PUGET SOUND DREDGE DISPOSAL ANALYSIS (PSDDA)
DISPOSAL SITE INVESTIGATIONS: PHASE 1 TRAWL STUDIES IN SARATOGA PASSAGE, PORT GARDNER, ELLIOTT BAY AND COMMENCEMENT BAY, WASHINGTON

## Principal Investigators

Paul A. Dinnel, David A. Armstrong, Bruce S. Miller, Robert F. Donnelly Fisheries Research Institute, School of Fisheries University of Washington, Seattle

Part I

Crab and Shrimp Studies
by
Paul A. Dinnel, David A. Armstrong, and Anthony Whiley

Part II
Demersal Fish Studies
by
Robert F. Donnelly, Bruce S. Miller, Robert R. Lauth, and Shelley C. Clarke

FINAL REPORT
31 December 1986
for
Washington Sea Grant Program in Cooperation with Seattle District, U.S. Army Corps of Engineers Seattle, Washington

Submitted 31 December 1986


## TABLE OF CONTENTS

Page
LIST OF FIGURES ..... iv
LIST OF TABLES ..... viii
LIST OF APPENDICES ..... ix
ACKNOWLEDGEMENTS ..... xiv
EXECUTIVE SUMMARY ..... xv
PART I: Grab and Shrimp Studies ..... 1
INTRODUCTION ..... 1
METHODS ..... 2
Beam Trawl ..... 2
Otter Trawl ..... 2
Sample Sites and Stations ..... 4
RESULTS ..... 11
Dungeness Crab ..... 11
Shrimp. ..... 24
DISCUSSION AND CONCLUSIONS ..... 40
Dungeness Crab ..... 40
Shrimp. ..... 44
PART II: Demersal Fish Studies ..... 51
INTRODUCTION ..... 51
MATERIALS AND METHODS ..... 52
Laboratory Processing of Fish ..... 58
Flatfish Diseases ..... 58
Environmental Measurements ..... 59
Data Analysis ..... 59
RESULTS ..... 60
Comnencement Bay ..... 62
Elliott Bay ..... 72
Saratoga Passage ..... 77
Port Gardner ..... 82
DISCUSSION AND CONCLUSIONS ..... 88
The Research Otter Trawl for Documenting
Fish Assemblage. ..... 88
Commencement Bay ..... 92
Elliott Bay ..... 93
Saratoga Passage ..... 95
Port Gardner ..... 96
LITERATURE CITED ..... 98
APPENDIX. ..... 104
Part I. ..... 104
Part II. ..... 151

## Part I

No. Page

1. Diagrams of the beam trawl and otter trawl used in this study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2. Map of Puget Sound showing the general locations of the preliminary PSDDA disposal sites in the Main Basin. . . . . . . 5
3. Map of Saratoga Passage showing the beam trawl and otter trawl sampling stations in and around the preliminary Saratoga Passage disposal site. . . . . . . . . . . . . . . . . 6
4. Beam trawl and otter traw1 sample stations in Port Gardner. . . 7
5. Maps of Elliott Bay showing the beam trawl and otter trawl sampling stations by season in and around proposed disposal sites in Elliott Bay. . . . . . . . . . . . . . . . . . . . . . 9
6. Maps of Commencement Bay showing the beam traw1 and otter trawl sampling stations by season in and around the two preliminary disposal sites in Commencement Bay. . . . . . . . . 10
7. Maps of Saratoga Passage showing the approximate beam trawl Dungeness crab and shrimp catches at each sample station by season.12
8. Dungeness crab size-frequency histograms by season for crabs caught in Saratoga Passage. . . . . . . . . . . . . . . . . . . 13
9. Comparative average densities of Dungeness crab at the Navy Disposal Site and the two control sites in Port Gardner by season and by trawl type.15
10. Distribution of male Dungeness crabs caught by beam traw1 in
Port Gardner during the seasonal sampling in 1986. . . . . . . . 17
11. Distribution of female Dungeness crabs caught by beam trawl in Port Gardner during the seasonal sampling in 1986. . . . . . 18
12. Distribution by depth of a11 Dungeness crabs caught by beam trawl in Port Gardner during seasonal sampling in 1986. . . . . 20
13. Carapace width-frequency histograms of all male and female Dungeness crabs caught by beam trawl in Port Gardner during seasonal sampling in 1986. . . . . . . . . . . . . . . . . . . . 21
14. Carapace width-frequency histograms for all male Dungeness crabs caught by beam trawl in Port Gardner during seasonal sampling in 1986.22
15. Carapace width-frequency histograms for all female Dungeness crabs caught by beam trawl in Port Gardner during seasonal sampling in 1986.
16. Maps of E11iott Bay showing seasonal beam trawl catches of Dungeness crab and shrimp at the sampling stations in Elliott Bay. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
17. Beam and otter trawl shrimp catches by species and by season for PSDDA Site 2 in Saratoga Passage. . . . . . . . . . . . . . 27
18. Distribution of shrimp (all species combined) caught by beam trawl in Port Gardner during seasonal sampling in 1986.29
19. Distribution by depth of shrimp (all species combined) caught by beam trawl in Port Gardner during seasonal sampling in 1986.
20. Number of shrimp caught per hectare by both beam and otter trawls in the three preliminary disposal sites in Port Gardner during seasonal sampling in 1986.
21. Beam and otter trawl shrimp catches by site, by species and by season for the two E1liott Bay proposed disposal sites. . . . . 33
22. Maps of Commencement Bay showing beam traw1 catches of shrimp at the sampling stations in Commencement Bay. . . . . . . 34
23. Beam and otter trawl shrimp catches by site, by species and by season for the proposed disposal sites in Commencement Bay • • • 35
24. Distribution by depth and by species for all beam trawlcaught shrimp, all areas (except Port Gardner) and seasons combined.37
25. Average carapace lengths by species and by depth ranges for all shrimp caught, all seasons and areas (except Port Gardner) combined38
26. Length-frequency histograms for all spot prawn and sidestripe shrimp caught during the three sampling seasons, all areas (except Port Gardner) combined.39
27. Length-frequency histograms for all coonstripe and humpback shrimp caught during the three sampling seasons, all areas (except Port Gardner) combined.41
28. Length-frequency histograms for all smooth pink and pink shrimp caught during the three sampling seasons, all areas (except Port Gardner) combined.
29. Annual commercial shrimp landing from Puget Sound (including
Hood Canal) from 1935 to 1982 . . . . . . . . . . . . . . . . . . 46
30. Map of Western Washington showing areas of commercial shrimp
production from late $1800^{\prime}$ s to mid- $1930^{\prime}$ s. . . . . . . . . . . . 47

## Part II

1. Map of Commencement Bay showing locations sampled for bottomfish on June 13 (summer) and September 8 (autumn). . . . . . . . 54
2. Map of Elliott Bay showing locations sampled for bottomfish on July 3 (summer) and September 9 (autumn). . . . . . . . . . . . 55
3. Map of Saratoga Passage showing locations sampled for bottom-
fish on July 1 (summer) . . . . . . . . . . . . . . . . . . . . 56
4. Map of Port Gardner showing the station sampled for bottom-
fish. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5. Number (abundance) of fish caught in Commencement Bay, shown by station and season. . . . . . . . . . . . . . . . . . . . . . 63
6. Biomass (in grams) of fish caught in Commencement Bay, shown by station and season. . . . . . . . . . . . . . . . . . . . . . 63
7. Number (abundance) of English sole, Dover sole, and ratfish caught in Commencement Bay during summer and autumn, shown by station. . . . . . . . . . . . . . . . . . . . . . . . . . . 65
8. Biomass (in grams) of English sole, Dover sole, and ratfish
caught in Commencement Bay during summer and autumn . . . . . . 66
9. Species richness (total number of species) of fish caught in Commencement Bay, shown by station and season. . . . . . . . . . 67
10. Species diversity ( $H^{\prime}$ ) of fish caught in Commencement Bay, shown by station and season. . . . . . . . . . . . . . . . . . . 67
11. Length frequency of English sole, shown by sex, caught in Commencement Bay during summer and autumn at 40 m . . . . . . . . 68
12. Length frequency of English sole, shown by sex, caught in Commencement Bay during autumn at $20 \mathrm{~m} . \quad$. . . . . . . . . . . . 69
13. Number (abundance) of fish caught in Elliott Bay shown by station and season. . . . . . . . . . . . . . . . . . . . . . . 73
14. Biomass (in grams) of fish caught in Elliott Bay, shown by
station and season. . . . . . . . . . . . . . . . . . . . . . 73
15. Number (abundance) of English sole, Dover sole, slender
sole, ratfish and blackbelly eelpout caught in Elliott Bay
during summer and autumn, shown by station. . . . . . . . . . 74
16. Species richness (total number of species) of fish caught in Elliott Bay, shown by station and season. . . . . . . . . . . 76
17. Species diversity ( $H^{\prime}$ ) of fish caught in Elliott Bay, shown by station and season. . . . . . . . . . . . . . . . . . . . . . 76
18. Length frequency of English sole, shown by sex, caught at PSDDA 2, reference 1, during autumn in E1liott Bay.78
19. Number (abundance) of fish caught in Saratoga Passage during summer, shown by station. ..... 81
20. Biomass (in grams) of fish caught in Saratoga Passage during summer, shown by station. ..... 81
21. Number (abundance) of English sole, Dover sole, slender sole, Pacific hake and ratfish caught in Saratoga Passage during summer, shown by station. ..... 83
22. Biomass (in grams) of English sole, Dover sole, slender sole, Pacific hake and ratfish caught in Saratoga Passage during summer, shown by station. ..... 83
23. Species richness (total number of species) of fish caught in Saratoga Passage during summer, shown by station. . . . . . . 84
24. Species diversity ( $H^{\prime}$ ) of fish caught in Saratoga Passage during summer, shown by station. ..... 84
25. Number (abundance) of fish caught in Port Gardner, shown by station and season. ..... 86
26. Biomass (in grams) of fish caught in Port Gardner, shown by station and season. ..... 87
27. Species diversity of fish ( $\mathrm{H}^{\prime}$ ) caught in Port Gardner, shown by station and season. ..... 89

## Part I

No. Page

1. Average shrimp catches, lengths and weights (wet biomass) for all shrimp caught by otter trawl in the proposed PSDDA disposal sites in Saratoga Passage, Port Gardner, Elliott Bay and Commencement Bay during all sample months (combined), 1986.45
2. Estimated average shrimp catches per hectare from otter trawls conducted in selected areas of Hood Canal and Puget Sound from 1967 to 1979.49
3. Shrimp weights per hectare from the Elliott Bay preliminary disposal sites as estimated from the otter trawl catches in June and September 1986. . . . . . . . . . . . . . . . . . . . . 50

