i.e., 

sampling different values of 𝑤1 from the population of causal powers. Even if the judge is not 

perfectly calibrated, unconditionally bias will be limited so long as they are close in their prior 

expectation to the population value. 

Judgment rules can also be assessed by their unconditional mean-squared error. Derivations 

of the unconditional mean-squared errors for the MLE and weighted Δ𝑃 are found in Appendices 

B and C respectively. Figure 3.3 uses these derivations to compare estimator performance. The 

general message of Figure 3.3 mirrors what was shown for the conditional MSE. With increasing 

base rate the mean-squared error of the MLE grows rapidly while weighted Δ𝑃 has only gradual 

growth. 

 

 
Figure 3.3. Plot of unconditional mean-squared error for the causal power MLE (blue circles) and weighted Δ𝑃 

(orange triangles) for a sample size 𝑁 = 10. Causal power is assumed to have a uniform random distribution, so the 

weighted Δ𝑃 rule with prior expectation θ=1/2 is unconditionally unbiased. 
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3.6 Weighted ΔP versus Bayesian Power, round 1 

We have just seen that the weighted Δ𝑃 rule reduces error in high base rate contexts, but it is not 

the only game in town. In fact, we know when a better strategy exists. When model assumptions 

are met, the Bayesian posterior expectation will give the minimum mean-squared error (MMSE). 

Thus, the Bayesian model serves as a good benchmark for assessing model performance. 

Cheng’s original power PC theory was intended to describe only ordinal judgments of causal 

strength. The relative ordinal performance of various estimators will generally track with their 

mean-squared errors. However, it is illustrative to compare strategies by their success in ranking 

the strengths of candidate causes. This is done in the simulation study described below.  

In the simulation presented below, cause 𝐶1 is evaluated with respect to context 𝐵1 by drawing 

a causal strength 𝑤11 and a background strength 𝑤01 from a joint uniform distribution. These 

quantities are combined using the Noisy-OR parameterization to find 𝑤𝑇1. Random draws are 

taken from the binomial distributions 𝐵(𝑁,𝑤01) and 𝐵(𝑁, 𝑤𝑇1) for the 𝑐1
− and 𝑐1

+ trials 

respectively. The resultant 2×2 contingency table is then used to form �̂�11 estimates. The 

procedure is repeated for cause 𝐶2 and context 𝐵2 to find �̂�12 estimates. Finally, the simulation 

experiment is performed over several different sample sizes N. 

The study compares predictions of the causal power MLE, weighted Δ𝑃 with 𝜃 = 0.5, and 

the Bayesian model with a joint uniform prior. Models are evaluated with respect to how often 

they predict the correct ordering of causal powers (e.g. how often �̂�11 < �̂�12 when 𝑤11 < 𝑤12). 

Note that for this simulation the Bayesian model will give the MMSE while weighted Δ𝑃 will be 

unconditionally unbiased. 

Vul et al. (2014) argue that good decisions can be made from using just one or a few samples 

from the posterior distribution, especially when making a choice between only two alternatives. 

Consequently, a simple rational process model is included to test this claim. The rational process 

model draws 10 samples each from the posterior distributions of 𝑤11 and 𝑤12 using a Metropolis 

algorithm. The sample averages are then used to form its �̂�11 and �̂�12 estimates. 

Results of the simulation study are presented in Table 3.1. The Bayesian model outperforms 

all other models, which is expected since it is normative for this problem. However, for small 

sample sizes the weighted Δ𝑃 and the Bayesian models exhibit very similar performance. The 

relationship between models changes as the sample size increases. At 𝑁 = 50 and larger, the MLE 
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Table 3.1. Model accuracy in ordering of two causal powers. 10,000 simulations used for each 

sample size N. 

 𝑁 = 4 𝑁 = 8 𝑁 = 12 𝑁 = 16 𝑁 = 20 𝑁 = 50 𝑁 = 100 

MLE .63 .68 .71 .74 .75 .83 .87 

Weighted Δ𝑃 .69 .72 .75 .76 .78 .82 .84 

Bayes .69 .73 .75 .78 .79 .84 .88 

Rational process .57 .60 .62 .63 .64 .68 .70 

Notes. The rational process model uses the expectation of ten samples from the posterior probability distributions to 

order the two causes. 

and the Bayesian model converge in performance while weighted Δ𝑃 begins to lag. This fits with 

the general fact that the Bayesian model will approach the MLE as sample size becomes large. The 

rational process model is the clear loser across all sample sizes. Performance of the rational process 

model could probably be improved with a better constructed sampling method, though it will still 

almost certainly be worse than weighted Δ𝑃. 

Next, Table 3.2 examines how often each model agrees with the Bayesian prediction across 

the various sample sizes. Weighted Δ𝑃 and the Bayesian model demonstrate high agreement across 

all sample sizes. In contrast, agreement between the MLE and the Bayesian model is modest for 

low N, and then gradually increases. Interestingly, the MLE and the Bayesian model exhibit higher 

agreement only for 𝑁 = 100.  The rational process model again fares considerable worse than the 

other models. 

Table 3.2. Prediction agreement with Bayesian model. 10,000 simulations used for each sample 

size N. 

 𝑁 = 4 𝑁 = 8 𝑁 = 12 𝑁 = 16 𝑁 = 20 𝑁 = 50 𝑁 = 100 

MLE .75  .80 .83 .85 .87 .91 .95 

Weighted Δ𝑃 .89 .92 .93 .94 .94 .92 .91 

Rational process .63 .65 .67 .68 .68 .71 .72 

Notes. The rational process model uses the expectation of ten samples from the posterior probability distributions to 

order the two causes. 
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In summary, the Bayesian model exhibits a modest advantage over weighted Δ𝑃 when they 

are both used to rank the relative strength of two causes. This is despite the fact that the Bayesian 

model is considerably more complex. Overall, the simulation experiment reinforces the above 

findings that the weighted Δ𝑃 rule is an effective estimator of causal power. 

3.7 Preventive causes 

In this section I derive the weighted Δ𝑃 estimator for preventive causes. The derivation will show 

another important benefit of making an explicit connection between algorithmic and computational 

models. Specifically, I will use it to argue that previous formulations of the preventive model have 

been misconstrued. 

The connection to causal power is motivated in a similar manner as above. First, begin with 

the Noisy-AND-NOT parameterization, which corresponds to preventive causal power: 

 
𝑤𝑇 = 𝑤0(1 − 𝑤1) 

 

Again, 𝑤0 = 𝑃(𝑒
+|𝑐−) and 𝑤𝑇 = 𝑃(𝑒

+|𝑐+) while 𝑤1 is preventive causal power. Recall that 

under the Noisy-OR, 𝑤1 could be expressed as a linear combination of 𝑤𝑇 and 𝑤0. With the Noisy-

AND-NOT, no simple manipulation gives such a linear combination. Consequently, an indirect 

route must be taken to achieve this form. 

By the rules of probability 𝑃(𝑒+|𝑐−) = 1 − 𝑃(𝑒−|𝑐−) and 𝑃(𝑒+|𝑐+) = 1 − 𝑃(𝑒−|𝑐+). 

Denote �̅�0 = 𝑃(𝑒−|𝑐−) and �̅�𝑇 = 𝑃(𝑒−|𝑐+). Then from the Noisy-AND-NOT: 

 
𝑤𝑇 = (1 − �̅�0)(1 − 𝑤1) 

𝑤1 = 1 − 𝑤𝑇 − �̅�0 + 𝑤1�̅�0 

𝑤1 = �̅�𝑇 − (1 − 𝑤1)�̅�0 

 

 

 

(3.3) 

And so 𝑤1 is expressed as a linear combination, but of 𝑃(𝑒−|𝑐+) and 𝑃(𝑒−|𝑐−) instead of 

𝑃(𝑒+|𝑐+) and 𝑃(𝑒+|𝑐−). 

Before proceeding, it is helpful to reflect on the meaning of generative versus preventive 

causal power. Generative power describes causal influence when the candidate cause acts in 

isolation. In other words, it is just causal strength evaluated in a context in which the effect would 

never otherwise occur (but importantly, all enabling factors are present to allow the effect to 
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occur). Formally, generative power is the probability that the candidate cause produces the effect 

when no other generative causes are active, so in a context with 𝑤0 = 0. The meaning of preventive 

power mirrors the generative definition, though it is a bit more convoluted. A cause’s preventive 

power is the probability that it will prevent an effect that will otherwise occur. Hence, preventive 

power is evaluated with respect to a context in which the effect always occurs, or with 𝑤0 = 1. 

Applying this definition within (3.3) gives �̅�0 = 1 − 𝑤0 = 0, which parallels the definition of 

generative power. 

With an understanding of preventive power in place, we can proceed as before in forming a 

bridge between models. Once again, define the weight as 𝑘 = 1 − 𝜃, where 𝜃 represents a prior 

expectation for preventive causal power. Substituting into (3.3) gives: 

 
𝑤Δ𝑃 = �̅�𝑇 − 𝑘�̅�0 

= �̅�𝑇 − (1 − 𝜃)×�̅�0 

 

(3.4) 

So (3.4) gives the weighted Δ𝑃 model as an estimator of preventive causal power. The preventive 

model is essentially the same as the generative version. The only difference is that the focal 

outcome has been “reverse coded” from 𝑒+ to 𝑒−. 

Though (3.4) is a simple modification, previous researchers have failed to appreciate its 

relevance. Instead, the standard practice for preventive causes has been to maintain 𝑒+ as the focal 

event. Specifically, they will typically use the two parameter weighted Δ𝑃 model: 

 
𝑤Δ𝑃 = 𝑘1𝑃(𝑒

+|𝑐+) − 𝑘2𝑃(𝑒
+|𝑐−) 

= 𝑘1𝑤𝑇 − 𝑘2𝑤0 

 

(3.5) 

Some authors, such as Perales and Shanks (2007), fit a single set of weights for data that includes 

both generative and preventive conditions. Other authors allow different weights for generative 

and preventive conditions (e.g. Buehner et al. (2003)). Yet it is easy to show that different weights 

cannot accommodate weighted Δ𝑃 as an estimator for generative and preventive power. To see 

why, begin with (3.4), but then change the focal event from 𝑒− to 𝑒+: 
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𝑤Δ𝑃 = �̅�𝑇 − (1 − 𝜃)×�̅�0 

= (1 − 𝑤𝑇) − (1 − 𝜃)×(1 − 𝑤0) 

= −[𝑤𝑇 − (1 − 𝜃)𝑤0] + 𝜃 

 

Clearly, no choice of weights in (3.5) will give the preventive estimator. An intercept must be 

added to give the general linear combination model: 

 
�̂�1 = 𝑘0 + 𝑘1𝑤𝑇 + 𝑘2𝑤0 (3.6) 

The preceding derivations imply that different sets of coefficients are necessary to allow (3.6) to 

properly estimate generative and preventive power. The generative estimator could be represented 

with 𝑘0 = 0, 𝑘1 = 1 and 𝑘2 = −(1 − 𝜃) and the preventive by 𝑘0 = 𝜃, 𝑘1 = −1, and 𝑘2 =

(1 − 𝜃).  

Now instead of the one-parameter weighted Δ𝑃 model of (3.1) and (3.4), we could just use 

the linear combination model in (3.6) to explain and predict causal judgments. If all three weights 

are allowed to vary, the model would accommodate both generative and preventive forms while 

still having two additional free parameters to describe judgments. While this additional flexibility 

would seem desirable, it is possible for models to be too flexible. This issue will be explored further 

in Section 3.8. 

Another strategy would be to use (3.6) and constrain the weights. The generative form would 

have constraints 𝑘0 = 0 and 𝑘1 = 1 while preventive weights would be 𝑘0 = 𝜃 and 𝑘1 = −1. With 

these constraints, the generative and preventive expressions of (3.6) are mathematically equivalent 

to generative and preventive weighted Δ𝑃 from (3.1) and (3.4). Yet the models may not be 

psychologically equivalent. In particular, (3.4) implies that the focal event—and so the focus of 

the judge—shifts from effect present events (𝑒+ events) to effect absent events (𝑒− events). In 

contrast, (3.6) suggests that the focus remains on 𝑒+, but that the weighting of the outcomes 

changes. This distinction is subtle, but potentially testable. For instance, measurements could be 

made on how much time people spend examining 𝑒+ versus 𝑒−  trials in generative versus 

preventive conditions. I suspect that the weighted Δ𝑃 representation better describes the 

underlying psychological process. Regardless, the weighted Δ𝑃 model is a more economical 

representation of the judgment rule, which is another reason it is preferred. And I will soon show 
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how this representation facilitates connections between weighted Δ𝑃 and associative models of 

causal learning. 

One issue to consider is whether belief about generative and preventive strengths is the same. 

Suppose there is a generative scenario concerning cause 𝐶𝑔  with strength 𝑤𝑔 and a preventive 

scenario about cause 𝐶𝑝 with strength 𝑤𝑝. With the exception of labeling one cause as “generative” 

and the other as “preventive”, imagine that the scenarios are otherwise identical. In particular, the 

objective evidence across scenarios supports an inference of equal causal strengths �̂�𝑔 = �̂�𝑝. For 

example, the generative scenario could have observed contingencies �̂�𝑇 = 0.75 and �̂�0 = 0.25 

and so the preventive scenario would have �̂�𝑇 = 0.25 and �̂�0 = 0.75. If prior belief in causal 

strength is symmetric across generative and preventive causes, then judgments will be identical 

for these two hypothetical scenarios. But it is possible that people are asymmetric in their beliefs. 

Then the mere act of labelling a cause as generative or preventive will produce different judgments. 

If so, it will be necessary to distinguish between prior expectations for generative versus preventive 

causal strengths in (3.1) and (3.4) above. For instance, 𝜃𝑔 can denote the former and 𝜃𝑝 the latter. 

This is an empirical issue that will be taken up in the next chapter. 

Finally, preventive power is often reported as a negative quantity on the [−1,0] interval. A 

power of −1 then means that a cause will always prevent the effect. The weighted Δ𝑃 estimator 

can be used to find a negative preventive power, though some care must be taken to properly 

represent the weight. To find the proper expression, again begin with Noisy-AND-NOT and work 

forward to: 

 
𝑤𝑇 = 𝑤0(1 − 𝑤1) 

1 − �̅�𝑇 = (1 − �̅�0)(1 − 𝑤1) 

�̅�𝑇 = 𝑤1 + �̅�0 −𝑤1×�̅�0 

 

Now we can map preventive power to [−1,0] simply by reversing the sign of 𝑤1. This gives: 

 
�̅�𝑇 = −𝑤1 + �̅�0 + 𝑤1×�̅�0 

 

Solving for power 𝑤1 yields: 
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𝑤1 = −[�̅�𝑇 − (1 + 𝑤1)�̅�0] 

 

And substituting 𝜃 to represent prior expectation gives: 

 
𝑤1 = −[�̅�𝑇 − (1 + 𝜃)�̅�0] 

 

Naturally, the prior expectation 𝜃 is also on the [−1,0] scale. Through some additional algebra, 

negative preventive power can also be expressed in terms of (3.6), the three parameter linear 

combination model: 

 
𝑤1 = 𝜃 + 𝑤𝑇 − (1 + 𝜃)𝑤0 (3.7) 

So 𝑘0 = 𝜃, 𝑘1 = 1 and 𝑘2 = −(1 + 𝜃). 

3.8 Model competition study 

The preceding section gave an a priori argument for the proper functional form of preventive 

weighted Δ𝑃. A question that naturally follows is whether the proposed changes make an empirical 

difference. This section addresses the empirical question with a replication of Perales and Shanks 

(2007) model competition study. 

For their study, Perales and Shanks (2007) selected 114 conditions from 19 different published 

causal learning experiments. They included experiments that met the following criteria: 1) trial-

by-trial presentation of covariation information 2) use of the standard causal probe question 

wording and 3) evaluation of only one candidate cause and one effect. Perales and Shanks argue 

that these criteria permit comparison among the largest number of models. Trial-by-trial 

presentation, for instance, allows for the inclusion of both associative and non-associative learning 

models.  

Perales and Shanks (2007) used a cross-validation method to compare relative model 

performance. Cross-validation is a standard approach for comparing a diverse sets of models (see 

Hastie, Tibshirani, & Friedman (2009) for an in-depth treatment). Central to the approach is the 

distinction between true or population variation versus accidental or error variation. True variation 

is generated by the underlying causal mechanism of interest. Accidental variation is idiosyncratic 
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to a particular sample. Accordingly, true variation will generalize to new samples while accidental 

variation will not.  

Models have varying degrees of flexibility. A highly flexible model can capture a wide variety 

of patterns in a data set. So if the true pattern is exotic, a flexible model will be able to describe 

such a pattern. A constant challenge is to use limited data to distinguish between true and 

accidental patterns. If a model is too flexible it will also fit accidental variation. This is sometimes 

referred to as overfitting the data. 

A good model is one that is flexible enough to fit true variation, but not so flexible that it fits 

accidental variation. The challenge of finding such a model can be explained in terms of the bias-

variance trade-off (Hastie et al., 2009). Earlier, we saw that an estimator’s mean-squared error can 

be decomposed into Bias2 + Variance. Flexible models are low bias since they can fit arbitrary 

patterns. But this also implies that they are high variance since flexible models will closely track 

any sample. In contrast, less flexible models will have lower variance, but they will often be biased. 

So to maximize predictive power, a model needs to strike a balance between bias and variance. 

The difficulty is that models are usually fit to a single sample of data while the question of 

prediction is left unanswered. Fortunately, cross validation provides a suitable method to address 

this difficulty. 

The basic idea of cross-validation is to use a single sample of data to mimic a prediction task. 

The procedure is straightforward. First, the sample is randomly divided into a training sample and 

a test sample. Models are fit to the training sample. The fitted models are then used to make 

predictions on the test sample. This can be used to estimate the test error of each model, which is 

the quantity of interest. The procedure is repeated many times and the average from these iterations 

is used for the final test error estimate. 

Perales and Shanks (2007) employed a 50-50 split in their cross-validation procedure, so half 

the data was used as a training sample and half as a test sample on each iteration. Of the many 

models they compared, they found that the EI rule had the lowest average test error, as measured 

by average mean-squared error. The weighted Δ𝑃 rule, for which they estimated a unitary set of 

{𝑘1, 𝑘2} weights across generative and preventive experiments, had a substantially worse fit. 

Perales and Shanks’ cross-validation study can be replicated to assess the weighted Δ𝑃 model 

described by equations (3.1) and (3.4) above. For the purposes of comparison, I will refer to (3.1) 

and (3.4) as focal 𝑤Δ𝑃 and Perales and Shanks’ weighted Δ𝑃 model as unitary 𝑤Δ𝑃. The Bayesian 
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causal power model with a joint uniform prior is also added to the competition due to its previously 

observed strong empirical performance.  

A summary of the findings is presented in Figure 3.4. The results replicate Perales and Shanks’ 

findings for the EI rule (aMSE = 306.57, 𝑤𝑎 = .79, 𝑤𝑏 = .54, 𝑤𝑐 = .36, 𝑤𝑑 = .31) and for unitary 

𝑤Δ𝑃 (aMSE = 434.42,  𝑘1 = 1.00, 𝑘2 = .81) in terms of average mean squared error and average 

estimated free parameters. The focal 𝑤Δ𝑃 rule (aMSE = 205.92, 𝜃 = .39) had a substantially better 

fit than the EI rule, as well as all other models. Nonetheless, the Bayesian causal power model 

with a joint uniform prior also demonstrated very good fit (aMSE = 245.08). The similar 

performance of focal 𝑤Δ𝑃 and the Bayesian model is not surprising given that the models largely 

agree in their predictions. 

The uniform prior Bayesian model provides good fit despite having no free parameters. 

However, this example illustrates why critics are skeptical of the lauding of Bayesian models as 

parameter free. Recall that preceding chapters examined a number of Bayesian models that varied 

with respect to their priors (uniform versus sparse and strong) as well as their generating functions 

(linear versus noisy-OR/noisy-AND-NOT). The SS prior had difficulty in describing key patterns 

of human judgments while the uniform prior model performed quite well. It was on this basis that 

the uniform prior model was included in the model competition while the SS prior model was 

omitted. Since previous data informed the selection of the Bayesian model, it is false to claim that 

it was constructed purely from a priori considerations. Though there are no free parameters, 

 

 
Figure 3.4. Boxplots of estimated test error over 10,000 cross-validation simulations. 
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considerable model fitting is still achieved through the choice of prior and generating function. 

An additional point of interest concerns the reliability of performance for the different models. 

The boxplots in Figure 3.4 show a wide spread for the unitary 𝑤Δ𝑃 and, to a lesser extent, for the 

EI rule. This means that there are some test samples for which the models do relatively well while 

they are quite poor on others. Accordingly, Var(MSE) = 2604 for the EI rule and Var(MSE) =

2974 for unitary 𝑤Δ𝑃. Variance in MSE could result from model bias being more or less present 

on the randomly constructed training and test samples. The fluctuating influence of bias probably 

accounts for the highly variable performance of the unitary 𝑤Δ𝑃 model. If the above claims are 

correct, unitary 𝑤Δ𝑃 is suitable for generative causes, but misspecified for preventive causes. The 

upshot is that overall performance will be impaired by using generative and preventive conditions 

to estimate a single set of weights. Predictions will be especially poor for training samples with a 

high proportion of generative conditions and test samples with a high proportion of preventive 

conditions, and vice-versa. 

Somewhat surprisingly, the variance in MSE for focal 𝑤Δ𝑃  (Var(MSE) = 880) is lower than 

the variance for the Bayesian model (Var(MSE) = 1280). This is despite the fact that focal 𝑤Δ𝑃 

has a free parameter 𝜃 while the Bayesian model does not. This suggests that the free 𝜃 parameter 

is quite stable over training samples. In addition, there are probably certain subsets of conditions 

for which the Bayesian rule is more strongly biased. This possibility is explored further in Chapter 

4.  

Next, the cross-validation procedure is used to compare different weighted Δ𝑃 models. Two 

models are added to the analysis. The dual 𝑤Δ𝑃 model estimates two sets of weights, {𝑘𝑔1, 𝑘𝑔2} 

for generative conditions and {𝑘𝑝1, 𝑘𝑝2} for preventive conditions. This follows the approach of 

Buehner et al. (2003). Also included is the linear combination model of (3.6) with weights 

{𝑘𝑔0, 𝑘𝑔1, 𝑘𝑔2} for generative conditions and {𝑘𝑝0, 𝑘𝑝1, 𝑘𝑝2} for preventive conditions. As 

discussed above, the linear combination model is a more general form of focal 𝑤Δ𝑃. Therefore, it 

has the potential to overcome some of the bias of focal 𝑤Δ𝑃.  

Figure 3.5 shows the cross-validation results. The dual 𝑤Δ𝑃 model (𝑎𝑀𝑆𝐸 =  333.42, 𝑘𝑔1 =

.98, 𝑘𝑔2 = .60, 𝑘𝑝1 = .98, 𝑘𝑝2 = .60) has better average test error than unitary 𝑤Δ𝑃 (𝑎𝑀𝑆𝐸 =

 434.60, 𝑘1 = 1.00, 𝑘2 = .81). However, the dual model is still much worse than focal 𝑤Δ𝑃 

(𝑎𝑀𝑆𝐸 =  205.78, 𝜃 = .39). Crucially, simply allowing a different set of weights across 
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Figure 3.5. Boxplots of estimated test error over 10,000 cross-validation simulations. 

generative and preventive conditions is not sufficient for good model fit. These findings further 

support the claim that preventive weighted Δ𝑃 models have previously been misspecified. 

The linear combination model (𝑎𝑀𝑆𝐸 =  217.14, 𝑘𝑔0 = −.09, 𝑘𝑔1 = 1.10, 𝑘𝑔2 = −.58, 

𝑘𝑝0 = −.51, 𝑘𝑝1 = .96, 𝑘𝑝2 = −.36) is also worse than focal 𝑤Δ𝑃. This is probably because the 

linear combination model has done little to reduce bias while the added flexibility has increased 

variance. Since variance is necessarily right-skewed, the result is to increase the average mean-

squared error. Importantly, the average estimated parameters of the linear combination model are 

close to the constraints implied by focal 𝑤Δ𝑃 with generative weights 𝑘𝑔0 ≈ 0, 𝑘𝑔1 ≈ 1 and 

preventative weights 𝑘𝑝1 ≈ 1 and 𝑘𝑝2 ≈ −(1 + 𝑘𝑝0), since preventive power was recorded as 

negative. If focal 𝑤Δ𝑃 is the true data-generating model, then the linear combination estimates 

should approach the implied constraints as the number of included conditions and observations are 

increased. Convergence to the constraints should also be faster if the included conditions constitute 

a balanced representation of the condition space. 

In summary, forming an explicit connection between computational and algorithmic accounts 

leads to a novel insight about the functional form for preventive weighted Δ𝑃. Though the 

derivation and expression are simple, this detail has eluded researchers for some time. Indeed, in 

testing their “Cell A heuristic”, Arkes and Harkness (1983) express great surprise that strength 

ratings did not increase monotonically with the frequency of what we’ve referred to as (𝑒+, 𝑐+) 
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trials. Instead, strength judgments form a check-mark shaped pattern when moving from negative 

to positive contingency. This is exactly the pattern predicted by the focal weighted Δ𝑃 model. In 

other words, focal 𝑤Δ𝑃 implies that a “Cell A” heuristic (𝑒+ as focal) should shift to a “Cell B” 

heuristic (𝑒− as focal) when the context is preventive with a negative contingency. 

3.9 Unknown causal direction 

For completeness, I discuss a weighted Δ𝑃 estimator when causal direction is unknown. With 

unknown direction, one learning strategy is to simultaneously look for evidence of a generative 

and a preventive cause, and then choose the direction with the larger magnitude. Such a strategy 

seems unlikely in terms of stimulus processing. In the associative models described below, it 

would require that each trial be double coded.  

Much preferable is a weighted Δ𝑃 rule for which generative and preventive forms agree so 

that the choice of 𝑒+ or 𝑒− as focal does not matter. Does such a strategy exist? In fact, with 𝜃 = 0 

the generative and preventive forms do coincide: 

 
𝑤Δ𝑃 = 𝑤𝑇 − (1 − 𝜃)𝑤0 

= 𝑤𝑇 − 𝑤0 

= −[(1 − 𝑤𝑇) − (1 − 𝑤0)] 

= −[�̅�𝑇 − �̅�0] 

= −[�̅�𝑇 − (1 − 𝜃)�̅�0] 

 

So both forms simply give the standard Δ𝑃 rule.  

The choice of 𝜃 = 0 appears intuitively reasonable. If one is uncertain of causal direction, a 

seemingly sensible characterization of this is with the prior belief that the cause is just as likely to 

either increase or decrease the probability of the effect. Hence, 𝑃(𝑒+|𝑐+) > 𝑃(𝑒+|𝑐−) seems just 

as plausible as 𝑃(𝑒+|𝑐+) < 𝑃(𝑒+|𝑐−). Or in weights notation, 𝑤𝑇 > 𝑤0 just as plausible as 𝑤𝑇 <

𝑤0. If these beliefs are symmetric and they “cancel out”, then prior belief should give 𝑤𝑇 ≈ 𝑤0. 

This is reflected in the model since 𝑤𝑇 = 𝑤0 is consistent with a prior belief of 𝜃 = 0. To see why, 

observe that: 
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𝑤Δ𝑃 = 𝑤𝑇 − (1 − 𝜃)𝑤0 

= 𝑤𝑇 − (1 − 𝜃)𝑤𝑇 

 

when 𝑤𝑇 = 𝑤0. So in this case, the updated estimate 𝑤Δ𝑃 will match the prior expectation only 

when 𝜃 = 0. 

It is an empirical question whether people in fact use the standard Δ𝑃 rule when causal 

direction is unknown. People may apply Δ𝑃 across all trials, or they may use Δ𝑃 on an early sample 

of trials to establish a direction, and then weighted Δ𝑃 is applied to later trials. This is an interesting 

question for future research. 

3.10 Building more bridges: weighted ΔP as a Rescorla-Wagner 

process model. 

When making causal judgments, it is questionable whether people directly represent the 

conditional probabilities 𝑃(𝑒+|𝑐+) and 𝑃(𝑒+|𝑐−). As has been discussed, the fact that judgments 

agree with some model does not imply that people explicitly follow that model or use the same 

representations. Indeed, Wasserman et al. (1993) found that a person’s subjective probability 

ratings for 𝑃(𝑒+|𝑐+) and 𝑃(𝑒+|𝑐−) did not well predict their causal judgments. This led them to 

prefer Rescorla-Wagner as a process model. Shanks (1985, 1987, 1995) also favors associative 

over rule-based models as descriptions of psychological processes. 

No choice of parameters for the conventional Rescorla-Wagner (R-W) model can be chosen 

so that the weighted Δ𝑃 of (3.1) and (3.4) are among its equilibria (Wasserman et al., 1993). 

Instead, it is necessary to modify R-W to a more general form. This section elaborates two ways 

that this may be achieved. First, recall from Chapter 1 that R-W can be expressed as: 

 

 

 Δ𝑉𝑖
𝑡 = 

 𝛼𝑖𝛽
+ [𝜆 −∑𝑉𝑗]    if both 𝐶𝑖  and 𝐸 appear in trial 𝑡                          

𝛼𝑖𝛽
− [0 −∑𝑉𝑗]    if 𝐶𝑖  appears and 𝐸 does not appear in trial 𝑡 

 

Now consider an elemental causal induction problem with candidate cause 𝐶, background cause 

𝐵 and effect 𝐸. Denote association strengths for the candidate and background causes as 𝑉𝐶 and 
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𝑉𝐵, respectively. Suppose 𝛼0 = 𝛼1, 𝛽0 = 𝛽1 and a maximum possible association strength of 𝜆 =

1, which are all standard assumptions. One way to generalize R-W is with the introduction of an 

“attenuation” parameter 𝜅, which is described in the next section. 

3.10.1 κ-attenuation model 

Introduce an additional parameter 𝜅 with 𝜅 ∈ [0,1]. The parameter can be given various 

interpretations. For starters, we can say that 𝜅 describes the attenuation of attention given to the 

background strength 𝑉𝐵 on cause present trials. More simply, 𝜅 is a measure of base rate neglect. 

The 𝜅 parameter is incorporated into the R-W model with a neglect function 𝑔(𝐶), which is given 

by: 

 

𝑔(𝐶) = {𝜅     for 𝑐
+ trials

1     for 𝑐− trials
 

 

The neglect function multiplies the background weight 𝑉𝐵. With 𝜅 = 0 there is total neglect of 

background strength while with 𝜅 = 1 there is no neglect. Following Chapman & Robbins (1990) 

it is easy to show that the modified model will give the weighted Δ𝑃 rule at equilibrium (see 

Appendix D). The equilibrium association strengths are equal to: 

 
𝑉𝐶 = 𝑃(𝑒+|𝑐+) − 𝜅×𝑃(𝑒+|𝑐−) 

𝑉𝐵 = 𝑃(𝑒+|𝑐−) 
 

Suppose that neglect of the base rate is 𝜅 = (1 − 𝜃) where 𝜃 represents a prior expectation for 

causal strength. Then at equilibrium the same desirable properties are achieved that were shown 

above for the weighted Δ𝑃 estimator. Also note that the equilibrium background strength is equal 

to the objective conditional probability with 𝑉𝐵 = 𝑃(𝑒+|𝑐−). We will see that this is a 

distinguishing prediction when compared to the modified R-W model proposed in the next section. 

3.10.2 Unequal association strength model 

Another way to obtain the weighted Δ𝑃 equilibrium is to allow the maximum association strengths 

(the 𝜆’s) to differ across contexts. Denote 𝜆+ as the maximum association strength for the 𝑐+ 

context and 𝜆− as the maximum association strength for the 𝑐− context. Furthermore, assume 𝜆+ =
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1 and 𝜆− = 𝜆 with 0 < 𝜆 < 1. Then it can be shown (see Appendix D) that the equilibrium 

association strengths are equal to:  

 
𝑉𝐶 = 𝑃(𝑒

+|𝑐+) − 𝜆×𝑃(𝑒+|𝑐−) 

𝑉𝐵 = 𝜆×𝑃(𝑒
+|𝑐−) 

 

Again if we set 𝜆 = (1 − 𝜃), then weighted Δ𝑃 is the equilibrium with 𝜃 interpreted as the prior 

expected strength. However, now the predicted background strength does not equal the objective 

conditional probability. Instead, its equilibrium value is 𝜆×𝑃(𝑒+|𝑐−). Thus, the two modified R-

W models have different predictions for the strength attributed to the background cause. This is 

one testable prediction that may be used to discriminate between the two models. 

Another difference between models will be found in their speed of convergence to 

equilibrium. The augmented kappa model influences all 𝑐+ trials while the lambda model only 

influences the (𝑐−, 𝑒+) trials. One would expect, then, that the kappa model will converge to 

equilibrium more quickly. Furthermore, this discrepancy should be exaggerated for data with few 

(𝑐−, 𝑒+) trials. 

3.11 Dynamical weighted ΔP rule 

With enough learning trials, Bayesian models will eventually converge to the causal power sample 

estimate while the weighted Δ𝑃 rule will remain biased. This bias is generally consistent with the 

behavioral evidence, where the typical finding is that judgments reach equilibrium after about 20 

learning trials. An important detail is that causal learning experiments are administered on a single 

occasion. Yet most tasks require repeated exposure over multiple occasions before large learning 

gains accrue. Thus, it is possible that judgments may continue to evolve over time with repeated 

learning opportunities. One weakness of the weighted Δ𝑃 rule is that once �̂�𝑇 and �̂�0 approach 

their population quantities, no further evolution of belief is possible. 

Fortunately, a simple augmentation to weighted Δ𝑃 allows for more substantial changes in 

causal belief. Define the dynamical weighted Δ𝑃 rule as: 
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�̂�1(0) = 𝜃 

�̂�1(𝑖+1) = �̂�𝑇(𝑖+1) − (1 − �̂�1(𝑖))�̂�0(𝑖+1) , 𝑖 = 0,…𝑁 

 

(3.8) 

In the above expression, �̂�𝑇(𝑖) and �̂�0(𝑖) are the respective estimates of 𝑃(𝑒+|𝑐+, 𝑏+)  and 

𝑃(𝑒+|𝑐−, 𝑏+) after the 𝑖𝑡ℎ  occasion. The �̂�1(𝑖) is similarly defined for 𝑃(𝑒+|𝑐+, 𝑏−) while �̂�1(0) 

is the prior expectation for 𝑤1. What constitutes an “occasion” is an open question. It could be a 

single learning trial or an entire learning experiment. 

An attractive property of dynamical weighted Δ𝑃 is that it will eventually converge to the true 

causal power 𝑤1. To see why, first suppose that �̂�0 and �̂�𝑇 have converged to their true values 𝑤0 

and 𝑤𝑇 so that true power is given by 𝑤1 =
𝑤𝑇−𝑤0

1−𝑤0
. Also suppose that �̂�1(𝑖) ≠ 𝑤1 so that �̂�1(𝑖) =

𝑤1 + 𝜖. Now use (3.8) to find the updated �̂�1(𝑖+1): 

 
�̂�1(𝑖+1) = 𝑤𝑇 − (1 − �̂�1(𝑖))𝑤0 

= 𝑤𝑇 − (1 − (𝑤1 + 𝜖))𝑤0 

= 𝑤𝑇 − 𝑤0 + 𝑤1𝑤0 + 𝜖𝑤0 

 

 The error for �̂�1(𝑖+1) is given by: 

 
�̂�1(𝑖+1) − 𝑤1 = (𝑤𝑇 − 𝑤0 + 𝑤1𝑤0 + 𝜖𝑤0) − (𝑤𝑇 − 𝑤0 + 𝑤1𝑤0) 

= 𝜖𝑤0 

 

So the error goes from �̂�1(𝑖) − 𝑤1 = 𝜖 to �̂�1(𝑖+1) − 𝑤1 = 𝜖𝑤0.  Note that 0 ≤ 𝑤0 ≤ 1. If 𝑤0 = 0, 

then convergence occurs in one step. If 𝑤0 = 1 then 𝜖(𝑖+1) = 𝜖(𝑖) and �̂�1 never converges. For 

0 < 𝑤0 < 1 we have 𝜖𝑤0 < 𝜖 and �̂�1(𝑖+1) is closer to the true value than �̂�1(𝑖). With an additional 

update step the error will be: 

 
𝜖(𝑖+2)𝑤0 = (𝜖𝑤0)𝑤0 

= 𝜖(𝑤0)
2 
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By induction, after the 𝑛𝑡ℎ update the error will be 𝜖(𝑤0)
𝑛. Hence, (3.8) converges to the true 𝑤1 

since (𝑤0)
𝑛 → 0 as 𝑛 → ∞. So the dynamical weighted Δ𝑃 rule, like Bayesian causal power, also 

converges to the true value. 

The frequency with which �̂�1 is updated can be thought of as a tuning parameter. More 

frequent updates will result in quicker convergence to the sample estimate, and so the estimator 

will be less biased. Yet this reduction in bias will come at the price of increased variance. 

Other strategies may also be used for tuning the dynamical weighted Δ𝑃 model. For instance, 

instead of replacing �̂�1 with the new estimate on each occasion, a weighted average could be taken 

so that: 

 
�̂�1(i+1) = (1 − 𝜏)×�̂�1(old) + 𝜏×�̂�1(new) (3.9) 

Where �̂�1(old) and �̂�1(new) are the previous and new estimates, respectively. And 𝜏 ∈ [0,1] is the 

constant tuning parameter. So as 𝜏 → 1 bias is reduced and variance increases. The right choice of 

𝜏 could allow dynamical weighted Δ𝑃 to better approximate Bayesian models. 

Figure 3.6 compares the standard weighted Δ𝑃 rule, dynamical weighted Δ𝑃, and Bayesian 

causal power. Model predictions were made for 200 learning trials generated from a Noisy-OR 

parameterization with 𝑤0 = 0.2 and 𝑤1 = 0.7. For the dynamical rule, the tuning parameter of 

equation (3.9) is set to 𝜏 = 0.5. 

 
Figure 3.6. Model predictions of weighted Δ𝑃 (orange triangles), dynamical weighted Δ𝑃  with 𝜏 = 0.5 (green 

squares) and Bayesian causal power (blue circles). Prior expected power is 0.5 for both weighted Δ𝑃 models. 

Learning data was randomly generated from a Noisy-OR parameterization with 𝑤0 = .2 and 𝑤1 = .7 (black line). 

The learning data contain an equal number of cause-present and cause-absent trials. 
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Naturally, each estimator is high in variance for the early trials, though dynamical weighted 

Δ𝑃 appears to be the highest in variance. Once evidence accumulates and the estimators settle 

down, and the Bayesian prediction is bracketed by the two weighted Δ𝑃 models for much of the 

range. At the beginning of the learning trials, Bayesian predictions are more similar to static 

weighted Δ𝑃, while Bayes and the dynamical rule become more similar towards. For these data 

the dynamical rule would probably better approximate the Bayesian model by setting the tuning 

parameter to 𝜏 < 0.5. 

The dynamical weighted Δ𝑃 rule leads to a key insight regarding the process models discussed 

in the previous section. Namely, the same type of updating can be used in the process models so 

that Rescorla-Wagner converges to causal power (see Appendix D). Danks, Griffiths, and 

Tenenbaum (2003) also describe a R-W model that converges to power. This is achieved by 

incorporating the Noisy-OR or the Noisy-AND-NOT prediction into the model. It turns out that 

under certain assumptions the 𝜅-attenuation model is identical to the Danks et al. (2003) model. In 

particular, if the 𝜅 parameter is updated after every trial, then the 𝜅 model is identical to the noisy-

OR prediction model for generative causes. This is shown in Appendix D. There is also a near 

identity for between the 𝜅 model and the noisy-AND-NOT for preventive causes, thought this 

relationship is a bit more complex. 

The connection between the weighted Δ𝑃 model and the Rescorla-Wagner model is important 

for a number of reasons. First, it provides a more specific account of the potential operations used 

to implement the weighted Δ𝑃 rule. In addition, the connection relates ideas concerning the bias-

variance trade-off to process level theories of causal learning. Previously, when the data has been 

found to disagree with R-W predictions, one strategy has been to adjust the learning rates and then 

claim that observed judgments had not yet reached equilibrium. The current findings provide a 

competing explanation: judgments will not reach equilibrium because people are using a biased 

R-W model. Further, this biased rule can be understood as a rational strategy when the goal is to 

minimize the mean-squared error of prediction. 

3.12 Model uncertainty 

Until now, causal power has been assumed to be the true generative model. Cheng (1997) gives a 

strong a priori argument to justify causal power. That is, she demonstrates that causal power is the 



94 

 

 

correct measure of causal strength when model assumptions are met. But in practice, how often 

will the structure of the environment reflect the assumptions of causal power?  

The utility of a given model will naturally depend on its environment of application. 

Environments may be information rich or poor. An information rich context is one in which the 

judge can be confident that the candidate cause is independent of all alternative causes. Rich 

contexts also allow for many observations. Good scientific experiments, with independence 

enforced through control and randomization, and additional observations available through 

replication, provide the gold standard for learning contexts. Yet everyday learning environments 

are often information poor in that they are purely observational with only a few sampled outcomes. 

Another complication is that the inferential goal will also be context dependent. Whether it is 

better to extract association strength versus causal power will depend both on the context and on 

how the knowledge is to be applied. Research on Bayes nets emphasizes the distinction between 

predictions from observations versus predictions from interventions (Hagmayer, Sloman, 

Lagnado, & Waldmann, 2007). Return to the example of the association between white hair and 

heart disease from Chapter 1. The association will be useful to a paramedic needing to assess the 

condition of an unresponsive patient. In contrast, this knowledge is of no use to the cardiologist—

intervening on white hair by dyeing or shaving it will not cure heart disease. The key question, 

then, is what role do people typically assume in their everyday contingency judgments? Are they 

more often paramedics or cardiologists? Or perhaps people change perspectives in accordance with 

the evidence and their inferential goals? 

Causal knowledge is esteemed because of the special type of prediction it affords, namely 

predictions from interventions (Pearl, 2009). Cheng’s causal power theory gives predictions for 

how a causal intervention will influence the outcome in a novel environment. However, it is often 

the case that the learner is consigned to an observational role only. In such contexts, the discovery 

of “mere association” may be the only reasonable inferential target. 

Recall that a crucial assumption of causal power is that the background and candidate causes 

exert independent influence on the effect. Is there reason to believe that independence is typical of 

the causal systems that people encounter? It would seem that independence is rarely found in 

observational, naturalistic settings. Indeed, the fields of econometrics and structural equation 

modeling were created to extract causal information from observational data. Confounds regularly 

plague causal inference in the sciences. One example comes from the study of how maternal age 
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causally influences autism. Early research suggested that advanced maternal age did cause an 

increased risk for autism. However, many of these studies were limited in their control of important 

confounds (Croen, Najjar, Fireman, & Grether, 2007). For instance, older mothers tend to couple 

with older fathers, and a father’s age has been found to be an important predictor of autism risk 

(Croen et al., 2007; Sandin et al., 2015). So in this example, assuming that maternal age is 

independent of all alternative causes will likely bias any estimate of its causal strength. 

To be sure, Cheng (2000) suggest that independence is a useful assumption when reasoners 

do not have adequate information to assess potential interactions of alternative causes. 

Independence assumptions have proved valuable in other areas. For example, the Naïve Bayes 

classifier assumes that object features are independent conditional on class membership. Despite 

this simplifying assumption, Naïve Bayes has been shown to outperform more sophisticated 

alternatives (Hastie et al., 2009). 

The question, then, is whether the independence assumption is a generally useful one. The 

difficulty is that for causal learning, and for cognitive science more generally, it is not clear what 

environments should be used to test this assumption (Jones & Love, 2011). Is it the ancestral 

environment in which our cognitive capacities evolved? Or is it the contemporary environments 

in which these reasoning abilities develop and are now employed? Absent knowledge about the 

relevant environment, the best that can be done is to explore how competing models perform over 

heterogeneous causal structures. A limitation of this approach is that it still requires assumptions 

about the distribution of these structures. So a potential future strategy is to characterize real causal 

environments and then evaluate how various strategies perform in them. This possibility is 

explored more closely in Chapter 5. But first, a simulation study is used to examine the influence 

of uncertain environments. 

3.12.1 Relaxing the independence assumption 

This section explores the implications of relaxing the independence assumption in the power PC 

model. Recall that generative causal power corresponds to the noisy-OR parameterization: 

 
𝑤𝑇 = 𝑤1 + 𝑤0 −𝑤1×𝑤0 

 

A more general parameterization is given by: 
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𝑤𝑇 = 𝑤1 + 𝑤0 − 𝑤1|0×𝑤0 (3.10) 

where the 𝑤1|0 term does not refer to any edge weight, but instead is used to describe an interaction 

between the candidate causal strength 𝑤1 and background strength 𝑤0. A large range of causal 

models can be represented by (3.10) with 0 ≤ 𝑤1|0 ≤ 1. At the extremes, 𝑤1|0 = 0 gives the Δ𝑃 

rule while 𝑤1|0 = 1 gives the Per Cent Success rule. Of course, causal power is given when 𝑤1|0 =

𝑤1. Strong positive interactions are not allowed as 𝑤1|0 ∈ [0,1] implies that 𝑤𝑇 ≤ 𝑤1 + 𝑤0. 

Appendix A gives a general account for dependence between the candidate cause C and 

background B. 

Begin by assuming that causal power holds on average but that there are deviations from 

independence. Formally, assume that 𝑤1 = 𝑤1|0 + 𝜖 with 𝐸[𝜖] = 0 and Var[𝜖] = 𝜎2. To isolate 

the influence of model uncertainty, assume that the causal strengths 𝑤𝑇 and 𝑤0 are known 

constants. Then the causal power MLE is unbiased and the MSE is equal to the variance with: 

 

Var[�̂�1] = (
𝑤0

1 − 𝑤0
)
2

𝜎2 

 

So the MSE is a function of the base rate of the effect, with a rapid increase as 𝑤0 → 1. This result 

is similar to what was found in Chapter 2, with causal power the true model and with uncertainty 

for the causal strengths. 

The weighted Δ𝑃 estimator naturally extends to (3.10) by writing: 

 
𝑤1 = 𝑤𝑇 − (1 − 𝑤1|0)𝑤0 

 

And so the weighted Δ𝑃 estimator is: 

 
�̂�1 = 𝑤𝑇 − (1 − 𝜃)𝑤0 (3.11) 

where 𝜃 is now a prior expectation for the interaction term 𝑤1|0. The bias of (3.11) is given by: 

 
𝐸[(�̂�1 − 𝑤1)] = 𝑤0(𝜃 − 𝑤1) 
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So bias is an increasing function of the base-rate of the effect. Without any background 

information, the safest prior expectation will be 𝜃 = 0.5 as it will result in a maximum Bias2 of 

(0.5)2 = 0.25.  

The MSE of weighted Δ𝑃 is: 

 
𝐸[(�̂�1 − 𝑤1)

2] = 𝑤0
2[(𝜃 − 𝑤1)

2 + 𝜎2] 
 

And it is the familiar Bias2 + Variance formula. 

The above results can be used to compare the causal power MLE and weighted Δ𝑃 in the 

context of model uncertainty. When 𝑤0 = 0, the MSE of both estimators is 0 since there is no 

interaction between 𝑤1 and 𝑤0, and so no disturbance term. For 𝑤0 > 0, weighted Δ𝑃 will have a 

lower MSE when: 

 
MSEwΔP < MSEMLE 

𝑤0
2[(𝜃 − 𝑤1)

2 + 𝜎2] < (
𝑤0

1 − 𝑤0
)
2

𝜎2 

(𝜃 − 𝑤1)
2 < [

1

(1 − 𝑤0)2
− 1] 𝜎2 

 

Not surprisingly, weighted Δ𝑃 is a good estimator relative to causal power when: 

 Bias is low 

 Average deviation from power is high (i.e. 𝜎2 is high) 

 The base rate of the effect 𝑤0 is high. 

Hence, weighted Δ𝑃 may be a good alternative to causal power when the underlying generative 

model is unknown. 

3.12.2 Simulation study 

In the formal characterization thus far, Bayesian causal power and the causal power MLE are 

identical. This is because of the assumption that 𝑤𝑇 and 𝑤0 are known. This is equivalent to 

assuming a sample size that approaches infinity, which implies that the Bayesian estimate 

converges to causal power. What about the case when there is uncertainty in the 𝑤𝑇 and 𝑤0 as well 
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as an uncertain interaction 𝑤1|0? In this situation, the Bayesian model will differ from the causal 

power MLE. However, since there is no closed form expression for the Bayesian estimate it cannot 

be explicitly compared to weighted Δ𝑃. Instead it becomes necessary to use simulation results to 

evaluate model performance. 

The simulation study below draws 𝑤0 and 𝑤1 from a random uniform distribution. An 

interaction term 𝑤1|0 is drawn from a beta distribution with expectation 𝐸[𝑤1|0] = 𝑤1. So once 

again, causal power is on average the correct model. The details of how 𝑤1|0 is sampled are 

provided in Appendix E.    

Next, 𝑤𝑇 is found using equation (3.10). The 𝑤0 and 𝑤𝑇 parameters are then used to generate 

samples from a binomial distribution, producing a 2x2 contingency table. Weighted Δ𝑃 and 

Bayesian causal power are applied to the contingency table to form causal strength estimates. The 

Bayesian model uses a joint uniform prior over (𝑤0, 𝑤1) while weighted Δ𝑃 uses a prior 

expectation of 𝜃 = 0.5. The simulation was repeated over various sample sizes 𝑁.  

Results are plotted in Figure 3.7 below. For small sample sizes, the Bayesian model strongly 

outperforms weighted Δ𝑃. This is because weighted Δ𝑃 is a high variance estimator for small N 

as it uses the sample estimates �̂�𝑇 and �̂�0. The Bayesian model, in contrast, smooths the sample 

estimates by combining them with prior information. Performance of both estimators improves 

with more sample information, though weighted Δ𝑃 improves more rapidly. So for moderate sized 

samples, the two estimators perform similarly. 

  

 
Figure 3.7. Mean-squared error against sample size for the Bayesian uniform and weighted Δ𝑃 models. The figure 

depicts relative performance in the context of parameter and model uncertainty. 10,000 simulations were performed 

at each sample size N. 
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As sample information accumulates, weighted Δ𝑃 continues to improve, though at a slower 

rate. Interestingly, the Bayesian model reaches a minimum and then performance degrades with 

larger samples. Why is this so? In fact, this is another example of the bias-variance trade-off. As 

the sample size increases the Bayesian model converges to the causal power MLE. We know from 

above that the MLE is unbiased on average, but this comes at a cost of increased variance. With 

model uncertainty we will sometimes have 𝑤1|0 ≫ 𝑤1 or 𝑤1|0 ≪ 𝑤1 and the MLE will badly miss 

the true value. In contrast, the weighted Δ𝑃 model is biased since it does not converge to power. 

Clearly, this property gives weighted Δ𝑃 an advantage over Bayesian power when N is large. 

To be sure, an optimal Bayesian model could be constructed for this problem. But this would 

require an additional parameter for the interaction term 𝑤1|0, and so belief would be represented 

over a 3-dimensional parameter space of (𝑤0, 𝑤1, 𝑤1|0). This would certainly constitute a marked 

increase in model complexity while improvement over the weighted Δ𝑃 rule would probably be 

negligible for moderate to large sample sizes. 

3.13 Summary 

To summarize the chapter, weighted Δ𝑃 has been shown to be an effective estimator of causal 

power when there is uncertainty in the observed probabilities 𝑃(𝑒+|𝑐+) and 𝑃(𝑒+|𝑐−). And more 

generally, it is a good estimator of causal strength when there is uncertainty about the interaction 

between the candidate and background causes. Weighted Δ𝑃 achieves performance comparable to 

Bayesian models while making far fewer representational commitments. Indeed, the simplicity of 

weighted Δ𝑃 allowed for its characterization as a Rescorla-Wagner type process model that 

requires only the incremental adjustment of association strengths. 

The replication of Perales and Shanks (2007) meta-analysis found weighted Δ𝑃 to have better 

average fit to human judgments than their preferred EI Rule. Weighted Δ𝑃 was also better than the 

Bayesian uniform model, though they were much closer in performance. This is not surprising, as 

the models give similar predictions. Much work still needs to be done to assess the empirical 

performance of weighted Δ𝑃, which is the primary task of Chapter 4. 
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Chapter 4.  

 

Empirical investigation 

4.1 Introduction 

The weighted Δ𝑃 and uniform prior Bayesian models give similar predictions, which suggests that 

they will have similar empirical performance. Yet in the Chapter 3 replication of Perales and 

Shanks (2007), weighted Δ𝑃 consistently outperformed the Bayesian model. The primary goal of 

this chapter is to find important differences in model predictions. This will hopefully allow for a 

stronger empirical contrast between the leading model contenders. 

4.2 Critical comparisons 

Recall that causal learning conditions correspond to different 2x2 contingency tables. We seek 

conditions that will best distinguish between the models of interest. Several details complicate this 

search. The first is that psychological theories of causal inference are often intended only as ordinal 

descriptions of judgment. Cheng (1997), for instance, proposes that power PC theory predicts only 

people’s rankings of causal strengths. That is, the model asserts 𝑤1 < 𝑤2 implies only that  

𝐽(𝑤1) < 𝐽(𝑤2), where 𝑤𝑖 is the causal power of cause 𝐶𝑖 and 𝐽(. ) gives the subjective rating for 

the causal powers. One difficulty, then, is that two models may differ quantitatively while giving 

ordinal predictions that are highly similar or identical.  

Another difficulty arises when model predictions depend on free parameters. The weighted 

Δ𝑃 model depends on the free parameter 𝜃. Consequently, the predicted ranking of causal strengths 

will be somewhat contingent on this parameter. 

Good empirical comparisons will be resilient to the aforementioned complications. Namely, 

they will rely on predictions that are the least sensitive to distortions of subjective evaluation so 

that 𝑤𝑖 − 𝐽(𝑤𝑖) differences are likely to be small. In addition, good comparisons are ones that are 

not strongly contingent on the choice of free parameters.  
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Let the vector [a,b,c,d] correspond to the four entries of a 2x2 contingency table and assume 

they are all positive unless explicitly noted otherwise. The generative weighted Δ𝑃 model will not 

depend on the free parameter for any conditions with 𝑐 = 0, or equivalently, with base rate 

𝑃(𝑒+|𝑐−) = 0. This is evident from the expression: 

 
𝑤Δ𝑃 = 𝑃(𝑒+|𝑐+) − (1 − 𝜃)𝑃(𝑒+|𝑐−) 

= 𝑃(𝑒+|𝑐+) 

 

A good place to start, then, are conditions in which the base rate of the effect equals zero. In these 

conditions weighted Δ𝑃 predicts judgments equal to 𝑃(𝑒+|𝑐+). Similarly, for preventive weighted 

Δ𝑃 the model is parameter free when 𝑑 = 0 or 𝑃(𝑒−|𝑐−) = 0. 

There is still the issue of probability representation. Within the cumulative prospect theory 

literature, four families of functions have been proposed for the subjective representation of 

probabilities (Cavagnaro, Pitt, Gonzalez, & Myung, 2013). The general consensus is that the 

probability weighting function 𝑊(𝑝) has an inverse sigmoid shape and that objective values are 

returned at the endpoints so that 𝑊(0) = 0 and 𝑊(1) = 1. If similar weighting applies to the 

causal learning task, then subjective representation should match objective probability for 

deterministic events. This seems reasonable, as it simply requires that people assign a strength of 

0 when they think the event will never occur and a strength of 1 when they think the event will 

always occur.  

Generative weighted Δ𝑃 always predicts deterministic strength judgments of 0 for conditions 

with [0,b,0,d] contingencies and judgments of 1 for [a,0,0,d] contingencies. This is because the 

free parameter 𝜃 does not influence these predictions. Further, these judgments are unlikely to be 

distorted by subjective representation. In sum, the weighted Δ𝑃 makes unambiguous predictions 

for this pair of conditions. 

In contrast, any reasonable Bayesian model will predict probabilistic strengths greater than 0 

for the [0,b,0,d] conditions and less than 1 for the [a,0,0,d] conditions (what is meant by 

“reasonable” is made explicit in Appendix F). Thus, weighted Δ𝑃 and Bayesian models give 

predictions that differ in kind. Comparisons over these conditions should therefore constitute a 

strong test of weighted Δ𝑃 against Bayesian models. Finally, a parallel argument can be made for 

using the [a,0,c,0] and [0,b,0,d] contingencies when contrasting predictions for preventive causes. 
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4.3 Aggregate measures of causal judgment 

The standard approach in causal learning studies is to report sample means from each condition, 

and then fit the competing models to these means. Though this approach is the norm, it does 

complicate inference to the individual level. Models of causal judgment are generally intended to 

describe individual level behavior. But as Danks and Eberhardt (2011) observe, if one uses an 

aggregate measure, such as the mean, then it should be compared to the corresponding aggregate 

of the model predictions. Aggregate predictions require a more elaborate model that includes an 

account of error or individual variation. The original formulation of weighted Δ𝑃 and Bayesian 

models comes with no such account. Without a description of error, the best that can be done is to 

choose an aggregate measure that well-represents the “typical” individual response for each 

condition. One goal of this chapter is to evaluate whether group means, or some other aggregate 

measure, is a reasonable proxy for typical individual responses. 

4.4 Experiment 1 

The experiments described below are quite similar to those performed by Collins and Shanks 

(2006). In these experiments, participants read a novel cover story in which they are asked to 

interpret hypothetical laboratory results. Novel cover stories are used to ensure that participants all 

have the same hypothesis space and the same prior beliefs about the task domain (Danks & 

Eberhardt, 2011). It should also lead them to assign roughly equal utility to the different 

hypotheses, and so participants should primarily be concerned with accuracy when formulating 

their predictions. 

The goal of experiment 1 was to collect individual-level data to be used in the critical 

comparisons discussed above. In addition, response distributions are used to evaluate various 

aggregate measures of performance. 

4.4.1 Methods 

Participants. Undergraduate students from the University of Washington (𝑁 = 285) participated 

in the task. All participants were recruited through introductory psychology courses and awarded 

a small amount of course credit. Participants were 58% female and ages ranged from 16 to 25. 
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Design and Procedure. Participants enrolled through the psychology subject pool program, where 

they were provided a link to the study. The experiment was administered via the internet using the 

Qualtrics software package. Each participant worked through one practice condition before 

random assignment to 2 out of the 15 experimental conditions. The contingencies for each 

condition are shown in Table 4.1 below. Participants were given the following instructions: 

During this task you will see laboratory records from two studies. In each study, you will see 
information about administering a particular protein to a different species of butterfly. In a test 
given some time later, the butterflies were examined for whether their OPTIX gene was turned 
on. 
 
Of course, regular cell processes can cause activation of the OPTIX gene even in insects that are 
not given the protein treatment. What you must decide is whether and how strongly the proteins 
administered to the butterflies in the experiment can independently cause gene activation. 
  
There are 32 butterflies in each study. Half of the butterflies in each study were randomly 
assigned to a group receiving the protein, and half to a group not receiving the protein. Each 
record tells you whether or not a particular butterfly has been exposed to the relevant protein, and 
you will be asked to predict whether a test given later will find that this butterfly's OPTIX gene has 
been turned on. 
  
When you have made your prediction you will be told if gene activation occurred. Use this 
feedback to try to find out whether the protein really causes gene activation. Although initially you 
will have to guess, by the end you will be an expert. 
  
At regular intervals during each study you will be asked to estimate the degree to which the 
protein causes gene activation, and to state how confident you are in your estimate. Further 
instructions will explain at the appropriate time how to make these estimates. Please try to be as 
accurate as possible. You can now try some practice trials before the main test begins. 

Learning trials were presented sequentially in blocks of sixteen, with trial order randomized within 

each block. Each trial showed a color picture of the butterfly and whether it was treated with the 

protein. Participants were asked to use the keyboard to predict whether “yes, the gene will be 

turned ON” or “no, the gene will be turned OFF”. Immediately after the prediction they were given 

feedback that showed a color coded image of a gene that was also labeled as either “ACTIVE” or 

“INACTIVE”. After 16 trials participants were asked to make a causal strength estimate. The 

participant then worked through another 16 trials which were followed with a four questions. They 

were asked to make a final causal strength judgment. A variant of the standard causal probe was 

used for the strength estimate by asking participants: 
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Please estimate the degree to which the protein causes gene activation. 
 
Select a value between 0 and 100, where 0 indicates that the protein never causes activation and 
100 indicates that the protein always causes gene activation. Intermediate numbers indicate 
intermediate levels of causal influence. 

Below the question was a slider scale with tick marks labeled at 10-unit increments, though 

participants were free to select any number between 0 and 100. The beginning position of the slider 

was at a rating of 50. Above the 0 on the scale at the far left was text that said “Never Activates” 

and above the 100 on the right was the text “Always Activates”. To the left of the scale was the 

label “Strength of Protein Influence”. Participants made their judgments by using the mouse to 

click on the scale. On the mouse click, a number appeared to the right of the scale, which indicated 

the value of the judgment.  

Immediately below the causal probe was a question asking, “How confident are you in the 

judgment you have just made on a scale from 0 (not at all confident) to 100 (certain)?”. This 

question was also accompanied by a 0 to 100 slider with the label “Uncertain” over the 0 tick mark 

and the label “Certain” over the 100 tick mark. 

After submitting their causal strength and confidence judgments participants were presented 

with two additional questions that asked them to estimate the conditional probabilities 𝑃(𝑒+|𝑐+) 

and 𝑃(𝑒+|𝑐−). Specifically, for 𝑃(𝑒+|𝑐+) they were asked: 

Suppose you observe another collection of protein-treated Gonepteryx Formosana butterflies. 
Please estimate the percentage that will have activated genes. 

And for 𝑃(𝑒+|𝑐−) they were asked: 

Suppose you observe another collection of untreated Gonepteryx Formosana butterflies. Please 
estimate the percentage that will have activated genes. 

Pictures of the butterfly with the cause present or absent accompanied each of the questions. Once 

again, participants used a 0 to 100 slider scale to make their judgments. The order of these 

questions was counterbalanced across participants. 

4.4.2 Results 

I begin by examining responses for the key conditions identified in Section 4.2. For the [0,8,0,8] 

condition, 35 out of 42 participants gave strength ratings of 0. And for the [8,0,0,8] condition, 32 



105 

 

 

out of 40 participants gave strength ratings of 100. Thus, in both conditions a large majority of 

respondents returned the point prediction of the weighted Δ𝑃 model.  

Next, I explore causal strength response distributions within each condition, as shown in 

Figure 4.1. Several conditions have strongly skewed distributions with modal judgments clustered 

at 0 or 100. The best examples are the just mentioned [0,8,0,8] and [8,0,0,8] conditions. However, 

other experimental conditions also demonstrate these features. In particular, conditions with 

observed 𝑃(𝑒+|𝑐+) = 1 are all left-skewed with many responses of 100. Consequently, median 

judgments are reported since they appear to better reflect typical responses. The decision to use 

medians is justified more fully in the discussion below. 

In order to use and compare medians it is necessary to characterize their variance. Wilcox 

(2010, 2012) observes that a high proportion of tied scores can create problems when attempting 

to compute confidence intervals for the median. He goes on to recommend percentile bootstrap 

confidence intervals, as they have been shown to perform well even with many tied ranks in the 

data. Since tied ranks are quite common in some of the experimental conditions, such as the two 

just discussed above, I follow Wilcox’s advice and compute 95% percentile bootstrap confidence 

 

  
Figure 4.1. Histograms of response counts across the 15 conditions of experiment 1. Condition labels of [a,b,c,d] 

give the four frequencies of the 2x2 contingency table. 
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intervals for each condition. Specifically, I use the binomial method of finding approximate 

confidence intervals (cf. Wilcox, 2012, p. 130). 

Median judgments with 95% bootstrap confidence intervals and model predictions are shown 

in Table 4.1 and plotted in Figure 4.2. Notice that the conditions in the figure are grouped by the 

base rate of the effect. Overall, the weighted ΔP model does quite well describing the data, with 

12 out of 15 predictions within the 95% confidence intervals and two of the misses occurring right 

on the boundary. Note that in the key [0,8,0,8] and [8,0,0,8] conditions, the 95% bootstrap intervals 

have no length. This results from the strong modal responses of 0 and 100 respectively in these 

two conditions. 

Table 4.1. Design and results of experiment 1: generative component 

 

Experiment 

 

a 

 

b 

 

c 

 

d 

 

median 

rating 

 

bootstrap 

95% CI 

 

 

MLE 

 

 

𝑤Δ𝑃 

 

uniform 

Bayes 

 0 8 0 8 0 [0,0] 0 0 10 

 2 6 0 8 20 [13,24] 25 25 25 

 4 4 0 8 54 [39,60] 50 50 44 

 6 2 0 8 80 [75,81] 75 75 66 

 8 0 0 8 100 [100,100] 100 100 88 

 2 6 2 6 25 [20,30] 0 18 20 

 4 4 2 6 50 [50,52] 33 43 34 

 6 2 2 6 72 [61,76] 67 68 56 

 8 0 2 6 100 [89,100] 100 93 84 

 4 4 4 4 40 [33,49] 0 36 27 

 6 2 4 4 60 [56,63] 50 61 45 

 8 0 4 4 97 [85,100] 100 86 77 

 6 2 6 2 60 [45,62] 0 54 37 

 8 0 6 2 80 [73,95] 100 79 67 

 8 0 8 0 40 [0,95] NA 71 56 

Notes. The weighted Δ𝑃 free parameter 𝜃 = .71 gave best fit to human median judgments across both generative 

and preventive conditions (see Table 4.2) as measured by mean squared error. 
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Figure 4.2. Median judgments, 95% bootstrap confidence intervals, and model predictions across the 15 conditions 

of experiment 1. Conditions are grouped by the observed base rate of the effect 𝑃(𝑒+|𝑐−). 

Condition [8,0,8,0] has an extremely wide confidence interval, stretching from 0 to 95. This 

is due to the bimodality of the response distribution (Figure 4.1). Of the 35 respondents, 12 gave 

a rating of 0, 11 gave a rating of 100, and the remaining 12 were distributed across the interior of 

the interval. Hence, there appear to be several distinct response strategies within this condition, a 

topic considered in more depth below. 

Now focus on the first five conditions in which the observed base rate of the effect is equal to 

0. For these conditions the weighted Δ𝑃 model has no free parameters. Thus, for these conditions 

all weighted Δ𝑃 models predict strength ratings equal to 𝑃(𝑒+|𝑐+). These predictions are generally 

borne out, with four of five within the 95% confidence interval. The lone miss occurs for the 

[2,6,0,8] condition in which the weighted Δ𝑃 prediction is 25 while the 95% interval extends from 

13 to 24. 

Since participants were also asked to judge 𝑃(𝑒+|𝑐+), it is possible to directly test the 

weighted Δ𝑃 predictions for the zero base-rate conditions. Specifically, we can test people’s causal 

strength rating against their subjective probability assessments for 𝑃(𝑒+|𝑐+). The percentile 

bootstrap method can again be used by randomly sampling pairs of observations from the data. 
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Table 4.2. Percentile bootstrap 95% confidence intervals for median difference scores of causal 

strength ratings minus 𝑃(𝑒+|𝑐+) ratings. 

 

Experiment 

 

a 

 

b 

 

c 

 

d 

 

median 

difference score 

 

Bootstrap 

95% CI 

 

 0 8 0 8 0 [0,0] 

 2 8 0 8 0 [-6,0] 

 4 8 0 8 -6.5 [-9,0] 

 6 8 0 8 0 [-1,0] 

 8 8 0 8 0 [0,0] 

 

Medians of the difference scores and 95% bootstrap confidence intervals are shown in Table 

4.2. The results strongly support the weighted Δ𝑃 prediction that, when the base rate of the effect 

𝑃(𝑒+|𝑐−) is zero, causal strength ratings equal the judged probability for 𝑃(𝑒+|𝑐+). The median 

difference score equals exactly 0 in 4 of the 5 conditions. There is a small nonzero median 

difference for the [4,8,0,8] condition, though the associated 95% confidence does include 0, 

implying that the hypothesis of “no difference” remains plausible. 

4.4.3 Discussion 

Exploratory analysis revealed that participants are predisposed to give ratings of 0 or 100 for a 

number of the experimental conditions. Henceforth, I refer to this predisposition as the 

deterministic bias. I refer to 0 and 100 as deterministic ratings since they indicate that the effect 

does not or does occur with certainty. Correspondingly, ratings from 1 to 99 will be referred to as 

probabilistic ratings. 

The deterministic bias was strongest in the [0,8,0,8] and [8,0,0,8] conditions, for which a large 

majority gave ratings of 0 and 100, respectively. This finding provides strong evidence against all 

Bayesian models of causal power. It can be shown (Appendix F) that no Bayesian model of 

parameter estimation will return the 0 and 100 predictions for the [0,8,0,8] and [8,0,0,8] conditions 

and also give probabilistic predictions for the other conditions. Typical Bayesian models, including 

the uniform and SS prior models, will give probabilistic predictions for the [0,8,0,8] and [8,0,0,8] 

conditions. Nonetheless, a minority of participants did give small nonzero strength ratings in the 
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[0,8,0,8] condition. Similarly, in the [8,0,0,8] condition a small group gave high ratings that were 

below 100. So at least some respond probabilistically in these conditions. While these ratings are 

more consistent with a Bayesian model, much additional evidence is necessary to show that this 

subgroup is in fact using something like Bayesian inference. 

The deterministic bias also appears in a number of other conditions. A large proportion of 100 

ratings occur in the [8,0,2,6], [8,0,4,4] and [8,0,6,2] conditions (Figure 4.1). Meanwhile, the 

[8,0,8,0] condition is strongly heterogeneous with about a third of ratings equal to 0, a third equal 

to 100, and the remaining third probabilistic. This heterogeneous pattern leads to an extremely 

wide 95% confidence interval (Figure 4.2) stretching from 0 to 95.  

Thus, for a number of conditions there appears to be a mixture of response strategies with 

some respondents giving deterministic 0 or 100 ratings while others give probabilistic ratings. As 

point-estimators of causal strength, the weighted Δ𝑃 and Bayesian models cannot account for such 

mixed response patterns. I take up the general issue of mixed deterministic and probabilistic 

responses in the general discussion below. 

The use of group means, used in previous causal learning studies, will conceal any potential 

deterministic bias. Absent strict consensus, the mean rating for a condition will always be 

probabilistic as it will occur between 0 and 100. Indeed, of the 114 conditions used in the Perales 

and Shanks (2007) meta-analysis, none of them had aggregate scores equal to 0 or 100. Yet given 

the response distributions shown in Figure 4.1, there is good reason to believe that the mean is not 

a good representation of individual strategies. Group means will not be representative of a typical 

response when distributions are highly skewed or if responses fall into several distinct clusters. 

The median, in contrast, will equal 0 or 100 so long as a majority of individuals give these ratings 

in a given condition. In such cases, the median is identical to the mode, and so it represents the 

rating given by most participants. 

The median is often a preferred aggregate measure when observations are drawn from highly 

skewed distributions. This is why it is routinely used to characterize income or wealth 

distributions. In conditions for which there is a relatively symmetric response pattern, mean and 

median judgments will be quite similar, and so there is no strong reason to prefer one over the 

other. 

Given the properties of the data, the median seems a better aggregate measure of a “typical” 

response for a given condition. Nonetheless, when several distinct response strategies are present, 
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the best an aggregate summary can do is to represent the dominant strategy. And when there is no 

dominant strategy, such as with the [8,0,8,0] condition, no aggregate point measure will be 

representative of a typical response. 

4.5 Experiment 2 

The purpose of experiment 2 was to see if the experiment 1 findings also hold for preventive 

causes. The data from experiments 1 and 2 are also used to evaluate competing linear combination 

models of causal judgment, as described in a later section. Experiment 2 is almost identical to 

experiment 1, except now participants are presented with a scenario in which the cause potentially 

prevents the effect. 

4.5.1 Methods 

Participants. Undergraduate students from the University of Washington (𝑁 = 325) participated 

in the task. All participants were recruited through introductory psychology courses and awarded 

a small amount of course credit. Participants were 59% female and ages ranged from 15 to 35. 

Design and Procedure. Design and procedure are identical to experiment 1 except where noted 

below. The experimental contingencies, shown in Table 4.3, now reflect the action of a preventive 

cause so that the effect tends to occur less often with the cause present. The task instructions were 

also slightly modified to indicate that the potential cause was preventive. The instructions read: 

Imagine you are working in a laboratory studying several species of threatened butterflies. The 
widespread use of pesticides has presented a serious problem for these populations. Previous 
research has shown that some protection against pesticides occurs when a butterfly’s OPTIX 
gene is turned off. 

  
Your lab has begun to work on protein treatments that you hope will prevent activation of the 
OPTIX gene in the butterfly genome. In recent pilot studies you have administered these proteins 
to several of the threatened species. 
 
During this task you will see laboratory records from two studies. In each study, you will see 
information about administering a particular protein to a different species of butterfly. In a test 
given some time later, the butterflies are examined for whether their OPTIX gene was turned on. 
   
There are 32 butterflies in each study. Half of the butterflies in each study were randomly 
assigned to a group receiving the protein, and half to a group not receiving the protein. Each 
record tells you whether or not a particular butterfly has been exposed to the relevant protein, and 
you will be asked to predict whether a test given later will find that this butterfly's OPTIX gene has 
been turned on. 
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When you have made your prediction you will be told if gene activation occurred. Use this 
feedback to try to find out whether the protein really prevents gene activation. Although initially 
you will have to guess, by the end you will be an expert. 
  
At regular intervals during each study you will be asked to estimate the degree to which the 
protein prevents gene activation, and to state how confident you are in your estimate. Further 
instructions will explain at the appropriate time how to make these estimates. Please try to be as 
accurate as possible. 
  
You can now try some practice trials before the main test begins. 

Learning trials were presented as in experiment 1 with participants asked to predict whether the 

gene was on or off. After 16 trials, participants were asked to make a causal strength estimate. 

Then after another 16 trials they were asked to make a final causal strength judgment, give a 

confidence rating for the judgment, and also estimate 𝑃(𝑒+|𝑐+) and 𝑃(𝑒+|𝑐−). The standard 

causal probe used for the strength judgment was: 

Please estimate the degree to which the protein prevents gene activation. 
 
Select a value between 0 and 100, where 0 indicates that the protein does not prevent activation 
and 100 indicates that the protein always prevents gene activation. Intermediate numbers 
indicate intermediate levels of preventive influence. 

Participants again used a slider scale to make their causal strength ratings. Now above the 0 on the 

scale at the far left was text that said “Does not prevent” and above the 100 on the right was the 

text “Always Prevents”. The confidence and conditional probability questions were identical to 

those described in experiment 1. 