## Part II

1. List of bottomfish species caught by otter trawl during this study.61
2. Percent incidence and sample size of blood worm Philometra sp. infection in flatfish caught in Commencement Bay, shown by species, station and season. . . . . . . . . . . . . . . . . 70
3. Environmental measurements of temperature, salinity, and water clarity in Commencement Bay during autumn by station. . . 71
4. Percent incidence and sample size of blood worm Philometra sp. infection in flatfish caught in Elliott Bay, shown by species, station and season. . . . . . . . . . . . . . . . . . . 79
5. Environmental measurements of water temperature, dissolved oxygen, salinity and water clarity in Elliott Bay, by station and season. . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6. Percent incidence and sample size of bloodworm Philometra sp. infection in flatfish caught at Saratoga Passage during summer, shown by station and species.85
7. Percent incidence and sample size of bloodworm Philometra sp. infection in flatfish, shown by species, station and season at Port Gardner. . . . . . . . . . . . . . . . . . . . . . . . . 90
8. Measurements of temperature, salinity and water clarity by station and season at Port Gardner.91

## LIST OF APPENDICES

## Part I

Appendix
Table No. $\quad$ Page

1. Saratoga Passage beam traw1 station location data. ..... 105
2. Summary of Port Gardner beam trawl station location data. ..... 106
3. Elliott Bay beam traw1 station location data. ..... 109
4. Commencement Bay beam traw1 station location data ..... 110
5. Dungeness crab catches per hectare in Saratoga Passageduring February and June 1986. . . . . . . . . . . . . . . . . . 112
6. Beam trawl shrimp catches per hectare in Saratoga Passageduring February and June 1986, and in E11iott and Commencementbays during February, June and September 1986. . . . . . . . . . 113
7. Number of shrimp caught per hectare by otter traw1 in Saratoga Passage in June, and in Elliott and Commencement bays in June and September 1986. ..... 115
8. Beam trawl catches of Dungeness crab from Port Gardner during winter. ..... 117
9. Dungeness crab densities per hectare calculated from beam
traw1 catches in Port Gardner during April 1986. . . . . . . . . 121
10. Dungeness crab densities per hectare calculated from beamtraw1 catches in Port Gardner during June 1986.125
11. Dungeness crab densities per hectare calculated from beam trawl catches in Port Gardner during September 1986. . . . . . . 130
12. Dungeness crab densities per hectare calculated from beamtrawl catches at extra stations in Port Gardner duringSeptember 1986.134
13. Commercial shrimp densities per hectare in Port Gardnercalculated from beam trawl catches in February and April1986.13514. Densities per hectare of Dungeness crabs and commercialshrimp calculated from otter trawl catches from the Februaryand April cruises in Port Gardner. . . . . . . . . . . . . . . . 139
14. Dungeness crab densities per hectare calculated from otter trawl catches in Port Gardner in June and early July 1986. . . •141
15. Commercial shrimp densities per hectare calculated from beam
and otter trawls in Port Gardner in June and early July
16. ..... 143
17. Shrimp densities per hectare calculated from both beam and otter trawl catches in Port Gardner during September 1986147
18. Shrimp densities per hectare calculated from both beam and otter trawl catches at extra stations in Port Gardner during September 1986.

## Part II

## Appendix

APPENDIX A Analysis of fish data collected by beam trawls in Commencement Bay, Elliott Bay, and Saratoga Passage during 1986.

Table 1. Abundance, biomass, species richness and species diversity of fish caught by beam trawl in Commencement Bay during summer 1986. . . . . . . . . . . . . . 154

Table 2. Abundance, biomass, species richness and species diversity of fish caught by beam trawl in Elliott Bay by season. • • • • • • • • • . . . . . . . • • 154

Table 3. Abundance, biomass, species richness and species diversity of fish caught by beam trawl in Saratoga Passage during summer. . . . . . . . . . . . . . . . . 155

APPENDIX B Length-frequency histograms of abundant, non-commercially or recreationally important fish caught in Commencement Bay and Elliott Bay. . . . . . . . 156

Figure 1. Length frequency of otter trawl caught ratfish, shown by sex and life history stage, during summer at 156 m in Commencement Bay. . . . . . . . . . . . . 157

Figure 2. Length frequency of otter trawl caught ratfish, shown by sex, during summer at PSDDA 1 in Commencement Bay. . . . . . . . . . . . . . . . . . . . . . . 157

Figure 3. Length frequency of otter trawl caught ratfish, shown by sex and life history stage, during autumn at PSDDA 1 in Commencement Bay. . . . . . . . . . . . 158

Figure 4. Length frequency of otter trawl caught ratfish, shown by sex and life history stage, during summer at PSDDA 1 reference site in Elliott Bay. . . . . . . 158

Figure 5. Length frequency of otter trawl caught ratfish, shown by sex, during autumn at PSDDA 2, reference site 1 in Elliott Bay. . . . . . . . . . . . . . . . 159

Figure 6. Length frequency of otter trawl caught ratfish, shown by sex and life history stage, during autumn at PSDDA 2, reference site 2 in Elliott Bay.159

Figure 7. Length frequency of otter trawl caught slender sole, shown by sex and life history stage, during autumn at PSDDA 1 in Elliott Bay . . . . . . . . . . . 160

Figure 8. Length frequency of otter trawl caught slender sole males during summer at PSDDA 2 in Elliott Bay.160

Figure 9. Length frequency of otter trawl caught slender sole, shown by sex, during autumn at PSDDA 2 in E11iott Bay.161

APPENDIX $C$ Abundance and biomass (and range at multiple sample stations) of otter trawl caught fish by station and species in Commencement Bay, Elliott Bay, and Saratoga Passage. . . . . . . . . . . . . . . . . . . . . 162

Table 1. Abundance and range at multiple sample stations of otter trawl-caught fish by station and species in Commencement Bay on June 13, 1986163

Table 2. Biomass (in grams) and range at multiple sample stations of otter trawl-caught fish by station and species in Commencement Bay on June 13, 1986.165

Table 3. Abundance and range at multiple sample stations of otter trawl-caught fish by station and species in Commencement Bay on September 8, 1986. . . . . . . . . 167

Table 4. Biomass (in grams) and range at multiple sample stations of otter trawl-caught fish by station and species in Commencement Bay on September 8, 1986.169

Table 5. Abundance and range of multiple sample stations for otter trawl-caught fish by station and species in Elliott Bay on July 3, 1986 171

Table 6. Biomass (in grams) and range at multiple sample stations for otter trawl-caught fish by station and species in Elliott Bay on July 3, 1986.

Table 7. Abundance and range at multiple sample stations of otter trawl-caught fish by station and species in Saratoga Passage on July 1, 1986. . . . . . . . . . 173

Table 8. Biomass (in grams) and range at multiple sample stations of otter trawl caught fish by station and species in Saratoga Passage on July 1, 1986. . . . . . 175

Table 9. Number (abundance) of fish, biomass (in grams) and range at Navy and PSDDA sites of otter trawl caught fish by station and species in Port Gardner on February 12 and 13, 1986. . . . . . . . . . . . . . . 177

Table 10. Number (abundance) of fish, biomass (in grams) and range at Navy and PSDDA sites for otter trawl caught fish, by station and species in Port Gardner on Apri1 18 and 21, 1986. . . . . . . . . . . . . . . 179

Table 11. Number (abundance) of fish, biomass (in grams) and range at Navy and PSDDA sites for otter trawl caught fish by station and species in Port Gardner on June 30 and July 2, 1986.

Table 12. Number (abundance) of fish, biomass (in grams) and range at Navy and PSDDA sites for otter traw1 caught fish by station and species in Port Gardner on September 11 and 15, 1986. . . . . . . . . . . . . 183

APPENDIX D Abundance and biomass (and range of multiple sample stations) of beam trawl-caught fish by station and species in Commencement Bay, Elliott Bay and Saratoga Passage. . . . . . . . . . . . . . . . . . . . . 185

Table 1. Abundance and range of multiple sample stations of beam trawl-caught fish by station and species in Commencement Bay during July 1986. . . . . . . . . . . 186

Table 2. Biomass (in grams) and range at multiple sample stations of beam trawl-caught fish by station and species in Commencement Bay during July 1986. . . . . 187

Table 3. Abundance and range at multiple sample stations of beam trawl-caught fish by station and species in Elliott Bay during June 1986. . . . . . . . . . . . . 188

Table 4. Biomass (in grams) and range at multiple sample stations of beam trawl-caught fish by station and species in Elliott Bay during June 1986

Table 5. Abundance and range at multiple sample stations of beam trawl-caught fish by station and species at Elliott Bay during September 1986.190

Table 6. Biomass (in grams) and range at multiple sample stations of beam trawl-caught fish by station and species in Elliott Bay during September 1986191

Table 7. Abundance and range of multiple sample stations of beam trawl-caught fish by station and species in Saratoga Passage during June 1986192

Table 8. Biomass (in grams) and range at multiple sample stations of beam trawl-caught fish by station and species in Saratoga Passage during June 1986. . . . . 193

APPENDIX $E$ Number of flatfish per hectare caught by otter trawl in Commencement Bay, Elliott Bay, Saratoga Passage, and Port Gardner, shown by season, station and species. . . . 194

Table 1. Number of each flatfish species per hectare caught by otter trawl at each station in Commencement Bay during summer and autumn 1986. . . . . . . . . . . . . 195

Table 2. Number of each flatfish species per hectare caught by otter trawl at each station in Elliott Bay during summer and autumn i986. . . . . . . . . . . . . . . . 196

Table 3. Number of each flatfish species per hectare caught by otter trawl at each station in Saratoga Passage during summer 1986. . . . . . . . . . . . . . . . . . . . . . 197

Table 4. Number of each flatfish species per hectare caught by otter trawl at each station in Port Gardner during winter 1986. . . . . . . . . . . . . . . . . . . . . . 198

Table 5. Number of each flatfish species per hectare caught by otter trawl at each station in Port Gardner during spring 1986. . . . . . . . . . . . . . . . . . . . . . 199

Table 6. Number of each flatfish species per hectare caught by otter traw1 at each station in Port Gardner during summer 1986. . . . . . . . . . . . . . . . . . . . . . 200

Table 7. Number of each flatfish species caught by otter trawl at each station in Port Gardner during autumn 1986. 201

## ACKINOWLEDGMENTS

The work was supported by the Washington Sea Grant Program in cooperation with the Seattle District, U.S. Army Corps of Engineers. We appreciate the valuable assistance of Louie Echols, Washington Sea Grant Program; Frank Urabeck, Warren Baxter, Steve Martin and David Kendall of the U.S. Army Corps of Engineers; and members of the PSDDA Disposal Site Work Group (DSWG). All. trawl work was conducted on board the R.V. Kittiwake skippered by Charles Eaton. Assistance in the field and laboratory was provided by Russ McMillan, Tom Wainwright, Greg Jensen, Dan Doty, Debbie Dole, Loann Hallum, and Sandy O'Neil. Carol Sisley, Carla Norwood and Kathy Boaz provided assistance with report preparation.

The multi-agency Puget Sound Dredge Disposal Analysis (PSDDA) Program has been delegated the task of evaluating, selecting, monitoring and managing sites within the inland waters of Washington State for long-term, unconfined disposal of uncontaminated dredged materials. The Disposal Site Work Group (DSWG) of PSDDA was assigned the responsibility of selecting unconfined, open water disposal sites in central Puget Sound. DSWG selected seven preliminary disposal sites within five Zones of Siting Feasibility (ZSF's) in central Puget Sound (Saratoga Passage, Port Gardner, Elliott Bay and Commencement Bay) based on 19 selection factors covering physical parameters, human uses and historical biological resource data. Final site selection is now dependent, in part, on site-specific traw1 investigations for biological resources in and around each of the five ZSF's.

This document is the final technical report detailing the results of trawl studies conducted in each of the five ZSF's during 1986. This report is divided into two parts: Part $I$ summarizes the results of trawling conducted with a small $3-\mathrm{m}$ research beam trawl especially useful for capturing Dungeness crab, shrimp and small bottomfish. Part II details the results of trawling conducted with a research $(7.6 \mathrm{~m})$ otter trawl primarily designed to capture bottomfish of all sizes.

Initial trawls in central Puget Sound identified three faunal groups of specific importance to Puget Sound commercial and sport fisheries: Dungeness crab, pandalid shrimp, and bottomfish (especially flatfish, Pacific hake, cod, and rockfish). Each of these resources has been analyzed in this report to provide the best possible biological
data base for the final site selection process and to provide a "baseline" of information for future monitoring of these disposal sites. It should be noted that the Port Gardner data presented in this report are essentially abstracted from cruise reports from a closely related project (Navy Homeport Project). The final analyses of the Port Gardner data will be available at a later date.

Generally, Dungeness crab were found to be absent from Commencement Bay, of only minor concern in Elliott Bay and Saratoga Passage, and a major resource (especially females) in Port Gardner, where this species will be of primary concern in site selection and future monitoring. Shrimp were ubiquitous throughout the areas sampled. Shrimp populations were highly variable depending on such factors as site, species, depth, season and habitat type. Shrimp populations were generally insignificant as commercial or sport resources in all of the five ZSF's with the possible exception of the inner Elliott Bay ZSF. Shrimp in this particular area may prove to be a siting concern, although this area is also heavily impacted by gillnet fishing for salmon, ship navigation and anchorage, and toxic contaminants in the nearby Duwamish Waterways.

Bottomfish were sampled by a research trawl and it is important to understand that the data generated are not comparable to that generated by commercial trawls, upon which the Washington Department of Fisheries bases its "flatfish index."

Bottomfish were low in abundance, biomass and species diversity at the Commencement Bay PSDDA sites. In contrast, bottomfish were highest in abundance, biomass and species diversity at the PSDDA sites in

Elliott Bay, when compared with the other locations sampled in Elliott Bay. Saratoga Passage PSDDA sites were not adequately sampled to make a concluding statement, but WDF studies have previously indicated they may be an important area to some commercial fishes. Preliminary analysis of Port Gardner bottomfish indicates that biomass and abundance decrease with depth and towards the mouth of Port Gardner, and are at maximum values during the winter.

## PART I

Crab and Shrimp Studies
by

Paul A. Dinnel, David A. Armstrong, and Anthony Whiley

## INTRODUCTION

In January 1986, the Disposal Site Work Group (DSWG) of the Puget Sound Dredge Disposal Analysis (PSDDA) team, selected preliminary preferred and alternative sites for the unconfined disposal of dredged materials in the main basin of Puget Sound (Phase I area). Initial site selections were based on information gathered from limited field studies conducted within the ZSF's (Zones of Siting Feasibility) and existing information from each ZSF. Selection of final preferred and alternative disposal sites required more detailed evaluations of important physical factors and biological resources in and around the identified sites. One of the key factors in choosing final sites will be an evaluation of important benthic and epibenthic fisheries resources including Dungeness crab (Cancer magister), commercial (Pandalid) shrimp and bottomfish.

The purpose of this report is to describe the findings of the trawling studies conducted in and around each of the preliminary PSDDA disposal sites during February, April, June and September of 1986. The trawls conducted during these seasons consisted of beam trawls known to be effective for capturing Dungeness crab but which also sampled shrimp and smaller bottomfish incidental to crabs. Demersal fauna were additionally sampled by a medium-
sized otter trawl especially effective in capturing larger bottomfish and shrimp.

## METHODS

Beam TrawI
All trawling was conducted aboard the 16 m research vessel Kittiwake. Dungeness crabs were sampled with a 3 m beam trawl (Figure 1, top; Gunderson and Ellis 1986) previously used elsewhere in Puget Sound (Dinnel et al. 1985a, 1985b, 1986; Weitkamp et al. 1986). The beam trawl was towed at each station approximately 232 meters ( $1 / 8$ nautical mile) at a target ground speed and time of $2.5 \mathrm{~km} / \mathrm{hr}(1.5 \mathrm{knots})$ for 5.5 minutes which yielded an area swept by the net (opening $=2.3$ meters) of $534 \mathrm{~m}^{2}$. All crabs caught in the trawl were measured, sexed, and assessed for molt condition (degree of shell softness) and reproductive condition (females with or without eggs) and returned to the water. Catches of shrimp and fish from the beam trawls were preserved for later processing in the laboratory.

## Otter Trawl

Bottomfish and shrimp were sampled with a 7.6 m otter trawl (Figure 1 , bottom) designed for the Southern California Coastal Water Research Project (Mearns and Allen 1978). The otter trawl was towed approximately $370 \mathrm{~m}(1 / 5$ nautical mile) at a target ground speed and time of $4.2 \mathrm{~km} / \mathrm{hr}(2.5 \mathrm{knots})$ for 5.3 minutes which yielded an area swept by the net (opening $=6 \mathrm{~m}$ ) of 2,220 $m^{2}$. Incidentally caught crabs were processed on board as described above and returned to the water. Bottomfish and shrimp were identified and counted on board ship, and then at the end of the day, frozen for later processing in the laboratory. Laboratory processing for shrimp included identification to


Figure 1. Diagrams of the beam trawl (top) and otter trawl (bottom) used in this study.
species (commercial species only), measurement of carapace lengths and assessments of reproductive condition (shrimp with or without eggs). Bottomfish processing included identification to species, measurements for length and weight, and a check for obvious external abnormalities or parasites (primarily flatfish). See Part II for further discussion of the bottomfish methods and results.

## Sample Sites and Stations

Beam trawls. Beam trawl sampling was conducted in and around seven preliminary preferred or alternative disposal sites in four general areas of Puget Sound (Figure 2). The Saratoga Passage site was surveyed in February and June 1986, but not in September as the site was viewed as the second alternative to the Port Gardner preferred site. The trawl stations in Saratoga Passage consisted of three stations within the preliminary disposal site; eight stations stratified by depth (10, 20,40 and 80 m below mean lower low water [MLLW]) along Transect 1 east and west of the disposal site; and three stations along Transect 2 north of the disposal site (Figure 3). Transect 2 was sampled only in June.

Beam trawl sampling in Port Gardner was conducted during four seasons (February, April, June and September 1986). Sampling was conducted at two preliminary disposal sites and along seven north-south transects crossing Port Gardner (sample depths from 10 to 165 m ) (Figure 4). Three stations each were sampled within PSDDA Sites 1 and 2 during each season. The boundaries of PSDDA Site 1 were moved slightly eastward prior to sampling in September (dashed circle, Figure 4). Thus, this new site included PSDDA 1 Stations 1 and 2, Transect 3 Station 130 M and Station $H$ (which was added in September to provide better sampling coverage of the new site) (Figure 4). The Transect 1,

Saratoga Passage


Figure 2. Map of Puget Sound showing the general locations of the preliminary PSDDA disposal sites in the Main Basin.

## SARATOGA PASSAGE



Figure 3. Map of Saratoga Passage showing the beam trawl (©) and otter trawl (ロ) sampling stations in and around the preliminary Saratoga Passage (PSDDA 2) disposal site. The dash line indicates the area of the Zone of Siting Feasibility (ZSF).

$\begin{aligned} & \text { Figure 4. Beam trawl (O) and otter trawl ( } \square \text { ) sample stations in Port Gardner. } \\ & \text { Depths in meters. } N=\text { North, } M=\text { Middle, } S=\text { South. }\end{aligned}$

40N Station was dropped from the sampling array after February 1986 due to repeated gear damage at this location. Some additional beam trawl stations (A-H; Figure 4) were also added in June and September to provide better sampling coverage of the inner portion of the bay in relation to another proposed (NAVY) disposal site (Dinnel et al. 1987).

Beam trawl sampling in Elliott Bay was conducted during three seasons (February, June and September 1986) at two preliminary disposal sites and along two nearshore transects (10, 20, 40 and 80 m depths) (Figure 5). Three stations were sampled within PSDDA Site 1 in inner Elliott Bay during February and June. The location of PSDDA Site 1 was relocated slightly eastward prior to the September trawls; hence, two additional stations (Stations 4 and 5; Figure 5) were added to better characterize the resources within the new site. Three stations were trawled within PSDDA Site 2 (off Fourmile Rock) during all three seasons. The 40 m depth along Transect 2 off Fourmile Rock was deleted due to a rough bottom and repeated gear damage.

Beam trawl sampling in Commencement Bay was conducted during three seasons (February, June and September 1986) at two preliminary PSDDA disposal sites and along two transects stratified by depth (10, 20, 40, 80 and 120 m below MLLW) (Figure 6). Three trawls each were made in PSDDA Sites 1 and 2 in February. By June, PSDDA Site 2 had been relocated to the north of PSDDA Site 1 based on information about relative deposition/erosion potential from the depositional analysis procedure. This new site (called PSDDA Site $2 B$ in this report, Figure 5) was trawled together with PSDDA Site 1 in June. PSDDA Sites 1 and 2B were again sampled in September except that a slight shift of PSDDA Site 1 eastward resulted in the addition of one new station (PSDDA Site 1 , Station 4; Figure 6) during this season. As was the case in Elliott Bay, rough bottom conditions resulted in the deletion of the 80 m station on the
FEBRUARY \& JUNE

Figure 5. Maps of Elliott Bay showing the beam trawl ( ) and otter trawl (ロ) sampling stations by season in and around the two proposed Disposal Sites in Elliott Bay. The dashed line areas indicate the Zones of Siting Feasibility (ZSF). The dotted Iine within PSDDA Site 1 (September) was the site originally selected within ZSF 1 and the solid line area shows the approximate location of the newly located site.

## COMMENCEMENT BAY

FEBRUARY


SEPTEMBER


JUNE


Figure 6. Maps of Commencement Bay showing the beam trawl (-) and otter trawl (口) sampling stations by season in and around the two preliminary disposal sites in Commencement Bay. The dashed line area shows the Zone of Siting Feasibility (ZSF). The dotted line areas show areas of prior locations for the preliminary disposal sites and the solid lines show the present disposal site locations.
west end of Transect 1 .
The exact locations, depths and trawl directions for all trawl stations are recorded in Appendix Tables 1-4.