4.5.2 Results 

Results are presented in the same order as was done for the generative component, beginning with 

the key comparisons discussed at the beginning of the chapter. Recall that preventive weighted Δ𝑃 

is defined with respect to 𝑃(𝑒−|𝑐+) and 𝑃(𝑒−|𝑐−). So now the weighted Δ𝑃 model gives a strength 

of 0 for the [8,0,8,0] condition and a strength of 1 for the [0,8,8,0] condition. Moreover, preventive 

weighted Δ𝑃 does not depend on the free parameter 𝜃 whenever 𝑃(𝑒−|𝑐−) = 0, or for conditions 

in which the effect always occurs when the cause is absent since 𝑃(𝑒+|𝑐−) = 1 − 𝑃(𝑒−|𝑐−) = 1. 

In the [8,0,8,0] condition, 24 out of 40 participants gave a strength rating of 0. And for the 

[0,8,8,0] condition, 32 out of 49 participants gave strength ratings of 100. Once again, in both 
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conditions a majority of respondents conformed to the point prediction of the weighted Δ𝑃 model. 

However, the majorities were smaller in comparison to the experiment 1. I speculate on what may 

be driving this difference in the discussion below. 

The causal strength response distributions of each condition are shown in Figure 4.3. The 

conditions in Figure 4.3 are arranged in the same order as Figure 4.1 by Δ𝑃 and causal power. 

Equivalently, the conditions arranged by 𝑃(𝑒+|𝑐+) and 𝑃(𝑒+|𝑐−) in Figure 4.1 are 

correspondingly arranged by 𝑃(𝑒−|𝑐+) and 𝑃(𝑒−|𝑐−) in Figure 4.3. The corresponding conditions 

across the two figures have similar response distributions, though the preventive conditions appear 

to have somewhat more dispersion. As before, a number of conditions are skewed with modal 

judgments clustered at 0 or 100. In Figure 4.3, conditions with observed 𝑃(𝑒−|𝑐+) = 1 are all left-

skewed with many responses of 100. 

Median judgments with 95% bootstrap confidence intervals and model predictions are shown 

in Table 4.3 and plotted in Figure 4.4. Conditions are grouped by the base rate of the effect. 

Weighted Δ𝑃 does a good job describing the data, with 11 out of 15 predictions within the 95% 

confidence intervals and several misses occurring right on the boundary. Once again, the key 

 

 
Figure 4.3. Histograms of response counts across the 15 conditions of experiment 2. Condition labels of [a,b,c,d] 

give the four frequencies of the 2x2 contingency table. 
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conditions have extremely narrow confidence intervals. The [8,0,8,0] condition has a 95% 

confidence interval from 0 to 1 while the [0,8,8,0] condition has no length centered on 100. This 

is due to the respective modal responses of 0 and 100 in these two conditions. 

Condition [0,8,0,8] has an extremely wide confidence interval from 0 to 88, which is due to a 

bimodality in the response distribution (Figure 4.3). Of the 46 respondents, 19 gave a rating of 0, 

15 gave a rating of 100, and the remaining 12 were distributed across the interval. Interestingly, 

four respondents gave a rating of exactly 50, which is sometimes used as a proxy for “uncertain”. 

Overall, the ratings closely parallel the result for the [8,0,8,0] condition in the generative 

experiment. 

Table 4.3. Design and results of experiment 2: preventive component 

 

Experiment 

 

a 

 

b 

 

c 

 

d 

 

median 

rating 

 

bootstrap 

95% CI 

 

 

MLE 

 

 

𝑤Δ𝑃 

 

uniform 

Bayes 

 8 0 8 0 0 [0,1] 0 0 10 

 6 2 8 0 19 [12,25] 25 25 25 

 4 4 8 0 50 [50,60] 50 50 44 

 2 6 8 0 80 [75,83] 75 75 65 

 0 8 8 0 100 [100,100] 100 100 88 

 6 2 6 2 40 [18,60] 0 18 19 

 4 4 6 2 60 [50,61] 33 43 34 

 2 6 6 2 68 [60,71] 67 68 56 

 0 8 6 2 94 [87,99] 100 93 84 

 4 4 4 4 48 [36,50] 0 36 27 

 2 6 4 4 60 [52,69] 50 61 46 

 0 8 4 4 94 [74,100] 100 86 77 

 2 6 2 6 61 [50,66] 0 54 36 

 0 8 2 6 90 [80,94] 100 79 67 

 0 8 0 8 50 [0,88] NA 71 54 

Notes. The weighted Δ𝑃 free parameter 𝜃 = .71 gave best fit to human median judgments across both generative 

(see Table 4.1) and preventive conditions as measured by mean squared error. 
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Figure 4.4. Median judgments, 95% bootstrap confidence intervals, and model predictions across the 15 conditions 

of experiment 2. Conditions are grouped by the observed base rate of the effect 𝑃(𝑒+|𝑐−). 

The first five conditions in Table 4.3 and Figure 4.4 have the observed base rate of the effect 

equal to 1. In these conditions, the weighted Δ𝑃 model has no free parameters since the weight 

multiplies 𝑃(𝑒−|𝑐−) = 0. Again, for these conditions all weighted Δ𝑃 models predict strength 

ratings equal to 𝑃(𝑒−|𝑐+). Observed judgments agree with weighted Δ𝑃, with all five of the 95% 

confidence intervals containing the predicted values. 

Once again, participant judgments for 𝑃(𝑒+|𝑐+) may be used to test predictions for the 

𝑃(𝑒+|𝑐−) = 1 conditions. Preventive weighted Δ𝑃 predicts judgments of 𝑃(𝑒−|𝑐+) for these 

conditions. Hence, causal strength ratings are compared to 100 minus the subjective probability 

assessments for 𝑃(𝑒+|𝑐+) since 𝑃(𝑒−|𝑐+) = 1 − 𝑃(𝑒+|𝑐+). Medians of the difference scores and 

95% bootstrap confidence intervals are shown in Table 4.4.  Again, the data strongly support the 

weighted Δ𝑃 prediction. Median difference scores are exactly 0 in 4 out of the 5 conditions. There 

is a small nonzero difference for the [2,6,8,0] condition, though the associated 95% confidence 

interval does cover 0. 
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Table 4.4. Percentile bootstrap 95% confidence intervals for median difference scores of causal 

strength ratings minus [100 − 𝑃(𝑒+|𝑐+)] ratings. 

 

Experiment 

 

a 

 

b 

 

c 

 

d 

 

median 

difference score 

 

Bootstrap 

95% CI 

 

 8 0 8 0 0 [0,0] 

 6 2 8 0 0 [-9,0] 

 4 4 8 0 0 [0,4] 

 2 6 8 0 2 [0,20] 

 0 8 8 0 0 [0,1] 

 

4.5.3 Discussion 

The results from experiment 2 replicate the findings from experiment 1. A deterministic bias was 

observed in conditions [8,0,8,0] and [0,8,8,0] in which a majority of people gave ratings of 0 and 

100, respectively. Once again, this finding is incompatible with all Bayesian models of strength 

estimation. The deterministic bias was also present in a number of additional conditions. Whenever 

the effect failed to occur, some proportion of respondents gave causal strength ratings of 100. And 

in the [0,8,0,8] condition there was a bimodal response with many strength ratings of 0 or 100. As 

in experiment 1, there is evidence for a mixture of causal judgment strategies. 

One potentially interesting difference between experiments 1 and 2 is that there appears to be 

more variation in responses for the preventive conditions. There is a median confidence interval 

width of 13 for the preventive experiment versus a median width of 11 across the generative 

conditions. Moreover, the preventive confidence intervals are wider despite more observations per 

condition relative to the generative experiment. A possible explanation is that participants find the 

preventive conditions more difficult. Such an explanation would seem to agree with the mechanics 

of the preventive weighted Δ𝑃 model. Recall that under the preventive model, a “success” must 

be coded as the absence of an occurrence. Coding occurrences as “successes” would seem to be 

more natural than coding a non-occurrence as such. If this is in fact true, then preventive weighted 

Δ𝑃 will require more cognitive effort and should lead to more errors. 
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4.6 Cross-validation study 

The predictions presented above are from a weighted Δ𝑃 model with a single free parameter 𝜃 that 

represents prior expected strength for both generative and preventive causes. Specifically, they are 

from the 1-parameter weighted Δ𝑃 model: 

 

�̂�1 = {
𝑃(𝑒+|𝑐+) − (1 − 𝜃)×𝑃(𝑒+|𝑐−)   for generative 𝐶

 𝑃(𝑒−|𝑐+) − (1 − 𝜃)×𝑃(𝑒−|𝑐−)  for preventive 𝐶
 (4.1) 

Of course, there are other possible linear combination models. For instance, prior expectations 

may differ across generative and preventive contexts. This would result in the more general model: 

 

�̂�1 = {
𝑃(𝑒+|𝑐+) − (1 − 𝜃𝑔)×𝑃(𝑒

+|𝑐−)   for generative 𝐶

 𝑃(𝑒−|𝑐+) − (1 − 𝜃𝑝)×𝑃(𝑒
−|𝑐−) for preventive 𝐶

 (4.2) 

where 𝜃𝑔 and 𝜃𝑝 are prior expected causal powers for respective generative and preventive 

contexts. Thus, model (4.1) is a special case of (4.2) with the restriction 𝜃𝑔 = 𝜃𝑝 = 𝜃. Finally, in 

Chapter 3 we saw the most general linear combination model: 

 

�̂�1 = {
𝛾0 + 𝛾1𝑃(𝑒

+|𝑐+) + 𝛾2𝑃(𝑒
+|𝑐−)      for generative 𝐶

𝜋0 + 𝜋1𝑃(𝑒
+|𝑐+) + 𝜋2𝑃(𝑒

+|𝑐−)    for preventive 𝐶
 (4.3) 

where {𝛾0, 𝛾1, 𝛾2} are the weights for generative contexts and {𝜋0, 𝜋1, 𝜋2} are the weights for 

preventive contexts. We also saw in Chapter 3 how (4.3) is the more general case of (4.2). The 

generative model is given by the restrictions 𝛾0 = 0, 𝛾1 = 1 and 𝛾2 = −(1 − 𝜃𝑔) while the 

preventive model is from the restrictions 𝜋0 = 𝜃𝑝, 𝜋1 = −1 and 𝜋2 = (1 − 𝜃𝑝). 

The choice of (4.1) as the preferred model can be justified, in part, by its strong performance 

in the replication of Perales and Shanks (2007) cross-validation study. However, the data collected 

in experiments 1 and 2 above can also be used to create our own model competition study. Indeed, 

access to individual observations allows for a cross-validation approach that is better suited to the 

model selection task. In the next section I describe this cross-validation method. Then I apply the 

method to assess models (4.1) through (4.3) to see which one gives the best account of the data. 
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4.6.1 Method 

Cross-validation is the standard method used to estimate a model’s prediction or test error (Hastie 

et al., 2009; James, Witten, Hastie, & Tibshirani, 2015). Recall that Perales and Shanks (2007) 

began with mean judgments from 114 experimental conditions. For each calibration-validation 

iteration, they randomly split the sample of conditions, fit the models to half of the condition 

means, and evaluated predictions against the other half. On this approach, conditions are randomly 

sampled while judgments for a condition are treated as fixed. The approach, then, tells us how well 

a model calibrated to one set of experiments will generalize to a new set of different experiments. 

To the extent that there is redundancy among experimental conditions, their approach will also 

inform how well model predictions generalize from one set of participants to another. 

Ideally, we want to know a model’s predictive accuracy over the greatest diversity of contexts. 

This will ensure that the model is strong over the most general set of circumstances. Perales and 

Shanks were limited by only having group means for each condition, and so they could only fit 

and test models against a subset of conditions in their cross-validation study. Access to the 

individual observations within each condition frees us from this constraint. The below cross-

validation study randomly samples observations within each condition. This allows for the use of 

the entire set of experimental conditions on each iteration. Specifically, on each iteration 

observations are randomly divided into calibration and validation samples within each condition. 

Summary statistics, such as medians, are found for each condition using the calibration and 

validation samples. These medians can then be used to fit and evaluate the competing models. 

On this approach, then, the set of conditions are fixed while individual observations are 

sampled. The approach informs us how well models will generalize to new sets of observations 

gathered in the same experimental conditions. By using every condition, the approach maximizes 

the diversity of contexts against which predictions are evaluated. Thus, it is paramount that the 

conditions employed constitute a balanced sample from the space of all possible experiments. The 

conditions of experiments 1 and 2 constitute the same set as those used in Wasserman et al. (1993) 

and Buehner and Cheng (1997). These studies were each intended as comprehensive assessments 

of causal learning. So it is reasonable to believe that experiments 1 and 2 form a balanced sample 

from the space of all possible contingency tables. 
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An additional amendment concerns the formation of the calibration and validation samples. 

As mentioned above, Perales and Shanks used a 50-50 split in forming these samples. A 

disadvantage of this method is that it throws away half of the sample for the training set, which 

may lead to an overestimate of the prediction error (Hastie et al., 2009; James et al., 2015). This 

risk will be exaggerated if the sample size is moderate to small and the fitted model has many free 

parameters.  

One alternative to the 50-50 split is leave-one-out cross-validation. On this method, models 

are fit to the entire sample except for a single observation. The difference between the model 

prediction and the single observation can be used as an estimate of the prediction error, and this 

process can be repeated for every observation in the data set. The advantage of leave-one-out cross-

validation is that it is a less biased estimate of prediction error. Yet the bias-variance trade-off also 

holds for the estimation of prediction error. While leave-one-out cross-validation is low bias, it is 

also very high in variance. 

In lieu of a 50-50 split or leave-one-out cross-validation, researchers now advocate for an 

intermediate method known as k-fold cross-validation (Hastie et al., 2009; James et al., 2015). The 

mechanics are quite similar to the previous approaches. First, observations are randomly divided 

into k-groups or folds. The first group is held out as a validation sample while the model is fit to 

the data in the remaining 𝑘 − 1 groups. Model predictions are then compared to the first group in 

order to estimate test error. The process is then repeated, with each of the k groups serving as the 

validation set and the remaining 𝑘 − 1 groups serving as the calibration set. Statistical learning 

researchers have found that using 𝑘 = 5 or 𝑘 = 10 tends to have good properties in terms of 

balancing bias and variance in the estimation of prediction error. 

In summary, this cross-validation study randomly divides observations within each condition, 

thus allowing all conditions from experiments 1 and 2 to be used on each iteration. The study uses 

k-fold cross validation with both 𝑘 = 5 and 𝑘 = 10. Test error is estimated using the validation 

sample mean squared error, averaged over each of the k folds. Finally, the k-fold procedure is 

iterated to ensure robustness of the results. There are 2000 iterations for 𝑘 = 5 while there are 

1000 iterations for 𝑘 = 10. This gives 10,000 estimates of the prediction error for each of the 

simulations. 
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4.6.2 Results 

Median mean-squared errors and median parameter estimates from the cross-validation study are 

shown in Table 4.5. The 1-parameter model corresponds to (4.1), the 2-parameter model to (4.2), 

and the linear combination model to (4.3), above. 

Across both the 𝑘 = 5 and 𝑘 = 10 folds, the 1-parameter model has the lowest median MSE, 

followed by the linear combination model and then the 2-parameter model. Overall, MSEs for the 

1-parameter and linear combination model are quite close. Parameter estimates are approximately 

the same across the two fold sizes. Note that the median parameter estimates for the linear 

combination model are nearly equal to the restrictions implied by the weighted Δ𝑃 model. 

MSE for each model is higher in the 𝑘 = 10 than in the 𝑘 = 5 simulation. The stability of the 

parameter estimates suggests an explanation for this result: If parameter estimates are relatively 

unchanged from 𝑘 = 5 to 𝑘 = 10, then the primary driver of MSE will be sampling variability in 

the validation sample. And since 𝑘 = 10 has smaller validation samples it will result in a larger 

average MSE. 

Though not reported in the table, the study also evaluated was Perales and Shanks’ (2007) EI 

rule. Median fit was quite poor with an MSE of 982 for 𝑘 = 5 and an MSE of 1026 for 𝑘 = 10. 

One can also specify a directed EI rule that allows cell weights to vary with causal direction, similar 

to the linear combination model above. The directed EI rule had much better median fit, though 

was not better than the models reported in Table 4.5. 

Table 4.5. Median MSE of prediction and median parameter estimates for the k-fold cross-

validation study. 

 k=5 k=10 

Model 
Median 

MSE 
Median parameter fits 

Median 

MSE 
Median parameter fits 

1-parameter 243 𝜃 = .70 287 𝜃 = .71 

2-parameter 260 
𝜃𝑔 = .68 

𝜃𝑝 = .74 
300 

𝜃𝑔 = .67 

𝜃𝑝 = .75 

Linear 

combination 
250 

{𝛾0 = .04, 𝛾1 = 1.03, 𝛾2 = −.42} 
{𝜋0 = .71, 𝜋1 = −.93, 𝜋2 = .31} 

290 
{𝛾0 = .04, 𝛾1 = 1.03, 𝛾2 = −.43} 
{𝜋0 = .72, 𝜋1 = −.93, 𝜋2 = .30} 

Notes. Results of k=5 folds and 2000 simulations shown in left panel and k=10 folds and 1000 simulations in the 

right panel. 
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4.6.3 Discussion 

The cross-validation results support the choice of a 1-parameter weighted Δ𝑃 rule over the more 

general 2-parameter weighted Δ𝑃 and the 6-parameter linear combination model. 

If the 1-parameter model is, in fact, the true population model then we should expect model 

performance to converge as sample size increases. A large calibration sample would produce 

parameter estimates for (4.2) and (4.3) that would match the restrictions implied by (4.1), and so 

MSE for the validation sample would be identical across all models. Further, convergence should 

occur more quickly for (4.2) since there is only one additional parameter. Yet the above results 

show that (4.1) and (4.3) are closer in MSE. Why might this be the case?  

We know from experiments 1 and 2 that 1-parameter weighted Δ𝑃 does not appear to be the 

correct model for all conditions. In particular, it performs poorly in the generative [8,0,8,0] and 

the preventive [0,8,0,8] conditions, among others. If the 1-parameter weighted Δ𝑃 model is correct 

for only a majority of the conditions, then the additional flexibility of the linear combination model 

may allow for better performance as the sample size becomes arbitrarily large. The current sample 

size may be “intermediate” so that the linear combination model has enough information to surpass 

the 2-parameter model, but not yet enough to supplant the 1-parameter model.  

4.7 General discussion 

The results from experiments 1 and 2, as well as the cross-validation study, further bolster 

confidence in the 1-parameter weighted Δ𝑃 model of causal judgment. Furthermore, the above 

analysis suggests why the weighted Δ𝑃 model is empirically stronger than Bayesian models. 

Namely, all weighted Δ𝑃 models predict deterministic judgments for generative conditions of the 

form [0,b,0,c] and [a,0,0,d] and preventive conditions of the form [a,0,c,0] and [0,b,c,0]. In 

contrast, no reasonable Bayesian model of strength estimation will make such predictions. 

Exploratory analysis suggests that medians rather than means better represent typical 

individual response strategies. Condition means conceal the deterministic bias, thus making 

judgments appear more consistent with Bayesian predictions. This finding echoes Mozer et al.’s 

(2008) criticism of Griffiths and Tenenbaum (2006), wherein the aggregate resembles Bayesian 

inference even though individual judgments do not. 
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Ideal data would be sufficiently rich so that individual strategies could be modeled instead of 

group means or medians. Such data would require many repeated measurements per individual, 

which is not feasible using a sequential presentation format. Datasets with many repeated 

measurements, such as those in Yeung and Griffiths (2015), use a list presentation format. One 

possible analysis would be to use cross-validation on the Yeung and Griffiths’ data to determine 

which model best predicts individual judgment strategies. Such an analysis, of course, assumes 

that similar psychological mechanisms are used across the sequential and list presentation formats. 

As mentioned in Chapter 1, there are reasons to be skeptical of this assumption (cf. Perales & 

Shanks, 2008). For instance, list formats seem to be incompatible with any associative updating, 

as is found in the Rescorla-Wagner model. 

Because it is standard to only report condition means, it is difficult to know whether 

deterministic bias was widespread in previous studies. However, there is suggestive evidence. 

Buehner and Cheng (1997) reported the highest standard errors as occurring in the generative 

[8,0,8,0] and preventive [0,8,0,8] conditions. Such findings are consistent with bimodal response 

distributions that have a large proportion of 0 and 100 strength ratings. In addition, their generative 

[0,8,0,8] and [8,0,0,8] conditions and preventive [8,0,8,0] and [0,8,8,0] conditions all had very low 

standard errors. These low standard errors could be due to a high proportion of 0 ratings in the 

�̂�1 = 0 conditions and 100 ratings in the �̂�1 = 1 conditions.  

The empirical priors of Yeung and Griffiths (2015) also appear to be consistent with a large 

proportion of deterministic ratings. For generative causes, their conditional prior distributions of 

𝑤1 look to be bimodal, with a large peak at a strength of 1 and a smaller peak at a strength of 0. 

Moreover, the bimodality is more pronounced for extreme values of the base rate (𝑤0 near 0 or 1). 

This shape aligns with the high deterministic bias conditions from above. Namely, it is necessary 

for the prior to have this general qualitative shape in order to return posterior predictions that are 

close to deterministic ratings. 

While weighted Δ𝑃 predictions were generally affirmed in the analysis, certain conditions did 

present difficulties. The most problematic were the generative [8,0,8,0] condition and the 

preventive [0,8,0,8] condition as there appears to be several distinct response strategies. In 

addition, the deterministic bias also appeared in generative conditions in which the effect always 

occurred and in preventive conditions in which the effect never occurred. Clearly, the weighted 

Δ𝑃 model, as well as any other point-prediction model, will be unable to describe a mixture of 
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judgment strategies. The next section sketches one potential solution for this difficulty, though a 

detailed treatment of this topic will have to wait for another time. 

4.7.1 Two-stage inference 

The above discussion referred to causes of two different types. Deterministic causes always 

produce the effect or never produce the effect while probabilistic causes produce the effect only 

some proportion of the time. Examples of each type are easy to imagine. When heated to 100 °C 

water will always boil (assuming standard pressure) and it will never boil when heated to 40 °C. 

But when eggs are boiled in the water, even when the same procedure is always carefully applied, 

they will only come out perfect some of the time (perfect, of course, means firm egg whites with 

a pudding-like and slightly runny yolk). Hence, the preferred egg-boiling procedure generates the 

effect only with some probability that is less than one. 

It is easy enough to conceive of causes as deterministic or probabilistic. Might this distinction 

also be used in elemental causal induction? One possibility is that causal inference proceeds in two 

stages. In the first stage, evidence is used to choose between deterministic and probabilistic 

hypotheses. The second stage then estimates causal strength. 

As we saw with the causal support model in Chapter 1, hypotheses may be represented with 

different graphical models. Consider the three hypotheses corresponding to the three graphs in the 

top panel of Figure 4.5. Graph 0 and Graph 1 represent deterministic hypotheses for causal 

strengths of 0 and 1 respectively. And Graph P represents the hypothesis that the cause is 

probabilistic. 

A two-stage inference model can go some of the way towards explaining the deterministic 

bias and the mixed strategies observed above. The first stage would determine which of the three 

graphs from Figure 4.5 is most probable given the data. Any inferential procedure could be used, 

though Bayesian inference is a natural choice. It also potentially gives the normative solution. 

Figure 4.5B gives posterior probabilities of the three graphs for the contingency frequencies 

shown on the horizontal axis. Note that these are the conditions in which the deterministic bias 

was most often observed. Conditions two through five are ones in which the effect always occurs 

when the cause is present. For each condition, a large posterior probability is given to Graph 1 and 

a substantial probability is also given to Graph P. Importantly, the allocation of probability shifts 
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Figure 4.5. Graphs representing competing hypotheses and example posterior probabilities given to each graph for 

different sets of learning data [a,b,c,d] corresponding to entries from a 2x2 contingency table. 

A: Directed graphs with 𝐵 representing the background variable, 𝐶 the candidate cause, and 𝐸 the effect of interest. 

Graph 0 represents a deterministic hypothesis of no causal strength, or 𝑤1 = 0. Graph P represents the hypothesis of 

probabilistic causal strength with 0 < 𝑤1 < 1. And Graph 1 represents the deterministic hypothesis of 𝑤1 = 1. 

B: Posterior probabilities for each graph given the data shown in the condition at the bottom. Condition refers to the 

[a,b,c,d] cell counts from a 2x2 contingency table. Prior probabilities were set equal to 1/3 for each graph. A Noisy-

OR generating function and a joint uniform prior on (𝑤0, 𝑤1) is assumed for Graph P. 

from Graph 1 to Graph P as the observed base rate of the effect increases. Note that this matches 

the qualitative pattern in the observed distributions of strength judgments (Figure 4.1). 

Remember that in the problematic [8,0,8,0] condition, observed strength judgments were 

about equally divided between 0, probabilistic, and 1. This pattern roughly matches the posterior 

probabilities given to each hypothesis, shown on the far right of Figure 4.5B. The data in the 

[8,0,8,0] condition imply that background strength 𝑤0 is large. From Chapter 2 we know that this 
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further implies high uncertainty for 𝑤1, and the upshot is that all three hypotheses are consistent 

with the data. 

While the two-stage model provides some insight, it alone cannot explain the observed 

mixture of responses. If all people follow the same two-stage model, then all responses should be 

homogenous. Additional assumptions are necessary to create a mixture. One possibility is the 

probability matching hypothesis from Chapter 2, which posits that people take one or a few 

samples from their posterior instead of selecting the highest probability option. Another possibility 

is that people have heterogeneous prior beliefs for the different models. Repeated measurements 

are necessary to discriminate between these two possibilities, as probability matching implies 

within person variation for a given condition while heterogeneous priors does not. 

4.7.2 Bayesian inference after all? 

The two-stage model serves another useful purpose in motivating another Bayesian “competitor” 

model of causal inference. It was asserted above that the data from experiments 1 and 2 are 

incompatible with all Bayesian models of strength estimation. However, it bears emphasis that the 

data do not rule out Bayesian models more generally. 

A two-stage Bayesian inference model can be constructed to closely mimic the predictions of 

the weighted Δ𝑃 rule. The two stages proceed as before: First, one of three models is selected by 

choosing the graph with the highest posterior probability. Next, strength is estimated according to 

the structure of the selected graph. The strength estimation in the second stage may also be made 

Bayesian. For Graph 0 the posterior expectation will be 0 and it will be 1 for Graph 1. This is 

because all prior weight is placed on the 𝑤1 = 0 hypothesis for Graph 0 and likewise all weight is 

on the 𝑤1 = 1 hypothesis for Graph 1. Graph P requires that some joint prior distribution 

𝑓(𝑤0, 𝑤1) be specified. For instance, it could be the joint uniform or SS prior from before.  

With a carefully designed prior, the two-stage Bayesian model can be made to resemble the 

weighted Δ𝑃 model. Appendix G describes such a prior, while Figure 4.6 shows the 2-stage 

Bayesian predictions against the weighted Δ𝑃 model. One can see that the predictions are highly 

similar. With additional effort, it would be possible to make them more similar still. Note that in 

the key [0,8,0,8] and [8,0,0,8] conditions, both models make the respective predictions of 0 and 1. 
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Figure 4.6. Predictions of the weighted Δ𝑃 and the two-stage Bayesian model for the 15 conditions used in 

Experiment 1. Note that predictions of 0 and 1 are made respectively for the [0,8,0,8] and [8,0,0,8] conditions. 

The two-stage example underscores that the Bayesian approach is a double-edged sword. On 

one hand, the richness of the framework provides a powerful toolkit for theory building. A 

potentially valuable hypothesis resulted from construing the causal induction task as a problem of 

Bayesian model selection. But this example also shows that the extreme flexibility of the approach 

allows for virtually any data pattern to be fit so long as the researcher is sufficiently creative. This 

is why critics argue that empirical fit alone is an insufficient criterion for demonstrating the merit 

of Bayesian models. Additional evidence is necessary. 

One form of such evidence, discussed in Chapter 2, is measurements from the environments 

in which the psychological mechanism is employed. Chapter 5 provides one potential approach 

for how to characterize the structure of causal environments. It is highly doubtful, however, that 

environmental measurements will fully resolve the issue. Another form of evidence may come 

from an elaboration of psychological mechanisms. Can a case be made to prefer certain 

mechanistic accounts over others? Traditionally, such characterizations have been quite coarse, 

referring to vague “model simplicity” criteria. In the conclusion I consider recent work that 

attempts to tighten these criteria so that different mechanisms can be compared in a principled 

manner.
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Chapter 5.  

 

Capacity and response probability: A latent variable 

framework for models of causal inference 

It is not the laws that are fundamental, but rather the capacities. Nature selects the capacities 

that different factors shall have and sets bounds on how they can interplay. Whatever 

associations occur in nature arise as a consequence of the actions of these more 

fundamental capacities. In a sense, there are no laws of association at all. They are 

epiphenomena. 

(Cartwright, 1989, p. 181). 

5.1 Introduction 

In Nature’s Capacities and their Measurement, Nancy Cartwright (1989) argues for the reality of 

capacities and their fundamental role in causal claims. Capacities describe the power of causes to 

produce their effects. On Cartwright’s account, capacities are fixed and stable from one situation 

to another. This allows for causal inference to generalize over contexts.  

Most natural settings, in Cartwright’s view, are characterized by an ever shifting mix of 

different causes. Strongly uniform or controlled environments, such as those found in the science 

laboratory, are the exceptions. It is therefore impracticable to learn cause-effect relationships that 

are specific to a particular environment (she denotes these environment-dependent relationships 

as causal laws). What is needed is causal information that carries from one setting to the next. This 

is just the role played by Cartwright’s capacities. 

Cartwright proposes that the concept of capacity is central to standard philosophical accounts 

of causality, as well as implicit to the statistical methods of many natural and behavioral sciences. 

One area of her focus is econometrics since the originators of these methods were often explicit in 

their metaphysical commitments. Cartwright argues that the equations of economics are meant to 

represent causal relationships, with causes placed on the right side and effects on the left. Causal 

influence, then, is found in the parameters associated with each cause. Further, in econometrics it 
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is typical to assume that coefficient values estimated in one context maintain in entirely different 

contexts. Such practice, Cartwright asserts, evidences a belief in stable capacities that persist 

across varied settings. 

Another fundamental property of Cartwright’s capacities is that they are, in general, additive. 

This property is required if capacities are to do their assigned inferential work. In an important 

sense, the properties of additivity and stability go hand in hand. To see why, note that causes will 

be additive if and only if they are independent. Or equivalently, they will be additive if and only 

if there are no interactions. Now for causal influence to be fixed across contexts, it is essential that 

there are no interactions. For if there are interactions, the influence of a cause will depend on the 

levels of the other causes that also occur in a given context. Cartwright emphasizes this point in 

stating: 

Probably the most common reason for a capacity to fail to obtain in the new situation is 

causal interaction. The property that carries the capacity interacts with some specific 

feature of the new situation, and the nature of the capacity is changed. (Cartwright, 1989, 

p. 163) 

Thus, additive relationships are prized since they allow for straightforward generalization of 

causal influence. Ragnar Frisch and Trygve Haavelmo, two of the founders of econometrics, 

believed that the parameters would be independent in the fundamental equations of economics 

(Cartwright, 1989). This position is not surprising since it greatly amplifies the potential utility of 

econometric analysis. Other prominent economists, including John Maynard Keynes and Robert 

Lucas, were skeptical of this belief in independent causes. Indeed, both cautioned against 

econometric predictions due to their concern that parameters would be unstable over varying 

situations (Cartwright, 1989). 

From the preceding discussion, it is easy to see how Cartwright’s work serves as an inspiration 

for Cheng’s (1997) power PC model. Recall that power PC provides a context-independent 

measure of causal strength. Specifically, when a causal power is inferred in one context, that same 

power will be manifest in novel contexts. Of course, this holds only so long as model assumptions 

are met. Further recall that a primary assumption of power PC is independence of the candidate 

and background causes. 
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Cartwright’s paradigmatic examples of capacities at work are linear equations with continuous 

response. An important contribution of Cheng was to develop a model of independent causation 

for binary effects. Though independence is central to Cheng’s model, additive capacities are not 

part of her theory. In fact, no previous work in psychology has incorporated additive capacity into 

models of causal strength judgment. 

This chapter integrates additive capacities with judgment models of causal strength. In 

keeping with Cartwright, I propose it is natural to conceive of causes as having stable capacities 

that demonstrate fixed influence over heterogeneous contexts. The introduction of a response 

function is used to link additive capacities to judgments of causal strength. Different response 

functions are used to represent different judgment models, such as the Δ𝑃 rule or causal power. 

The proposed framework allows for a broader conception of causal independence. Capacities 

are fundamental instead of probabilities. If a response function can be found that allows for 

additive capacities, then causes are independent with respect to that response function. The 

response function, in turn, determines the probabilities. 

After establishing the capacity framework below, I will then sketch several potential 

applications. Capacities can be used to describe and explore causal intuitions. They might also be 

employed to measure objective causal environments. These measurements, in turn, could then 

potentially be used to advance the study of causal learning. 

5.2 Capacity as a latent variable 

Latent variables are sometimes used to motivate models of dichotomous and categorical outcomes 

(e.g. Long, 1997). While a dichotomous variable is observed to take only one of two values, it is 

often reasonable to consider such outcomes as some function of a continuous underlying 

propensity. For example, we may observe that two people die of cardiac arrest. But for this same 

observed outcome, the two people could differ with respect to their underlying risk. One could be 

an otherwise healthy person while the other could be a heavy smoker. 

In the proposed framework, causes have unobserved capacities that determine the probability 

of the effect. Capacity is a scalable, latent variable that is mapped to probability by a response 

function. I will often refer to the latent variable framework as CARP, which is an acronym for 

capacity and response probability. The general details of CARP are described in the next section. 
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5.2.1 Definitions and assumptions 

Assume a set of dichotomous causes {𝐶𝑖: 𝑖 ∈ 𝐼}, a context or background cause 𝐵, and a 

dichotomous effect 𝐸. Notation is consistent with before wherein 𝑐𝑖
+, 𝑏+, and 𝑒+ indicate the 

occurrence of cause 𝐶𝑖, background 𝐵, and effect 𝐸 while 𝑐𝑖
−, 𝑏−, and 𝑒− represent their absence. 

In keeping with the previous account, the background 𝐵 is unobserved, but assumed to be always 

present. For a given set {𝐶𝑖: 𝑖 ∈ 𝐼} causes are distinguished as either single or conjoined. A single 

cause 𝐶𝑖 is just one member from the set while a conjoined cause 𝐶𝑖,𝑗 = (𝐶𝑖 & 𝐶𝑗) denotes two or 

more single causes. 

Under the proposed framework, causes are associated with capacities. In particular, a given 

cause 𝐶𝑖 is associated with a capacity 𝛼𝑖. Conjoined causes are assumed to combine additively in 

their capacities so that (𝐶𝑖 & 𝐶𝑗) → 𝛼𝑖 + 𝛼𝑗. The background cause 𝐵 also has an additive 

contribution to capacity, which will typically be denoted with 𝛼0. So the total causal capacity of 

cause 𝐶𝑖 in the generic context 𝐵 is (𝐵 & 𝐶𝑖) → 𝛼0 + 𝛼𝑖.  

The link between capacities and probabilities is achieved through a response function. A 

response function 𝐹(. ) applied to a capacity 𝛼 determines a probability 𝑤 = 𝐹(𝛼). Response 

functions are assumed to be strictly increasing and continuous in capacity. As such, each response 

function will have an inverse. The inverse response function 𝐹−1(. ) returns a capacity when 

applied to a probability so that 𝛼 = 𝐹−1(𝑤). 

The causal strength of cause 𝐶𝑖 is defined as the probability 𝑤𝑖 = 𝐹(𝛼𝑖). So the strength of a 

given cause 𝐶𝑖 is the hypothetical probability that results from adding its capacity 𝛼𝑖 to a context 

with a capacity of 0. This is simply because 𝐹(𝛼𝑖) = 𝐹(𝛼𝑖 + 0). For strengths to be informative, 

then, it will require that 𝐹(. ) be increasing in the neighborhood of zero capacity. 

The above definition of causal strength is compatible with the graphical definition from 

Chapter 1, wherein the causal strength of cause 𝐶𝑖 corresponds to its edge weight 𝑤𝑖 in a common 

effect causal graph (Figure 5.1). 

It will become evident that it is the capacities that are the true carries of causal information, 

not the causal strengths. The definition of causal strength with respect to a zero capacity reference 

context is, in some sense, arbitrary. However, defining strength in this way facilitates the 

connection to psychological models, as will be seen shortly. 
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Figure 5.1. A common effect causal graph with a binary effect E, a background cause B with causal strength 𝑤0, and 

an arbitrary number of candidate causes 𝐶𝑖 with causal strengths 𝑤𝑖 . The background B is assumed to be always 

present. 

Cumulative distribution functions (cdfs) can serve as response functions, so long as they are 

continuous and strictly increasing. The framework could be generalized to cdfs with points of 

discontinuity, though there would be complications in determining the inverse. Non-densities may 

also be used for response functions, though predicted judgments will no longer conform to the 

rules of probability.  

A response function and its inverse are all that are required for the framework. However, I 

will often assume that the response function has a derivative 𝑓(𝛼) =
𝑑

𝑑𝛼
𝐹(𝛼) and that the 

derivative is continuous. The derivative of a response function 𝐹(𝛼) is referred to as the response 

curve 𝑓(𝛼). When a cumulative density is used for the response function, the response curve is 

given by the corresponding probability density function.  

To summarize, response functions form the link between additive capacities and effect 

probabilities. Different functions can be constructed to represent different beliefs about the causal 

system. Response functions can either be specified a priori or estimated from data. In the sections 

to follow, I will find the a priori response functions implied by the Δ𝑃 rule and the power PC 

model. 

Alternatively, one might attempt to find response functions from empirical measurements. 

Subjective response functions could be estimated from human judgments, though it would require 

many observations with low measurement error. One could also estimate objective response 

functions using measurements from actual causal environments. Both of these possibilities are 

explored later in the chapter. 
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5.2.2 Elemental causal induction 

I will now demonstrate how CARP may be applied to the problem of elemental causal induction. 

This section describes a general procedure for obtaining strength judgments from response 

functions. Once the procedure is established, I will use it in Section 5.3 to find the response 

functions implied by the Δ𝑃 rule and the power PC model. 

As before, assume that the effect is caused either by an unobserved background cause 𝐵 or a 

candidate cause 𝐶 (as in Figure 1.1). For now, also assume that probabilities are observed without 

error. Then the probability 𝑤0 = 𝑃(𝑒+|𝑐−, 𝑏+) gives the causal strength of the background 𝐵 while 

𝑤𝑇 = 𝑃(𝑒
+|𝑐+, 𝑏+) is the conjoined strength of 𝐵 and 𝐶.  

For a given response function 𝐹(. ) the causal strength of 𝐶 can be found using the three steps 

below: 

Step 1:   Infer the capacities for 𝐵 and (𝐵&𝐶) with 𝛼0 = 𝐹−1(𝑤0) and 𝛼𝑇 = 𝐹
−1(𝑤𝑇). 

Step 2:   Find the capacity of the candidate cause 𝐶 with 𝛼1 = 𝛼𝑇 − 𝛼0. 

Step 3:   Find the causal strength of 𝐶 with 𝑤1 = 𝐹(𝛼1). 

Steps 1 follows directly from the definition of a response function. Step 2 follows from the 

additivity assumption, which asserts that 𝛼𝑇 = 𝛼0 + 𝛼1. And step 3 is just the definition of causal 

strength from above.  

The mechanics of CARP can be illustrated with a graphical example. Figure 5.2 shows an 

example response curve, given by a beta(1,3) density function. The response curve shows that 

initial increments in capacity produce large increases in probability, though as capacity 

accumulates there are diminishing gains. 

For this example, assume a background rate of 𝑤0 = 0.75 while the probability with cause 

present is 𝑤𝑇 = 0.95. The 3-step procedure for finding causal strength is shown in Figure 5.3. The 

causal capacities for the background cause 𝐵 and the candidate cause 𝐶 are found with the response 
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Figure 5.2. Example of a response curve given by a beta(1,3) density function. Latent causal capacity is measured on 

the abscissa. For a given capacity the probability of the effect corresponds to area under the curve. 

curve from Figure 5.2. For a beta(1,3) density, the inferred capacities are 𝛼0 = 𝐹
−1(0.75) = 0.37 

and 𝛼𝑇 = 𝐹−1(0.95) = 0.63. This implies that 𝛼1 = 𝛼𝑇 − 𝛼0 = 0.26. The strength of the 

candidate cause is then 𝑤1 = 𝐹(𝛼1) = 0.6. 

 

 
Figure 5.3. Causal capacities and causal strengths inferred from assuming a beta(1,3) response curve. 

A: The causal strength 𝑤0 for the background cause 𝐵 is given by the area in blue. The causal strength 𝑤𝑇  for the 

combined cause (𝐵&𝐶) is given by the area in blue plus the area in orange. The observed probabilities can be used 

to infer the capacity 𝛼0 for 𝐵 and the combined capacity 𝛼𝑇 for the conjunction of causes (𝐵&𝐶).  

B: The causal capacity of the candidate cause is found with 𝛼1 = 𝛼𝑇 − 𝛼0. Causal capacity can then be used to find 

the causal strength of 𝐶, which is given by the pink area. 
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Step 3 of the procedure is not essential: once causal capacity is determined, the causal 

influence of 𝐶 can be found with respect to any context. Again, step 3 is useful for developing the 

connection between the latent variable framework and psychological models, a task pursued in the 

next section. 

5.3 CARP representation of rational models 

This section will demonstrate how the leading rational models of causal inference can be 

represented using the latent variable framework. The general strategy is to begin with a particular 

model’s definition of causal strength, and substitute it into the 3-step procedure from the previous 

section. This allows one to find the response curve implied by that model. 

5.3.1 The 𝛥𝑃 rule 

Begin with the definition of causal strength given by the Δ𝑃 rule. Expressed in weights notation it 

is: 

 
w1 = 𝑤𝑇 − 𝑤0 

 

From the 3-step procedure, causal strength can generally be expressed as: 

 
w1 = 𝐹[𝐹−1(𝑤𝑇) − 𝐹

−1(𝑤0)] 

𝐹−1(w1) = 𝐹−1(𝑤𝑇) − 𝐹
−1(𝑤0) (5.1) 

Now plug in the Δ𝑃 definition of 𝑤1 to obtain: 

 
𝐹−1(𝑤𝑇 − 𝑤0) = 𝐹−1(𝑤𝑇) − 𝐹

−1(𝑤0) (5.2) 

It is evident that any 𝐹−1(𝑤) = 𝑘𝑤 for 𝑘 ≠ 0 will satisfy (5.2). Choosing 𝑘 = 1 implies 𝐹(𝛼) =

𝛼 and 
𝑑

𝑑𝛼
𝐹(𝛼) = 𝑓(𝛼) = 1. If one also assumes a proper density and a [0,1] interval of support, 

then 𝑓(𝛼) is a beta(1,1) or uniform density. The response curve, the response function, and the 

inverse response function are then: 
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𝑓(𝛼) = {
1  for 0 ≤ α ≤ 1
0        otherwise

 

𝐹(𝛼) = {
0          for 𝛼 < 0
𝛼  for 0 ≤ 𝛼 ≤ 1
1          for 𝛼 > 1

 𝐹−1(𝑤) = 𝑤  for 0 ≤ 𝑤 ≤ 1 

Figure 5.4 shows the response curve for the Δ𝑃 model with 𝑤0 = 0.3 and 𝑤𝑇 = 0.5. It bears 

emphasis that it is the shape of the response curve that determines the model while the scale of 

causal capacity is arbitrary. A uniform density over any interval [𝑎, 𝑏] with 𝑘 =
1

𝑏−𝑎
 could be 

chosen. However, for step 3 from above to be sensible, it should be modified so that causal strength 

is given by 𝑤𝑖 = 𝐹(𝑎 + 𝛼𝑖) for a given interval [𝑎, 𝑏]. 

 

 
Figure 5.4. A uniform density response curve, which gives causal strengths of the Δ𝑃 rule.  

A: The background causal strength 𝑤0 = 0.3 is given in blue while the conjoined strength 𝑤𝑇 = 0.5 is the area in 

blue plus the area in orange. 

B: The causal capacity of the candidate cause is found with 𝛼1 = 𝛼𝑇 − 𝛼0 = 0.5 − 0.3 = 0.2. The capacity is then 

used to find the strength of the candidate cause 𝐹(𝛼1) = 𝑤1 = 0.2, which is the area in pink. 

5.3.2 Causal power 

We now seek a response function for the causal power model. Recall the expression for generative 

causal power: 

 

w1 =
𝑤𝑇 − 𝑤0
1 − 𝑤0
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Plugging causal power into (5.1) gives: 

 

𝐹−1 (
𝑤𝑇 − 𝑤0
1 − 𝑤0

) = 𝐹−1(𝑤𝑇) − 𝐹
−1(𝑤0) (5.3) 

Hence, we need to find the function 𝐹−1(. ) that satisfies (5.3). To find this function, define 

𝐹−1(𝑤) = −𝐺(1 − 𝑤). Then the left-hand side of (5.3) can be expressed as: 

 

𝐹−1 (
𝑤𝑇 − 𝑤0
1 − 𝑤0

) = −𝐺 (1 −
𝑤𝑇 − 𝑤0
1 − 𝑤0

) 

= −𝐺 (
1 − 𝑤𝑇
1 − 𝑤0

) 

 

And the right hand side terms of (5.3) are: 

𝐹−1(𝑤𝑇) = −𝐺(1 − 𝑤𝑇) 𝐹−1(𝑤0) = −𝐺(1 − 𝑤0) 

Putting it all together: 

 

−𝐺 (
1 − 𝑤𝑇
1 − 𝑤0

) = −𝐺(1 − 𝑤𝑇) + 𝐺(1 − 𝑤0) 

𝐺 (
1 − 𝑤𝑇
1 − 𝑤0

) = 𝐺(1 − 𝑤𝑇) − 𝐺(1 − 𝑤0) 
(5.4) 

It is evident that 𝐺(𝑤) must be a logarithmic function since log (
𝐴

𝐵
) = log(𝐴) − log(𝐵). From the 

definition of 𝐺(𝑤) this implies that 𝐹−1(𝑤) = − log(1 − 𝑤). Also, since 𝑤 ∈ [0,1] it implies that 

capacity is defined only over non-negative numbers, or 𝛼 ∈ [0,∞). Any base for the logarithm 

may be used to satisfy (5.3). The natural logarithm is a convenient choice since it allows for a 

clean expression of the probability density function. 

Using the natural log, we can derive the response curve, the response function, and the inverse 

response function: 
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𝑓(𝛼) = {
𝑒−𝛼      for α ≥ 0
0           for 𝛼 < 0

 

𝐹(𝛼) = {
1 − 𝑒−𝛼   for 𝛼 ≥ 0 
0               for  𝛼 < 0

 𝐹−1(𝑤) = − log(1 − w)      0 ≤ w < 1 

Thus, an exponential density with 𝜆 = 1 will give a latent variable model for causal power. Again, 

the scale is arbitrary, so choosing any exponential density (i.e. any 𝜆 > 0) will also give the causal 

power model, which is shown in Appendix H. The choice of the logarithm base in the above 

derivation is equivalent to choosing 𝜆, with base 𝑒 corresponding to 𝜆 = 1. 

Figure 5.5 shows an exponential response curve and inference for 𝑤0 = 0.75 and 𝑤𝑇 = 0.95. 

Hence, CARP provides an alternate conception of causal power. Causal power is inferred causal 

strength with respect to an exponential response curve. 

 

 
Figure 5.5. An exponential density response curve, which gives causal strengths of the causal power model. 

A: The background causal strength 𝑤0 = 0.75 is given in blue while the conjoined strength 𝑤𝑇 = 0.95 is the area in 

blue plus the area in orange. 

B: The causal capacity of the candidate cause is found with 𝛼1 = 𝛼𝑇 − 𝛼0 ≈ 3 − 1.4 = 1.6. The capacity is then 

used to find the strength of the candidate cause 𝐹(𝛼1) = 𝑤1 = 0.8, which is the area in pink. 

5.3.3 Relationship between ΔP and causal power 

A superficial comparison shows that the exponential curve of Figure 5.5 is similar to the beta(1,3) 

curve shown in Figure 5.3. The inferred strengths from the two models are also similar, with the 

beta(1,3) model giving a strength of about 0.6 while the exponential model returns a strength of 
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0.8. This similarity points towards a deeper relationship that connects the Δ𝑃 rule to the causal 

power model. 

A uniform or beta(1,1) density gives causal strengths of the Δ𝑃 model, an exponential density 

produces causal power, and the beta(1,3) density returns predictions intermediate of the two 

models. It can be shown that lim
𝑛→∞

beta(1, 𝑛) → exp(λ = 1) (see Appendix H). Thus, the Δ𝑃 rule 

and causal power are particular cases that lie along a continuum of latent variable models.  

One potential advantage of the beta(1, 𝑛) formulation of causal power is that it allows finite 

capacities to give deterministic strengths. Namely, any capacity 𝛼𝑖 > 1 will give 𝑤𝑖 = 1. In 

contrast, the exponential formulation allows for deterministic causal strengths of 1 only when 

causal capacity is infinite. 

The beta density is quite flexible and may also be used to approximate other proposed models 

of causal judgment. The “Per Cent Success” rule, covered in Chapter 1, posits that people 

completely neglect the base rate to give a causal judgment of 𝑤1 = 𝑤𝑇. This model can also be 

approximated with a beta density response curve by using lim
𝜖→0

beta(𝜖, 1). 

5.3.4 Preventive causes 

The latent variable framework may be extended to accommodate preventive causes. Preventive 

causes are defined as those that reduce the probability of the effect. Suppose context B has a 

capacity of 𝛼0. Then cause 𝐶𝑖 will be preventive in context B if 𝐹(𝛼0 + 𝛼𝑖) ≤ 𝐹(𝛼0). From the 

definition of 𝐹(. ), this implies 𝛼𝑖 ≤ 0 for preventive causes. 

Within the causal power paradigm, preventive strength is defined with the following 

hypothetical: Suppose there is a context in which the effect always occurs. When preventive cause 

𝐶𝑖 is introduced to that context, the probability of the effect is reduced to 1 − 𝑤𝑖, and the preventive 

strength of 𝐶𝑖 is 𝑤𝑖.  

The CARP framework will follow this causal power convention for preventive strength. 

Namely, preventive strength is defined as a positive quantity subtracted from a reference 

probability of 1. It then becomes necessary to amend the above 3-step procedure to match this 

conception. When 𝐶 is a preventive cause such that 𝑤𝑇 < 𝑤0, step 3 becomes: 

Step 3 (preventive): Choose b so that 𝐹(𝑏) = 1. Then preventive strength of 𝐶 is given 

by 𝑤1 = 1 − 𝐹(𝑏 + 𝛼1). 
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When 𝐹(. ) is a continuous cumulative density function, as is assumed below, then b will be the 

minimum number such that 𝐹(𝑏) = 1. This will ensure that 𝐹−1(1) is unique and equal to b. 

The amendment limits the class of available response functions to those with support bounded 

above. Otherwise, 𝑏 = ∞ for 𝐹(𝑏) = 1 and all preventive strengths would be zero. 

5.3.4.1 Preventive ΔP 

The same general strategy can be used to find the preventive Δ𝑃 response function, but now using 

the amended step 3. First, a small revision must be made to the Δ𝑃 rule to achieve consistency 

with CARP. For 𝑤𝑇 < 𝑤0 the Δ𝑃 rule gives negative causal strengths. To obtain agreement with 

CARP’s positive preventive strengths, the Δ𝑃 rule can be defined as: 

 

w1 = {
𝑤𝑇 − 𝑤0         for  wT ≥ 𝑤0
−(wT − 𝑤0)  for  wT < 𝑤0

  

Now suppose that for the response function 𝐹(. ) we can find a b so that 𝐹(𝑏) = 1. Then preventive 

causal strength for cause 𝐶1 is: 

 
𝑤1 = 1 − 𝐹(𝑏 + 𝛼1) 

= 𝐹(𝑏) − 𝐹(𝑏 + 𝛼1) 
 

Recall from step 2 above that 𝛼1 = 𝐹−1(𝑤𝑇) − 𝐹
−1(𝑤0). Also, for preventive Δ𝑃 we have causal 

strength defined as w1 = −(wT − 𝑤0). Putting this all together: 

 
−(wT − 𝑤0) = 1 − 𝐹[𝑏 + 𝐹−1(𝑤𝑇) − 𝐹

−1(𝑤0)] 

𝐹−1[1 + (𝑤𝑇 − 𝑤0)] = 𝑏 + 𝐹
−1(𝑤𝑇) − 𝐹

−1(𝑤0) 

𝐹−1[1 + 𝑤𝑇 − 𝑤0] = 𝐹
−1(1) + 𝐹−1(𝑤𝑇) − 𝐹

−1(𝑤0) 

 

So once again, 𝐹(. ) = 𝑘𝑥 for 𝑘 > 0 will serve as the class of response functions. Thus, any 

cumulative uniform density will do the job. If we choose the density on the [0,1] interval, then 

𝑏 = 1 satisfies the requirement of the minimum 𝑏 with 𝐹(𝑏) = 1. Figure 5.6 shows the preventive 

Δ𝑃 latent variable model. 
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Figure 5.6. A uniform density response curve, which gives causal strengths of the preventive Δ𝑃 rule.  

A: The background causal strength 𝑤0 = 0.5 is given by the dark blue area plus the light blue area. The conjoined 

strength 𝑤𝑇 = 0.3 is given by the dark blue area. Since 𝑤𝑇 < 𝑤0, the cause is preventive. 

B: The causal capacity of the candidate cause is found with 𝛼1 = 𝛼𝑇 − 𝛼0 = 0.3 − 0.5 = −0.2. The capacity is then 

used to find the strength of the candidate cause with 1 − 𝐹(1 + 𝛼1) = 𝑤1 = 0.2, which is the area in red. 

5.3.4.2 Preventive causal power 

Now we find the response function for preventive power. Assume that there is some 𝑏 such that 

𝐹(𝑏) = 1. Then for preventive power: 

 
−(wT − 𝑤0)

𝑤0
= 1 − 𝐹[𝑏 + 𝐹−1(𝑤𝑇) − 𝐹

−1(𝑤0)] 

𝐹−1 (
𝑤𝑇
𝑤0
) = 𝑏 + 𝐹−1(𝑤𝑇) − 𝐹

−1(𝑤0) 

= 𝐹−1(1) + 𝐹−1(𝑤𝑇) − 𝐹
−1(𝑤0) 

 

From the final line it is apparent that 𝐹−1(. ) must be a logarithm. As before, choose the natural 

log with base e. The response curve, the response function and the inverse response function are 

then: 

𝑓(𝛼) = {
𝑒𝛼          for 𝛼 ≤ 0
0           for 𝛼 > 0

 

𝐹(𝛼) = {
𝑒𝛼    for 𝛼 ≤ 0 
0      for  𝛼 > 0

 𝐹−1(𝑤) = log(w)      0 ≤ w < 1 
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The response function has positive support on [−∞, 0]. In addition, 𝑏 = 0 satisfies the requirement 

of the minimum 𝑏 with 𝐹(𝑏) = 1. So for a preventive cause 𝐶1, preventive power is found with 

𝑤1 = 1 − 𝑒𝛼1. 

Figure 5.7 shows the causal response function and inference for the preventive causal power 

model. The preventive power response curve is the reflection of the generative curve over the 𝑦 =

0 axis. Thus, generative and preventive power require two different response curves. For Δ𝑃, in 

contrast, both generative and preventive causes may be represented with a single response curve. 

 

 
Figure 5.7. An exponential density response curve, which gives causal strengths for preventive causal power 

A: The background causal strength 𝑤0 = 0.5 is given by the dark blue area plus the light blue area. The conjoined 

strength 𝑤𝑇 = 0.3 is given by the dark blue area. Since 𝑤𝑇 < 𝑤0, the cause is preventive. 

B: The causal capacity of the candidate cause is found with 𝛼1 = 𝛼𝑇 − 𝛼0 = 0.3 − 0.5 = −0.2. The capacity is then 

used to find the strength of the candidate cause with 1 − 𝐹(𝛼1) = 𝑤1 = 0.2, which is the area in red. 

5.3.4.3 Beta approximation for preventive power 

As with the generative model, a beta distribution may be used to approximate the response curve 

for causal power. Specifically, it can be shown that lim
𝑛→∞

beta(𝑛, 1) will approach 𝑒𝛼. One can set 

𝑏 = 1 to satisfy 𝐹(𝑏) = 1. Preventive power for a cause 𝐶1 can then be approximated with the 

expression 𝑤1 = 1 − 𝐹
−1(1 + 𝛼1). 

In summary, CARP shows how additive capacities map to evaluations of causal strength. As 

such, it provides a new perspective by which to explore models of causal learning. The next 

sections sketch a number of applications facilitated by the latent variable formalism. 
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5.4 Conjunctive causation 

Novick and Cheng (2004) extend causal power theory to situations in which two candidate causes 

generate or prevent the effect. They argue that previous theories of interactions are purely 

covariational because they rely on differences of observed probabilities only. Novick and Cheng, 

in contrast, embed the concept of an interaction within causal power theory. 

The basic idea of Novick and Cheng’s approach is to find the causal powers of the two 

individual causes first, which they refer to as the “simple” powers of the two causes. The 

interaction is then treated as a separate causal entity for which “conjunctive” power may be found. 

Novick and Cheng provide a number of formulas to cover the various possible cases (e.g. the case 

with two generative causes and a preventive interaction). 

CARP offers an alternative approach for modeling the influence of multiple causes. As 

mentioned above, the additive capacity assumption is equivalent to an assumption of no 

interactions between causes. Such an assumption might seem overly restrictive. However, some 

flexibility is recovered by allowing the response curve to be adjusted to the data. Furthermore, the 

additivity assumption allows for a more parsimonious representation of a system with two or more 

causes. It also permits easy generalization to causes measured on a continuous scale. 

The contrast between approaches is best illustrated with an example. Consider the factors or 

“causes” that lead to high incomes. Occupation is a clearly important, as some job types have a 

much higher proportion of high incomes than others. The sex of the worker is also important, as 

men have typically been paid more than women.  

Figure 5.8 shows the common effect graph for this example. The example uses income data 

 

 
Figure 5.8. Common effect causal graph for causes of high income. Cause 1 is sex (𝑐1

+ = male), cause 2 is job type 

(𝑐2
+ = professional or white collar job) and effect is “makes over $50k per year”. 
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from the 1994 Census. The effect will be defined as “makes over $50,000 a year”. Both causes are 

coded to be generative with 𝑐1
+ = male and with 𝑐2

+ = professional or white collar job. 

Now the causal power model will hold if all the causes are independent. But what does this 

mean exactly? An important distinction can be made between independence of occurrence versus 

independence of influence. With observational data, two causes may be dependent because they 

tend to co-occur. That is, the causes may be statistically dependent. This is less of an issue with 

experimental data as a balanced design will eliminate dependence of observed factors and random 

assignment will eliminate dependence with unobserved variables. Causes can also be dependent 

in their influence on an outcome. This second form of dependence corresponds to the notion of an 

interaction. To use one of Novick and Cheng’s (2004) examples, hard work alone and talent alone 

are weak causes of success. However, the combination of these causes generates a high probability 

of success. So this is an example of a positive interaction. 

The causal power model assumes that the various causes of an effect are independent in both 

occurrence and influence (Appendix A). Figure 5.8 represents the assumption of statistical 

independence since there are no edges connecting the causal variables. In fact, for the Census 

example the two candidate causes are essentially statistically independent with Pr(𝑐2
+|male) =

0.26 ≈ Pr(𝑐2
+|female) = 0.27. This should reassure us that the Figure 5.8 is not too great a 

distortion of reality. Clearly, the candidate causes are not randomly assigned and so there may be 

dependence with background factors, though we ignore this complication for now. 

Next consider the interaction. To streamline the example, assume that the observed 

probabilities are population quantities. The probabilities are: 

𝑤0 = Pr(𝑒
+|𝑐𝑠𝑒𝑥

−  , 𝑐𝑗𝑜𝑏
− ) = .06 𝑤𝑇1 = Pr(𝑒+|𝑐𝑠𝑒𝑥

+  , 𝑐𝑗𝑜𝑏
− ) = .22 

𝑤𝑇2 = Pr(𝑒+|𝑐𝑠𝑒𝑥
−  , 𝑐𝑗𝑜𝑏

+ ) = .25 𝑤𝑇12 = Pr(𝑒
+|𝑐𝑠𝑒𝑥

+  , 𝑐𝑗𝑜𝑏
+ ) = .57 

With regards to notation, 𝑤0, 𝑤1 and 𝑤2 represent the simple powers of the background cause, 

cause 1, and cause 2, respectively. The 𝑤𝑇1 gives the total probability resulting from the combined 

influence of the background and cause 1 while 𝑤𝑇2 has a symmetric definition for cause 2. The 

𝑤𝑇12 gives the total probability from the background, cause 1, and cause 2. The “conjunctive 

power” of cause 1 and cause 2 is represented by 𝑤12, which describes the interaction of the two 

causes. 
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5.4.1 Interactive causal power 

Begin with the approach of Novick and Cheng (2004). The first step is to find the simple powers 

of sex and job type with: 

 

𝑤1 =
(𝑤𝑇1 − 𝑤0)

1 − 𝑤0
= .17 

𝑤2 =
(𝑤𝑇2 − 𝑤0)

1 − 𝑤0
= .20 

 

So being male and obtaining a professional job are both generative causes of a high income. Next 

is to find the expected probability of the conjunction if the causes exert only their simple powers. 

This expectation forms the “no interaction” baseline within the causal power model. It is given by: 

 
𝐸[𝑤𝑇12] = 1 − (1 − 𝑤1)×(1 − 𝑤2)×(1 − 𝑤0)  

One can see that the formula gives the complement to the event that cause 1, cause 2, and the 

background cause all do not generate the effect, assuming each of these events are independent. 

Using the above probabilities yields 𝐸[𝑤𝑇12] = .38. The next step is to compare the expected 

probability assuming simple powers only to the probability actually observed. In this example, the 

observed conjunctive probability is 𝑤𝑇12 = .57 so 𝐸[𝑤𝑇12] < 𝑤𝑇12. Hence, conjunctive power is 

generative and given by the equation: 

 

𝑤12 =
(𝑤𝑇12 − 𝐸[𝑤𝑇12])

1 − 𝐸[𝑤𝑇12]
   

This example gives a conjunctive power of 𝑤12 = .32, representing a positive interaction between 

sex and job type for determining income. 

5.4.2 CARP formulation of interactive power 

Even with just two causes, the formulas for interactive causal influence become rather complex. 

This section shows how Novick and Cheng’s model can be expressed within CARP. One 

advantage of CARP is that it allows for a somewhat more compact representation. 



144 

 

 

Let 𝐺(. ) represent the response function for generative power. Then causal capacities for the 

background, sex, and job type can be found as before: 

 
𝛼0 = 𝐺

−1(𝑤0) 

𝛼1 = 𝐺
−1(𝑤𝑇1) − 𝐺

−1(𝑤0) 

𝛼2 = 𝐺
−1(𝑤𝑇2) − 𝐺

−1(𝑤0) 

 

The assumption of additive capacities is equivalent to the assumption of no interaction, or “simple 

powers only” under the causal power model. Within CARP, the interaction may be assessed 

according to capacities instead of probabilities. The expected conjunctive capacity is 𝐸[𝛼𝑇12] =

𝛼0 + 𝛼1 + 𝛼2 while the observed conjunctive capacity is: 

 
𝛼𝑇12 = 𝐺

−1(𝑤𝑇12)  

An interaction occurs if the observed conjunctive capacity does not equal expected capacity. If 

𝛼𝑇12 > 𝐸[𝛼𝑇12], as in the example, then conjunctive power is generative. The generative power 

of the interaction is then found with: 

 
𝑤12 = 𝐺[𝛼𝑇12 − (𝛼0 + 𝛼1 + 𝛼2)]   

And the obtained 𝑤12 will be the same as the one found with Novick and Cheng’s model. The 

CARP representation is straightforward in this case because all of the causes, as well as the 

interaction, are generative. 

If observed capacity had been less than expected, with 𝛼𝑇12 < 𝐸[𝛼𝑇12], then conjunctive 

power would have been preventive. This case becomes more complicated because it requires 

shifting to the preventive response function. As a result, it is no longer possible to work with 

capacities only. Instead, one must find the expected conjunctive probability with: 

 
𝐸[𝑤𝑇12] = 𝐺[𝛼0 + 𝛼1 + 𝛼2]   

Then preventive interactive power is found by treating the expected probability as the base rate 

while using a preventive response function. Specifically, let 𝑅(. ) be the preventive response 

function for causal power. Then preventive interactive power is: 
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𝑤12 = 𝑅[𝑅

−1(𝑤𝑇12) − 𝑅
−1(𝐸[𝑤𝑇12])]   

Proceeding in this manner, one can find the CARP representation of all 6 cases described by 

Novick and Cheng. In general, as generative and preventive causes are mixed, a causal power 

analysis becomes more difficult. This is because one must shift between the generative and 

preventive response curves from above. 

5.4.3 Causal systems perspective 

The last section showed that CARP may be used to model interactions within the causal power 

framework. However, the procedure is fairly involved using either Novik and Cheng’s (2004) 

algebraic expressions or CARP’s response function formalism. Surely, finding an interaction under 

any model will be complex as it requires: 1) the simple effects of the two candidate causes, 2) the 

expected probability from the simple effects alone and 3) the interaction, which is some function 

of the observed and expected probabilities. Such an involved procedure seems an unlikely 

candidate for a psychological process. Might there be a different representation that simplifies the 

process while still tracking the causal strengths? 

As Novick and Cheng (2004) observe, an interaction is a model dependent term. Accordingly, 

the same evidence can imply an interaction with respect to one causal model and no interaction 

with respect to a different model. So one potential strategy for simplifying inference is to adopt a 

model that minimizes or eliminates interactions for certain domains of evidence. This may be done 

within CARP since different response curves correspond to different models of the causal system. 

To see how this can work, return to the Census example from above. The response curve in 

Figure 5.9 is constructed so that additivity, and therefore independence, is satisfied for the 

background cause and the observed causes of sex and job type. This means that the capacity of the 

conjunction is the sum of the simple capacities. Then for the Census example, 𝐹(𝛼0 + 𝛼1 + 𝛼2) =

𝐹(𝛼𝑇12) = .57, where 𝐹(. ) is a beta(1, .34) density. Many other response functions could have 

been chosen so long as they meet the additivity constraint. This particular response function was 

found by setting the first shape parameter equal to 1 and then searching for the second parameter 

that satisfied additivity. 

The response function must have at least one free parameter to fit the Census data, though this 
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Figure 5.9. A beta(1 , .34) density response curve. The background is all workers who are female and not white 

collar or professionals. Cause 1 is sex with 𝑐1
+ = male and cause 2 is job type with 𝑐2

+ = white collar or professional. 

The response curve was constructed to satisfy additivity of capacities so that 𝛼𝑇12 = 𝛼0 + 𝛼1 + 𝛼2. 

is not the only requirement. It must also be convex on at least part of the interval between 𝛼0 and 

𝛼𝑇12. The reason is because 𝐹(𝛼0) + 𝐹(𝛼𝑇1) + 𝐹(𝛼𝑇2) < 𝐹(𝛼𝑇12), which by additive capacities 

implies that: 

 
𝐹(𝛼0) + 𝐹(𝛼1) + 𝐹(𝛼2) < 𝐹(𝛼0 + 𝛼1 + 𝛼2)  

And so 𝐹(. ) must be accelerating, or convex, on at least part of the [𝛼0, 𝛼𝑇12] interval. 

Equivalently, the response curve 𝑓(. ) must be increasing on part of the interval. Clearly, this is 

satisfied by the curve shown in Figure 5.9 since it is increasing over its entire support. 

Hence, an appropriately chosen causal model can eliminate interactions and simplify inference 

for conjunctive causation. Of course, it is far from parsimonious to specially tailor a model just to 

eliminate an interaction for one set of probabilities. However, complete elimination of the 

interaction may not be necessary for good prediction. Instead, one could adopt just a few 

paradigmatic causal models for different types of evidence. Causal power may serve as a good 

default model in most situations, though reasoners may select another standard model for other 

types of contexts. 

The type of model shown in Figure 5.9 describes a causal system governed by “weak joint 

necessity” wherein each cause alone has small or negligible impact while the combination of 

causes has a large impact. Examples of such systems are not difficult to generate. Smoking and 
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asbestos exposure are both weak causes of lung cancer, but in combination they are a strong cause. 

A potential research question is whether there is a preferred standard model to describe systems 

with complimentary causes. Such a preferred model may then serve as a guide for finding a good 

heuristic model of strength estimation, similar to the case of causal power and the weighted Δ𝑃 

rule.  

5.4.4 Beyond two dichotomous causes  

Another advantage of CARP is that it allows for a cleaner generalization to three or more candidate 

causes. For example, suppose a background cause 𝐵 with capacity 𝛼0 and a set of {𝐶𝑖 ∈ 𝐼} binary 

generative candidate causes with associated capacities 𝛼𝑖. Then the expected probability of their 

conjunction is given by: 

 
𝐸[𝑤𝑇1…𝑛|𝑏

+, 𝑐1
+, … 𝑐𝑛

+] = 𝐹(𝛼0 + 𝛼1 +⋯+ 𝛼𝑛)  

The expected conjunctive probability 𝐸[𝑤𝑇1…𝑛] may then be compared to the observed probability 

𝑤𝑇1…𝑛 in order to determine the interaction between the n causes. 

The framework also easily extends to causes measured on a continuous scale. Suppose the 

background is paired with the continuous cause 𝐶1. Then predicted probability is just: 

 
𝐸[𝑤𝑇1(𝑥)|𝑏

+, 𝑐1 = 𝑥] = 𝐹(𝛼0 + 𝛼1𝑥)  

And so continuous causes may now be incorporated into the Δ𝑃 and causal power models, among 

others. 

Danks (2014) offers an alternative algebraic approach wherein continuous causes are mapped 

to strengths on the [0,1] interval. Specifically, a causal strength 𝑤𝑖 for a continuous cause 𝐶𝑖 is 

defined as the expected change in the effect probability when the cause 𝐶𝑖 increases by one unit 

and all other causes are at their baseline value. Clearly, then, causal strength depends on finding a 

natural baseline. The advantage of CARP is that 𝛼𝑖 provides a context independent measure of 

strength. In addition, Danks’ (2014)  model largely commits to the Noisy-OR/AND representation. 

So another advantage of CARP is that it more easily generalizes to alternative causal models. 
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5.5 Causal models and the environment 

5.5.1 Ecological rationality 

Recall from Chapter 3 that ecological rationality asserts that behavior can only be assessed relative 

to the environment of its application. However, this dictum has proved hollow for the study of 

elemental causal induction because there have been no measurements of actual environments in 

which causal judgments take place. A key benefit of CARP is that it provides a representational 

framework by which to assess claims about relevant causal environments.  

Cheng (1997), for instance, argues that the Δ𝑃 rule is not normative because it only measures 

covariation, not causation. CARP provides a different perspective by focusing more on plausibility 

instead of normativity. Trivially, the Δ𝑃 rule will be the correct model for the causal structures 

implied by the rule. However, we now have additional tools to unpack that claim. Above it was 

shown that the Δ𝑃 model is appropriate for causal contexts that are described by a uniform 

response curve. This implies that an identity mapping from capacity to probability: each increment 

of capacity produces the same increment of probability, regardless of context. 

One way a Δ𝑃 system can occur is when causes are responsible for disjoint sets of outcomes. 

It is difficult to imagine many natural causal systems that possess such a structure. An approximate 

example might be found with the 1918-19 influenza pandemic. In typical populations, mortality is 

highest among the very young and the very old. A distinctive feature of the 1918-19 pandemic is 

that it primarily killed young adults, a group that generally has a low mortality rate across all 

populations. Thus, the 𝛥𝑃 model might serve as a decent model to estimate the strength of the 

1918-19 flu as a cause of mortality. In contrast, the ΔP model would be less appropriate for the 

normal flu since it primarily kills the very young and the very old. 

The weighted Δ𝑃 model is considerably more implausible as a description of a causal system. 

Chapter 1 showed that weighted Δ𝑃 could be represented as a parameterization on a common-

effect causal graph. However, such a parameterization did not seem convincing. This is why 

weighted Δ𝑃 has been interpreted as an estimator rather than as a description of population 

relationships. The latent variable framework provides one argument for why weighted Δ𝑃 fails as 

a rational model. Specifically, it can be shown that there is no continuous response curve that will 

give a weighted Δ𝑃 latent variable model (Appendix H). 
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Now consider the causal power model, which assumes independent influence of the 

background and candidate causes. Cheng (2000) posits that people may be compelled to adopt the 

independence assumption because they lack sufficient information to determine how the candidate 

cause interacts with other causes. This assumption was incorporated into the simulation study of 

Section 3.12, which explored the consequences of an uncertain environment. In the simulation, the 

“expected” model was causal power while a disturbance term was added to create deviations from 

causal power. Whether independence is correct on average is, ultimately, an empirical claim. The 

next section speculates on how this claim might be tested. 

5.5.2 Bridge to statistical models 

The CARP framework can connect psychological models to the statistical literature. By doing so, 

it provides access to a rich set of tools that may be used to characterize actual causal environments. 

To see how this might work, I adapt Long’s (1997) discussion of latent variable models for 

dichotomous outcomes. Consider the model: 

 
𝑦𝑘
∗ = 𝛼0 + 𝛼1𝐶1(𝑘) +⋯+ 𝛼𝑛𝐶𝑛(𝑘) + 𝜖𝑘  

where 𝑦𝑘
∗ is latent causal capacity and 𝐶1(𝑘), … , 𝐶𝑛(𝑘) are the observed causes associated with 

context k. The intercept 𝛼0 represents the influence from unobserved background factors. 

Observed causes may be either dichotomous or continuous. The latent variable is mapped to the 

observed binary effect 𝑦𝑘 using a threshold rule: 

 

𝑦𝑘 = {
1  if 𝑦𝑘

∗ > τ 

0  if 𝑦𝑘
∗ ≤ τ

  

where 𝜏 is the threshold. In order to identify the model, a number of parameters are set to arbitrary 

values. The threshold is typically set to zero as is the expectation of the error. Hence, 𝜏 = 0 and 

𝐸[𝜖𝑘|𝐶1(𝑘)…𝐶𝑛(𝑘)] = 0. To make the slope coefficients identifiable, the conditional variance of 

𝜖𝑘 is assumed to equal some constant value, or 𝑉[𝜖𝑘|𝐶1(𝑘), … , 𝐶𝑛(𝑘)] = 𝜎
2 with a finite variance 

𝜎2 < ∞ . 