Otter trawls. Otter trawling was conducted at selected beam trawl stations in Saratoga Passage in June, in Port Gardner in February, April, June and September, and in Elliott and Commencement bays in June and September. See Part II of this report for further discussion of the otter trawl work and the results of the beam trawl fish catches.

RESULTS
Dungeness Crab
Saratoga Passage. The overall average beam trawl catches of Dungeness crab in Saratoga Passage were 1.2 and 42.8 crab/hectare (ha) for the February and June cruises, respectively. Dungeness crab were never caught within the preliminary PSDDA disposal site or at the deep Transect 2 stations north of the PSDDA site (Figure 7). All Dungeness crab were caught along Transect 1 on both east and west sides of Saratoga Passage. Station 10 E ( 10 meters deep east side) had the highest catches of Dungeness crab in both February and June. Only one Dungeness crab was caught by the otter trawl in June, this being at Station 20 E on the Camano Island side of Saratoga Passage. Dungeness crab catches for both trawl types and for both seasons are summarized in Appendix Table 5.

Histograms of Dungeness crab carapace width-frequencies show that about $95 \%$ of the crabs caught were mature animals ranging in size from 100 to 165 mm carapace width (CW) (Figure 8). Only two juvenile ( $20-30 \mathrm{~mm}$ ) crabs were caught, this being in February. These two individuals undoubtedly belonged to
SARATOGA PASSAGE



Figure 8. Dungeness crab size-frequency histograms by season for crabs caught in Saratoga Passage.
the 1985 year group. Soft crabs (indicative of recent molting) were only found in June (12\%) and only one gravid female was caught during each season.

Occasional rock crabs (Cancer productus and C. gracilis) were also caught by beam trawl in Saratoga Passage. Once again, these crabs were all caught at the inshore stations of Transect 1 .

Port Gardner. Up to 63 stations in Port Gardner were sampled by beam trawl in February $(n=56)$, April $(n=55)$, June $(n=55)$ and September ( $n=$ 63) 1986. The overall average numbers of Dungeness crab caught/ha ( $\pm 1$ standard deviation) in Port Gardner and within each of the preliminary disposal sites ( $n=3$ in each case) for each season were (Figure 9):

|  | Average \# Crab/ha $\pm 1$ Standard Deviation |  |  |
| :--- | :---: | :---: | :---: |
| Season | Port Gardner | NAVY | PSDDA 2 |

Dungeness crab were also sampled by otter trawl (incidental to fish catches) at selected stations in Port Gardner and at each disposal site ( $n=$ 3) during each season. Crab catches by otter trawl were usually less than the beam trawl (based on equivalent area trawled) and substantially less at the NAVY disposal site (Figure 9). The average numbers ( $\pm 1$ standard deviation)


Figure 9. Comparative average densities of Dungeness crab at the Navy Disposal Site and the two control sites in Port Gardner by season and by trawl type.
of Dungeness crab caught/ha at the three disposal sites for each season were:

| Average \# Crab/ha $\pm 1$ |  | Standard Deviation |  |
| :--- | ---: | ---: | ---: |
| Season | NAVY | PSDDA 2 | PSDDA 1 |
|  |  |  |  |
| February | $21 \pm 10$ | $0 \pm 0$ | $2 \pm 3$ |
| April | $15 \pm 6$ | $0 \pm 0$ | $0 \pm 0$ |
| June | $9 \pm 9$ | $1 \pm 2$ | $0 \pm 0$ |
| September | $2 \pm 3$ | $20 \pm 7$ | $12 \pm 4$ |
|  |  |  |  |
| Average | $11.8 \pm 7.5$ | $5.2 \pm 3.6$ | $3.5 \pm 2.5$ |

Dungeness crab catches for the beam trawl in Port Gardner are summarized in Appendix Tables 8-12. The otter trawl crab catches are summarized in Appendix Tables 14, 15 and 17.

Based on the beam trawl sampling efforts, the average annual abundance of Dungeness crabs in Port Gardner was estimated to be 106 crab/ha within our sampling grid. The estimated relative abundances at PSDDA Sites 1 (= Control 1) and 3 (= Control 2) were only $13 \%$ and $6 \%$, respectively, of this average annual abundance for Port Gardner.

The distributions of male and female crabs illustrated in Figures 10 and 11 show that males were relatively scarce. Typically the males accounted for only $10 \%$ of the total crab catch and were generally found at the shallower stations (averge depth of capture for males $=29 \mathrm{~m}$ ). Female crabs were much more plentiful, were found in abundance at deeper depths (down to $\sim 100 \mathrm{~m}$; average capture depth $=63 \mathrm{~m}$ ), and especially preferred the "nearshore slope" area of Port Gardner instead of the deep, flat areas in the middle of the bay.




This pattern is illustrated in greater detail in Figure 12 which shows that the highest abundances of Dungeness crab occur above 100 m depth. Rarely were crabs found at stations in the middle of the bay except during September when crabs may have "spread out" to deeper areas while foraging for food.

The average carapace width of all Dungeness crabs caught in Port Gardner was $125 \pm 13 \mathrm{~mm}$ with little difference between males ( $132 \pm 21 \mathrm{~mm}$ ) and females $(124 \pm 11 \mathrm{~mm})$. Histograms of carapace width-frequencies (Figure 13) show, however, that the size range for male crabs was greater ( $80-180 \mathrm{~mm}$ ) than that for the females ( $100-150 \mathrm{~mm}$ ) and that crabs less than about 2 years of age were not caught in the trawls.

Size-frequency histograms (Figure 14) for male crabs by season show a gradual increase in average size from 131 mm in February to 139 mm in September with no recruitment of young crabs (i.e., < 100 m CW ) after April. These histograms also suggest that larger legal-sized ( $\geq 160 \mathrm{~mm}$ ) crabs disappear from the population, probably due to removal by the commercial/sport fishery.

Female size-frequency histograms (Figure 15) show a pattern different than the males. Essentially no growth is evident based on the seasonal average sizes (123-126 mm CW), but close inspection of the histograms indicates that growth of the smaller females (CW $100-130 \mathrm{~mm}$ ) is occuring but that this growth is counteracted by a decline in the proportion of females > 130 mm CW, possibly due to natural mortality or emigration to areas outside our sampling grid.

Elliott Bay. Only four Dungeness crab were caught by beam trawl in Elliott Bay during all three sample seasons. None were caught by the otter trawl. Two Dungeness crabs (both mature, non-gravid females) were caught in

## CRAB - PORT GARDNER



Figure 12. Distribution by depth of all Dungeness crabs caught by beam trawl in Port Gardner during seasonal sampling in 1986.




Figure 14. Carapace width-frequency histograms for all male Dungeness crab caught by beam trawl in Port Gardner during seasonal sampling in 1986.

## FEMALE DUNGENESS CRAB SIZES






Figure 15. Carapace width-frequency histograms for ali female Dungeness crabs caught by beam trawl in Port Gardner during seasonal sampling in 1986.

June at the 10 and 20 m stations of Transect 1 off Duwamish Head (Figure 16). Two mature males were caught in September, also at the 10 m station of Transect 1. Occasional rock crabs were also caught at the shallower stations of Transects 1 and 2.

Commencement Bay. No Dungeness crab were caught in Commencement Bay by either trawl gear. Occasional rock crabs were again caught at the shallower stations ( $10-40 \mathrm{~m}$ ) in all three seasons.

## Shrimp

Catch data were collected on six species of Pandalid shrimp of commercial or sport value. These six species were: Spot prawn, Pandalus platyceros; Coonstripe shrimp, $P$. danae; Humpback shrimp, $P$. hypsinotus; Flexed shrimp, $\underset{\text {. }}{ }$. goniurus; Pink shrimp, $P$. borealis; Smooth pink shrimp, $\underline{P}$. jordani; and sidestripe shrimp, Pandalopsis dispar (Butler 1980).

Saratoga Passage. The overall average number of shrimp caught by the beam trawl in Saratoga Passage in February and June was essentially the same at 51.9 and 56.2 shrimp/ha, respectively. The largest shrimp catch ( 300 shrimp/ha) was at the 80 m station on the Whidbey Island side of Transect 1 in June, followed by the 100 m station ( 243 shrimp/ha) on Transect 2 , also in June (Figure 7). The two most abundant shrimp species were the pink and smooth pink shrimps (Appendix Table 6).

The average shrimp catch within the preliminary PSDDA disposal site was 46.8 and 68.7 shrimp/ha for February and June, respectively. Sidestripe shrimp were the most abundant shrimp species caught by the beam trawl in the disposal site in February, while pink shrimp were the most common species in


June (Figure 9; Appendix Table 6). However, the otter trawl in June caught more sidestripe shrimp than pink shrimp and caught a total of 126.2 shrimp/ha for all species combined (Figure 17; Appendix Table 7).

Port Gardner. The overall average number of shrimp/ha ( $\pm 1$ standard deviation; all species combined) caught by the beam and otter trawls in the 3 preliminary Port Gardner disposal sites during each season of 1986 were ( $n=3$ in each case):


Otter Trawl:

| February | $188 \pm 170$ | $354 \pm 184$ | $135 \pm 43$ |
| :--- | :---: | :---: | :---: |
| April | $113 \pm 21$ | $32 \pm 21$ | $30 \pm 5$ |
| June | $5 \pm 5$ | $117 \pm 149$ | $80 \pm 44$ |
| September | $443 \pm 81$ | $86 \pm 20$ | $101 \pm 18$ |
|  |  |  |  |
| Average | $186.9 \pm 175.0$ | $147.1 \pm 164.2$ | $86.3 \pm 48.4$ |



Figure 17. Beam and otter trawl shrimp catches by species and by season for PSDDA Site 2 in Saratoga Passage. The bars are the average catches for the three stations within the Disposal Site. N.S. = not sampled.

For each gear type, the pattern of relative shrimp densities between the three disposal sites (based on annual averages) was NAVY >PSDDA $2>\operatorname{PSDDA} 1$.

Plots of overall shrimp abundances in Port Gardner by season (Figure 18) show that the nearshore slope area (including the NAVY site) was the most important area for shrimp with relatively few shrimp occurring at the deeper stations in the middle of the bay. Figure 18 also shows that there was a distinct seasonality in general shrimp abundances with the highest densities being present during the fall-winter period. The fate of these shrimp during spring and summer is presently unknown.

Plots of shrimp distributions by depth (Figure 19) reinforce the finding that the nearshore slope area provides the most important habitat. The great majority of all shrimp caught by beam trawl in 1986 were found at stations between about 20 and 100 m depth with the exception of April when very few shrimp were caught (Figure 19).

The shrimp species most commonly caught within the three disposal sites in Port Gardner varied with site, season and trawl gear (Figure 20). Generally, sidestripe and pink shrimp were the most abundant at the disposal sites with the smooth pink shrimp being fairly abundant at the NAVY site. Coonstripe shrimp were never caught at these relatively deep stations and humpback and flexed shrimp were scarce. The reasons for the sometimes extreme differences in shrimp density estimates between the two trawl gears are presently unknown and may be, in part, species-dependent. The Port Gardner shrimp catch data for both trawls are summarized in Appendix Tables 13, 14 and 16-18.