150 

 

 

By assuming a specific distribution for the error it is possible to find 

Pr(𝑦𝑘 = 1|𝐶1(𝑘), … , 𝐶𝑛(𝑘)). Long (1997) shows that this probability can be obtained from the 

cumulative density function of the assumed error distribution: 

 
Pr(𝑦𝑘 = 1|𝐶1(𝑘)…𝐶𝑛(𝑘)) = 𝐹(𝛼0 + 𝛼1𝐶1(𝑘) +⋯+ 𝛼𝑛𝐶𝑛(𝑘)) 

𝑤𝑇1…𝑛 = 𝐹(𝛼𝑇1…𝑛) 

(5.5a) 

(5.5b) 

Within the statistical literature, the function 𝐹(. ) is referred to as the link function. For binary 

outcomes, the most common choices for the link function are the cumulative logistic or the 

cumulative normal distribution. Equation (5.5a) is the same as (5.5a), but just expressed in the 

CARP notation from before. It suggests that CARP response functions may be used as the link 

between capacity and probability. Hence, standard statistical methods can be applied to explore 

psychological models of causal inference. 

A key question concerns the match between psychological representation and the objective 

structure of the environment. The first major challenge is to identify the real world causal learning 

contexts of interest. At present, I sidestep this first issue. Instead, I sketch potential strategies for 

characterizing environments once relevant data have been identified. 

Hence, causal power can be expressed as a latent variable model with an exponential link 

function. So one strategy is to collect data from relevant causal learning environments and then fit 

statistical models that use an exponential link function. The statistical model could then be used to 

test for interactions between causes. One possibility is that interactions will be small or moderate, 

with positive and negative interactions tending to balance over different environments. For this set 

of environments, then, inference strategies that assume causal power may be well suited to the task 

of causal induction. The simulation study from Section 3.12 essentially conformed to this structure, 

and it was found that Bayesian power and weighted Δ𝑃 both performed well in estimating causal 

strength. 

Models based on standard causal power will give poor strength estimates when causal 

environments are characterized by large interactions that are not symmetrically distributed around 

zero. Better estimates can be obtained by allowing models with causal interactions, such as the 

interactive causal power model from above. A disadvantage is that these models require a number 
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of complex steps. This seemingly makes them less plausible as descriptions of psychological 

processes. 

Another option for dealing with interactions is to pursue a strategy similar to the one used in 

Section 5.4.3. On this approach, the link function is modified in order to reduce or eliminate 

interactions. Inference may then proceed using additive capacities only. Yet, as mentioned above, 

we do not want a specially tailored link function for each causal environment. Such a strategy 

would be more complex than finding interactive causal power. Instead, we can look for a few 

distinct “types” of response functions to be used for different families of causal environments. 

Then the judge would need to only select from a few possible strategies that match each of these 

types. 

A rough typology of response curves can be formed based on their general shapes. For 

example, all non-increasing response curves could constitute one class. This class would include 

both the causal power model and the Δ𝑃 rule. To study inference for this, or any other class, we 

must know something about the response curve distribution. Section 3.12 specified the distribution 

a priori: causal power was chosen as the center of the class of non-increasing response curves 

while the variance was set arbitrarily. This a priori approach did prove useful as it allowed for 

general conclusions about relative estimator performance. However, it is also important to know 

how various estimators perform over actual environments. The next section sketches an approach 

for estimating response curves from empirical measurements. 

5.5.3 Empirical response curves 

Response curve estimation is difficult because there are a large number of unknowns, even for 

simple causal systems. With an unknown response curve one must estimate both capacity 

coefficients (the 𝛼𝑗’s) and the response curve parameters. This section provides a rough outline on 

how this might proceed. 

At present, I adopt the simplifying assumption that the response function is some unknown 

beta density. The beta density is an attractive choice since it can produce many qualitatively 

different curves, including ones that correspond to the Δ𝑃 rule and an approximate causal power 

model. Thus, the discussion below focuses on beta density estimation. In the future, however, more 
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general nonparametric methods should be brought to bear. For instance, kernel density estimation 

methods (e.g. Silverman, 1986) may be applicable to this problem. 

Good targets for study will be causal systems that are both simple and high in information. 

These criteria can be met by a system with two observable causes, where one cause is measured 

on a continuous scale and the other cause is dichotomous. The continuous cause essentially serves 

to scale the base rate of the effect, thus allowing for evaluation of the dichotomous cause in 

different contexts. Suppose 𝐶1 is the continuous cause, 𝐶2 is a dichotomous cause, and that both 

are coded to be generative. Then the candidate system can be expressed as: 

 
Pr(𝒚|𝒄𝟏, 𝒄𝟐, 𝛼0, 𝛼1, 𝛼2, 𝜃1, 𝜃2) = 𝐹(𝛼0𝟏 + 𝛼1𝒄𝟏 + 𝛼2𝒄𝟐|𝜃1, 𝜃2) (5.6) 

where 𝒚 is a vector of binary outcomes, 𝒄𝟏 and 𝒄𝟐 are vectors of measurements for the two causes, 

the 𝛼’s are capacities for the background and the two candidate causes, and 𝐹(. ) is a beta density 

with shape parameters 𝜃1 and 𝜃2.  

The primary goal is to estimate the response function, but it is also necessary to estimate the 

capacities. This is a difficult problem that requires a good deal of data to achieve reasonable 

precision. Figure 5.10 shows a number of attempts to estimate response curves from simulated 

data. For all simulations, capacities were set to 𝛼0 = 0, 𝛼1 = 0.2 and 𝛼2 = 0.5. The shape 

parameters were then varied to give different response functions. For instance, 𝜃1 = 𝜃2 = 0.7 for 

the response function in the first panel and 𝜃1 = 𝜃2 = 1 for the response function in the second 

panel. A total of 1000 observations were used to estimate each response function. 

Figure 5.10 shows that a number of the estimated response curves appear close to the true 

curves, while several others miss badly. Figure 5.11 plots the estimated capacities and overlays 

the population values. The coefficient estimates are generally grouped around their true values, 

though there is considerable error for the 𝛼2 coefficient. 

Despite the relatively large number of simulated observations, the estimation algorithm still 

produces sizeable errors. It remains an open question whether appropriate data and statistical 

methods exist so that causal systems can be estimated with sufficient precision. The outlook is 

somewhat daunting due to the large number of unknowns for even simple causal systems. 

However, even very coarse estimates could prove useful to the study of causal learning. For 

instance, it may only be possible to determine that the objective response curve comes from some 

broad class, such as the class of all increasing response curves. This is still valuable information 
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as it can be used to study inference in the context of model uncertainty. Objective measurements 

from the environment would inform model uncertainty instead of it being determined completely 

a priori, as was done in Section 3.12. 

 

 
Figure 5.10. Twelve response curves (blue) and estimated response curves (orange) from a simulation study. The 

population curves were all chosen from the beta family. The population relationship involved three unknown causal 

capacities and two unknown shape parameters, as shown in equation (5.6). Details of the estimation procedure are 

given in Appendix I. 

 

 

 
Figure 5.11. Causal capacity estimates for the twelve response functions shown in Figure 5.10. True parameter 

values were 𝛼0 = 0, 𝛼1 = 0.2, and 𝛼2 = 0.5 (shown in blue). Details of the estimation procedure are in Appendix I. 
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Appendix I outlines a couple of potential methods that can be applied to the causal systems 

estimation problem. It includes the algorithm used for Figure 5.10 and Figure 5.11, as well as a 

Bayesian method that uses the Metropolis algorithm. 

5.6 Human learning of response functions 

Earlier, it was proposed that response curves could be categorized into a few general classes and a 

heuristic rule could be applied for each class. Such a strategy can return decent judgments with 

minimal computation. Section 3.12, for example, showed that weighted Δ𝑃 is a good heuristic 

when models are drawn from the class of non-increasing response curves. 

A heuristic judgment strategy seems adaptive when learning information is limited. But what 

about when there is a wealth of information? Kahneman (2011) asserts that intuitive expertise can 

be developed when 1) the environment is sufficiently regular and 2) there is an opportunity for 

repeated practice with fast, high quality feedback. Indeed, people have demonstrated a remarkable 

ability to learn very fine associations when these two criteria are met. It should seem possible, 

then, for people to develop expertise for particular causal environments when given sufficient 

learning opportunities. This section uses the CARP framework to outline a possible mechanism 

for how such learning could proceed. 

To begin, suppose a system with a binary effect 𝐸 and two generative causes with 𝐶1 

continuous and 𝐶2 binary. The binary variables are coded 0 and 1 for their absence or occurrence, 

respectively. For simplicity, assume that the background capacity is zero, or 𝛼0 = 0. 

Imagine that repeated experience has allowed the judge to learn probabilities that are close to 

their population values for certain combinations of causes. Specifically, suppose that 𝑐1 = 𝑥 and 

𝑐1 = 𝑧 are two levels of the continuous cause where 𝑥 < 𝑧, and that the judge has learned the 

probabilities: 

 
Pr (𝑒 = 1|𝑐1 = 𝑥, 𝑐2 = 1) = 𝐹(𝛼1𝑥 + 𝛼2) 

Pr (𝑒 = 1|𝑐1 = 𝑧, 𝑐2 = 1) = 𝐹(𝛼1𝑧 + 𝛼2) 
(5.7) 

where 𝐹(. ) is some unknown response function. Note that 𝐹(𝛼1𝑥 + 𝛼2) ≤ 𝐹(𝛼1𝑧 + 𝛼2) since 

response functions are increasing. Now suppose that the judge is interested in predicting the 
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probability for the novel causal combination of 𝑐1 = 𝑦 and 𝑐2 = 1 where 𝑥 < 𝑦 < 𝑧. So the judge 

would like to know 𝐹(𝛼1𝑦 + 𝛼2). 

Without knowing the response function and the causal capacities, is it possible to make a 

principled prediction? If the response function is smooth, and not too unusual in shape, then a 

linear approximation may do the job. The secant approximation is given by: 

𝐹(𝛼1𝑦 + 𝛼2) ≈ 𝐹(𝛼1𝑥 + 𝛼2) +
𝐹(𝛼1𝑧 + 𝛼2) − 𝐹(𝛼1𝑥 + 𝛼2)

𝛼1𝑧 + 𝛼2 − (𝛼1𝑥 + 𝛼2)
×[(𝛼1𝑦 + 𝛼2) − (𝛼1𝑥 + 𝛼2)] 

Cancelling produces: 

 

𝐹(𝛼1𝑦 + 𝛼2) ≈ 𝐹(𝛼1𝑥 + 𝛼2) + (
𝑦 − 𝑥

𝑧 − 𝑥
)×[𝐹(𝛼1𝑧 + 𝛼2) − 𝐹(𝛼1𝑥 + 𝛼2)] (5.8) 

Note that all quantities in (5.8) are observable! The x, y and z are just the different observed levels 

of cause 𝐶1 while 𝐹(𝛼1𝑥 + 𝛼2) and 𝐹(𝛼1𝑧 + 𝛼2) are the observed probabilities. Working through 

a bit more algebra: 

 

𝐹(𝛼1𝑦 + 𝛼2) ≈ (
𝑦 − 𝑥

𝑧 − 𝑥
)×𝐹(𝛼1𝑧 + 𝛼2) + [1 − (

𝑦 − 𝑥

𝑧 − 𝑥
)]×𝐹(𝛼1𝑥 + 𝛼2) 

= 𝑘×𝐹(𝛼1𝑧 + 𝛼2) + (1 − 𝑘)×𝐹(𝛼1𝑥 + 𝛼2) 

 

(5.9) 

with 𝑘 = (
𝑦−𝑥

𝑧−𝑥
). Following the theme from earlier chapters, the prediction is found from a linear 

combination of observed probabilities.  

The interpolation model of (5.9) nicely lends itself to psychological interpretation. Exemplar-

based theories of categorization assert that novel instances are classified based on their similarity 

to previously known instances in memory (Nosofsky, 1986, 1988). The interpolation model 

suggests a similar mechanism, though now the prediction is quantitative. Specifically, when the 

judge encounters a novel causal combination, they may retrieve exemplars from memory in which 

the outcome probability is known. The exemplars can then be weighted according to their 

similarity to the novel case. This is just what equation (5.9) does when similarity is defined as the 

Euclidean distance between the novel case and the known exemplars. When the novel case is close 

to 𝑐1 = 𝑥, then 𝑘 → 0 and the 𝐹(𝛼1𝑥 + 𝛼2)  probability gets most of the weight. Likewise, when 
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the novel case is close to 𝑐1 = 𝑧, then 𝑘 → 1 and the 𝐹(𝛼1𝑧 + 𝛼2) probability gets most of the 

weight. 

Secant approximation is a simple method that uses known probabilities to make predictions. 

These predictions will clearly improve as the judge learns more of the true probabilities. This 

learning can be interpreted as building up the response function through experience. Figure 5.12 

shows how the process develops.  

In panel A of Figure 5.12, the judge has learned population probabilities for four causal 

combinations. The secant lines connect the adjacent probabilities to give a piecewise linear 

approximation of the response function. The response curve is just the derivative of the response 

function, so the piecewise linear approximation implies a step function approximation of the 

response curve, which is shown in panel B. Naturally, as the judge learns more population 

probabilities the approximation improves. Panel C shows the response function approximation 

when seven probabilities are known and panel D displays the corresponding step function. 

With secant approximation, predictions can be made using only observed probabilities. So is 

there any reason to form a representation of the response function? Consider again the case in 

which the two probabilities from (5.7) are known, but now suppose the judge is interested in the 

novel combination of 𝑐1 = 𝑦 and 𝑐2 = 0. That is, the judge wants to predict 

Pr(𝑒 = 1|𝑐1 = 𝑦, 𝑐2 = 0) = 𝐹(𝛼1𝑦). In the first example, all unknown 𝛼’s cancelled in the 

approximation formula. But for the current example, the unknown 𝛼′𝑠 will no longer cancel, so 

the secant formula can no longer be used. The problem is that the novel combination differs from 

the known combinations on both the 𝐶1 and the 𝐶2 causal dimensions. It is for these types of 

situations that the response function is desirable. 

When the response function is known, capacities can be inferred from probabilities. 

Predictions can then be made for any novel combination of causes. This is precisely the utility of 

capacities argued for by Cartwright (1989), as was discussed in the introduction to this chapter. In 

summary, investing resources to represent the response function may be sensible since it allows 

the judge to infer causal capacities, which may then be used for prediction in novel contexts. 
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Figure 5.12. Piecewise linear approximations of a cumulative response function (left panels) and the implied step 

function approximations of the response curve (right panels).  

A: The four black points represent true probabilities that have been learned to high precision, so they all lie on the 

true response function shown in blue. The secant lines give a piecewise linear approximation, shown in orange. 

B: True response curve (probability density) is shown in blue. The piecewise linear function from A implies a step 

function approximation of the response curve. 

C: Seven known probabilities gives a better approximation to the cumulative response function. 

D: The step function approximation from the seven probabilities in C. 

5.7 Conceptual applications 

Previous sections have shown that CARP can provide a lens through which to view the external 

world of causal environments. Now the lens is turned inward. If one accepts CARP as an 

approximate description of causal intuitions, then the formalism can be used to study these 
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intuitions. This section assumes CARP as a descriptive theory. Namely, it assumes that people’s 

psychological representations can be described using the proposed latent variable framework. 

Whether this assumption is justified is a topic of future study. However, its tentative acceptance 

allows one to address various conceptual issues in the study of causal learning. 

5.7.1 Causal probe question 

Chapter 1 discussed the disagreement about the wording of the question used for causal strength 

judgments. Recall a criticism of the standard causal probe is that it is ambiguous with regards to 

the context in which the strength judgment is made. To remedy this deficiency, a number of 

researchers use questions that are explicit about the context. For instance, Buehner et al. (2003) 

favor a counterfactual wording in which: 

The context (before the intervention) we chose for estimating the extent of generative 

influence was one in which e never occurred, and the context for estimating the extent of 

preventive influence was one in which e always occurred. In these contexts, because 

alternative influences of e of like kind as the candidate (generative or preventive) are 

counterfactually removed, the influence of the candidate should manifest itself without 

contamination. That is, the estimated frequency of e in the (counterfactual) presence of the 

generative cause should reflect the strength of this cause alone; the same holds for the 

estimated frequency of ¬e as a measure of the preventive strength of the candidate. There 

are no simpler or clearer contexts under which to manifest the strength of a candidate 

causal relation [emphasis added]. (Buehner et al., 2003, p. 1128) 

Subsequent researchers using counterfactual or suppositional wording have followed the above 

advice. One example is found in the generative causal query of Lu et al. (2008, p. 962): 

Suppose that there is a sample of 100 DNA strands and that the gene is OFF in all those 

DNA strands. If these 100 strands were exposed to the protein, in how many of them would 

the gene be TURNED ON? 

Moreover, Lu et al. (2008) argue that the critical feature of this wording is not its precision, but 

that it measures strength in a context where no other cause is producing the effect. 
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It is important to be clear regarding what is intended by the counterfactual or the suppositional 

wording. For generative scenarios, removing all alternative influences is meant to preclude the 

possibility of some other cause producing the effect. Thus, for the generative causal probe, the 

probability of the effect will equal zero in the reference context. In other words, participants should 

imagine a situation in which it is impossible for the effect to occur before introduction of the 

candidate cause.  

Though the intended meaning of the causal probe is made clear in the discussions of Buehner 

et al. (2003) and Lu et al. (2008), the wording of the question itself does not strictly convey this 

precise meaning. A seemingly legitimate interpretation of the above question is that the effect 

could have occurred, but that it just failed to for the particular hypothetical sample under 

consideration. Such an outcome is consistent with a small positive probability of the effect for each 

of the hypothetical trials. In fact, this alternative interpretation would often seem more reasonable 

for a number of domains. 

A bit of reflection suggests intuitive reasons why the intended hypothetical context is 

problematic, and CARP can make these intuitions precise. The focus will be on the generative 

case, though with slight modification most of the criticisms will hold for preventive scenarios as 

well. The key problem is that contexts in which the effect never occurs are often highly ambiguous. 

Indeed, for probabilistic causation they appear more ambiguous than contexts in which the effect 

occurs with some positive probability. 

Consider the counterfactual or suppositional context where no other cause is producing the 

effect. To be sure, certain examples will precisely satisfy this hypothetical constraint. An 

archetypal one is found in Newton’s first law of motion: an object at rest will stay at rest unless 

some external force acts upon it. Hence, the probability of the effect (motion) will be zero when 

all causes (forces) are removed. Key features of this example are that it refers to a simple physical 

system with (near) deterministic causality. 

The situation becomes much murkier when one considers causal scenarios that are complex 

and probabilistic, which is typical of those used in causal learning experiments. For these 

scenarios, removing alternative causes is not simply an all-or-none proposition. Instead, one must 

scale down alternative causes to a level at which they are no longer sufficient to generate the effect. 

To make these issues concrete, consider the effect of “high school graduation”. There are 

many causal factors that influence whether a high school student graduates, with a large proportion 
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mediated through the general constructs of “motivation” and “ability”. For example, improving 

student nutrition will improve both as it increases energy levels and also boosts several cognitive 

faculties (Pollitt, Cueto, & Jacoby, 1998), so we should also expect it to increase graduation rates. 

Now suppose we observe that some educational intervention, such as a free school meal 

program, improves the graduation rate at a given high school from 60 to 70 percent. Or 

equivalently, the probability that a randomly sampled student graduates from this high school 

improves from 0.6 to 0.7. To judge causal strength using the advice from Buehner et al. (2003), 

one should imagine a hypothetical student for which graduation does not (or will not) occur, and 

then imagine how the probability changes once the cause is introduced. So for the school example, 

we must remove the motivational and ability factors that allow the hypothetical student to graduate, 

and then imagine the influence of the intervention. The problem is that many different hypothetical 

students come to mind who satisfy this requirement. We can imagine students who just miss 

graduation by failing to pass one or two classes, as well students who drop out in their first year 

of high school. 

Some may object to the high school example since it evokes an abundance of background 

knowledge. Yet the same type of criticism can be made for virtually any probabilistic causal 

scenario. Consider Lu et al.’s (2008) gene activation scenario from above. Gene expression is a 

complex multi-stage process that can be influenced to varying degree at any of these stages 

(Russell, 2003). A gene may fail to activate in an otherwise healthy cell because there is currently 

no use for the protein that the gene would produce. Alternatively, the gene may fail to be active 

because the cell is highly stressed with few metabolic resources. Though both backgrounds result 

in no activity, these are two highly different reference states that should respond quite differently 

to the introduction of some candidate cause of interest. 

The CARP framework can be used to show why a hypothetical context with a zero effect 

probability is especially ambiguous. To see how, assume an exponential response function 𝐹(. ) 

and a generative candidate cause 𝐶1 with associated capacity 𝛼1. If we follow Buehner et al. 

(2003), the causal strength of 𝐶1 will be evaluated in a context with the probability of the effect 

equal to zero, or for capacities 𝛼𝑖 such that 𝐹(𝛼𝑖) = 0. With an exponential response function this 

condition is met for all 𝛼𝑖 ≤ 0. Now if the judge is able to scale down the alternative causes or 

scale up preventive factors so that 𝛼𝑖 = 0 exactly, then introducing 𝐶1 to this hypothetical context 

results in 𝐹(0 + 𝛼1) = 𝐹(𝛼1). This gives the causal power prediction. However, the judge might 
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imagine a more conservative reference context. This can be represented in CARP with a negative 

capacity 𝛼ℎ < 0, which still satisfies the zero probability condition 𝐹(𝛼ℎ) = 0. The judged causal 

strength then becomes 𝐹(𝛼ℎ + 𝛼1), a quantity that does not equal causal power. 

The left panel of Figure 5.13 depicts the problem of an ambiguous reference context. When a 

reference capacity of 𝛼𝑖 = 0 is used, causal power is given by the pink plus the dark red area. But 

when a more conservative 𝛼ℎ = −3/4 is used for the reference context, the strength estimate is 

given instead by the pink area only. 

A second criticism of Buehner et al.’s (2003) recommend probe is that it makes sense only for 

a subset of causal models. Namely, the wording assumes that a context with zero effect probability 

exists and is meaningful. Yet it is plainly evident that many causal domains do not fulfill this 

assumption. 

Two general types of causal systems will not conform to the zero effect assumption. First, for 

many causal domains a zero effect probability is not within the natural range of outcomes. For an 

example, consider the probability that a neuron fires an action potential within some fixed time  

 

 
Figure 5.13. Response curves that represent heterogeneity of reference points for zero or near-zero probabilities. In 

both panels, a cause 𝐶1 with capacity 𝛼1 is evaluated using different reference contexts. 
A: The exponential response curve gives causal power when the reference context capacity is zero. Causal power is 

shown by the pink area plus the red area. When reference capacity is below zero, the judgment does not equal causal 

power. The judgment for a reference capacity of 𝛼ℎ = −0.75 is shown by the pink area only.   

B: For finite capacities, a standard normal response curve does not allow for a reference probability of zero. Instead, 

the judge may choose capacities that give a “small” reference probability. Two choices are 𝛼𝑠 = −3 and 𝛼𝑐 = −2.2, 

which give two different causal strength judgments shown by the pink and the pink plus red areas, respectively. 
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interval. This probability can be modulated up or down with excitatory or inhibitory 

neurotransmitters. However, a zero probability of firing is not within the natural range, and in fact, 

would probably only occur if the neuron was dead. 

A second type of problem occurs if the probability can be made close, but not exactly equal 

to zero. For instance, try to imagine a group of adults who will definitely not die of cardiac arrest 

over some duration. Such a thought experiment will fail since there is always some probability of 

cardiac arrest, even in otherwise healthy individuals (Sen-Chowdhry & McKenna, 2006). 

Nonetheless, through creative imagination we may contrive ever-more elaborate contexts to 

safeguard these hypothetical individuals. We might imagine that they are young, healthy, have no 

family history of heart problems, were recently examined for congenital defects, and so on. So 

while a true zero probability may be unattainable, it may be possible to get closer and closer with 

more elaborate hypotheticals. 

Once again, there is a risk that people will vary the extent of the reference context 

hypothetical, though now the problem may be more severe. With a true zero probability there is at 

least the potential for respondents to all form the same reference context. Without a zero 

probability, respondents will be left to decide what is close to zero, and this freedom should 

contribute additional variation in the responses. 

Once again, the CARP framework allows for a clear demonstration of the problem. The right 

panel of Figure 5.13 above shows a standard normal density for the response curve. Accordingly, 

the response function has positive support over the entire real number line, and a zero probability 

is not possible for any finite capacity. Suppose a candidate cause 𝐶1 and with an associated capacity 

𝛼1 = 3. When asked to imagine a zero probability reference context, participants may adopt 

different baselines. This is shown in the figure with capacities  𝛼𝑠 = −3 and 𝛼𝑐 = −2.2, which 

respectively give reference probabilities of 𝐹(𝛼𝑠) ≈ .001 and 𝐹(𝛼𝑐) ≈ .01. So both reference 

contexts are close to zero, though the 𝛼𝑠 context is an order of magnitude smaller in probability. 

The natural consequence of these varied reference contexts is differing causal strength estimates. 

For the more conservative context, the estimate is 𝐹(𝛼𝑠 + 𝛼1) = 0.5, which is represented by the 

pink area in the left panel. And for the more permissive context, the estimate is 𝐹(𝛼𝑐 + 𝛼1) ≈

0.79, which is shown by the pink area plus the red area. 

Thus, the reference probability will necessarily be positive for some causal systems while 

Buehner et al.’s (2003) recommend probe tries to deny this reality. Participants are then left to 
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determine a probability that is sufficiently close to zero. Compounding the problem, this reference 

probability would seem to differ based on whether a counterfactual or suppositional context is 

used. The suppositional context is one in which you can predict with certainty that the effect will 

not occur. This implies more extreme antecedent factors than those associated with a 

counterfactual outcome, for which one can examine a particular case and imagine why the outcome 

failed to occur. Returning to the high school example, to know for certain that a student will not 

graduate suggests that they come from a highly disadvantaged background. In contrast, the 

counterfactual student who does not graduate is more permissive as it extends to students who just 

miss graduation by a couple of credits. 

In summary, Buehner et al. (2003) are right to emphasize the paramount importance of 

invoking a consistent context for causal strength evaluations. Doing so has key implications for 

both intra and inter individual judgments. Within a respondent, adopting a constant reference 

context should produce consistent ordinal strength judgments. It is also important to encourage 

different respondents to adopt a similar reference context. As has been discussed in previous 

chapters, it is standard to use group statistics when reporting strength judgments. If different people 

assume different reference contexts, then it will increase the variance of these measures and make 

model comparison more difficult. 

While Buehner et al. (2003) highlight a key concern, their proposed amendments may make 

the reference context even more ambiguous. In fact, recent research supports this hypothesis: Shou 

and Smithson (2015) found that “predictive” causal questions, like the one above from Lu et al. 

(2008), produced more variability in responses relative to the more standard causal probes. 

CARP proves a valuable tool in demonstrating potential problems in the causal strength probe. 

Might it also help point towards a better question construction? Under the CARP representation 

of causal power, with an exponential response function, only the zero probability has a many-to-

one mapping of capacities to probability as all 𝛼𝑖 ≤ 0 return 𝐹(𝛼𝑖) = 0. Yet for any positive 

capacity 𝛼𝑖 > 0, the function 𝐹(𝛼𝑖) is one-to-one. Intuitively, a positive probability reference 

context may evoke a more specific set of instances. This will be especially true when the 

probability is within the natural range for the domain of interest. Returning to the graduation 

example, it is much easier to imagine a high school with a sixty percent graduation rate than it is 

to imagine one with graduation rate of zero. 
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Thus, it should be preferable to use a causal probe that invokes a positive probability reference 

context. A good general strategy could be to use a small positive reference probability for causal 

scenarios in which a zero probability sensible. And for scenarios in which a zero probability is 

outside the natural range of outcomes, the causal question could invoke a reference probability at 

the lower end of the natural range. 

Cartwright observes in her book that, “…fundamental laws are laws about distinct ‘atomic’ 

causes and their separate effects; but when causes occur in nature they occur not separately, but in 

combination,” (Cartwright, 1989, p. 175). This passage highlights a central tension in the attempt 

to measure causal intuitions. On the one hand, the cleanest formal representation is one that isolates 

the cause. But on the other, isolated causes do not typically present themselves to everyday 

experience. The upshot is that intuitions are unlikely to correspond to isolated causes, and so 

measurements that attempt to solicit such intuitions will most likely be misconstrued. 

5.7.2 Axiomatization of CARP 

An axiomatic account begins with a few basic assumptions (axioms) and then derives a number of 

results from these assumptions. Axiomatic measurement theory seeks to derive properties of 

numerical assignment from a set of foundational assumptions (Krantz, Luce, Suppes, & Tversky, 

1971). The approach has been used to explicitly establish and systematize properties of numerical 

scales for various areas of inquiry. For a particular scientific domain, the basic assumptions will 

concern how the units of analysis relate to and combine with one another.  

In motivating the latent variable model, a number of basic assumptions were made about 

combinations of causes and their relation to probability of the effect. Namely, CARP assumes that 

causes combined additively in their capacities and that capacity was mapped to probability by a 

strictly increasing response function 𝐹(. ). Additional assumptions about causal strength then 

allowed for derivation of the Δ𝑃 and causal power models. Based on these assumptions, it would 

seem that there is potential to give an axiomatic account of these models. In fact, an axiomatization 

is possible, as is shown in Miyamoto (forthcoming). 
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5.8 Summary 

In earlier chapters, only two candidates for the data generating process were considered: the Δ𝑃 

rule and causal power. And for the majority of this text, causal power has been treated as the “true” 

underlying model. Even with this simplifying assumption, it has been quite difficult to choose the 

best model to explain human causal judgment, be it a Bayesian model of causal power or the 

weighted Δ𝑃 rule. Results from this chapter would seem to only complicate the question, as now 

there is an infinite set of potential data generating models. 

The causal-power-as-truth story is simple, though it comes with its price. Many difficulties 

from previous chapters were largely due to the absence of an account of the objective causal 

environment. For instance, Chapters 2 and 4 showed how some description of the relevant 

environment is crucial in making the case for Bayesian models as optimal. The CARP framework 

provides a bridge between models of human causal inference and standard statistical methods. As 

such, it provides conceptual machinery that can be used to measure the actual environments in 

which judgments take place. Considerable work is necessary to identify the relevant environments 

and the statistical tools that may be used to measure them. Hopefully, such work will be a fruitful 

area of future research.
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Chapter 6.  

 

Conclusions 

Maybe you can’t afford the ideal [solution], but if we can approximate it in a certain way, 

you can get 98 percent of the benefit with 1 percent of the computation. 

 –Jeff Dean, the “Chuck Norris” of the Internet (from Slate’s “The Optimizer”). 

6.1 Contributions of the rational Bayesian approach 

Our survey of the field of causal learning has covered considerable territory. It has reviewed 

several competing research traditions and many models that have arisen from them. A central focus 

has been on the rational Bayesian approach. Much of the discussion has been critical, but it is 

important to emphasize the many laudable aspects of this program. Early rational models of causal 

learning essentially assumed that true probabilities could be gleaned from learning data. The 

Bayesian perspective provided a key corrective: uncertainty is fundamental to inference. No model 

can be rational unless it accounts for uncertainty. Hence, one major contribution of the Bayesian 

approach has been to identify a key oversight in the original analysis. 

Bayesian analysis offers a powerful set of tools to characterize problems involving inductive 

inference. It provides a precise mathematical framework for model representation. This enforces 

a uniformity on psychological theory and lays bare underlying assumptions, both desiderata of the 

scientific enterprise. Further, the Bayesian approach can deliver optimal solutions for certain 

inferential problems. Even if one rejects Bayesian cognition, the ideal solution can function as a 

useful reference point by which to evaluate heuristic models, as was done in Chapter 3. 

As some philosophers have observed, a theory that does not provide true causal explanations 

can still be useful as a descriptive theory (Danks, 2008). That is, a theory can serve to organize a 

large assortment of phenomena even if it fails to pick out the underlying causal mechanisms. Might 

the Bayesian approach perform such role by providing a standard and uniform account of human 

cognition? At present, it is much too preliminary to decide. It may turn out that a hodge-podge of 

idiosyncratic assumptions will be necessary to explain the vast diversity of human behavior. This 
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outcome may represent limitations of the Bayesian formalism. Or, as some researchers believe, it 

may simply reflect the underlying cognitive reality. The mind might be a kluge (Marcus, 2008), 

an assortment of mental modules (Barkow, Cosmides, & Tooby, 1992), or an adaptive 

toolbox(Gigerenzer & Selten, 2001). 

6.2 The cost of computation 

Bayesian methods have made strong contributions to cognitive science and they should continue 

to do so. Yet its clean formalism and promise of optimality can be beguiling. As with any scientific 

endeavor, one must proceed with a healthy degree of skepticism. A major goal of this dissertation 

has been to assume the skeptic’s post and shine a critical light on Bayesian models of cognition.   

The primary standard that has been used to evaluate Bayesian models has been empirical. 

Chapters 3 and 4 showed that the one parameter weighted Δ𝑃 model gives a better description of 

judgments than leading Bayesian models of parameter estimation. However, there will always be 

a limit to what may be distinguished empirically. The end of Chapter 4 presented a two-stage 

Bayesian inference model that gives predictions that closely mirror weighted Δ𝑃. Further, theory 

tells us that the Bayesian model has the potential to be optimal while there are no similar results 

for weighted Δ𝑃. So why not choose the Bayesian model? 

For a Bayesian solution to be truly optimal, the problem must be narrowly demarcated. All 

costs need to be explicitly defined in terms of a loss function. Certainly, such a rigorous 

quantitative approach is desirable for a theory of cognition. Yet even more certainly, rigor should 

not come at the expense of veracity. The cognitive costs for maintaining and operating over mental 

representations are very difficult to measure. But this does not make them any less real. Indeed, 

the underlying metabolic costs may be quite significant. Lennie (2003) estimates the metabolic 

cost of individual neuronal spikes, and from this estimate he finds that very few neurons can be 

active concurrently in the human cortex—possibly fewer than 1%. For this reason, among others, 

a number of researchers conjecture that the brain must use sparse encoding of representations 

(Bowers, 2009; Lennie, 2003). Accordingly, Markman and Otto (2011) contend that any definition 

of optimal behavior should also include some account of energy expenditure. Of course, these 

ideas are by no means new. Simon (1955), for instance, famously argued that resource constraints 

need to be incorporated into theories of rational behavior. 
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Bayesian advocates have come to recognize the importance of computational cost. Chapter 2 

mentioned the method of “resource rational analysis” used to construct rational process models, 

which are meant to form a bridge between computational and algorithmic levels (Griffiths et al., 

2015). Though this is a move in the right direction, the approach appears overly constrained. The 

main limitation is the requirement that rational process models converge to the objective function 

in the limit. As a consequence, a minimum overhead is built-in to the representational assumptions. 

To date, the objective function has always been Bayesian. Thus, rational process models assume 

that people form representations of a prior distribution and a likelihood function, that these are 

combined according to Bayes rule, and that there is some mechanism that samples from the 

posterior distribution. All potential rational process models include these representational 

commitments, so they are effectively omitted from the ledger of cognitive costs. The result is a 

restricted definition of computational cost, defined only in terms of sampling. 

In Bayesian statistics, the posterior distribution is useful for many reasons. Applications 

include finding posterior confidence intervals, the posterior predictive distribution, and posterior 

distributions for arbitrary functions of the modeled parameters. Yet in rational process models the 

use of the posterior quite limited. It is used only to take a few samples of the relevant parameter in 

order to estimate its value. As Vul et al. (2014) note, approximations can be quite poor when the 

number of samples from the posterior is small, leading to strong deviations from the Bayesian 

solution. In sum, rational process models pay a steep price in representational commitments while 

returning a narrow benefit, which may be of dubious value. 

Resource rational analysis would never produce the weighted Δ𝑃 model since it is 

fundamentally non-Bayesian. That is, uncertainty is not represented with probability distributions 

and belief is not updated according to Bayes rule. Though it is not Bayesian, weighted Δ𝑃 does a 

very good job of approximating the Bayesian solution. This was shown in the simulation from 

Section 3.6 in which weighted Δ𝑃 was almost as good as the normative Bayesian model, with the 

two models agreeing over 90 percent of the time. Any rational process model that relies on a small 

posterior sample will almost certainly be inferior. Further, weighted Δ𝑃 achieves this performance 

at a fraction of the representational and computational commitments relative to Bayesian models. 

There should be little controversy regarding the claim that the weighted Δ𝑃 model entails 

lower computational cost relative to Bayesian models. In other comparisons, especially among 

competing algorithmic models, this assessment will be more difficult. This is why Danks and 
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Eberhardt (2011) cite the need for an account of algorithmic rationality. One starting point might 

use relative processing costs from computer science. For instance, we know that it costs more to 

represent a distribution than it does to represent a single value. Similarly, the computer operation 

of multiplication is more costly than addition. Computer science can tell us precisely how much 

more expensive in terms of the best known algorithms used to execute these functions. These 

findings could serve as initial assumptions, which may eventually be replaced as our understanding 

of psychology and computer science improves. Such an approach is essentially the same as 

resource rational analysis. The one major difference is that Griffiths et al. (2015) only consider the 

class of algorithms that are used to approximate a posterior probability distribution. 

In short, it is time to bring “computation” to the forefront of the computational level and think 

less like mathematicians and more like computer scientists. Instead of searching for the ideal 

solution, we may instead search for solutions that are close to ideal while saving massively on 

computation time. Perhaps models that fulfill these dual objectives can then be known as “Jeff 

Dean rational”. 

6.3 Future directions 

What are people doing when they form judgments of causal strength? How do they use evidence 

to form these judgments? Substantial progress has been made on these questions in the 50-plus 

years since the first studies on contingency judgment. Most of this progress has been conceptual. 

Cognitive models have become increasingly refined, spurred in part through the evolution of 

formal frameworks in statistics and computer science. Yet at the same time, most contemporary 

experiments remain quite similar to those used in early research. In part, this is because the central 

research questions have remained largely unchanged. Nonetheless, improved measurement is one 

pre-requisite for the advancement of science. 

Of course, establishing a refined characterization of the research problem often leads to novel 

predictions and to improvements in experimental method. While this dissertation has focused 

primarily on theory development, much of this work has been a theoretical means to empirical 

ends. Some predictive payoffs have been immediate. Chapter 3 reinterpreted the weighted Δ𝑃 

model as an estimator of causal power. By doing so, it became apparent that weighted Δ𝑃 had 

previously been misspecified for preventive causes. The correct specification, which changes the 
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focal event from effect present to effect absent, demonstrates a profound improvement in fit to 

experimental data. 

The revised weighted Δ𝑃 specification also suggests additional measures that might better 

distinguish models. If effect absent trials are focal for preventive causes, one should expect that 

they will receive more attention during the learning task. Time-per-trial could serve as a proxy for 

attention, and this measure is easily obtained since nearly all experiments are now administered 

by computer. 

Analysis of weighted Δ𝑃 also contributed to the discovery of the deterministic bias. As shown 

in Chapter 4, the deterministic bias was demonstrated by a majority, though not all, participants in 

certain key conditions. This result underscores the importance of staying alert to individual 

differences in judgment strategies. The deterministic bias was probably concealed in previous 

studies by the use of group averages. 

Somewhat curiously, individual differences did receive attention in early studies of 

contingency judgment. For instance, Ward and Jenkins (1965, p. 234) stated that, “It became clear 

in preliminary experiments that different subjects adopt distinctly different bases of judgment. 

Hence, group averages provided little useful information.” So instead of using group statistics, 

Ward and Jenkins (1965) attempted to classify each person as following one of four distinct 

judgment rules. 

Going forward, the study of causal learning would benefit from a renewed focus on the 

characterization of heterogeneous response strategies. Performing such analyses requires repeated 

measurements across multiple conditions. This presents a challenge, especially for sequential 

presentation formats that use many trials per condition. One solution could be to measure 

participants on multiple occasions, which should mitigate the influence of fatigue. 

Thus, we see several examples of how theory development has led to novel predictions while 

also suggesting improvements in method. Another example is found with the power PC model, 

which has influenced several aspects of experimental design. In order to ensure that the power PC 

model assumptions are met, causal learning stimulus materials have become increasingly patterned 

after hypothetical scientific studies. This is true of the experiments reported in Chapter 4, which 

were essentially replications of previous studies. There are several reasons why a hypothetical 

scientific context is a good choice for testing the power PC theory. First, it limits the influence of 

background knowledge on judgments. More importantly, most college students (the typical 
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participants) should know that scientific studies take special care to avoid confounding. 

Accordingly, participants should feel justified in believing that the candidate cause is statistically 

independent of background factors, a critical assumption of the power PC model. 

To summarize, the power PC model explicitly described the type of environment for which it 

is appropriate, and researchers subsequently attempted to make stimulus scenarios resemble this 

environment. The CARP framework of Chapter 5 aspires to reverse this arrow of influence. That 

is, it aims to allow for the measurement of actual causal environments which can then inform 

experimental design and analysis. For example, we might be interested in causes of some disease. 

The right data would allow researchers to characterize how genetic, behavioral, and environmental 

causes influence the probability of occurrence. On the CARP approach, this would involve 

estimating a response curve under the assumption of additive causal capacities. The very same 

data could be used to construct stimulus scenarios with which to train participants about the causes. 

Comparisons could then be made between participant judgments and model predictions for various 

novel causal combinations. An interesting extension might be to test judgments of experts versus 

those of laypeople. In the above example, experts would be medical professionals with clinical 

experience predicting the disease. 

Increased control in cognitive science is often achieved by stripping away context. For 

example, classic research in categorization uses sparse, abstract stimuli such as geometric objects 

(e.g. Medin & Schaffer, 1978; Nosofsky, 1986). This is sensible strategy for several reasons. As 

just mentioned, abstract materials limit the potentially contaminating role of background 

knowledge. And sparseness ensures that participants are attending to the manipulated variables of 

interest. In short, the goal is to isolate the cognitive process and minimize measurement error. The 

risk, of course, is that it becomes increasingly difficult to generalize the findings to real-world 

behavior. In the study of causal learning, experiments have, if anything, only become more 

abstract. To combat this threat to ecological validity, future research will need to use scenarios that 

evoke real world contexts. The CARP framework provides one avenue by which to introduce the 

reality of the external world while, at the same time, hopefully also organizing its messiness.
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Appendix A.  

 

Power PC derivations 

A.1 Generative causal power 

This section notes difficulties with one of the original assumptions from Cheng’s (1997) power 

PC Theory. Instead of refining the assumption, which could prove difficult, I propose an alternative 

derivation that obviates its use. 

Let C be the observed candidate cause, B be a composite of all unobserved causal factors that 

are on net generative, and E will represent the effect. All variables are binary. Recall the four 

primary assumptions of causal power are: 

1) B and C influence the effect E independently. 

2) B could produce E, but not prevent it. 

3) Causal powers are independent of the frequency of occurrences of the causes. 

4) E does not occur unless it is caused. 

Most of the assumptions have a straightforward interpretation. The major exception is assumption 

3, which requires a definition of “causal powers”. Cheng (1997, p. 372) defines a causal power as 

“the probability with which x produces e when x is present,” where x is some cause and e is the 

effect. On this definition, assumption 3 is difficult to interpret since the occurrence of a cause is 

an event while causal power is a variable that holds some value on the [0,1] continuum. Thus, the 

probability that a causal power takes on a point value is zero. A probability distribution for causal 

powers is necessary to map intervals of values to events. However, elaborating assumption 3 along 

this tack seems altogether too complicated. 

A modified derivation of causal power eliminates the need for assumption 3. To see how, 

denote 𝑐+ as the event “C occurs” and 𝑒+ as the event “E occurs”. Now introduce new notation of 

𝑐𝑒
+ to denote the event “C causes E”. Similarly define the events 𝑏+and 𝑏𝑒

+. Clearly, by these 

definitions 𝑐𝑒
+ is a subset of 𝑐+ and likewise 𝑏𝑒

+ is a subset of 𝑏+. 
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 Hume (1748/1854) famously argued that the connection between cause and effect is beyond 

perception and that instead we only see the occurrence of causes followed by the occurrence of 

effects. To respect Hume’s argument is to assume that only the 𝑐+ events are observable while the 

𝑐𝑒
+ events are not. That said, C will be the only plausible cause present in certain contexts. More 

formally, for some contexts there may be very good reason to believe that 𝑃(𝑏+) = 0.  In such 

contexts, one may have high confidence in attributing the occurrence of the effect to the candidate 

cause. While one may high confidence, they will never be certain. This is because of the standard 

assumption that the context variable B is not directly observable. 

From the preceding definitions we have 𝑃(𝑐𝑒
+|𝑐+) as the probability of the cause producing 

the effect given that the cause is present, which precisely matches Cheng’s (1997) definition of a 

causal power. The lone, and critical, difference is that I explicitly express causal power as a 

conditional probability while Cheng (1997) embeds it within her framework as the variable 𝑝𝑥, 

leading to the confusion regarding assumption 3. 

With the new definitions in place, the independence assumption can now be precisely 

established. Assume independence of the causal generation events 𝑐𝑒
+ and 𝑏𝑒

+. Also assume 

independence of 𝑐+ and 𝑏𝑒
+, so the occurrence of the candidate cause is independent of the 

background generation event. The modified primary assumptions then become: 

1) 𝑐+ and 𝑐𝑒
+ are both independent of 𝑏𝑒

+  

2) B could produce E, but not prevent it. 

3) E does not occur unless it is caused. 

These assumptions allow the derivation of Cheng’s (1997) generative causal power. By 

assumption 3, the effect occurs only if it is caused by C or if it is caused by B. In the above notation, 

this means that the effect occurs only when 𝑐+ ∩ 𝑐𝑒
+ or 𝑏+ ∩ 𝑏𝑒

+ is true. Note that 𝑐+ ∩ 𝑐𝑒
+ = 𝑐𝑒

+ 

and 𝑏+ ∩ 𝑏𝑒
+ = 𝑏𝑒

+ since 𝑐𝑒
+ and 𝑏𝑒

+ are subsets. The probability of the union is then: 

 
𝑃(𝑒+) = 𝑃(𝑐𝑒

+ ∪ 𝑏𝑒
+) 

= 𝑃(𝑐𝑒
+) + 𝑃(𝑏𝑒

+) − 𝑃(𝑐𝑒
+ ∩ 𝑏𝑒

+) 

 

(A.1) 

  Then by assumption 1: 
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𝑃(𝑒+) = 𝑃(𝑐𝑒

+) + 𝑃(𝑏𝑒
+) − 𝑃(𝑐𝑒

+)×𝑃(𝑏𝑒
+) 

 

We may condition on C being absent, which implies 𝑃(𝑐𝑒
+|𝑐−) =

𝑃(𝑐−∩𝑐𝑒
+)

𝑃(𝑐−)
=

0

𝑃(𝑐−)
= 0. Also, by 

assumption 1, 𝑃(𝑏𝑒
+|𝑐−) = 𝑃(𝑏𝑒

+). This gives: 

 
𝑃(𝑒+|𝑐−) = 𝑃(𝑏𝑒

+) (A.2) 

With 𝑐− true, only the unobserved background can be present. Since B is unobserved, it is not 

possible to estimate background causal power 𝑃(𝑏𝑒
+|𝑏+) separate from the probability that B 

occurs, or 𝑃(𝑏+). Consequently, the observed 𝑃(𝑒+|𝑐−) serves as an estimate for the conjunction 

probability 𝑃(𝑏+ ∩ 𝑏𝑒
+) = 𝑃(𝑏𝑒

+). Though expressed somewhat differently, this result agrees in 

concept with Cheng’s (1997) derivation. 

We may similarly condition on C being present. This implies 𝑃(𝑐𝑒
+|𝑐+) =

𝑃(𝑐+∩𝑐𝑒
+)

𝑃(𝑐+)
=

𝑃(𝑐𝑒
+)

𝑃(𝑐+)
, 

so  𝑃(𝑐𝑒
+|𝑐+) > 𝑃(𝑐𝑒

+) whenever 𝑃(𝑐+) < 1. Again by assumption 1, 𝑃(𝑏𝑒
+|𝑐+) = 𝑃(𝑏𝑒

+), so:  

 
𝑃(𝑒+|𝑐+) = 𝑃(𝑐𝑒

+|𝑐+) + 𝑃(𝑏𝑒
+) − 𝑃(𝑐𝑒

+|𝑐+)×𝑃(𝑏𝑒
+) (A.3) 

Equation (A.3) is just the Noisy-OR parameterization for when the cause is present, but now 

expressed in the new notation. Substituting (A.2) into (A.3) yields: 

 

𝑃(𝑐𝑒
+|𝑐+) =

𝑃(𝑒+|𝑐+) − 𝑃(𝑒+|𝑐−)

1 − 𝑃(𝑒+|𝑐−)
 

=
Δ𝑃

1 − 𝑃(𝑒+|𝑐−)
 

 

And this is just the expression for generative causal power model.  

In summary, the derivation introduces the new unobservable events “C causes E” as 𝑐𝑒
+ and 

“B causes E” as 𝑏𝑒
+. This allows for the derivation of causal power with a modified and more 

precise independence assumption. The result is an expression for the unobservable conditional 

probability 𝑃(𝑐𝑒
+|𝑐+) in terms of the observable probabilities 𝑃(𝑒+|𝑐+) and 𝑃(𝑒+|𝑐−). 

Furthermore, the meaning of causal power is clarified by expressing it explicitly as 𝑃(𝑐𝑒
+|𝑐+). 
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The above derivation also makes transparent the connection between causal power and the 

edge weights notation of the noisy-OR parameterization. The edge weight 𝑤1 corresponds to 

𝑃(𝑐𝑒
+|𝑐+), or causal power. And the edge weight 𝑤0 corresponds to 𝑃(𝑏𝑒

+), which in turn equals 

to the observable probability 𝑃(𝑒+|𝑐−). 

A.2 Relaxing the independence assumption 

At various points in this dissertation I consider violations of the independence assumption. 

Violations may result from a statistical dependence in the occurrences of the causes C and B. Or it 

may result from interactions of their causal powers. Equation (A.1) can be used to find a general 

expression for the model in which independence is not assumed: 

 
𝑃(𝑒+) = 𝑃(𝑐𝑒

+ ∪ 𝑏𝑒
+) 

= 𝑃(𝑐𝑒
+) + 𝑃(𝑏𝑒

+) − 𝑃(𝑐𝑒
+ ∩ 𝑏𝑒

+) 

= 𝑃(𝑐𝑒
+) + 𝑃(𝑏𝑒

+) − 𝑃(𝑐𝑒
+|𝑏𝑒

+)×𝑃(𝑏𝑒
+) 

 

 

Conditioning on the absence of the cause gives: 

 
𝑃(𝑒+|𝑐−) = 𝑃(𝑏𝑒

+|𝑐−)  

Conditioning on the presence of the cause gives: 

 
𝑃(𝑒+|𝑐+) = 𝑃(𝑐𝑒

+|𝑐+) + 𝑃(𝑏𝑒
+|𝑐+) − 𝑃(𝑐𝑒

+|𝑏𝑒
+, 𝑐+)×𝑃(𝑏𝑒

+|𝑐+) 

= 𝑃(𝑐𝑒
+|𝑐+) + 𝑃(𝑏𝑒

+|𝑐+) − 𝑃(𝑐𝑒
+|𝑏𝑒

+)×𝑃(𝑏𝑒
+|𝑐+) 

 

 

And general expressions are obtained that allow for dependence between C and B. 

The model uncertainty simulation of section 3.12 assumed independence between 𝑐+ and 𝑏𝑒
+, 

so 𝑃(𝑏𝑒
+|𝑐+) = 𝑃(𝑏𝑒

+|𝑐−) = 𝑃(𝑏𝑒
+). The model expressed in weights notation then becomes: 

 
𝑃(𝑒+|𝑐−) = 𝑃(𝑏𝑒

+) 

= 𝑤0 
 

And, 
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𝑃(𝑒+|𝑐+) = 𝑤1 + 𝑤0 − 𝑃(𝑐𝑒

+|𝑏𝑒
+)×𝑤0 

= 𝑤1 + 𝑤0 − 𝑤1|0×𝑤0 

 

where 𝑤1|0 = 𝑃(𝑐𝑒
+|𝑏𝑒

+) gives the interaction, but does not refer to any specific edge on the 

common effect graph. With 0 ≤ 𝑤1|0 < 1 a large range of models can be represented, though 

clearly a spectrum of models will also be omitted. 

A.3 Preventive causal power 

Once again, let C be the observed candidate cause, B be a collection of unobserved causal factors 

that are net generative, and E be the effect. Now consider the case in which the candidate cause C 

is preventive, meaning that it reduces the probability of E. Let the event 𝑐~𝑒
+  denote “C prevents 

E”. By this definition, 𝑐~𝑒
+  will be contained within 𝑐+. Again, 𝑏𝑒

+ represents the event “B causes 

E”. Assumption 1 from above then becomes: 

1) 𝑐+ and 𝑐~𝑒
+  are both independent of 𝑏𝑒

+  

The effect will occur if it is generated by B and not prevented by C. This can be expressed formally 

as the conjunction 𝑏+ ∩ 𝑏𝑒
+ and ¬(𝑐+ ∩ 𝑐~𝑒

+ ). Again, this implies 𝑏+ ∩ 𝑏𝑒
+ = 𝑏𝑒

+ and 𝑐+ ∩ 𝑐~𝑒
+ =

𝑐~𝑒
+ . By assumption 1, the events of the conjunction are independent, so: 

 
𝑃(𝑒+) = 𝑃[𝑏𝑒

+ ∩ ¬(𝑐~𝑒
+ )] 

= 𝑃(𝑏𝑒
+)×𝑃[¬(𝑐~𝑒

+ )] 

= 𝑃(𝑏𝑒
+)×[1 − 𝑃(𝑐~𝑒

+ )] 

 

Conditioning on the presence and absence of 𝐶, and using assumption 1, then gives: 

 
𝑃(𝑒+|𝑐−) = 𝑃(𝑏𝑒

+) 

𝑃(𝑒+|𝑐+) = 𝑃(𝑏𝑒
+)×[1 − 𝑃(𝑐~𝑒

+ |𝑐+)] 

 

 

Substituting the top equation into the bottom and solving for 𝑃(𝑐~𝑒
+ |𝑐+) yields preventive power: 
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𝑃(𝑐~𝑒
+ |𝑐+) =

−[𝑃(𝑒+|𝑐+) − 𝑃(𝑒+|𝑐−)]

𝑃(𝑒+|𝑐−)
 

=
−Δ𝑃

𝑃(𝑒+|𝑐−)
 

 

 

Note that 𝑃(𝑐~𝑒
+ |𝑐+) is the probability that C prevents E conditional on C occurring. This generally 

conforms to Cheng’s (1997, p. 375) definition of, “a preventive cause i has the power to stop an 

(otherwise occurring) effect e from occurring with probability pi”. 
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Appendix B.  

 

Mean-squared error of causal power 

B.1 Conditional mean-squared error for causal power MLE 

In order to find an exact expression for the variance, I assume that 𝑤0 is fixed and known, though 

below this assumption is relaxed. 

Suppose  �̂�𝑇 is estimated from a sample of size N with �̂�𝑇 = �̂�(𝑒
+|𝑐+, 𝑏+) =

𝑁(𝑒+,𝑐+)

𝑁
. The 

estimate has a scaled binomial distribution, or �̂�𝑇 ~ 
1

𝑁
Binom(𝑤𝑇 , 𝑁). Note we can also define 

𝜖𝑇 = �̂�𝑇 − 𝑤𝑇 which allows us to write �̂�𝑇 = 𝑤𝑇 + 𝜖𝑇. The error 𝜖𝑇 has a scaled binomial 

distribution shifted by 𝑤𝑇. This implies that 𝐸[𝜖𝑇] = 𝐸[�̂�𝑇 − 𝑤𝑇] = 𝐸[�̂�𝑇] − 𝑤𝑇 = 0 and 

Var[𝜖𝑇] = Var[�̂�𝑇] =
𝑤𝑇(1−𝑤𝑇)

𝑁
. 

With fixed 𝑤0 the causal power maximum likelihood estimator is: 

 

�̂�1 =
�̂�𝑇 −𝑤0
1 − 𝑤0

 (B.1) 

It is straightforward to show that (B.1) is conditionally unbiased for a given 𝑤1: 

 

𝐸[�̂�1|𝑤1] = 𝐸 [
�̂�𝑇 − 𝑤0
1 − 𝑤0

] 

= 𝐸 [
𝑤1 + 𝑤0 − 𝑤1𝑤0 + 𝜖𝑇 − 𝑤0

1 − 𝑤0
] 

= 𝐸 [
𝑤1(1 − 𝑤0) + 𝜖𝑇

1 − 𝑤0
] 

= 𝑤1 

 

The second line is from the identity �̂�𝑇 = 𝑤1 + 𝑤0 − 𝑤1𝑤0 + 𝜖𝑇. Since the MLE is unbiased, the 

mean squared error is just the variance. Next, find the conditional MSE with: 
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MSE[�̂�1|𝑤1] = 𝐸[(�̂�1 − 𝑤1)

2] = 𝑉𝑎𝑟[�̂�1] 

= 𝐸 [(
𝑤1(1 − 𝑤0) + 𝜖𝑇

1 − 𝑤0
− 𝑤1)

2

] 

= (
1

1 − 𝑤0
)
2

𝐸[(𝜖𝑇)
2] 

 

Since 𝐸[(𝜖𝑇)
2] = Var[�̂�𝑇], this gives: 

 

Var[�̂�1] = (
1

1 − 𝑤0
)
2

×
𝑤𝑇(1 − 𝑤𝑇)

𝑁
 (B.2) 

Now expand the expression 𝑤𝑇 = 𝑤1 + 𝑤0 − 𝑤1×𝑤0 and work through more algebra to get: 

 

Var[�̂�1] =
(1 − 𝑤1)

𝑁
× [

𝑤0
1 − 𝑤0

+ 𝑤1] (B.3) 

The importance of the base-rate relative to the sample size is made clear from (B.3). As 𝑤0 → 1 

the MSE becomes arbitrarily large. The MSE changes in 𝑤0 at the rate of  
∂

∂𝑤0
Var[�̂�1] =

1

(1−𝑤0)2
×𝑐(𝑁, 𝑤1), where 𝑐(𝑁,𝑤1) is a positive constant based on N and 𝑤1. Since 0 ≤ 𝑤0 ≤ 1, 

this indicates a quadratic rate of increase in 𝑤0. Similarly, the MSE decreases in N at the rate of 

∂

∂𝑁
Var[�̂�1] = −

1

𝑁2
×𝑐(𝑤0, 𝑤1), also a quadratic change. Thus, the base rate and sample size have 

commensurate influence on the mean squared error. Also note that at 𝑤0 = 1 the derivative of the 

MSE is not defined, so the MLE does not exist. 

B.2 Mean-squared error for mixed causal power estimator 

In fact, (B.3) is not a plausible MSE for causal power. The derivation assumes that generative 

power is applied regardless of whether Δ𝑃 > 0 or Δ𝑃 < 0. But a reasonable judge would not apply 

(B.1) for negative Δ𝑃. The typical assumption is that causal direction is first determined by Δ𝑃, 

and then generative or preventive power is applied depending on whether it is positive or negative. 

In amending the above, I will use a simplification: the judge will estimate a causal power of 0 

when Δ𝑃 < 0. The modified causal power estimator is then: 
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�̂�1 = {

�̂�𝑇 − 𝑤0
1 − 𝑤0

, Δ𝑃 ≥ 0

0,                        Δ𝑃 < 0

  

 

The above estimator will be biased, but will often have a lower MSE. Since �̂�𝑇~
1

𝑁
×

Binom(𝑤𝑇 , 𝑁), we may find Pr(𝑤0 ≤ �̂�𝑇) = 𝑝 using the Binomial(𝑤𝑇 , 𝑁) distribution. More 

specifically, the binomial distribution can be used to find 𝑝 = Pr(𝑁×𝑤0 ≤ 𝑁×�̂�𝑇).  The product 

𝑁×�̂�𝑇 will always be an integer since �̂�𝑇 = 𝑎/𝑁 is a sample proportion. However, it is necessary 

to enforce that 𝑁×𝑤0 = 𝑐 is also an integer. In other words, only 𝑤0 = 𝑐/𝑁 are allowable values 

for the base rate since non-integer values are not interpretable with respect the binomial 

distribution. 

Thus, �̂�1 has a mixture distribution, taking the value  
�̂�𝑇−𝑤0

1−𝑤0
 with probability 𝑝 and the value 

0 with probability (1 − 𝑝). For the two distributions we get the conditional variances 

Var[�̂�1|Δ𝑃 ≥ 0] = (
1

1−𝑤0
)
2

Var[𝜖𝑇] and Var[�̂�1|Δ𝑃 < 0] = 𝐸[(0 − 𝑤1)
2] = 𝑤1

2. To find the 

MSE of a mixture distribution requires the rule of total variance: 

 
Var(𝑋) = 𝐸[Var(𝑋|Θ)] + Var[𝐸(𝑋|Θ)] 

 

where Θ tracks the different levels of the mixture distribution. In our problem, Θ = 1 will give the 

estimator distribution for Δ𝑃 ≥ 0 and Θ = 2 will give the distribution for Θ = 1. Breaking out the 

first component: 

 

𝐸[Var(𝑋|Θ)] = 𝑝 (
1

1 − 𝑤0
)
2

Var[𝜖𝑇] + (1 − 𝑝)𝑤1
2 

 

And the second component: 

 

Var[𝐸(𝑋|Θ)] = 𝐸 [(𝐸(𝑋|Θ))
2
] − (𝐸[𝐸(𝑋|Θ)])2 

= 𝑝×𝐸(𝑋|Θ = 1)2 + (1 − 𝑝)×𝐸(𝑋|Θ = 2)2

− (𝑝×𝐸(𝑋|Θ = 1) + (1 − 𝑝)×𝐸(𝑋|Θ = 2))
2
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Now 𝐸 (�̂�1|
𝑚

𝑁
≥ 𝑤0) = 𝑤1 and 𝐸 [�̂�1|

𝑚

𝑁
< 𝑤0] = 0. Plugging into the above: 

 
Var[𝐸(𝑋|Θ)] = 𝑝×(𝑤1)

2 + (1 − 𝑝)×0 − (𝑝×𝑤1 + (1 − 𝑝)×0)
2 

= 𝑝×(𝑤1)
2 − (𝑝×𝑤1)

2 

= 𝑝×(𝑤1)
2×(1 − 𝑝) 

 

Putting it together gives the conditional variance: 

 
Var[�̂�1|𝑤1] = 𝐸[Var(𝑋|Θ)] + Var[𝐸(𝑋|Θ)] 

= 𝑝 (
1

1 − 𝑤0
)
2

Var[𝜖𝑇𝑗] + (1 − 𝑝)𝑤1
2 + (1 − 𝑝)𝑤1

2×𝑝 

= 𝑝 (
1

1 − 𝑤0
)
2

Var[𝜖𝑇] + (1 − 𝑝)𝑤1
2(1 + 𝑝) 

= (1 − 𝑝2)𝑤1
2 + 𝑝 (

1

1 − 𝑤0
)
2

Var[𝜖𝑇] 

 

The final expression is the well-known Bias2 + Variance result, though now weighted by the 

mixture probabilities 1 − 𝑝2 and 𝑝. Before we saw that Var[𝜖𝑇] has the binomial variance 

𝑤𝑇(1−𝑤𝑇)

𝑁
. Now 𝜖𝑇 has a different distribution since a minimum of 𝑚 = 𝑤0×𝑁 successes must 

occur to be in the “generative” portion of the mixture. 

Overall, this estimator should have lower MSE than the causal power MLE. However, the 

variance portion resembles (B.2), and so there will be a similar influence of the base rate 𝑤0 as 

was found above. 

B.3 Taylor approximation of causal power variance 

Above 𝑤0 was assumed to be known and fixed, but this will not describe most applications. When 

the base rate is unknown and random, the causal power MLE is �̂�1 =
�̂�𝑇−�̂�0

1−�̂�0
 . In general, it is not 

possible to find exact expectations or variances for ratios of random variables. A standard 

technique is to use a multivariate Taylor expansion to approximate these quantities  (e.g. Wolter, 



182 

 

 

2007). Suppose X and Y are two random variables, then the Taylor approximation for the ratio of 

their variance is: 

 

 

Var (
𝑋

𝑌
) ≈

𝜇𝑋
2

𝜇𝑌
2 (
𝜎𝑋
2

𝜇𝑋
2 − 2

Cov(𝑋, 𝑌)

𝜇𝑋𝜇𝑌
+
𝜎𝑌
2

𝜇𝑌
2)  

To see how this applies to the causal power MLE, first note that 
�̂�𝑇−�̂�0

1−�̂�0
= 1 −

1−�̂�𝑇

1−�̂�0
. In addition, 

since �̂�𝑇 and �̂�0 are proportions Var(1 − �̂�𝑇) = Var(�̂�𝑇) and Var(1 − �̂�0) = Var(�̂�0). Finally, 

by the assumption of statistical independence, Cov(�̂�𝑇 , �̂�0) = 0. Putting this all together, the 

approximate variance is then: 

 

Var (
�̂�𝑇 − �̂�0
1 − �̂�0

) ≈
(1 − 𝑤𝑇)

2

(1 − 𝑤0)2
(

𝜎𝑇
2

(1 − 𝑤𝑇)2
−

𝜎0
2

(1 − 𝑤0)2
) 

=
𝜎𝑇
2

(1 − 𝑤0)2
+
(1 − 𝑤𝑇)

2

(1 − 𝑤0)4
𝜎0
2 

 

 

(B.4) 

Not surprisingly, a random �̂�0 results in a larger variance. Too see this clearly, another way to 

express (B.2) above is 
𝜎𝑇
2

(1−𝑤0)2
. So it is apparent that the approximate variance (B.4) will be larger 

whenever 𝑤0 > 0. 

Of course, 𝑤0 and 𝑤𝑇 are unknown and must be estimated with �̂�0 and �̂�𝑇. Using the sample 

estimates will give an estimated approximate variance: 

 

Var̂ (
�̂�𝑇 − �̂�0
1 − �̂�0

) ≈
�̂�𝑇
2

(1 − �̂�0)2
+
(1 − �̂�𝑇)

2

(1 − �̂�0)4
�̂�0
2  

Note that we cannot claim that (B.4) returns the MSE since, with a random denominator, it is no 

longer obvious that 
�̂�𝑇−�̂�0

1−�̂�0
 is unbiased. One could use a Taylor expansion to argue that it is 

approximately unbiased, which would make (B.4) the “approximate approximate MSE” since it is 

the approximate variance for the approximate MSE. In fact, exploration with simulated data 

suggests that (B.4) is a decent approximation of the mean squared error. 

While the approximate variance is larger with random �̂�0, our primary interest concerns how 

reliability changes with changes in the base rate, which cannot be gleaned from simple inspection 
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of (B.4). Substituting in from (B.3) and the identity  (1 − 𝑤𝑇) = (1 − 𝑤0)(1 − 𝑤1) allows for 

further simplification: 

 

Var (
�̂�𝑇 − �̂�0
1 − �̂�0

) ≈
(1 − 𝑤1)

𝑁
× [

𝑤0
1 − 𝑤0

+ 𝑤1] +
𝑤0(1 − 𝑤𝑇)

2

(1 − 𝑤0)3𝑁
 

=
(1 − 𝑤1)

𝑁
[𝑤1 +

𝑤0
1 − 𝑤0

(2 − 𝑤1)] 

 

 

(B.5) 

The result is very close to the (B.3) with 𝑤0 fixed. From (B.5) we obtain 
∂

∂𝑤0
Var[�̂�1] =

1

(1−𝑤0)2
×𝑐(𝑁, 𝑤1) and 

∂

∂𝑁
Var[�̂�1] = −

1

𝑁2
×𝑐(𝑤0, 𝑤1), so the rate of change is quadratic both in 

the base rate 𝑤0 and the sample size N, which is the same result found above for a fixed 𝑤0. One 

can also derive a similar result for the mixed causal power estimator from Section B.2. The only 

difference is that the approximate variance from (B.4) will replace Var[𝜖𝑇]. And similar to above, 

(B.4) cannot be further simplified since 𝜎𝑇
2 no longer has a binomial distribution. 

B.4 Unconditional mean-squared error for causal power MLE 

The discussion thus far has conditioned on a particular candidate cause C with causal power 𝑤1. 

Also of interest is average estimator performance as it is applied to multiple different causes. To 

keep the derivations tractable, assume that the base-rate of the effect 𝑤0 is fixed so that the causal 

power MLE is given by (B.1) above. The MLE is unconditionally unbiased since: 

 
𝐸[𝐸[�̂�1|𝑤1]] = 𝐸[𝑤1] = 𝜃 

 

where 𝜃 is the mean of the 𝑤1’s. Thus, the unconditional MSE will equal the variance of the causal 

power MLE. Suppose 𝑤1 has some distribution with mean 𝜃 and variance 𝜏2. Then we can find 

the unconditional MSE using MSE(�̂�1) = 𝐸[MSE(�̂�1|𝑤1)]. Specifically: 
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𝐸[Var(�̂�1)] = 𝐸 [
(1 − 𝑤1)

𝑁
× [

𝑤0
1 − 𝑤0

+ 𝑤1]] 

=
1

𝑁
× [
(1 − 𝜃)𝑤0
1 − 𝑤0

+ 𝜃 − 𝐸[𝑤1
2]] 

=
1

𝑁
× [
(1 − 𝜃)𝑤0
1 − 𝑤0

+ 𝜃 − (𝐸[𝑤1
2] − 𝜃2) − 𝜃2] 

=
1

𝑁
× [
(1 − 𝜃)𝑤0
1 − 𝑤0

+ 𝜃(1 − 𝜃) − 𝜏2] 

=
(1 − 𝜃)

𝑁
[

𝑤0
(1 − 𝑤0)

+ 𝜃 −
𝜏2

(1 − 𝜃)
] 

 

Note that in the derivation above, 𝜏2 = 𝐸[𝑤1
2] − 𝜃2. 

When 𝑤1 has a beta(a,b) distribution, then 𝜏2 =
𝜃(1−𝜃)

1+𝜈
 where 𝜈 = 𝑎 + 𝑏 is equal to the prior 

sample size. Substituting into the above gives an unconditional MSE of: 

 

𝐸[Var(�̂�1)] =
(1 − 𝜃)

𝑁
[

𝑤0
(1 − 𝑤0)

+ 𝜃 −
𝜃

1 + 𝜈
] 

=
(1 − 𝜃)

𝑁
[

𝑤0
(1 − 𝑤0)

+
𝜈

1 + 𝜈
𝜃] 

 

The unconditional MSE is quite similar to the conditional MSE above, as shown in (B.3). Again, 

the MSE becomes arbitrarily large as 𝑤0 → 1 and the instantaneous change is quadratic in 𝑤0. 

Finding the unconditional MSE for the estimator that assigns 0 to Δ𝑃 < 0 is a greater 

challenge. It may not be possible to solve for the expectation of the mixture probability 𝐸[𝑝]. One 

would also need to account for the dependence between 𝑤1 and 𝑝. A larger 𝑤1 should be associated 

with a larger p. If these quantities are dependent, then 𝐸[𝑝×𝑤1] ≠ 𝐸[𝑝]×𝐸[𝑤1].
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Appendix C.  

 

Mean-squared error of weighted 𝚫𝑷 

C.1 Conditional mean-squared error for weighted 𝚫𝑷 estimator 

C.1.1 Fixed base rate 𝑤0 

First consider the weighted Δ𝑃 estimator with a fixed base rate so that �̂�1 = �̂�𝑇 − (1 − 𝜃)×𝑤0, 

where 𝜃 represents the prior expectation for causal power. Assume �̂�𝑇 is estimated from a sample 

of size N. We can also write �̂�𝑇 = 𝑤𝑇 + 𝜖𝑇 where the error has a scaled binomial distribution 

shifted by 𝑤𝑇 (see Appendix B). This implies 𝐸[𝜖𝑇] = 0 and Var[𝜖𝑇] = Var[�̂�𝑇]. Then the MSE 

conditional on a particular 𝑤1 is given by: 

 
MSE[�̂�1|𝑤1] = 𝐸[(�̂�1 − 𝑤1)

2] 

= 𝐸[(𝑤1 + (𝜃 − 𝑤1)𝑤0 + 𝜖𝑇 − 𝑤1)
2] 

= 𝐸 [(((𝜃 − 𝑤1)𝑤0) + 𝜖𝑇)
2

] 

= ((𝜃 − 𝑤1)𝑤0)
2
+ 𝐸[𝜖𝑇

2] 

= ((𝜃 − 𝑤1)𝑤0)
2
+
𝑤𝑇(1 − 𝑤𝑇)

𝑁
 

 

 

 

 

 

(C.1) 

And this is the familiar Bias2 + Variance formula. Recall that the variance of the causal power 

MLE continues to increase as 𝑤0 → 1. In contrast, the weighted Δ𝑃 MSE is bounded at (𝜃 − 𝑤1)
2 

as 𝑤0 → 1. To discover precisely how the MSE changes with the base rate requires expanding the 

𝑤𝑇 terms to obtain: 

 

MSE[�̂�1|𝑤1] = ((𝜃 − 𝑤1)𝑤0)
2
+
(1 − 𝑤1)(1 − 𝑤0) − (1 − 𝑤1)

2(1 − 𝑤0)
2

𝑁
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So the MSE increases in 𝑤0 at 
𝜕𝑀𝑆𝐸

𝜕𝑤0
= 2(𝜃 − 𝑤1)𝑤0 −

2(𝑤0−1)(𝑤1−1)
2+(𝑤1−1) 

𝑁
, a linear rate of 

change, compared to the quadratic increase for the causal power MLE. In addition, weighted Δ𝑃 

also has a quadratic decrease in MSE as sample size N increases. 

C.1.2 Random base rate �̂�0 

Unlike with the causal power MLE, it is straightforward to find the MSE when the base rate is 

random. Consider the weighted Δ𝑃 estimator with both random �̂�𝑇 and �̂�0. The estimator is then 

�̂�1 = �̂�𝑇 − (1 − 𝜃)�̂�0. Again, 𝜃 represents the prior expectation for causal power. So now, �̂�1 =

𝑤1 + 𝑤0 −𝑤1𝑤0 + 𝜖𝑇 − (1 − 𝜃)(𝑤0 + 𝜖0). The error 𝜖0 is defined analogously to 𝜖𝑇, so it is a 

scaled binomial shifted by 𝑤0. The conditional MSE is then: 

 
MSE[�̂�1|𝑤1] = 𝐸[(�̂�1 − 𝑤1)

2] 

= 𝐸 [((𝜃 − 𝑤1)𝑤0)
2
+ 𝜖𝑇

2 + (1 − 𝜃)2𝜖0
2] 

= ((𝜃 − 𝑤1)𝑤0)
2
+
𝑤𝑇(1 − 𝑤𝑇)

𝑁
+ (1 − 𝜃)2

𝑤0(1 − 𝑤0)

𝑁
 

 

Again, this is just Bias2 + Variance, but now there is one additional term in the variance due to 

the random base rate �̂�0. As before, the MSE increases linearly and is bounded as 𝑤0 → 1. 