Elliott Bay. The overall average beam trawl catches of shrimp in Elliott


## SHRIMP - PORT GARDNER



Figure 19. Distribution by depth of shrimp (all species combined) caught by beam trawl in Port Gardner during seasonal sampling in 1986.
PORT GARDNER

$\square$ Beam Trawl $\square$ Otter Trawl
Figure 20. Number of shrimp caught per hectare by both beam and otter trawls in the three


Bay during February, June and September were 131,66 and 135 shrimp/ha, respectively. Generally, shrimp were most abundant in the beam trawls at PSDDA Site 1 (inner Elliott Bay) in February; most abundant at PSDDA Site 2 (Fourmile Rock) in June; and substantially more abundant at PSDDA Site 1 in September (Figures 8 and 10; Appendix Table 6) Sidestripe and pink shrimp were the most abundant shrimp in the beam trawls at the Fourmile Rock site While pink and smooth pink shrimp were most common at the inner bay disposal site (Figure 21). The otter trawl catches generally showed the same pattern of shrimp distribution except that spot prawn catches were higher than for the beam trawl at the inner bay site in September and a few humpback shrimp were caught in June and September (Figure 21; Appendix Table 7).

A "t"-test was conducted to compare the mean catches of shrimp between the two Elliott Bay disposal sites (data from all seasons combined; Log10 transformation of catches). The results showed that shrimp were caught in significantly higher numbers ( $p=0.0009$ ) when data from both types of trawl gear were combined, but that the level of significance was marginal for each gear type alone $(p=0.054$ for the beam trawl shrimp catches and $p=0.050$ for the otter trawl catches).

Commencement Bay. The overall average beam trawl shrimp catches in Commencement Bay in February, June and September 1986 were 49, 29 and 128 shrimp/ha, respectively. The two largest shrimp catches in Commencement Bay were off Browns Point in September where coonstripe shrimp were plentiful (1,067/ha) at the 10 m station and pink shrimp were relatively abundant (502/ha) at the 80 m station (Figure 22; Appendix Table 6).

Shrimp catches were very low at the PSDDA 2 site which was only sampled in February (Figure 23). Beam trawl and otter trawl shrimp catches at PSDDA Sites 1 and 2B were almost identical in both June and September with pink and


## COMMENCEMENT BAY



Figure 22. Maps of Commencement Bay showing beam trawl catches of shrimp at the sampling stations in Commencement Bay.

sidestripe shrimp being the dominant species (Figure 23; Appendix Table 5 and 6). "T"-tests conducted to compare the mean shrimp catches (data from all seasons combined; $\log _{10}$ transformation of catches) between PSDDA Sites 1 and $2 B$ showed that there were no significant differences ( $p=0.05$ ) in mean catches regardless of trawl type.

Shrimp distributions by depth. The combination of all shrimp data from all seasons and areas (except Port Gardner) shows that the different species have specific depth preferences. Coonstripe shrimp preferred the shallowest depths ( $\langle 30 \mathrm{~m}$ ), often being associated with eelgrass (Zostera marina) and various algas (Figure 24). The mid-depths (50-100 m) were generally preferred by spot prawns and pink, smooth pink and humpback shrimp. Sidestripe and some pink shrimp were found at the deepest (100-150 m) depths.

Shrimp size distributions. Coonstripe shrimp was the smallest species caught with carapaces lengths (CL) between about 9 to 12 mm and were generally larger with increasing depth (Figure 25). Both species of pink shrimp were small to moderate in size, averaging 13 to 18 mm CL with no trend in size with depth. Sidestripe and humpback shrimp were moderately large in size (18-24 mm average CI), trending to smaller sizes with increasing depth. The largest shrimp, the spot prawn, averaged 26 to 34 mm CL and also trended to smaller sizes at depth.

Shrimp length-frequencies. Spot prawn were not caught in any of the PSDDA sites in February but showed indications of a slightly bimodal lengthfrequency during June and September with one size group from about 25 to 38 mm and a second size group from about 40 to 45 mm (Figure 26). Sidestripe shrimp


Figure 24. Distribution by depth and by species for all beam trawlcaught shrimp, all areas (except Port Gardner) and seasons combined.


Figure 25. Average carapace lengths by species and by depth ranges for all shrimp caught, all seasons and areas (except Port Gardner) combined.

Figure 26. Length-frequency histograms for all spot prawn and sidestripe shrimp caught during the three

length-frequency patterns suggested a single size group in both February (1624 mm ) and June ( $20-30 \mathrm{~mm}$ ) and a bimodal pattern in September ( $10-15 \mathrm{~mm}$ and $20-30 \mathrm{~mm}$ ) (Figure 26). Coonstripe shrimp length-frequencies suggested a single size group in February and June ( $8-18 \mathrm{~mm}$ ) and recruitment of young shrimp in September ( $6-10 \mathrm{~mm}$ ) (Figure 27). Relatively few humpback shrimp were caught, but those that were suggested a single size group with sizes between $22-30 \mathrm{~mm}$ (Figure 27). Smooth pink shrimp length-frequencies gave a suggestion of a slight bimodal size distribution with size groups from 10-14 mm and $17-20 \mathrm{~mm}$ in February with both groups growing progressively larger in June and September (Figure 28). Pink shrimp also showed a bimodal size distribution with size groups from $9-13 \mathrm{~mm}$ and $15-20 \mathrm{~mm}$ in February. The distinction of the two apparent size groups was less clear in June and September but there was a hint of new recruitment in September with shrimp between 9-12 mm (Figure 28).

## DISCUSSION AND CONCLUSIONS

## Dungeness Crab

Dungeness crab were completely absent from all trawls conducted in Commencement Bay in 1986. Although an occasional Dungeness crab has been caught in other trawling operations in the shallow waterways (C. Eaton, pers. comm.), it is clear that this species will not be a factor in siting a disposal site in Commencement Bay.

Only four Dungeness crab were caught in Elliott Bay, all by beam trawl at the shallow stations on the Duwamish Head Transect (Figure 16). Commercial crabbing operations were also observed in shallow water areas between Fourmile Rock and West Point. However, the scarcity of Dungeness crabs in the trawls and the total lack of crabs in the trawls from the preliminary disposal sites


Figure 28. Length-frequency histograms for all smoot pink and pink shrimp cuught during the three sampl ing
indicates that this species is also not a factor in selecting a final Elliott Bay disposal site location.

Dungeness crab were moderately abundant in the beam trawl catches from Saratoga Passage (Figure 7) ; however, all crabs were caught along the shoreward slope areas at depths $<80 \mathrm{~m}$. No crabs were caught in the preliminary disposal area nor in the deeper water areas north of the disposal site. Hence, the present location of the proposed disposal site is probably in the best location for avoiding impacts to crab. However, evidence from the trawls in Port Gardner suggests that some Dungeness crab move into deep water (i.e., 100-150 m) during the late summer to early fall period. Trawls were not made in Saratoga Pass during this period. Thus, care should be exercised about any assumptions that crab are absent year-round.

Dungeness crab were found to be a very important resource in Port Gardner, consistently averging about $100 \mathrm{crab} / \mathrm{ha}$ for all seasons sampled. Of the crabs caught in the trawls, almost $90 \%$ were mature females, $78 \%$ of which were gravid during the February sampling. Thus, Port Gardner appears to be an important habitat area for the mature females.

The most important area of Port Gardner for the females is the nearshore slope area with few crabs being found in the deeper mid-portion of the Bay (Figures 9-12). Figure 9 shows that, unlike the NAVY disposal site, the two preliminary PSDDA sites contain relatively few crabs. Of these two sites, the PSDDA 1 site in the middle of the bay is farthest from the nearshore crab aggregations. A possible exception to this rule may be during summer-early fall when crabs appear to "spread out" into the deeper areas, but still at densities far less than the "slope" area.

## Shrimp

Commercially important species of shrimp were caught in all of the preliminary PSDDA disposal sites. Summaries of the shrimp catches within the disposal sites of each area (Table 1) show that the average shrimp catches by weight for the combined otter trawl catches were $0.56,0.06,1.69$ and 1.22 kg/ha for Saratoga Passage, Port Gardner, Elliott Bay and Commencement Bay, respectively.

Historically, shrimp have been the basis of a viable trawl fishery in Puget Sound and Hood Canal. Annual landings of shrimp exceeded 400,000 pounds during several years between 1904 and 1915 and averaged about 50,000 pounds during the 1920's and 1930's (Smith 1937). The averge landings between 1935 and 1982 have been highly variable ( 8 to 144 thousand pounds) and averaged 58,000 pounds (Figure 29).

The historical shrimping grounds fished from the late $1800^{\prime}$ s through the 1930's included each of the areas in which a PSDDA disposal site is proposed (Figure 30). Saratoga Passage and Elliott Bay are shown as historical spot prawn shrimping areas while Commencement Bay was trawled for smooth pink shrimp. Our present trawls caught spot prawn in Elliott and Commencement Bays but no spot prawn in Saratoga Passage. Relatively few smooth pink shrimp were caught but the closely related pink shrimp was caught in small numbers in Saratoga Passage and in moderate numbers in Elliott and Commencement Bays (Table 1).

Some perspective on the relative importance of shrimp resources in the preliminary disposal sites can be attained by comparing the average otter trawl catches in these sites with otter trawl catches of shrimp in other areas of Puget Sound and Hood Canal. Chew (unpublished data) conducted shrimp surveys during the winter of each year from 1967 to 1979 at about ten sites in

Table 1. Average shrimp catches, lengths and weights (wet biomass) for all shrimp caught by otter trawl in the proposed PSDDA disposal sites in Saratoga Passage, Port Gardner, Elliott Bay and Commencement Bay during all sample months (combined), 1986.

| Species |  |  |  |
| :--- | :--- | :--- | :--- |




Figure 30. Map of Western Washington showing areas of commercial shrimp production from late 1800 's to mid-1930!s. The Humpback shrimp is Pandalus hypsinotus. From Smith (1937).

Hood Canal and Puget Sound. Summaries of Chew's data show that the average shrimp catches/ha in four areas of Hood Canal and three areas of Puget Sound all (except Seabeck, Hood Canal) exceeded the average catches in any of the preliminary PSDDA disposal sites (Tables 1 and 2). The one disposal site that appeared to have a potential for commercial shrimp harvesting was the inner Elliott Bay site where spot prawn, sidestripe, pink and smooth pink shrimp were caught in reasonable numbers (Figure 10, Appendix Table 7). Table 3 provides a breakdown of relative shrimp densities within the two preliminary PSDDA sites in Elliott Bay and shows that the inner Elliott Bay site contained about 3 to 7 times the density of shrimp that were caught at the Four-mile Rock site (data from June and September otter trawls). However, this area is also severely impacted by Indian salmon fishing, ship navigation lanes and anchorage areas as well as toxic contaminants in the sediments of the nearby Duwamish Waterways; hence, the value of these shrimp to a fishery is suspect. The potential value of the reproductive capacity of these stocks for supplying new recruits to other productive areas of Puget Sound is not presently known but cannot be ruled out in the decision making process. The Commencement Bay disposal sites also contained some sidestripe and pink shrimp, but both sites contained essentially equal populations, hence, not affording a choice between these two sites based on this factor.

Table 2. Estimated average shrimp catches/Ha from otter trawls conducted in selected areas of Hood Canal and Puget Sound from 1967 to 1979. These estimates are derived from unpublished data collected and summarized by Dr. Kenneth Chew, School of Fisheries, University of Washington.

| Location/Depth (m) | Number of trawls | Catch/Ha (kg) |
| :---: | :---: | :---: |
| Dabob Bay |  |  |
| $\begin{aligned} & 20-45 \\ & 45-70 \\ & 70-125 \end{aligned}$ | $\begin{aligned} & 33 \\ & 26 \\ & 24 \end{aligned}$ | $\begin{aligned} & 2.9 \\ & 2.7 \\ & 3.5 \end{aligned}$ |
| Pleasant Harbor |  |  |
| $\begin{aligned} & 35-65 \\ & 65-90 \end{aligned}$ | $\begin{aligned} & 5 \\ & 8 \end{aligned}$ | $\begin{array}{r} 2.9 \\ 10.0 \end{array}$ |
| Seabeck |  |  |
| 45-80 | 3 | 0.8 |
| Potlatch |  |  |
| 70-90 | 4 | 6.8 |
| Port Susan |  |  |
| $\begin{aligned} & 25-70 \\ & 80-120 \end{aligned}$ | $\begin{aligned} & 9 \\ & 7 \end{aligned}$ | $\begin{array}{r} 12.8 \\ 5.7 \end{array}$ |
| Tulalip |  |  |
| $\begin{aligned} & 50-80 \\ & 80-120 \end{aligned}$ | $\begin{aligned} & 3 \\ & 4 \end{aligned}$ | $\begin{aligned} & 13.5 \\ & 11.8 \end{aligned}$ |
| Carr Inlet |  |  |
| $\begin{aligned} & 45-80 \\ & 80-135 \end{aligned}$ | $\begin{aligned} & 4 \\ & 3 \end{aligned}$ | $\begin{array}{r} 15.1 \\ 2.4 \end{array}$ |

Table 3. Shrimp weights/ha from the Elliott Bay preliminary disposal sites as estimated from the otter trawl catches in June and September 1986. Shrimp weights for each species were calculated from length-weight regressions developed from data collected by K. Chew (unpublished).

| Species | Estimated Total Weight (Kg)/ha |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | June |  | September |  |
|  | Four-Mile Rock | Inner Elliott | Four-Mile Rock | Inner Elliott |
| Spot Prawn | 0.016 | 0.210 | 0.107 | 1.641 |
| Sidestripe Shrimp | 0.108 | 0.060 | 0.388 | 0.064 |
| Smooth Pink Shrimp | 0 | 0.362 | 0 | 0.010 |
| Pink Shrimp | 0.265 | 0.470 | 0.141 | 3.004 |
| Humpback Shrimp | 0 | 0.034 | 0 | 0.064 |
| Total Weight | 0.389 | 1.136 | 0.636 | 4.783 |

Part II

Demersal Fish Studies
by
Robert F. Donnelly, Bruce S. Miller, Robert R. Lauth, and Shelley C. Clarke

## INTRODUCTION

This study investigated fish assemblages at preliminary Puget Sound Dredge Disposal Analysis (PSDDA) disposal sites in the main basin of Puget Sound and evaluates these assemblages prior to actual disposal of dredged materials. Information obtained will be used in the final site selection process and can be used as baseline data to monitor changes in fish assemblages following disposal activities.

Disposal of dredged materials can affect fish habitats in many ways. Sediment type has been shown to be particularly important for spawning (Morton 1977). Alteration of substrate particle composition by dredged materials and consequent alteration of spawning grounds could be detrimental to the abundance of certain fish species.

Dredged materials can alter the species composition of fish at disposal sites by causing changes in the benthic community upon which the fish feed (Lunz and Kendall 1982). A Rhode Island dredged materials disposal study (Saila et al. 1972) suggests that covering the bottom with a uniform sediment type would decrease the diversity of prey organisms and possibly decrease the diversity of fish species. Desbruyeres et al. [1980, in Thistle (1981)] found five times greater benthic faunal density six months after a disturbance at 2160 m ; however, the fauna in the disturbed area was taxonomically different from the surrounding fauna. At a deepwater disposal site in Puget Sound, Bingham (1978) showed a similar effect. Nine months after disposal, diversity
of prey organisms was greater at the disposal site than at reference areas. A disturbance caused by an oil spill in shallow water actually resulted in a biomass increase six months to one year after the spill (Orensanz and Gallucci 1982). The work of Grassle (1977), however, cautions that the recovery after disturbance may be depth dependent. Grassle's study found that a deepsea site ( 1760 m deep) had a colonization rate two orders of magnitude lower than a comparable intertidal site.

Although it is important to be aware of the potential changes, it is difficult to accurately predict what impact the disposal of dredged materials will have on fish assemblages due to the individual nature of each disposal site. Therefore, it is important to identify areas where fish resource conservation is essential from a commercial or ecological perspective before a decision is made regarding disposal. This report documents the benthic fish assemblages of the preliminary main basin PSSDA disposal sites and adjacent reference areas, and can aid in selection of sites where disposal of dredged materials will have a minimal impact.

## MATERIALS AND METHODS

Bottomfish (benthic and demersal fishes) were sampled in Commencement Bay, Elliott Bay, Saratoga Passage and Port Gardner during 1986. Commencement Bay was sampled on June 13 and September 8; Elliott Bay was sampled on July 3 and September 9; and Saratoga Passage was sampled once on July 1. Port Gardner was sampled during four seasons on February 12 and 13, April 18 and 21, June 30 and July 2, and September 11 and 15. Marine environmental data (salinity, dissolved oxygen, water temperature and water clarity) were also collected. A $7.6-\mathrm{m}$, single wire otter trawl (Mearns and Allen 1978) was the primary
sampling gear for bottomfish. The body of the net was made of 3.5 mm stretch mesh and the cod end of 0.5 cm stretch mesh covered with 2.5 mm stretch mesh to prevent chafing. The net was deployed from the $16-\mathrm{m}$ research vessel Kittiwake. The effective fishing width of the otter trawl was 6 m . Each sample consisted of one otter trawl haul towed for a distance of 370 m at a target ground speed of 4.2 km per hour. The total area swept (sampled) was $2,220 \mathrm{~m}^{2}$. Fish were also collected incidentally by the beam trawl used to sample crabs (see Appendix A). The beam trawl is described elsewhere in the crab and shrimp section (Part I) of this report.

Sampling was conducted both inside and outside of each preliminary PSDDA site (Figures 1-4). Three replicate samples were collected inside each PSDDA site and NAVY site (Port Gardner only) during each sampling cruise. One sample was taken from each station outside of the PSDDA sites and at each of the U.S. Army Corps of Engineers' established reference stations (Clarke 1986) during each cruise. Reference stations were not sampled in Commencement Bay. PSDDA sites and reference stations were the only locations sampled in Elliott Bay (Fig. 2). In Commencement Bay, Saratoga Passage and Port Gardner the PSDDA site(s), the reference station(s) and several additional stations stratified by depth were sampled.

Each trawl catch was brought onboard and fish were sorted by species and life history stage (adult or juvenile), counted and recorded; miscellaneous observations (e.g., spawning condition) were also recorded. The catch was then placed into plastic bags, labeled, put into ice chests and covered with ice. The samples were transported to the University of Washington and placed into a $0^{\circ} \mathrm{C}$ freezer until processed.

Surface water temperature, salinity and dissolved oxygen samples were taken from a bucket of water collected from the surface waters. Bottom water


Figure 1. Map of Commencement Bay showing locations sampled for bottomfish () on June 13 (summer) and September 8 (autumn). The large area enclosed by the dashed line is the zone of siting feasibility (ZSF). Circular areas enclosed by solid lines are the preliminary PSDDA sites.


Figure 2. Map of Elliott Bay showing locations sampled for bottomfish () on July 3 (summer) and September 9 (autumn). The areas enclosed by the dashed lines are the ZSFs. The solid lines enclose the preliminary PSDDA sites.


Figure 3. Map of Saratoga Passage showing locations sampled for bottomfish ( on July 1 (summer). The area enclosed by the dashed line is the ZSF. The rectangular area enclosed by the solid line is the PSDDA site.


temperature, salinity and dissolved oxygen samples were taken from water collected approximately 1 m above the bottom with a Scott-Richards water bottle. Water temperatures were measured with a hand-held thermometer and recorded in the field. Water samples for salinity determination were placed into bottles for later measurement in the laboratory. Water samples for dissolved oxygen determination were placed into acid washed glass bottles, fixative added, the bottles glass stoppered, and the contents later processed in the laboratory. Water clarity measurements were taken with a Secchi disc from the lee side of the vessel and recorded in the field.

## Laboratory Processing of Fish

Fish samples were removed from the freezer and thawed. The contents were separated by species and life history stage. Total length (mm) of each fish and total weight (grams) of each life history stage were recorded on data forms and then entered into electronic storage. Since the tips of ratfish tails were often missing, a length from the snout to the posterior end of the second dorsal fin, as well as total length (when possible), was recorded for this species. Adult flatfish and ratfish were sexed.

## Flatfish Diseases

Marine flatfishes in Puget Sound are known to be infected by blood worms (the nematode, Philometra), skin tumors, liver tumors and fin erosion (Amish 1976; Angell et al. 1975; Miller and Wellings 1971; Wellings et al. 1976; Malins et al. 1982).

Blood worms are clearly visible and typically located in the subcutaneous areas near or at the base of the dorsal and anal fins (Amish 1976). Skin tumors (Angell et al. 1975; McArn et al. 1968; Miller and Wellings 1971) are
found as two main stages: angioepithelial nodules and epidermal papillomas. All flatfish were externally inspected for blood worms and skin tumors.

Liver tumors are thought to be indicators of pollution (Malins et al. 1982). In the advanced stage, liver tumors are characterized by small nodules visible on the external surface of the liver. English sole caught in polluted areas have often been shown to have liver tumors (Malins et al. 1982; Tetra Tech 1985). Gross examination (non-microscopic) of the external surface of the livers from about $20 \%$ of all flatfish caught was done in the laboratory. Another disease associated with flatfish in polluted areas is fin erosion. Fin erosion typically affects the dorsal and anal fins and is characterized by partial destruction of the fin(s) in question. The severity ranges from minor defects to extensive destruction of the fin(s) (Wellings et al. 1976). All flatfish were examined in the field for fin erosion.