C.2 Unconditional mean-squared error for weighted 𝚫𝑷 estimator 

To simplify the derivation, again assume 𝑤0 is fixed. Also suppose 𝑤1 has some distribution with 

mean 𝜃 and variance 𝜏2. The unconditional MSE of the weighted Δ𝑃 rule is found with: 

 

𝐸[MSE[�̂�1|𝑤1]] = 𝐸 [((𝜃 − 𝑤1)𝑤0)
2
+
𝑤𝑇(1 − 𝑤𝑇)

𝑁
] 

= 𝐸 [((𝜃 − 𝑤1)𝑤0)
2
+
𝑤𝑇(1 − 𝑤𝑇)

𝑁
] 

= 𝑤0
2×𝐸[(𝜃 − 𝑤1)

2] + 𝐸 [
𝑤𝑇(1 − 𝑤𝑇)

𝑁
] 

 

By definition we have 𝐸[(𝜃 − 𝑤1)
2] = 𝜏2.  From the MLE derivation we can write: 
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𝐸 [
𝑤𝑇(1 − 𝑤𝑇)

𝑁
] = (1 − 𝑤0)

2×
(1 − 𝜃)

𝑁
[

𝑤0
(1 − 𝑤0)

+ 𝜃 −
𝜏2

(1 − 𝜃)
] 

 

Plugging into the above gives the unconditional MSE: 

 

𝐸[MSE[�̂�1|𝑤1]] = 𝑤0
2𝜏2 + (1 − 𝑤0)

2×
(1 − 𝜃)

𝑁
[

𝑤0
(1 − 𝑤0)

+ 𝜃 −
𝜏2

(1 − 𝜃)
] 

 

And if we assume that 𝑤1~Beta(𝑎, 𝑏) then this gives: 

 

𝐸[𝑀𝑆𝐸[�̂�1|𝑤1]] = 𝑤0
2𝜏2 +

(1 − 𝜃)

𝑁
[𝑤0(1 − 𝑤0) +

𝜈

1 + 𝜈
𝜃(1 − 𝑤0)

2] 

 

where 𝜈 = 𝑎 + 𝑏. When 𝑤0 → 1 the MSE approaches a maximum of 𝜏2. Once again, the 

derivative of the MSE is linear in 𝑤0. Of course, weighted Δ𝑃 and the MLE are identical in 

unconditional MSE when 𝑤0 = 0 since they are the same estimator in this case.
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Appendix D.  

 

Equilibria of modified Rescorla-Wagner 

D.1 Rescorla-Wagner with attenuation parameter 𝜿 

Consider an elemental causal induction problem with candidate cause 𝐶, background cause 𝐵, and 

effect 𝐸. Denote association strengths for the candidate and background causes respectively as 𝑉𝐶 

and 𝑉𝐵. There are four types of trials {(𝑐+, 𝑒+); (𝑐+, 𝑒−); (𝑐−, 𝑒+); (𝑐−, 𝑒−)} with 𝑎, 𝑏, 𝑐 and 𝑑 

respectively giving the frequencies of each type. Suppose 𝛼0 = 𝛼1, 𝛽0 = 𝛽1 and a maximum 

possible association strength of 𝜆 = 1, which are all standard assumptions for the Rescorla-

Wagner (R-W) model.  

Now introduce an additional parameter 𝜅 ∈ [0,1]. The 𝜅 parameter is incorporated into the R-

W model with a “neglect function” 𝑔(𝐶) that is given by:  

 

𝑔(𝐶) = {𝜅     for 𝑐
+ trials

1     for 𝑐− trials
 

 

The neglect function will multiply the background strength 𝑉𝐵. The modified R-W model has the 

following equations for each of the trial types. For the (𝑐+, 𝑒+) trials: 

 
ΔVC = 𝛼𝛽[1 − (𝜅𝑉𝐵 + 𝑉𝐶)] 

ΔVB = 𝛼𝛽 [1 − (𝜅𝑉𝐵 + 𝑉𝐶)] 

 

For the (𝑐+, 𝑒−) trials: 

 
ΔVC = 𝛼𝛽[0 − (𝜅𝑉𝐵 + 𝑉𝐶)] 

ΔVB = 𝛼𝛽[0 − (𝜅𝑉𝐵 + 𝑉𝐶)] 

 

For the (𝑐−, 𝑒+) trials: 

 
ΔVB = 𝛼𝛽[1 − 𝑉𝐵] 
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And for the (𝑐−, 𝑒−) trials: 

 
ΔVB = 𝛼𝛽[0 − 𝑉𝐵] 

 

So on the 𝑐+ trials the weight given to the background strength 𝑉𝐵 is diminished by a factor of 𝜅. 

Following Chapman & Robbins (1990), it is easy to show that this modified model will give our 

familiar weighted Δ𝑃 rule at equilibrium. 

The expected change in 𝑉𝐶 is the weighted sum of the two trial types on which it changes, 

with weights given by the corresponding frequencies from the contingency table. The expectation 

is: 

 
E[ΔVC] = 𝑎×𝛼𝛽[1 − (𝜅𝑉𝐵 + 𝑉𝐶)] + 𝑏×𝛼𝛽[0 − (𝜅𝑉𝐵 + 𝑉𝐶)]  

Similarly, the average change in 𝑉𝐵 equals the sum of the four trial types on which it changes 

weighted by the frequencies of the different types: 

 
E[ΔVB] = 𝑎×𝛼𝛽[1 − (𝜅𝑉𝐵 + 𝑉𝐶)] + 𝑏×𝛼𝛽[0 − (𝜅𝑉𝐵 + 𝑉𝐶)] + 

𝑐×𝛼𝛽[1 − 𝑉𝐵] + 𝑑×𝛼𝛽[0 − 𝑉𝐵] 
 

Since 𝛼 and 𝛽 are common to all terms, both equations can be simplified to: 

 
E[ΔVC]

𝛼𝛽
= 𝑎 − (𝑎 + 𝑏)𝑉𝐶 − 𝜅(𝑎 + 𝑏)𝑉𝐵 (D.1) 

and 

 
E[ΔVB]

𝛼𝛽
= 𝑎 + 𝑐 − (𝑎 + 𝑏)𝑉𝐶 − [𝜅(𝑎 + 𝑏) + (𝑐 + 𝑑)]𝑉𝐵 (D.2) 

Learning reaches equilibrium when the expected change of VC and VB is 0. Setting equation (D.2) 

equal to 0 and solving for 𝑉𝐵 gives: 

 

𝑉𝐵 =
𝑎 + 𝑐 − (𝑎 + 𝑏)𝑉𝐶
[𝜅(𝑎 + 𝑏) + 𝑐 + 𝑑]

  

Setting (D.1) to 0 and substituting in 𝑉𝐵 produces: 
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𝑉𝐶 =
𝑎

𝑎 + 𝑏
− 𝜅𝑉𝐵 

=
𝑎

𝑎 + 𝑏
−
𝜅[𝑎 + 𝑐 − (𝑎 + 𝑏)𝑉𝐶]

[𝜅(𝑎 + 𝑏) + 𝑐 + 𝑑]
 

1

𝜅
[𝜅(𝑎 + 𝑏) + 𝑐 + 𝑑]𝑉𝐶 − (𝑎 + 𝑏)𝑉𝐶 =

1

𝜅
[𝜅(𝑎 + 𝑏) + 𝑐 + 𝑑]

𝑎

𝑎 + 𝑏
− 𝑎 − 𝑐 

1

𝜅
(𝑐 + 𝑑)𝑉𝐶 = 𝑎 +

𝑎(𝑐 + 𝑑)

𝜅(𝑎 + 𝑏)
− 𝑎 − 𝑐 

𝑉𝐶 =
𝑎

𝑎 + 𝑏
− 𝜅×

𝑐

𝑐 + 𝑑
 

𝑉𝐶 = 𝑃(𝑒+|𝑐+) − 𝜅𝑃(𝑒+|𝑐−) 

 

And we get the familiar weighted Δ𝑃 rule. It also follows from the above that the equilibrium 

background strength is equal to the objective conditional probability, or 𝑉𝐵 =
𝑐

𝑐+𝑑
= 𝑃(𝑒+|𝑐−).  

For the case of preventative power everything proceeds as above except that 𝑒− becomes the 

focal event, so all trials are “reverse coded”. The equations for each of the trial types are then given 

by: 

Trial Type Δ𝑉𝐶 = Δ𝑉𝐵 = 

(𝑐+, 𝑒+) 𝛼𝛽[0 − (𝜅𝑉𝐵 + 𝑉𝐶)] 𝛼𝛽[0 − (𝜅𝑉𝐵 + 𝑉𝐶)] 

(𝑐+, 𝑒−) 𝛼𝛽[1 − (𝜅𝑉𝐵 + 𝑉𝐶)] 𝛼𝛽[1 − (𝜅𝑉𝐵 + 𝑉𝐶)] 

(𝑐−, 𝑒+) 0 𝛼𝛽[0 − 𝑉𝐵] 

(𝑐−, 𝑒−) 0 𝛼𝛽[1 − 𝑉𝐵] 

Following the above derivation then gives: 

 

𝑉𝐶 =
𝑏

𝑎 + 𝑏
− 𝜅×

𝑑

𝑐 + 𝑑
 

= 𝑃(𝑒−|𝑐+) − 𝜅𝑃(𝑒−|𝑐−) 

 

And weighted Δ𝑃 for preventative power is obtained as the equilibrium. However, the equilibrium 

background strength is now 𝑉𝐵 =
𝑑

𝑐+𝑑
= 𝑃(𝑒−|𝑐−). 
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Importantly, the preventative form mirrors the generative form. Hence, these models predict 

that judgments will evolve identically for preventative evidence that “mirrors” generative 

evidence. Generative and preventative evidence mirror one another if one sequence is obtained 

from the other by changing the 𝑒+’s to the 𝑒−‘s. For example, the generative sequence 

{𝑎, 𝑎, 𝑎, 𝑏, 𝑐, 𝑑, 𝑑, 𝑑} is mirrored by the preventative sequence {𝑏, 𝑏, 𝑏, 𝑎, 𝑑, 𝑐, 𝑐, 𝑐}. 

D.2 Rescorla-Wagner with unequal 𝝀 parameters 

A weighted Δ𝑃 equilibrium can also be achieved if one allows the maximum association strengths 

(the 𝜆’s) to differ across contexts. Denote 𝜆+ as the maximum association strength for the 𝑐+ 

context and 𝜆− as the maximum association strength for the 𝑐− context. Furthermore, assume 𝜆+ =

1 and 𝜆− = 𝜆 with 0 < 𝜆 < 1. This modified R-W model has the following equations for each of 

the trial types: 

Trial Type Δ𝑉𝐶 = Δ𝑉𝐵 = 

(𝑐+, 𝑒+) 𝛼𝛽[1 − (𝑉𝐵 + 𝑉𝐶)] 𝛼𝛽[1 − (𝑉𝐵 + 𝑉𝐶)] 

(𝑐+, 𝑒−) 𝛼𝛽[0 − (𝑉𝐵 + 𝑉𝐶)] 𝛼𝛽[0 − (𝑉𝐵 + 𝑉𝐶)] 

(𝑐−, 𝑒+) 0 ΔVB = 𝛼𝛽[𝜆 − 𝑉𝐵] 

(𝑐−, 𝑒−) 0 ΔVB = 𝛼𝛽[0 − 𝑉𝐵] 

Again, following Chapman & Robbins (1990), the expected change in association strength 𝑉𝐶 is: 

 
E[ΔVC] = 𝑎×𝛼𝛽[1 − (𝑉𝐵 + 𝑉𝐶)] + 𝑏×𝛼𝛽[0 − (𝑉𝐵 + 𝑉𝐶)]  

The expected change in 𝑉𝐵 is: 

 
E[ΔVB] = 𝑎×𝛼𝛽[1 − (𝑉𝐵 + 𝑉𝐶)] + 𝑏×𝛼𝛽[0 − (𝑉𝐵 + 𝑉𝐶)] + 

𝑐×𝛼𝛽[𝜆 − 𝑉𝐵] + 𝑑×𝛼𝛽[0 − 𝑉𝐵] 
 

Since 𝛼 and 𝛽 are common to all terms, both equations can be simplified by division: 
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E[ΔVC]

𝛼𝛽
= 𝑎 − (𝑎 + 𝑏)𝑉𝐶 − (𝑎 + 𝑏)𝑉𝐵 (D.3) 

and 

 
E[ΔVB]

𝛼𝛽
= 𝑎 + 𝜆𝑐 − (𝑎 + 𝑏)𝑉𝐶 − [(𝑎 + 𝑏) + (𝑐 + 𝑑)]𝑉𝐵 (D.4) 

Learning reaches equilibrium when the expected change of VC and VB is 0. Setting equation (D.4) 

equal to 0 and solving for 𝑉𝐵 gives: 

 

𝑉𝐵 =
𝑎 + 𝜆𝑐 − (𝑎 + 𝑏)𝑉𝐶
[𝑎 + 𝑏 + 𝑐 + 𝑑]

  

Setting (D.3) to 0 and substituting in 𝑉𝐵 produces: 

 

𝑉𝐶 =
𝑎

𝑎 + 𝑏
− 𝑉𝐵 

=
𝑎

𝑎 + 𝑏
−
𝑎 + 𝜆𝑐 − (𝑎 + 𝑏)𝑉𝐶
[𝑎 + 𝑏 + 𝑐 + 𝑑]

 

[𝑎 + 𝑏 + 𝑐 + 𝑑]𝑉𝐶 − (𝑎 + 𝑏)𝑉𝐶
[𝑎 + 𝑏 + 𝑐 + 𝑑]

=
𝑎

𝑎 + 𝑏
−

𝑎 + 𝜆𝑐

[𝑎 + 𝑏 + 𝑐 + 𝑑]
 

(𝑐 + 𝑑)𝑉𝐶 = 𝑎 +
𝑎(𝑐 + 𝑑)

𝑎 + 𝑏
− 𝑎 − 𝜆𝑐 

=
𝑎

𝑎 + 𝑏
− 𝜆×

𝑐

𝑐 + 𝑑
 

 

Again we obtain the weighted Δ𝑃 rule. Now the weight is given by 𝜆, the maximum association 

strength for the 𝑐− context. Finally, it follows that the equilibrium association strength given to 

the background no longer equals the objective conditional probability. Instead, it is now equal to 

𝑉𝐵 = 𝜆×
𝑐

𝑐+𝑑
= 𝜆×𝑃(𝑒+|𝑐−). 

D.3 Modified Rescorla-Wagner converges to causal power 

It can be shown that the augmented R-W models will converge to causal power when the additional 

𝜅 or 𝜆2 parameters are updated with the association strength. Begin with the 𝜅 attenuation model 
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and set the initial 𝜅 = 𝜃. After each learning trial the attenuation parameter can be updated with 

𝜅 = 1 − 𝑉𝐶. Simply substituting 𝜅 = 1 − 𝑉𝐶 into the above derivation yields the equilibrium 

strengths: 

 

𝑉𝐶 =
𝑎

𝑎 + 𝑏
− (1 − 𝑉𝐶)×

𝑐

𝑐 + 𝑑
 

𝑉𝐶 = 𝑃(𝑒+|𝑐+) − (1 − 𝑉𝐶)×𝑃(𝑒
+|𝑐−) 

 

 Solving for strength 𝑉𝐶 then gives causal power at equilibrium: 

 

𝑉𝐶 =
𝑃(𝑒+|𝑐+) − 𝑃(𝑒+|𝑐−)

1 − 𝑃(𝑒+|𝑐−)
 

 

The same argument can be applied to the modified Rescorla-Wagner for preventive power:  

 

𝑉𝐶 =
𝑏

𝑎 + 𝑏
− (1 − 𝑉𝐶)×

𝑑

𝑐 + 𝑑
 

𝑉𝐶 = 𝑃(𝑒−|𝑐+) − (1 − 𝑉𝐶)×𝑃(𝑒
−|𝑐−) 

 

Solving for 𝑉𝐶 then yields preventive power at equilibrium: 

 

𝑉𝐶 =
𝑃(𝑒+|𝑐+) − 𝑃(𝑒+|𝑐−)

𝑃(𝑒+|𝑐−)
 

 

Finally, the exact same arguments can be used to show how updating the 𝜆2 parameter from the 

model in (D.2) will also produce an algorithm that converges to causal power. 

Danks et al. (2003) also describe a R-W model that converges to power. This is achieved by 

incorporating the noisy-OR/AND-NOT prediction into an augmented R-W model (this augmented 

model is described by Van Hamme and Wasserman (1994)). For one candidate generative cause, 

a simple version of their model can be expressed with the four sets of Δ equations: 
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Trial Type Δ𝑉𝐶 = Δ𝑉𝐵 = 

(𝑐+, 𝑒+) 𝛼𝛽(1 − [1 − (1 − 𝑉𝐶)(1 − 𝑉𝐵)]) 𝛼𝛽(1 − [1 − (1 − 𝑉𝐶)(1 − 𝑉𝐵)]) 

(𝑐+, 𝑒−) 𝛼𝛽(0 − [1 − (1 − 𝑉𝐶)(1 − 𝑉𝐵)]) 𝛼𝛽(0 − [1 − (1 − 𝑉𝐶)(1 − 𝑉𝐵)]) 

(𝑐−, 𝑒+) 0 𝛼𝛽[1 − 𝑉𝐵] 

(𝑐−, 𝑒−) 0 𝛼𝛽[0 − 𝑉𝐵] 

It is typically assumed that at the first step strengths start at 𝑉𝐶 = 0 and 𝑉𝐵 = 0. The product 

(1 − 𝑉𝐶)(1 − 𝑉𝐵) is the noisy-OR prediction for when the candidate cause is present and 𝑉𝐵 is the 

prediction for when the cause is absent. 

The equations in the bottom two rows are the same as those shown for the 𝜅 model from 

Section D.1. Now suppose for the generative 𝜅 model that 𝜃 = 0 and 𝜅 is updated with (1 − 𝑉1) 

after every learning trial. In this case, the 𝜅 model and the noisy-OR prediction model are identical. 

This is clear by re-arranging the Noisy-OR prediction: 

 
[1 − (1 − 𝑉𝐶)(1 − 𝑉𝐵)] = [(1 − 𝑉𝐶)𝑉𝐵 + 𝑉𝐶] = 𝜅𝑉𝐵 + 𝑉𝐶 

 

For preventative causes, Danks et al. (2003) use a noisy-AND-NOT prediction. A simple version 

of this model can be expressed with the equations: 

Trial Type Δ𝑉𝐶 = Δ𝑉𝐵 = 

(𝑐+, 𝑒+) 𝛼𝛽[1 − (1 − 𝑉𝐶)𝑉𝐵] 𝛼𝛽[1 − (1 − 𝑉𝐶)𝑉𝐵] 

(𝑐+, 𝑒−) 𝛼𝛽[0 − (1 − 𝑉𝐶)𝑉𝐵] 𝛼𝛽[0 − (1 − 𝑉𝐶)𝑉𝐵] 

(𝑐−, 𝑒+) 0 𝛼𝛽[1 − 𝑉𝐵] 

(𝑐−, 𝑒−) 0 𝛼𝛽[0 − 𝑉𝐵] 

The connection between the preventative models is more opaque. Part of the complication comes 

from the fact that 𝑉𝐵 estimates 𝑃(𝑒−|𝑐−) in the 𝜅 model from above. Denote �̅�𝐵 = 𝑃(𝑒
−|𝑐−), so 

�̅�𝐵 = 1 − 𝑉𝐵 and again assume 𝜅 is updated on every trial with 1 − 𝑉𝐶. Then starting with Noisy-

AND-NOT: 
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(1 − 𝑉𝐶)𝑉𝐵 = (1 − 𝑉𝐶)(1 − �̅�𝐵) 

= 1 − 𝑉𝐶 − �̅�𝐵 + 𝑉𝐶�̅�𝐵 

= 1 − [(1 − 𝑉𝐶)�̅�𝐵 + 𝑉𝐶] 

= 1 − [𝜅�̅�𝐵 + 𝑉𝐶] 

 

Finally, the max association strength 𝜆 = 1 has been switched from 𝑒+ trials to 𝑒− in the 𝜅 model 

due to the reverse coding. So for (𝑐+, 𝑒+) the predicted change is: 

 
Δ𝑉𝐶 = 0 − (1 − [𝜅�̅�𝐵 + 𝑉𝐶]) 

= −(1 − [𝜅�̅�𝐵 + 𝑉𝐶]) 

 

And for (𝑐+, 𝑒−) : 

 
Δ𝑉𝐶 = 1 − (1 − [𝜅�̅�𝐵 + 𝑉𝐶]) 

= [𝜅�̅�𝐵 + 𝑉𝐶] 

 

Except for the sign change, these are the same predictions as found in Danks et al. (2003) for the 

corresponding trial types. This suggests that the expression from the Danks et al. (2003) paper may 

be in error.
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Appendix E.  

 

Model uncertainty 

In this appendix I evaluate the general parameterization: 

 
𝑤𝑇 = 𝑤1 + 𝑤0 − 𝑤1|0×𝑤0 (E.1) 

where 𝑤1|0 ∈ [0,1] describes the interaction term. Appendix A provides the motivation for this 

parameterization. Assume that 𝑤1 = 𝑤1|0 + 𝜖 with 𝐸[𝜖] = 0 and Var[𝜖] = 𝜎2 To isolate the 

influence of model uncertainty, assume that 𝑤𝑇 and 𝑤0 are known constants. 

E.1 Bias and MSE in the context of model uncertainty 

E.1.1 Causal power MLE 

The causal power sample estimate is: 

 

�̂�1 =
𝑤𝑇 − 𝑤0
1 − 𝑤0

 

=
𝑤1 + 𝑤0 − 𝑤1|0𝑤0 − 𝑤0

1 − 𝑤0
 

=
𝑤1 − (𝑤1 + 𝜖)𝑤0

1 − 𝑤0
 

= 𝑤1 +
𝑤0

1 − 𝑤0
𝜖 

 

It follows that the causal power estimator is unbiased since 𝐸[ŵ1] = 𝑤1. So the MSE is equal to 

the variance, which is: 
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Var[ŵ1] = Var [w1 +
𝑤0

1 − 𝑤0
𝜖] 

= (
𝑤0

1 − 𝑤0
)
2

𝜎2 

 

E.1.2 Weighted 𝛥𝑃 estimator 

The weighted Δ𝑃 estimator is given by: 

 
�̂�1 = 𝑤1 + (1 − 𝜃)𝑤0 

 

where 𝜃 is now a prior expectation for the interaction term 𝑤1|0. The weighted Δ𝑃 bias is: 

 
𝐸[(�̂�1 − 𝑤1)] = 𝐸[𝑤𝑇 − (1 − 𝜃)𝑤0 − (𝑤𝑇 − (1 − 𝑤1|0)𝑤0)] 

= 𝑤0𝐸[𝜃 − 𝑤1|0] 

= 𝑤0(𝜃 − 𝑤1) 

 

And the MSE is given by: 

 

𝐸[(�̂�1 − 𝑤1)
2] = 𝐸 [[𝑤𝑇 − (1 − 𝜃)𝑤0 − (𝑤𝑇 − (1 − 𝑤1|0)𝑤0)]

2
] 

= 𝐸 [[(𝜃 − 𝑤1|0)𝑤0]
2
] 

= 𝑤0
2𝐸 [[𝜃 − 𝑤1|0]

2
] 

= 𝑤0
2𝐸[[𝜃 − (𝑤1 + 𝜖)]

2] 

= 𝑤0
2𝐸[𝜃2 − 2𝑘(𝑤1 + 𝜖) + (𝑤1 + 𝜖)

2] 

= 𝑤0
2[(𝜃 − 𝑤1)

2 + 𝜎2] 

 

E.2 Sampling 𝒘𝟏|𝟎 from a beta distribution 

To simulate model uncertainty with 𝐸[𝑤1|0] = 𝑤1 we can randomly sample from a beta(α, β) 

using the mean and “prior sample size” parameterization. To obtain a mean of 𝑤1 simply choose 

a prior sample size 𝜈 and set 𝛼 = 𝑤1×𝜈 and 𝛽 = (1 − 𝑤1)×𝜈. This will give a random draw from 
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the [0,1] interval for the 𝑤1|0 interaction parameter. The simulation discussed in the main text uses 

𝜈 = 1. 

One complication is that with 𝑤1 + 𝑤0 > 1 the interaction parameter 𝑤1|0 must have a 

nonzero minimum so that 𝑤𝑇 is a legal probability. With the (E.1) parameterization and 𝑤1 +

𝑤0 > 1 we must have 𝑤1|0 ≥
(𝑤1+𝑤0)−1

𝑤0
. In this case, sampling from a beta(α, β) will require a 

couple of steps. Begin by defining 𝑐 =
(𝑤1+𝑤0)−1

𝑤0
 and 𝜇𝑍 =

𝑤1−𝑐

1−𝑐 
. Expanding 𝜇𝑍 gives: 

 

𝜇𝑍 =
𝑤1 − 𝑐

1 − 𝑐 
 

=
𝑤1 −

(𝑤1 + 𝑤0) − 1
𝑤0

1 −
(𝑤1 + 𝑤0) − 1

𝑤0

 

= 1 − 𝑤0 

 

And so 0 ≤ 𝜇𝑍 ≤ 1. Thus, 𝜇𝑍 is an appropriate mean for a beta distribution.  

Hence, when 𝑤1 + 𝑤0 > 1, the first step is to sample Z from a beta(α, β) distribution with 

𝐸[𝑍] =
𝑤1−𝑐

1−𝑐 
= 𝜇𝑍. This can be done as before by setting 𝛼 = 𝜇𝑍×𝜈 and 𝛽 = (1 − 𝜇𝑍)×𝜈. Then 

Z will be distributed on the interval [0,1]. We may also find the variance 𝜎2 =
𝜇𝑧×(1−𝜇𝑧)

(1+𝜈)
, which is 

a general result concerning the beta distribution. 

With Z sampled from this beta distribution, take the linear transformation 𝑋 = 𝑐 + (1 − 𝑐)𝑍. 

Since 𝑍 ∈ [0,1] it is easy to see that 𝑋 ∈ [𝑐, 1] and we have the appropriate minimum and 

maximum. Furthermore, since it is a linear transformation we know that X also has a beta 

distribution. Finally, we may find the mean and variance of X. 

 
𝐸[𝑋] = 𝐸[𝑐 + (1 − 𝑐)𝑍] 

= 𝑐 + (1 − 𝑐)𝐸[𝑍] 

= 𝑐 + (1 − 𝑐)
𝑤1 − 𝑐

1 − 𝑐 
= 𝑤1 

 

The expectation is again at 𝑤1, giving causal power as the “average” model. And the variance is 
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Var[𝑋] = Var[𝑐 + (1 − 𝑐)𝑍] 

= (1 − 𝑐)2×𝜎2 

 

 So the variance is reduced as the minimum value c increases.
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Appendix F.  

 

Deterministic bias and Bayesian estimation 

In this appendix I show that no Bayesian model of parameter estimation can give deterministic 

predictions of 0 for the [0,8,0,8] condition, 1 for the [8,0,0,8] condition and probabilistic ratings 

for the remaining conditions.  

Let G be a common effect causal graph that has an always present background cause B with 

edge weight 𝑤0 and a binary candidate cause C with edge weight 𝑤1. Further, suppose that the 

weights combine according to the noisy-OR function to give the probability that a binary effect E 

will occur. 

The learning data 𝐷 = [𝑎, 𝑏, 𝑐, 𝑑] gives entries from a 2x2 contingency table where a gives 

the frequency of (𝑒+, 𝑐+) outcomes, b the (𝑒−, 𝑐+) outcomes, c the (𝑒+, 𝑐−)  outcomes and d the 

(𝑒−, 𝑐−) outcomes. In the discussion below, assume that 𝑎, 𝑏, 𝑐, 𝑑 > 0 unless explicitly stated 

otherwise. 

Suppose a judge’s prior beliefs over the hypothesis space of edge weights is described by the 

joint probability distribution 𝑓(𝑤0, 𝑤1). For a given set of learning data, Bayesian inference 

combines the prior and the noisy-OR likelihood to form a posterior distribution 𝑓(𝑤0, 𝑤1|𝐷). The 

Bayesian point estimate of causal strength will be given by the posterior expectation for 𝑤1, as this 

is the standard choice in the literature for models of causal judgment. 

Theorem.  Consider the data vectors [0, 𝑏, 0, 𝑑] and [𝑎, 0,0, 𝑑] where 𝑎, 𝑏, 𝑑 > 0. Then no 

Bayesian model of parameter estimation for graph G can return posterior expectations 

𝐸(𝑤1|𝐷 = [0, 𝑏, 0, 𝑑]) = 0, 𝐸(𝑤1|𝐷 = [𝑎, 0,0, 𝑑]) = 1 and also 0 < 𝐸(𝑤1|𝐷′) < 1 for 𝐷′ ∉

{[0, 𝑏, 0, 𝑑];  [𝑎, 0,0, 𝑑]}, where data vectors in 𝐷′ have at least two observations, one from each 

row of the contingency table. 

Proof.   First I show that Bayesian inference over data vectors [0, 𝑏, 0, 𝑑] and [𝑎, 0,0, 𝑑] will return 

posterior expectations of 𝐸[𝑤1|𝐷] = 0 and 𝐸[𝑤1|𝐷] = 1 if and only if the prior distribution 

𝑓(𝑤0, 𝑤1) has the form: 
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𝑓(𝑤0, 𝑤1) =

{
 

 
𝛼1   for (0,0)

𝛼2   for (0,1)

𝛼3 for (1, 𝑤1
′)

0  otherwise

 (F.1) 

where 𝑤1
′ ∈ [0,1] and 𝛼1, 𝛼2 > 0 and 𝛼3 ≥ 0. In other words, there must be some positive prior 

probability allocated to the two pairs of points (0,0) and (0,1). And the only additional positive 

prior probability may be allocated to the line (1, 𝑤1
′) with 𝑤1

′ ∈ [0,1]. 

I begin by finding the class of priors that give 𝐸[𝑤1|𝐷] = 1 for data vectors of the form 

[𝑎, 0,0, 𝑑]. Suppose that the prior 𝑓(𝑤0, 𝑤1) only has support on {(0,0); (0,1); (1, 𝑤1
′)}, with the 

vector (𝛼1, 𝛼2, 𝛼3) denoting the probability allocated to each element. Then for the data [𝑎, 0,0, 𝑑], 

the posterior expectation is 𝐸[𝑤1|𝐷] = 1 if and only if 𝛼1, 𝛼3 ≥ 0 and 𝛼2 > 0. 

Proof (→).  Assume 𝛼1, 𝛼3 ≥ 0 and 𝛼2 > 0 for the prior 𝑓(𝑤0, 𝑤1) over {(0,0); (0,1); (1, 𝑤1
′)}. 

The likelihoods for each of the three regions of positive support are: 

 
𝑓(𝐷|𝑤0 = 0,𝑤1 = 0) = (1)

𝑑(0)𝑎 = 0 

𝑓(𝐷|𝑤0 = 0,𝑤1 = 1) = (1)
𝑑(1)𝑎 = 1 

and 

𝑓(𝐷|𝑤0 = 1,𝑤1 = 𝑤1
′) = (0)𝑑(𝑤1

′)𝑎 = 0, for ∀ 𝑤1
′ ∈ [0,1] 

 

The probability of the data Pr(𝐷) is then: 

 

Pr(𝐷) = ∑ 𝑓(𝐷, 𝑤0, 𝑤1)

(𝑤0,𝑤1)

= ∑ 𝑓(𝐷|𝑤0, 𝑤1)

(𝑤0,𝑤1)

𝑓(𝑤0, 𝑤1) 

= 0×𝛼1 + 1×𝛼2 + 0×𝛼3 = 𝛼2 

 

And the posterior distribution is found with Bayes rule: 

 

𝑓(𝑤0 = 0,𝑤1 = 0|𝐷) =
0×𝛼1
𝛼2

= 0 

𝑓(𝑤0 = 0,𝑤1 = 1|𝐷) =
1×𝛼2
𝛼2

= 1 

𝑓(𝑤0 = 1,𝑤1 = 𝑤1
′|𝐷) =

(0)𝑑(𝑤1
′)𝑎×𝛼3
𝛼2

= 0 
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Then posterior expectation is: 

 

𝐸[𝑤1|𝐷] = ∑ ∫𝑤1×𝑓(𝑤0, 𝑤1|𝐷)

(𝑤0,𝑤1)

 

= 0×0 + 1×1 + ∫ (0×𝑤1)𝑑𝑤1
′

1

0

= 1 

 

And so 𝐸[𝑤1|𝐷] = 1 as desired. 

(←). Now suppose to the contrary that 𝐸[𝑤1|𝐷] = 1 but that 𝑓(𝑤0, 𝑤1) has positive support 

outside of {(0,0); (0,1); (1, 𝑤1)}. In particular, for the point (𝑤0
′ , 𝑤1

′) suppose positive support 

𝑓(𝑤0
′ , 𝑤1

′) = 𝛼4 > 0, where 0 < 𝑤0
′ , 𝑤1

′ < 1. Again, suppose 𝑓(0,1) = 𝛼2. Then the likelihoods 

are given by: 

 
𝑓(𝐷|𝑤0 = 𝑤0

′ , 𝑤1 = 𝑤1
′) = (𝑤0

′)𝑑(𝑤1
′ + 𝑤0

′ − 𝑤1
′𝑤0

′)𝑎 = 𝑦 

and 

𝑓(𝐷|𝑤0 = 0,𝑤1 = 1) = (1)
𝑑(1)𝑎 = 1 

 

The other two likelihoods are omitted, as they will again be zero. Since 0 < 𝑤0
′ , 𝑤1

′ < 1, the above 

implies that 0 < 𝑦 < 1. Then the probability of the data is: 

 
Pr(𝐷) = 𝑦×𝛼4 + 1×𝛼2  

The posterior distribution is then: 

 

𝑓(𝑤0 = 𝑤0
′ , 𝑤1 = 𝑤1

′|𝐷) =
𝑦𝛼4

𝑦𝛼4 + 𝛼2
 

and 

𝑓(𝑤0 = 0,𝑤1 = 1|𝐷) =
𝛼2

𝑦𝛼4 + 𝛼2
 

 

Let 𝛽 =
𝑦𝛼4

𝑦𝛼4+𝛼2
, then (1 − 𝛽) =

𝛼2

𝑦𝛼4+𝛼2
. The posterior expectation is: 

 
𝐸[𝑤1|𝐷] = 𝑤1

′×𝛽 + 1×(1 − 𝛽)  
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And so 𝐸[𝑤1|𝐷] < 1, a contradiction. Thus, it has been shown that  𝐸[𝑤1|𝐷] = 1 if and only if 

the prior 𝑓(𝑤0, 𝑤1) has support on {(0,0); (0,1); (1, 𝑤1
′)} with 𝑓(0,1) > 0. 

Now we also want the prior to give posterior expectation 𝐸[𝑤1|𝐷] = 0 for the data vectors of the 

form [0, 𝑏, 0, 𝑑]. Can this be achieved using the family of priors identified in (F.1) above? Once 

again, suppose that the prior 𝑓(𝑤0, 𝑤1) only has support on {(0,0); (0,1); (1, 𝑤1
′)}, with the vector 

(𝛼1, 𝛼2, 𝛼3) denoting the probability allocated to each element. Then for the data [0, 𝑏, 0, 𝑑], the 

posterior expectation is 𝐸[𝑤1|𝐷] = 0 if and only if 𝛼1 > 0 and 𝛼2, 𝛼3 ≥ 0. 

Proof. The proof is identical to the one above. The only difference is that now 

𝑓(𝐷|𝑤0 = 0,𝑤1 = 0) = 1 while the other likelihoods equal zero. The upshot is that there must be 

some positive prior probability on (0,0) in order to obtain 𝐸[𝑤1|𝐷] = 0. 

In summary, for a noisy-OR likelihood and prior 𝑓(𝑤0, 𝑤1), Bayesian updating will give posterior 

expectations 𝐸(𝑤1|𝐷 = [0, 𝑏, 0, 𝑑]) = 0 and 𝐸(𝑤1|𝐷 = [𝑎, 0,0, 𝑑]) = 1 so long as some positive 

prior probability is given to the hypotheses (0,0) and (0,1). Positive prior probability may also be 

allocated to (1, 𝑤1
′) with 𝑤1

′ ∈ [0,1], though it is not necessary. The prior may not have support 

beyond these two points and this line. We can now use this fact to prove the initial theorem. This 

is achieved by examining the Bayesian predictions obtained from applying this prior to the 

remaining patterns of learning data. 

Proof.  Above we showed that the prior 𝑓(𝑤0, 𝑤1) must have positive support only on 

{(0,0); (0,1); (1, 𝑤1
′)} where some positive probability is required for the first two elements while 

it is optional for the third element. Now we are interested in applying this prior to data vectors 𝐷′ 

with the form {[0, 𝑏, 𝑐, 0]; [0, 𝑏, 𝑐, 𝑑]; [𝑎, 0, 𝑐, 𝑑]; [𝑎, 𝑏, 0, 𝑑]; [𝑎, 𝑏, 𝑐, 0];  [𝑎, 𝑏, 𝑐, 𝑑]}. Each of these 

vectors receives no prior probability from 𝑓(𝑤0, 𝑤1) and so for each Pr(𝐷) = 0. For example, 

with the data [0, 𝑏, 𝑐, 𝑑] we get: 

 
𝑓(𝐷|𝑤0 = 0,𝑤1 = 0) = (1)𝑑(0)𝑎(1)𝑏 = 0 

𝑓(𝐷|𝑤0 = 0,𝑤1 = 1) = (1)𝑑(1)𝑎(0)𝑏 = 0 

and 

𝑓(𝐷|𝑤0 = 1,𝑤1 = 𝑤1
′) = (0)𝑑(𝑤1

′)𝑎(1 − 𝑤1
′)𝑏 = 0 
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With Pr(𝐷) = 0, the model gives no posterior prediction. This is because the data completely 

contradict prior beliefs. In summary, the family of priors that give deterministic predictions of 0 

for the [0,8,0,8] condition and 1 for the [8,0,0,8] condition will not give any predictions for the 

remaining conditions. 