## Environmental Measurements

Salinity samples were processed by the University of Washington, School of Oceanography Technical Services group, by conductivity bridge (Paquette 1958). Dissolved oxygen samples were processed by the University of Washington, School of Fisheries Environmental Laboratory, using titration techniques described in Standard Methods (1980).

Data Analysis
Species richness, defined as the total number of species present at each sample site or station, was determined for all stations in Commencement Bay, Elliott Bay and Saratoga Passage.

Species diversity was calculated using the Shannon-Wiener species diversity index $H^{\prime}$ (Pielou 1978) as follows:

$$
H^{\prime}=-\sum_{i=1}^{n} P_{i} \ln P_{i}
$$

Where $P_{i}$ was the proportion of the total sample that belonged to the $i^{\text {th }}$ species and $n=$ the number of species. As a consequence of the formula, $H$ ' increases with an increase in the number of species and/or as the individuals caught become more evenly distributed across all species present.

Abundance and biomass averages were calculated for the combined PSDDA site samples. "Replicate" samples were taken only at the proposed PSDDA sites and the NAVY site in Port Gardner; all other stations were sampled once per season. Length-frequency histograms were constructed for the most abundant species from the Elliott Bay, Commencement Bay and Saratoga Passage otter trawl data.

The number of flatfish caught per hectare was calculated for each site by multiplying the abundance estimates for each flatfish species by the constant 4.5 [which is equal to $10,000 \mathrm{~m}^{2}$ (one hectare) divided by $2,220 \mathrm{~m}^{2}$ (the total area swept by the otter trawl during each sample)]. Similarly, the reader can also convert to biomass caught per hectare, or number caught per hectare, for the remaining fish species by multiplying the given biomass or abundance values by the constant 4.5 .

## RESULTS

A total of 55 species of fish were collected by otter trawl during this study (Table 1). Common names are used throughout this report, although Table 1 lists both the common and scientific names of all fish caught. The following results are from the otter trawl data only, since beam trawl results (Appendix A) did not add significant additional information for the purpose of

Table 1. List of bottomfish species caught by otter trawl during this study. Species are listed in alphabetical order according to their common name.

Fish Species

| Common Name | Scientific Name |
| :---: | :---: |
| American shad | Alosa sapidissima |
| arrowtooth flounder | Atheresthes stomias |
| black eelpout | Lycodes diapterus |
| blackbelly eelpout | Lycodopsis pacifica |
| blackfin starsnout poacher | Bathyagonus nigripinnis |
| blacktip poacher | Xeneretmus latifrons |
| bluebarred prickleback | Plectobranchus evides |
| bluespotted poacher | Xeneretmus triacanthus |
| canary rockfish | Sebastes pinniger |
| C -O sole | Pleuronichthys coenosus |
| copper rockfish | Sebastes caurinus |
| Dover sole | Microstomus pacificus |
| English sole | Parophyrs vetlus |
| flathead sole | Hippoglossoides elassodon |
| lingcod | Ophiodon elongatus |
| longfin smelt | Spirinchus thaleichthys |
| longnose skate | Raja rhina |
| northern ronquil | Ronquilus jordani |
| northern spearnose poacher | Agonopsis vulsa |
| Pacific cod | Gadus macrocephalus |
| Pacific hake | Merluccius productus |
| Pacific herring | Clupea harengus pallasi |
| Pacific lamprey | Lampetra tridentata |
| Pacific sanddab | Citharichthys sordidus |
| Pacific staghorn sculpin | Leptocottus armatus |
| Pacific tomcod | Microgadus proximus |
| pallid eelpout | Lycodapus mandibularis |
| pile perch | Rhacochilus vacca |
| plainfin midshipman | Porichthys notatus |
| quillback rockfish | Sebastes maliger |
| tfish | Hydrolagus colliei |
| red brotula | Brosmophycis marginata |
| rex sole | Glyptocephalus zachirus |
| rock sole | Lepidopsetta bilineata |
| rockfish UID | Sebastes sp. |
| roughback sculpin | Chitonotus pugetensis |
| sablefish | Anoplopoma fimbria |
| sailfin sculpi | Nautichthys oculofasciatus |
| sand sole | Psettichthys melanostictus |
| sculpin UID | Artedius sp. |
| iner perch | Cymatogaster aggregata |
| ortfin eelpout | Lycodes brevipes |
| ender sole | Lyopsetta exilis |
| im sculpin | Radulinus asprellus |
| snailfish UID | Cyclopteridae |
| nake prickleback | Lumpenus sagitta |
| soft sculpin | Gilbertidia sigalutes |
| speckled sanddab | Citharichthys stigmaeus |
| spiny dogfish | Squalus acanthias |
| spinyhead sculpin | Dasycottus setiger |
| splitnose rockfish | Sebastes diploproa |
| starry flounder | Platichthys stellatus |
| sturgeon poacher | Agonus acipenserinus |
| tadpole sculpin | Psychrolutes paradoxus |
| walleye pollock | Theragra chalcogramma |

final site selections. Abundance, biomass, species richness and species diversity were used to characterize the fish assemblage at each PSDDA location.

Flatfish caught per hectare was calculated (Appendix E) at the request of the U.S. Army Corps of Engineers because 6 flatfish/hectare was recommended as a preliminary criterion by Washington Department of Fisheries (WDF) as a minimum number of flatfish needed to support a commercial fishery (WDF 1987). However, it must be understood that the 7.6 m research otter trawl used in this study, and by other research groups (e.g., Southern California Coastal Water Research Project), is selective (as is all sampling gear) and it is unknown how the 7.6 m trawl catches compare to the actual abundance of flatfish present, or how the catches compare to the catches used by WDF to compute the 6 flatfish/hectare criterion. For example, the 7.6 m research trawl probably catches relatively more juveniles than adults compared to a commercial trawl.

Commencement Bay
Abundance and biomass. Total abundance and biomass values showed seasonal and depth differences between many of the catches (Figures 5 and 6). The summer values were lower than the autumn values. The deeper stations, Which included the PSDDA sites, had the lowest values regardless of season. Total abundance and biomass values were highest at 40 m then declined at 20 m (Figures 5 and 6). English sole, Dover sole and ratfish were found in most samples and generally the PSDDA sites contained the lowest abundance and biomass of these three species when compared to the samples collected outside the PSDDA sites. English sole abundance and biomass values were greatest at 40 m in both early summer and autumn, while at the deeper stations, including the PSDDA sites, the English sole abundance and biomass values were lower than


Figure 5. Number (abundance) of fish caught in Commencement Bay, shown by station and season. The values are based on a single sample, except for the PSDDA sites, which are the average of three samples. NS $=$ not sampled.


Figure 6. Biomass (in grams) of fish caught in Commencement Bay, shown by station and season. The values are based on a single sample, except for the PSDDA sites, which are the average of three samples. $N S=$ not sampled.
those of the Dover sole and ratfish (Figures 7, A and $B$ and $8, A$ and $B$ ). The abundance and biomass of ratfish was greater at the deeper stations than at either 20 m or 40 m .

Species richness. The values for species richness varied by season and depth (Figure 9). Summer samples had lower values than the autumn period. The deeper locations, which included the PSDDA sites, had the lowest values for species richness.

Species diversity. Values for species diversity, $H^{\prime}$, were similar throughout Commencement Bay, except for the 156 m station (Figure 10). The 156 m station had a much lower value during the summer than the autumn.

Length-frequency. A significant proportion of English sole caught during the summer at 40 m were less than 205 mm (Figure 11, A and B). These fish were entirely missing from the autumn samples at the same station (Figure 11 , A and B). English sole caught at 20 m during autumn sampling were larger than the fish caught at 40 m (Figure 12 and 11B).

Fish health. English sole, Dover sole, rex sole and rock sole all showed indications of blood worm infections. Incidences ranged from $0 \%$ to $100 \%$ (Table 2). English sole had consistently high infection rates, often as high as $100 \%$, although the sample sizes associated with the highest incidence rates were less than 5 fish each. Incidence of skin tumors and fin erosion were all $0 \%$. Gross examination of flatfish livers did not reveal any evidence of liver tumors.

Environmental measurements. Water temperature showed an inverse relation to depth (Table 3). Water temperatures were higher at the surface than at depth, while salinities were lower at the surface and higher at depth. The Secchi disc measurements were similar at all recording sites.



Figure 7. Number (abundance) of English sole, Dover sole and ratfish caught in Commencement Bay during summer (A) and autumn (B), shown by station. The values are based on a single sample, except for the PSDDA sites, which are the average of three samples. $N S=$ not sampled.



Figure 8. Biomass (in grams) of English sole, Dover sole and ratfish caught in Commencement Bay during summer (A) and autumn (B). Values are based on a single sample, except for the PSDDA sites, which are the average of three samples. NS = not sampled.


Figure 9. Species richness (total number of species) of fish caught in Commencement Bay, shown by station and season. NS = not sampled.




Figure 11. Length frequency of English sole, shown by sex, caught in Commencement Bay during summer (A) and autumn (B) at 40 m .


Figure 12. Length frequency of English sole, shown by sex, caught in Commencement Bay during autumn at 20 m .
infection (Philometra sp.)
season.
ation and $\mathrm{S}=$ summer, $\mathrm{A}=$ autumn

Table 2.

| \& | $\underset{\infty}{\underset{\sim}{-}}$ | $\begin{aligned} & 0 \\ & \underset{\sim}{0} \end{aligned}$ |
| :---: | :---: | :---: |
| N |  |  |



$$
\begin{gathered}
(\varepsilon) 0 \\
(\varepsilon) 0 \\
(\tau I) 6 \\
(\varepsilon) \varepsilon \varepsilon \\
\forall_{\mathrm{u}} .
\end{gathered}
$$

156
S
$0(6)$
A 2
$\mathrm{~m})_{\mathrm{A}}$

$100(4)$
$0(10)$
$0(4)$
$0(1)$
PSDDA
$(165 \mathrm{~m})$

Table 3. Environmental measurements of temperature, salinity and water clarity in Commencement Bay during autumn by station.

| Surface |  | Depth |
| :---: | :---: | :---: |
|  | Temperature, ${ }^{\circ} \mathrm{C}$ |  |
| 15.1 |  | 11.3 |
| 14.3 |  | 11.2 |
| 13.5 |  | 12.0 |


| PSDDA $1(165 \mathrm{~m})$ | 15.1 |  | 11.3 |
| :--- | :--- | :--- | :--- |
| PSDDA $2(165 \mathrm{~m})$ | 14.3 |  | 11.2 |
| 40 m |  | 13.5 |  |
|  |  |  |  |
|  |  |  |  |
|  |  | Salinity, | $0 / 00$ |
|  |  |  |  |
|  |  |  |  |
| PSDDA 1 $(165 \mathrm{~m})$ | 26.8 |  | 30.9 |
| PSDDA 2 $(165 \mathrm{~m})$ | 28.6 | 30.9 |  |
| 40 m |  | 28.7 | 30.3 |

Secchi, m
PSDDA 1 ( 165 m )
PSDDA $2(165 \mathrm{~m})$
40 m
5.0
6.0
6.0

## Elliott Bay

Abundance and biomass. The abundance and biomass values varied by station and by season (Figures 13 and 14). Abundance and biomass values were higher for autumn than for summer at all stations except PSDDA 1 Reference station.