Corollary.   The above theorem holds for any generating function that has: 

 

For 𝐷 = [𝑎, 0,0, 𝑑] For 𝐷 = [0, 𝑏, 0, 𝑑] 

𝑓(𝐷|𝑤0 = 0,𝑤1 = 0) = 0 𝑓(𝐷|𝑤0 = 0,𝑤1 = 0) = 1 

𝑓(𝐷|𝑤0 = 0,𝑤1 = 1) = 1 𝑓(𝐷|𝑤0 = 0,𝑤1 = 1) = 0 

𝑓(𝐷|𝑤0 = 1,𝑤1 = 𝑤1
′) = 0 𝑓(𝐷|𝑤0 = 1,𝑤1 = 𝑤1

′) = 0 

𝑓(𝐷|𝑤0 = 𝑤0
′ , 𝑤1 = 𝑤1

′) = 𝑦 𝑓(𝐷|𝑤0 = 𝑤0
′ , 𝑤1 = 𝑤1

′) = 𝑦 

 

where 0 < 𝑤0
′ , 𝑤1

′ < 1 and 0 < 𝑦 < 1. The corollary is easily verified using the above proofs. It 

would seem that most any reasonable generating function will satisfy the requirements of the 

corollary. 

In sum, the above findings have serious implications for Bayesian models of strength 

estimation. Most people give ratings of 0 for data [0, 𝑏, 0, 𝑑], ratings of 1 for data [𝑎, 0,0, 𝑑], and 

probabilistic ratings for the remaining contingency tables. The above theorem implies that this 

pattern of judgment is strongly inconsistent with any Bayesian model of causal power. And the 

corollary extends the result to an extremely broad class of generating functions.
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Appendix G.  

 

Two-stage causal inference 

G.1 Posterior probabilities for model selection 

 

 
 

Figure G.1. Directed graphs with 𝐵 representing the background variable, 𝐶 the candidate cause, and 𝐸 the effect of 

interest. Graph 0 represents a deterministic hypothesis of no causal strength, or 𝑤1 = 0. Graph P represents the 

hypothesis of probabilistic causal strength with 0 < 𝑤1 < 1. And Graph 1 represents the deterministic hypothesis of 

𝑤1 = 1. 

Consider the three models represented by the three graphs in Figure G.1. Note that Graph 0 implies 

𝑤1 = 0, Graph P allows 0 < 𝑤1 < 1 and Graph 1 implies 𝑤1 = 1. The posterior probability for 

each graph is found using Bayes rule: 

 

Pr(Graph i|𝐷) =
Pr(𝐷|Graph i)×Pr(Graph i)

Pr(𝐷)
   

Assume equal prior weight is given to each graph so Pr(Graph 0) = Pr(Graph P) =

Pr(Graph 1) =
1

3
. To apply Bayes rule we also need to compute Pr(Graph i|𝐷) for each graph. 

This can be achieved using the approach from the appendix of Griffiths and Tenenbaum (2005). 

Let 𝐷 = [𝑎, 𝑏, 𝑐, 𝑑] represent the entries of the contingency table. Then the probability of Graph 0 

is found with: 
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Pr(𝐷|Graph 0) = ∫ 𝑝(𝐷|𝑤0, Graph 0)
1

0

𝑝(𝑤0|Graph 0)𝑑𝑤0  

The 𝑝(𝐷|𝑤0, Graph 0) is just a Bernoulli likelihood with probability 𝑤0 while 𝑝(𝑤0|Graph 0) is 

the prior distribution for 𝑤0 on Graph 0. Assume that 𝑝(𝑤0|Graph 0) is a uniform prior, then: 

 

Pr(𝐷|Graph 0) = ∫ 𝑤0
(𝑎+𝑐)×(1 − 𝑤0)

(𝑏+𝑑)
1

0

𝑑𝑤0 

= B[𝑎 + 𝑐 + 1, 𝑏 + 𝑑 + 1] 

 

where B(𝑥, 𝑦) is the beta function.  

The derivation for Pr(𝐷|Graph 1) is similar. Once again assume a uniform prior for 

𝑝(𝑤0|Graph 1). Now 𝑤1 = 1 in the likelihood gives: 

 

Pr(𝐷|Graph 1) = ∫ (1)𝑎×(0)𝑏×𝑤0
𝑐×(1 − 𝑤0)

𝑑
1

0

𝑑𝑤0 

= {
0                           for 𝑏 > 0
B[𝑐 + 1, 𝑑 + 1] for 𝑏 = 0

 

 

Finding Pr(𝐷|Graph P) is the most complex with: 

 

Pr(𝐷|Graph P) = ∫ ∫ 𝑝(𝐷|Graph P, 𝑤0, 𝑤1)×𝑝(𝑤0, 𝑤1|Graph P)𝑑𝑤0𝑑𝑤1

1

0

1

0

 (G.1) 

where 𝑝(𝐷|Graph P, 𝑤0, 𝑤1) is a Bernoulli sampling model with probability given by the Noisy-

OR likelihood. Also assume that 𝑝(𝑤0, 𝑤1|Graph P) is a joint uniform prior. The integral (G.1) 

cannot be solved analytically, so must be approximated. 

Since the support is only over a unit-square, the integral can be approximated using a fine 

grid. One can divide the unit square into m equally-sized smaller squares, so each smaller square 

has area 1/𝑚. A rectangular box approximates the volume under the 𝑖𝑡ℎ square. Specifically, one 

can sample a point (𝑤0𝑖, 𝑤1𝑖) within the square and find: 

 

𝑉(𝑤0𝑖, 𝑤1𝑖) ≈
1

𝑚
×𝑝(𝐷|𝐺,𝑤0𝑖, 𝑤1𝑖)×𝑝(𝑤0𝑖, 𝑤1𝑖|Graph P)  
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where 1/𝑚 gives the area of the base and 𝑝(𝐷|𝐺,𝑤0𝑖 , 𝑤1𝑖)×𝑝(𝑤0𝑖, 𝑤1𝑖|Graph P) gives the height. 

And so the approximate integral is found by summing over all of the volumes: 

 

Pr(𝐷|Graph P) ≈∑
1

𝑚
×𝑝(𝐷|𝐺,𝑤0𝑖, 𝑤1𝑖)

𝑚

𝑖=1
×𝑝(𝑤0𝑖, 𝑤1𝑖|Graph P)  

This is essentially the same approach as that of Griffiths and Tenenbaum (2005), though instead 

of forming a grid they randomly sample points within the unit square. 

G.2 Two-stage Bayesian model to mimic weighted 𝚫𝐏 

Begin with the three graphs from above and assume the Noisy-OR parameterization for Graph P. 

To mimic weighted Δ𝑃 predictions, Graph 0 should be selected for the [0,8,0,8] condition, Graph 

1 for the [8,0,8,0] condition, and Graph P should be selected for all remaining conditions. In order 

for these selections to occur, the prior weight given to each graph had to be carefully chosen. With 

prior probabilities 𝑃(Graph 0) = 𝑃(Graph 1) = 1/7 and 𝑃(Graph P) = 5/7 the correct model 

was generally chosen, though not always. 

In addition, the prior on Graph P must be constructed to give estimates close to the weighted 

Δ𝑃 model. In particular, for conditions with observed 𝑃(𝑒+|𝑐−) = 0, the Bayesian prediction 

should approximately equal the observed 𝑃(𝑒+|𝑐+). This may be achieved with the prior: 

𝑝(𝑤0, 𝑤1) = Beta[𝑤0, 𝛼0, 𝛽0]×Beta[𝑤1, 𝜖 + (𝑤0)
𝑘×(𝛼1 − 𝜖), 𝜖 + (𝑤0)

𝑘×(𝛽1 − 𝜖)] 

∝ 𝑤0
𝛼0−1(1 − 𝑤0)

𝛽0−1×𝑤1
[𝜖+(𝑤0)

𝑘×(𝛼1−𝜖)−1](1 − 𝑤1)
[𝜖+(𝑤0)

𝑘×(𝛽1−𝜖)−1] 

where 0 < 𝜖, 𝑘 < 1 and 𝜖 is chosen to be “small”. Setting 𝛼0 = 𝛽0 = 𝛼1 = 𝛽1 = 1 then gives: 

𝑝(𝑤0, 𝑤1)  ∝ 𝑤1
[𝜖+(𝑤0)

𝑘×(1−𝜖)−1]
(1 − 𝑤1)

[𝜖+(𝑤0)
𝑘×(1−𝜖)−1] (G.2) 

So the prior is the product of two distributions with a dependence between 𝑤0 and 𝑤1. As the 

𝑤0 → 0 the prior for 𝑤1 approaches a Beta[𝜖, 𝜖]. This returns a posterior expectation that is close 

to the sample estimate for causal power, which is also the weighted Δ𝑃 prediction. With 𝑤0 → 1 

the prior approaches joint uniform. And recall that weighted Δ𝑃 and the uniform prior model were 

generally close in their predictions for 𝑤0 > 0. 
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Using (G.2) for the prior distribution and a noisy-OR likelihood yields a posterior distribution 

for which there is no analytic solution. The posterior must be approximated using the procedure 

described in Section G.1. The results presented in Figure 4.6 are from a model that used 𝜖 = 0.1 

and 𝑘 = 0.5.
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Appendix H.  

 

Latent variable results 

H.1 Exponential density gives causal power predictions 

Suppose the response function 𝐹(. ) follows a cumulative exponential density. Then the response 

curve, response and inverse response functions are given by: 

𝑓(𝛼) = {𝜆𝑒
−𝜆𝛼  for 0 ≤ α

0           for 𝛼 < 0
 

𝐹(𝛼) = {1 − 𝑒
−𝜆𝛼 for 𝛼 ≥ 0 

0               for  𝛼 < 0
 𝐹−1(𝑤) = −

1

𝜆
× log(1 − w)      0 ≤ w < 1 

where 𝜆 > 0 is the rate parameter. For this family of functions, the 3 steps of the latent variable 

procedure from Section 5.2.2 will give the predictions of the causal power model. Recall steps 1 

is to infer the capacities associated with B and B&C. Step 2 is to take their difference to find the 

capacity of C alone: 

 
𝛼1 = 𝐹

−1(𝑤𝑇) − 𝐹
−1(𝑤0) 

= (
1

𝜆
)×[− log(1 − 𝑤𝑇) + log(1 − 𝑤0)] 

 

Step 3 then finds the causal strength of the candidate cause C: 

 

𝐹(𝛼1) = 1 − 𝑒
−𝜆×(

1
𝜆
)[− log(1−𝑤𝑇)+log(1−𝑤0)] 

= 1 − 𝑒log(1−𝑤𝑇)×𝑒− log(1−𝑤0) 

= 1 − 𝑒log(1−𝑤𝑇)×𝑒
log[

1
(1−𝑤0)

]
 

= 1 −
(1 − 𝑤𝑇)

(1 − 𝑤0)
 

=
𝑤𝑇 − 𝑤0
1 − 𝑤0
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Hence, any exponential distribution will return predictions of the causal power model, with 𝜆 

simply serving as a scaling parameter. 

H.2 Relationship between 𝚫𝑷 and causal power response functions 

Next I show that Δ𝑃 and causal power constitute points along a continuum of models within the 

latent variable framework. Recall that the Δ𝑃 rule may be represented as a CARP model using a 

beta(1,1) response curve. In addition, causal power can be represented with any exponential 

density as the response curve. To show that these models lie along a continuum within the CARP 

framework is to show that there are a continuum of response curves between the two models, so 

that one model can be gradually transformed into the other. Specifically, I demonstrate that as one 

moves from a beta(1,1) to a beta(1, n) density, the response curve converges to an exponential 

distribution as n becomes large. 

One property of the beta distribution is that lim
𝑛→∞

𝑛×beta(1, 𝑛) → exp(λ = 1). Thus, if we use 

𝑛×beta(1, 𝑛) as the response function, predictions will approach causal power as n becomes large. 

With regards to CARP predictions, multiplying the beta distribution by n will only serve to scale 

the latent capacity dimension. Accordingly, it is not hard to imagine why predictions from a 

beta(1, 𝑛) response function will also converge to causal power as n becomes large. This can be 

explicitly demonstrated by writing out CARP predictions using the 𝑛×beta(1, 𝑛) distribution and 

then showing that they are identical to predictions given by a beta(1, 𝑛) response function. 

Begin with the 𝑛×beta(1, 𝑛) distribution. The response and inverse response functions are: 

 

Pr(𝑛𝑋 ≤ 𝑥) = Pr (𝑋 ≤
𝑥

𝑛
) 

= 𝐹 (
𝑥

𝑛
) = 1 − (1 −

𝑥

𝑛
)
𝑛

 

𝐹−1(𝑦) = 𝑛 − 𝑛√1 − 𝑦
𝑛

 

 

From above, one can see that 𝐹 (
𝑥

𝑛
) goes to 1 − 𝑒−𝑥 as 𝑛 → ∞ since by definition of the 

exponential function, 𝑒−𝑥 = lim
𝑛→∞

(1 −
𝑥

𝑛
)
𝑛

. For a given 𝑤0 and 𝑤𝑇 we may apply the CARP 

procedure to find: 
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𝛼1 = 𝐹−1(𝑤𝑇) − 𝐹

−1(𝑤0) 

= (𝑛 − 𝑛√1 − 𝑤𝑇
𝑛 ) − (𝑛 − 𝑛√1 − 𝑤0

𝑛 ) 

= 𝑛√1 − 𝑤0
𝑛 − 𝑛√1 − 𝑤𝑇

𝑛
 

𝐹(𝛼1) = 1 − (1 −
𝑛√1 − 𝑤0
𝑛 − 𝑛√1 − 𝑤𝑇

𝑛

𝑛
) 

= 1 − (1 − [√(1 − 𝑤0)
𝑛

− √(1 − 𝑤𝑇)
𝑛

])
𝑛

 

 

 

 

 

 

 

 

 

 

(H.1) 

And so the causal strength prediction is given by (H.1).  

We may also find the expression using a beta(1, n) distribution, which has the following 

response curve, response function and inverse response function: 

𝑓(𝛼) = {𝑛
(1 − 𝛼)𝑛−1  for 0 ≤ 𝛼 ≤ 1
0                 otherwise

 

𝐹(𝛼) = {
0                for α < 0

1 − (1 − 𝛼)𝑛  for 0 ≤ α ≤ 1
1                for α > 1

 𝐹−1(𝑤)  = {

0                  for w < 0

1 − √(1 − 𝑤)
𝑛

  for 0 ≤ w ≤ 1

1                   for w > 1

 

So for a given 𝑤𝑇 and 𝑤0, causal strength is found with: 

 
𝛼1 = 𝐹

−1(𝑤𝑇) − 𝐹
−1(𝑤0) 

= 1 − √(1 − 𝑤𝑇)
𝑛

− (1 − √(1 − 𝑤0)
𝑛

) 

= √(1 − 𝑤0)
𝑛

− √(1 − 𝑤𝑇)
𝑛

 

 

And plugging into 𝐹(. ) gives: 

 

𝐹(𝛼1) = 1 − (1 − [√(1 − 𝑤0)
𝑛

− √(1 − 𝑤𝑇)
𝑛

])
𝑛

 
(H.2) 

Since (H.1) and (H.2) are identical, it is evident that the 𝑛×beta(1, 𝑛) and beta(1, 𝑛) distributions 

give identical predictions. 

In summary, it has been shown that Δ𝑃 and causal power exists along a continuum of CARP 

models since a beta(1,1) response function gives Δ𝑃 predictions while lim
𝑛→∞

beta(1, 𝑛) converges 

to causal power predictions. 
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H.3 Weighted 𝚫𝑷 fails as a normative model 

The weighted Δ𝑃 rule suffers from serious deficiencies as a description of a causal system. 

Consider the 1-parameter weighted Δ𝑃 model: 

 
𝑤1 = 𝑤𝑇 − 𝑘×𝑤0 

 

where 𝑘 ∈ [0,1]. For the weighted Δ𝑃 model, it can be shown that no response function 𝐹(. ) with 

continuous response curve 𝑓(. ) exists unless 𝑘 = 1. 

Proof.   Suppose there exists a response function 𝐹(. ) with continuous derivative 𝑓(. ) over its 

domain. Also suppose a candidate cause 𝐶 with associated capacity 𝛼1. Evaluate the cause with 

respect to two different contexts 𝐵 and 𝐵′ with associated capacities 𝛼0 < 𝛼0
′ . Then we have: 

 
𝑤0 = 𝐹(𝛼0);   𝑤0

′ = 𝐹(𝛼0
′ ) 

𝑤𝑇 = 𝐹(𝛼0 + 𝛼1);   𝑤𝑇
′ = 𝐹(𝛼0

′ + 𝛼1) 

 

Causal strength by the weighted Δ𝑃 rule is equal to: 

 
𝑤1 = 𝑤𝑇 − 𝑘𝑤0 = 𝐹(𝛼0 + 𝛼1) − 𝑘×𝐹(𝛼0) 

𝑤1 = 𝑤𝑇
′ − 𝑘𝑤0

′ = 𝐹(𝛼0
′ + 𝛼1) − 𝑘×𝐹(𝛼0

′ ) 

 

Now if the rule is consistent, then the same 𝑤1 should be recovered regardless of context. This 

implies: 

 
𝐹(𝛼0

′ + 𝛼1) − 𝑘×𝐹(𝛼0
′ ) = 𝐹(𝛼0 + 𝛼1) − 𝑘×𝐹(𝛼0) 

𝐹(𝛼0
′ + 𝛼1) − 𝐹(𝛼0 + 𝛼1) = 𝑘×[𝐹(𝛼0

′ ) − 𝐹(𝛼0)] 

 

(H.3) 

Begin with the right side of (H.3) and let 𝛼0
′ = 𝛼0 + 𝜖. Then: 

 
𝐹(𝛼0 + 𝜖) − 𝐹(𝛼0)

(𝛼0 + 𝜖) − 𝛼0
=
𝐹(𝛼0 + 𝜖) − 𝐹(𝛼0)

𝜖
 

lim
𝜖→0

(
𝐹(𝛼0 + 𝜖) − 𝐹(𝛼0)

𝜖
) = 𝐹′(𝛼0) = 𝑓(𝛼0) 

 

Similarly for the right side of (H.3), 
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lim
𝜖→0

(
𝐹(𝛼0 + 𝜖 + 𝛼1) − 𝐹(𝛼0 + 𝛼1)

𝜖
) = 𝐹′(𝛼0 + 𝛼1) = 𝑓(𝛼0 + 𝛼1) 

 

Thus, we may divide both sides of (H.3) by 𝜖 and take the limit for: 

 

lim
𝜖→0

[
𝐹(𝛼0

′ + 𝛼1) − 𝐹(𝛼0 + 𝛼1)

𝜖
= 𝑘×

𝐹(𝛼0
′ ) − 𝐹(𝛼0)

𝜖
] 

𝑓(𝛼0 + 𝛼1) = 𝑘×𝑓(𝛼0) 

 

Recall that we assumed a continuous response curve function 𝑓(. ). So the final equality will only 

hold in general for: 

 
lim
𝛼1→0

[𝑓(𝛼0 + 𝛼1) = 𝑘×𝑓(𝛼0)] 

𝑓(𝛼0) = 𝑘×𝑓(𝛼0) 

 

But this implies 𝑘 = 1, which in turn implies the Δ𝑃 model with a uniform response curve, or 

𝑓(𝛼) = 1 for all 𝛼. Thus, the only allowable weight for a continuous response curve gives the 

standard Δ𝑃 rule. 

The above shows an example application of the latent variable framework. However, in this 

case it is not necessary to show that weighted Δ𝑃 is generally non normative. For instance, suppose 

two different causes 𝐶1 and 𝐶2 and a context 𝐵 with no causal strength: 

 
𝑃(𝑒+|𝑐1

−, 𝑐2
−, 𝑏+) = 𝑤0 = 0;     𝑃(𝑒

+|𝑐1
+, 𝑐2

−, 𝑏+) = 𝑤1;     𝑃(𝑒
+|𝑐1

−, 𝑐2
+, 𝑏+) = 𝑤2 

 

The problem is that the total probability is not commutative on the conjoining of causes. Suppose 

cause 𝐶2 is introduced to the context (𝐶1 ∩ 𝐵). Then by weighted Δ𝑃, 

 
𝑤2 = 𝑤𝑇 − 𝑘×𝑤1 

𝑤𝑇 = 𝑤2 + 𝑘×𝑤1 

 

Similarly, suppose cause 𝐶1 is introduced to the context (𝐶2 ∩ 𝐵). This gives: 

 
𝑤𝑇 = 𝑤1 + 𝑘×𝑤2 
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Putting them together: 

 
𝑤2 − 𝑤1 = 𝑘(𝑤2 − 𝑤1) 

 

And this equality will not hold generally unless 𝑘 = 1, again giving the Δ𝑃 rule. It will also hold 

in the special case of  𝑤2 = 𝑤1. 

In summary, it has been shown that for a weight 𝑘 < 1 the weighted Δ𝑃 rule is generally not 

consistent, and so it fails as a potential normative model.
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Appendix I.  

 

Empirical response functions 

I.1 Simple algorithm for estimating response functions 

Suppose we want to estimate the unknown response function 𝐹(𝛼|𝜃1, … , 𝜃𝑘). At present, assume 

the response function comes from a single family of densities, but that the particular density is 

unknown. For example, 𝐹(𝑥|𝜇, 𝜎2) represents the single family of normal densities while a 

particular density is given by specific values of 𝜇 and 𝜎2. 

We are also interested in the set of causes {𝐵, 𝐶1, … 𝐶𝑛} with unknown capacities 

[𝛼0, 𝛼1, … , 𝛼𝑛]. As before, 𝐵 represents the always present context. The causal strength of cause 

𝐶𝑖 is defined as the probability 𝑤𝑖 = 𝐹(𝛼𝑖|𝜃1, … , 𝜃𝑘). The notation 𝑤𝑇𝑖 represents the conjunctive 

probability of the background 𝐵 with cause 𝐶𝑖. Similarly, 𝑤𝑇𝑖𝑗 represents the conjunctive 

probability of the background 𝐵 with causes 𝐶𝑖 and 𝐶𝑗. By CARP’s additivity assumption this 

probability is: 

 
𝑤𝑇𝑖𝑗 = 𝐹(𝛼𝑇𝑖𝑗|𝜃1, … , 𝜃𝑘) 

= 𝐹(𝛼0 + 𝛼𝑖𝐶1 + 𝛼𝑗𝐶𝑛|𝜃1, … , 𝜃𝑘) 

 

Note that this quantity also corresponds to the probability 𝑤𝑇𝑖𝑗 = 𝑃(𝑒
+|𝑐𝑖

+, 𝑐𝑗
+, 𝑏+, ⋂ 𝑐𝑘

−
𝑘≠𝑖,𝑗 ). 

More generally, the probability of the effect when all causes are present is given by: 

 
𝑤𝑇1…𝑛 = 𝐹(𝛼𝑇1…𝑛|𝜃1, … , 𝜃𝑘) 

= 𝐹(𝛼0 + 𝛼1𝐶1 +⋯+ 𝛼𝑛𝐶𝑛|𝜃1, … , 𝜃𝑘) 

 

Binary 𝐶𝑖’s can be represented with indicator functions. Some of the 𝐶𝑖’s may also be continuous. 

In either case, the 𝛼𝑖 represents the causal capacity contributed by a given cause 𝐶𝑖. 

Now the challenge is that the response function 𝜃𝑗  parameters and the capacity 𝛼𝑖 parameters 

are both unknown and estimates of each are conditional on the other. Markov chain Monte Carlo 
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(MCMC) methods can be applied to many problems of this type. The next section explores using 

the Metropolis-Hastings algorithm, an MCMC method. This section attempts the problem with a 

simple algorithm. 

One option is to just maximize the likelihood over all the unknowns {𝛼0, 𝛼1, … , 𝛼𝑛, 𝜃1, … , 𝜃𝑘}. 

Yet even for simple causal systems, this requires searching a large parameter space. To make the 

problem more tractable, an iterative algorithm similar to the coordinate descent approach is used. 

In coordinate descent, a complex multivariate problem is broken down into a sequence of lower 

dimensional optimization problems (Wright, 2015). The below approach is similar in that it breaks 

the problem into two optimization steps. The algorithm begins with starting coefficients 𝜶(0) =

[𝛼0
(0), 𝛼1

(0), … , 𝛼𝑛
(0)] and starting parameters 𝜽(0) = {𝜃0

(0), 𝜃1
(0), … , 𝜃𝑛

(0)}. On the first step, it 

conditions on the 𝜽(0) density parameters and finds maximum likelihood estimates for the 

capacities, which are updated to 𝜶(1). Then on the second step, it conditions on 𝜶(1) and finds 

maximum likelihood density parameters 𝜽(1). The first two steps are shown in the first two lines 

below: 

 
𝜶(1) = argmax

𝜶
 𝐹(𝜶|𝒚, 𝑪, 𝜽(0)) 

𝜽(1) = argmax
𝜽
 𝐹(𝜽|𝒚, 𝑪, 𝜶(1)) 

⋮ 

𝜶(𝑠) = argmax
𝜶
 𝐹(𝜶|𝒚, 𝑪, 𝜽(𝑠−1)) 

𝜽(𝑠) = argmax
𝜽
 𝐹(𝜽|𝒚, 𝑪, 𝜶(𝑠)) 

 

where 𝒚 is a binary vector indicating whether the effect occurs and 𝑪 is the design matrix with 

measurements for the causes. Note that the first column of 𝑪 has all entries equal to 1 since it 

represents the influence of the always present context 𝐵. Also, the additive capacity assumption is 

reflected by the fact that 𝑪 contains a single column for each cause with no interaction terms. The 

algorithm can be used iteratively to update the two sets of parameters until some convergence 

criterion is reached.  

The response curves from Figure 5.10 were estimated using the simple algorithm from above. 

Specifically, the R code to simulate the learning data (for a given panel) is: 
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#population coefficients 

a0 <- 0; a1 <- 0.2; a2 <- 0.5 

 

#population shape parameters 

sh1 <- 3; sh2 <- 3 

 

Nobs <- 50 

snum <- 3030 

set.seed(snum) 

 

#x1 will serve as the "context" variable while x2 is the candidate cause 

x1 <- rnorm(Nobs) #scale variable 

x1 <- rep(x1,2) 

x2 <- rep(c(0,1),each=Nobs) 

 

#transform x1 to [0,1] interval 

tx1 <- (x1 - min(x1))/(max(x1) - min(x1)) 

 

 And then the R code with the algorithm is given by: 

 
#function to find max likelihood alpha coefficients 

max.alphas <- function(aa, sh, ys){ 

  theta <- pbeta(aa[1] + aa[2]*tx1 + aa[3]*tx2, sh[1], sh[2]) 

  ptheta <- ifelse(ys==1, theta, 1-theta) 

  LL <- -sum(log(ptheta)) 

  LL 

} 

 

 

#function to find max likelihood beta shape parameters 

max.shapes <- function(sh, aa, ys){ 

  theta <- pbeta(aa[1] + aa[2]*tx1 + aa[3]*tx2, sh[1], sh[2]) 

  ptheta <- ifelse(ys==1, theta, 1-theta) 

  LL <- -sum(log(ptheta)) 

  LL 

} 

 

#~~~~~~~~~~~# 

# algorithm # 

#~~~~~~~~~~~# 

 

iterlim <- 100 #max number of iterations 

crit <- c(.001, .1) #convergence criteria 

 

#various starting values 

E.shape_last <- c(1,1) #starting shape parameters 

E.alpha_last <- rep(0.1,3) #starting coefs 

E.shape <- E.shape_last #need this on first iteration 

 

i <- 1 

 

while(i <= iterlim){ 

   

  if(i > 1){ 

    E.alpha_last <- E.alpha 

    E.shape_last <- E.shape 

  } 

   

  E.alpha <- nlminb(E.alpha_last, max.alphas, sh=E.shape, ys=ys)$par 
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  E.shape <- nlminb(E.shape_last, max.shapes, aa=E.alpha, ys=ys)$par 

   

  par_diff <- max(abs(E.alpha - E.alpha_last)) 

  shape_diff <- max(abs(E.shape - E.shape_last)) 

   

  if(par_diff < crit[1] & shape_diff < crit[2]){ 

    print("convergence win") 

    break 

  }else i <- i+1; E.alpha_last <- E.alpha; E.shape_last <- E.shape; cat("*") 

   

  if(i==iterlim){ 

    print("convergence fail") 

  } 

   

}  

 
The simulation results shown in Chapter 5 suggest that this algorithm does a decent job. It is also 

relatively fast, typically producing estimates in a matter of seconds. A disadvantage is that its 

properties regarding convergence are unknown. Superficial inspection also suggests that the 

algorithm is a high variance estimator of response curves. 

I.2 Metropolis algorithm 

The estimation problem may also be cast within a Bayesian framework. For many Bayesian models 

it is difficult or impossible to derive conjugate or semi-conjugate distributions. The Metropolis 

algorithm is a general method that can be brought to bear on such problems. In the Metropolis 

algorithm, parameters are randomly sampled from a “proposal distribution”. The likelihood and 

prior distributions are then used to determine whether the proposal is accepted. The resultant 

parameter sequence forms a Markov chain that will eventually converge to the posterior 

distribution (see Hoff (2009) Chapter 10 for an explanation of the Metropolis-Hastings algorithm). 

Thus, samples from the Markov chain can be used to approximate the posterior distribution. An 

advantage of the Bayesian approach is that uncertainty estimates for the parameters are easily 

obtained as posterior confidence intervals. 

To see how this can work, suppose a dichotomous effect 𝑦 that is caused by either the 

background cause 𝐵, a continuous cause 𝐶1, or a dichotomous cause 𝐶2. Further, suppose a two-

parameter response function maps capacity to outcome probability: 

 
Pr(𝑦𝑖 = 1) = 𝐹(𝛼0 + 𝛼1𝐶1(𝑖) + 𝛼2𝐶2(𝑖)|𝛼0, 𝛼1, 𝛼2, 𝜃1, 𝜃2) (I.1) 
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where 𝛼0, 𝛼1 and 𝛼2 are the capacities while the response function is determined by parameters 𝜃1 

and 𝜃2. We are interested in finding the joint posterior distribution 𝑝(𝛼0, 𝛼1, 𝛼2, 𝜃1, 𝜃2|𝒚, 𝑪). We 

can assume a prior distribution for the parameters, so we only need to form the likelihood, which 

is easily obtained. For a given set of parameters, equation (I.1) implies a probability 

Pr(𝑦𝑖 = 1|𝛼0, 𝛼1, 𝛼2, 𝜃1, 𝜃2) = 𝜔𝑖. The likelihood is just then: 

 

ℒ(𝛼0, 𝛼1, 𝛼2, 𝜃1, 𝜃2|𝒚, 𝑪) =∏ 𝜔𝑖
𝑦𝑖

𝑛

𝑖=1
(1 − 𝜔𝑖)

1−𝑦𝑖 

 

The prior and likelihood can then be used within the Metropolis algorithm to approximate the 

posterior distribution. 

I.2.1 Simulation example 

For a concrete example, assume that 𝐶1 is continuous and normally distributed while 𝐶2 is 

dichotomous. Measurements of cause 𝐶1 are mapped to the [0,1] interval using c1
′ =

[c1 −min(c1)]/[max(𝑐1) − min(𝑐1)]. This mapping ensures that the 𝛼 coefficients for 𝐶1 and 𝐶2 

will be similar in magnitude. Further, assume the true parameter values are 𝛼0 = 0, 𝛼1 = 0.2, 

𝛼2 = 0.5 and 𝜃1 = 3 and 𝜃2 = 1 (note that the 𝛼1 parameter is for the transformed c1
′ ).  

Two simulations are performed using the above population parameters. For the first 

simulation 20 observations are randomly sampled for the continuous 𝐶1. At each of these 20 

observations, 10 observations of the dichotomous 𝐶2 are randomly sampled, evenly split between 

cause present and cause absent. This makes for a total of 𝑁 = 200 observations. The second 

simulation uses a larger sample, with 200 observations of the 𝐶1 cause and 20 observations of 𝐶2 

at each value of 𝐶1, producing a total of 𝑁 = 4000 observations. 

A uniform prior is assumed for all the 𝛼 coefficient parameters while a Gamma(1,1) prior is 

used for each of the 𝜃1, 𝜃2 shape parameters. All parameters are assumed independent in the prior. 

A uniform proposal distribution is used for both sets of parameters (the R code appended below 

shows specifically how this was done). The Metropolis algorithm was run for 100,000 iterations, 

and the first 5000 were discarded as the “burn-in” sample. Plots for the two simulations are shown 

in Figure I.1. Both of the estimated response curves capture the general qualitative relationship. 

Both curves also appear to give decent estimates for low to moderate capacity. As capacity 
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Figure I.1. Population (blue) and estimated (orange) response curves for training samples of size N=200 (left panel) 

and size N=4000 (right panel). Population response curve is beta(3,1) density. The posterior distribution is 

approximated with a Metropolis algorithm of 10,000 iterations, with first 5000 discarded as the burn-in sample. 

Posterior expectations are used for the estimated shape parameters. 

increases there is more curvature in the true relationship, making estimation more difficult. 

Summary statistics from the two simulations are presented in Table I.1. Estimates from the larger 

sample size are generally more precise (with the exception of the 𝜃2 shape parameter). Yet even 

for 𝑁 = 4000, there is considerable uncertainty in the estimates. 

Table I.1. Posterior expectations and 95% confidence intervals estimated from Metropolis 

algorithm samples.  

 N=200 N=4000 

Parameter 
Posterior 

Expectation 

Posterior 95% 

confidence interval 

Posterior 

Expectation 

Posterior 95% 

confidence interval 

𝛼0 0.09 [0.00, 0.31] 0.06 [0.00, 0.20] 

𝛼1 0.22 [0.03, 0.42] 0.19 [0.11, 0.27] 

𝛼2 0.57 [0.34, 0.81] 0.51 [0.31, 0.71] 

𝜃1 2.80 [1.34, 5.21] 3.36 [2.13, 5.02] 

𝜃2 0.57 [0.15, 1.48] 0.99 [0.19, 2.63] 

Notes. Results of N=200 shown in left panel and N=4000 shown in the right panel. For both N’s, the Metropolis 

algorithm was iterated 100,000 times. The first 5000 samples were omitted from the chain as the burn-in sample. 
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The Metropolis algorithm constructed for this problem is quite basic. Improvements will need 

to be made in order to obtain good estimates with a reasonable amount of data. The R code for the 

algorithm is shown below (simulation data for the function may be generated from the R code 

shown in Section I.1): 

 
#Function to estimate response curves from two causes (predictors) by using 

the Metropolis algorithm. 

 

#arguments 

 

# y     data vector of 0/1 outcomes 

# x1    data vector of measurements for first cause 

# x2    data vector of measurements for second cause 

# sim   number of iterations for the chain 

 

# alpha_0s     starting values for the three alpha coefficients 

# shape_0s     starting values for the two beta shape parameters 

 

# delta1     half the width of the proposal distribution for the alpha vector 

# delta2     half the width of the proposal distribution for the shape vector 

 

# prior.bs     specifies priors for the coefficients. Default is beta(1,1) 

# prior.sh     specifies priors for the beta shapes. Default is gamma(1,1)  

 

emp_mh <- function(y, x1, x2, sim=100000,  

                   alpha_0s=rep(0.1,3), shape_0s=c(1,1),  

                   delta1 = .05, delta2 = .1,   

                   prior.as=c(1,1), prior.sh=c(1,1) ){ 

   

  aa <- alpha_0s; sh <- shape_0s 

  CHAIN <- matrix(data=NA, nrow=sim, ncol=5) 

 

  for(i in 1:sim){ 

     

    aa.star <- aa + runif(3, -delta1, delta1) 

    sh.star <- sh + runif(2, -delta2, delta2) 

     

    #enforce proper values for the shape parameters 

    sh.star <- ifelse(sh.star <= 0, c(.01, .01), sh.star) 

     

    theta <- pbeta(aa[1] + aa[2]*x1 + aa[3]*x2, sh[1], sh[2]) 

    theta.star <- pbeta(aa.star[1] + aa.star[2]*x1 + aa.star[3]*x2,    

                  sh.star[1], sh.star[2]) 

     

    lp <- sum(dbinom(y, 1, theta, log=TRUE)) +  

      sum(dbeta(aa, prior.as[1], prior.as[2], log=TRUE)) +  

      sum(dgamma(sh, prior.sh[1], prior.sh[2], log=TRUE)) 

     

    lp.star <- sum(dbinom(y, 1, theta.star, log=TRUE)) +  

      sum(dbeta(aa.star, prior.as[1], prior.as[2], log=TRUE)) +  

      sum(dgamma(sh.star, prior.sh[1], prior.sh[2], log=TRUE)) 

     

    log.r <- lp.star - lp 

     

    if(log(runif(1)) < log.r){ aa <- aa.star; sh <- sh.star} 

    CHAIN[i,] <- c(aa, sh) 

    } 

     



222 

 

 

  CHAIN <- data.frame(1:sim, CHAIN) 

  names(CHAIN) <- c("sim", "a0", "a1", "a2", "sh1", "sh2") 

  CHAIN 

} 
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