Six species of fish dominated the catches in Elliott Bay: English sole, Dover sole, Pacific hake, slender sole, ratfish and blackbelly eelpout, although not every species was found at each site (Figures 15, A and $B$ and 16, $A$ and B). The PSDDA 1 site (inner Elliott Bay) was the shallowest and had the largest abundance and biomass of Pacific hake, slender sole and blackbelly eelpout. The PSDDA 2 site Fourmile Rock) had a greater abundance and biomass of English sole, Dover sole and ratfish than the PSDDA 1 site. The PSDDA 2 site had lower abundance and biomass values compared with the values found at the adjacent reference stations. Generally, abundance and biomass values increased from the summer to the autumn sampling; specifically, English sole, Dover sole, and ratfish. The shallower PSDDA 1 area had greater numbers of the smaller fishes such as blackbelly eelpouts and slender sole in contrast to the deeper PSDDA 2 area where the larger species dominated.

Species richness. The values for species richness varied by season and depth (Figure 17). Species richness was generally lower during the summer than the autumn, except for the PSDDA 1 reference station, where values were the same. The PSDDA 1 site and the PSDDA 1 reference station generally had larger values than the PSDDA 2 site and the PSDDA 2 reference stations, except for the PSDDA 2 site during the autumn.

Species diversity. The values for species diversity, H', generally diminished from the inner bay PSDDA 1 site and reference station to the Fourmile Rock PSDDA 2 site and reference station (Figure 18) irrespective of


Figure 13. Number (abundance) of fish caught in Elliott Bay shown by station and season. The values at the PSDDA ref. sites are based on a single sample, while the values at the PSDDA sites are averages of three samples. $\mathrm{NS}=$ not sampled.


Figure 14. Biomass (in grams) of fish caught in Elliott Bay, shown by station and season. The values at the PSDDA ref. sites are based on a single sample, while the values at the PSDDA sites are averages of three samples. $N S=$ not sampled.



Figure 15. Number (abundance) of English sole, Dover sole, slender sole, ratfish and blackbelly eelpout (BB) caught in Elliott Bay during summer ( $A$ ) and autumn ( $B$ ), shown by station. The values at the PSDDA ref. sites are based on a single sample, while the values at the PSDDA sites are averages of three samples. NS $=$ not sampled.



Figure 16. Biomass (in grams) of English sole, Dover sole, slender sole, ratfish and blackbelly eelpout (BB) caught in Elliott Bay during summer (A) and autumn (B), shown by station. The values at the PSDDA ref. sites are based on a single sample, while the values at the PSDDA sites are averages of three samples. NS $=$ not sampled.


Figure 17. Species richness (total number of species) of fish caught in Elliott Bay, shown by station and season. NS = not sampled.


season.
Length-frequency. English sole data from the PSDDA 2 Reference Station 1 during autumn suggested a bimodal distribution of adults with no juveniles present (Figure 19).

Fish health. English sole, Dover sole and flathead sole showed evidence of blood worm infections (Table 4). Incidence in these three species ranged from $0 \%$ to 42\%. The PSDDA 2 area had the highest incidence of blood worm infection in English sole and Dover sole with flathead sole showing only a minor incidence. There were no indications of skin tumors or fin erosion. Gross examination of flatfish livers did not show any indication of liver tumors.

Environmental measurements. Temperature and dissolved oxygen values were higher at the surface than at depth (Table 5), while salinity was lower at the surface than at depth. Dissolved oxygen and Secchi disc measurements showed a seasonal pattern: dissolved oxygen was slightly lower in autumn than in summer and Secchi disc values were slightly higher in autumn than in summer.

## Saratoga Passage

Abundance and biomass. Only one sample cruise on July 1 was conducted in Saratoga Passage. Abundance and biomass showed variation by depth and by station (Figures 20 and 21). Abundance relative to biomass was greater for all stations except for the PSDDA site. The PSDDA site had an intermediate abundance value and had the highest biomass value. The dominant species included ratfish, English sole, Dover sole, slender sole and adult Pacific hake. Pacific hake were found in the PSDDA site and the reference station, while English sole were only found at the shallower locations. Dover sole were confined to the 40 m west station. Ratfish and slender sole occurred at


Figure 19. Length frequency of English sole, shown by sex, caught at PSDDA 2, reference 1, during autumn in Elliott Bay.
(Philometra sp.) infection
summex,
PSDDA 2 Ref 2
S $\begin{gathered}\text { (175 m) } \\ 42(33) \\ \\ \\ \\ \\ \\ \\ \\ 0(3) \\ 0(9)\end{gathered}$.


| 2 |
| :--- |
| $A$ |
| $m)$ |
| $35(55)$ |
| $5(20)$ |
| $0(28)$ |
| $0(1)$ |

$\stackrel{4}{\circ}$
size (in parentheses)
㐫

| PSDDA 1 Ref |
| :--- |
| $\mathrm{S} \quad \mathrm{A}$ |
| $(90 \mathrm{~m})$ |
| $0(1)$ |
| $0(13)$ |
| $0(15)$ |
| $0(62)$ |
| $0(1)$ |


Table 4
English sole
Dover sole
Slender sole
Flathead sole
Rock sole
Rex sole

Table 5. Environmental measurements of water temperature, dissolved oxygen, salinity and water clarity in Elliott Bay, by station and season.
Surface $\frac{\text { Summer }}{\text { Bottom }} \frac{\text { Autumn }}{\text { Surface Bottom }}$
$\underline{\text { Temperature, }{ }^{\circ} \underline{\mathrm{C}}} \mathrm{l}$


Secchi, m
Summer
Autumn
4.5
7.0

PSDDA $1(75 \mathrm{~m}) \quad 4.0$
PSDDA 2 ( 172 m )


Figure 20. Number (abundance) of fish caught in Saratoga Passage during summer, shown by station. The values are based on a single sample, except for the PSDDA site, which is the average of three samples.


Figure 21. Biomass (in grams) of fish caught in Saratoga Passage during summer, shown by station. The values are based on a single sample, except for the PSDDA site, which is the average of three samples.
the deeper (PSDDA) stations and intermediate depths (Figures 22 and 23). Species richness. Values for species richness fluctuated by depth; the highest values occurred at the PSDDA site reference station (Figure 24). All other species richness values were lower and showed no discernible pattern.

Species diversity. Values for species diversity, $H^{\prime}$, varied by depth, the deeper stations, including PSDDA, had the highest values (Figure 25). No pattern was apparent among the shallower stations.

Fish health. Incidence of blood worms, skin tumors and fin erosion were all 0\% (Table 6). No evidence of liver tumors was found based on gross examination of flatfish livers.

Environmental measurements. No environmental measurements were collected in Saratoga Passage because of weather conditions that forced an early curtailment of sampling.

## Port Gardner

Abundance and biomass. Abundance and biomass fluctuated by time of year, depth, and station. The NAVY site generally had the largest number and biomass of fish throughout the year. During the winter the 40 m depth had numbers of fish comparable to the NAVY site; however, the biomass values were lower. (Figures 26 and 27). PSDDA 1 and PSDDA 2 sites had low values for abundance and biomass for all seasons except winter when abundance was at its highest (compared with other seasons) and biomass values were second only to the NAVY site (Figures 26 and 27). Five of the locations that were sampled throughout the year were situated at depths of 100 m or more; these included: PSDDA 1, PSDDA 2, 100 m M, 110 m S and 145 m S . The 110 m S and 145 m S stations had the lowest abundance and biomass values of the 5 deep locations.

Species diversity. Species diversity, $H^{\prime}$, values showed seasonal and depth differences between many stations, but showed no discernable pattern


Figure 22. Number (abundance) of English sole, Dover sole, slender sole, Pacific hake and ratfish caught in Saratoga Passage during summer, shown by station. The values are based on a single sample, except for the PSDDA site, which is the average of three samples.


Figure 23. Biomass (in grams) of English sole, Dover sole, slender sole, Pacific hake and ratfish caught in Saratoga Passage during summer, shown by station. The values are based on a single sample, except for the PSDDA site, which is the average of three samples.


Figure 24. Species richness (total number of species) of fish caught in Saratoga Passage during summer, shown by station.


Figure 25. Species diversity (H') of fish caught in Saratoga Passage during sumner, shown by station.

Table 6. Percent incidence and sample size (in parentheses) of bloodworm (Philometra sp.) infection in flatfish caught at Saratoga Passage during sumner, shown by station and species.

|  | PSDDA <br> $(108 \mathrm{~m})$ | 80 m E | 40 m E | 40 m W | 20 m E |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |
| English sole | $0(17)$ | $0(7)$ | $0(7)$ | $0(2)$ | $0(4)$ |
| Slender sole | $0(4)$ |  |  |  |  |
| Dover sole |  | $0(1)$ | $0(6)$ |  | $0(2)$ |
| Rock sole |  | $0(1)$ | $0(6)$ |  |  |



Biomass（in grams）of fish caught in Port Gardner，shown by
station and season．The values are based on a single sample，
except for the NAVY and PSDDA sites，which are the average of
three samples．NS＝not sampled．
－L2 $\operatorname{\partial xnsitu}$


๓ッ ○




O ： H U E 以
Mr OE 日 日 o


क人 म OE O

(Figure 28).
Fish health. English sole, Dover sole, flathead sole, rex sole and rock sole all showed indications of blood worm infections (Table 7). Incidence varied between species, seasons, depth and station but did not show a discernable pattern. One skin tumor was noted on a slender sole caught at Station 100 mM . Incidence of fin errosion was $0 \%$. Gross examination of flatfish livers did not reveal any evidence of liver tumors.

Environmental measurements. Water temperatures during winter and autumn were higher at the bottom than the surface (Table 8). Spring and summer water temperatures were the reverse with the surface warmer than the bottom. In general, salinities were lower at the surface than the bottom. Secchi disc neasurements showed that the best water clarity (higher Secchi disc measurement) occurred in the winter while there were no differences between the other seasons.

DISCUSSION AND CONCLUSIONS
The Research Otter Trawl For Documenting Fish Assemblage
The 7.6 m otter trawl has been the dominant sampling gear in Puget Sound demersal fish research for about the last decade. This net is widely used by many groups for similar research in other areas of the country. Standardization of gear reduces the problems associated with comparing results between studies. In addition, the small size of the net allows for ease of use from a range of vessel sizes starting at about 6 m .

The 7.6 m otter trawl has limitations. The net is not fished commercially and due to size, shape and other differences, catches are not directly comparable to commercial otter trawl catches. Other limitations



Figure 28. Species diversity of fish ( $H^{\prime}$ ) caught in Port Gardner, shown by station and season. NS $=$ not sampled.

$$
\text { Table } 7 .
$$

Percent incidence and sample size（in parentheses）of bloodworm（Philometra sp．）
infection in flatfish，shown by species，station and season at，Port Gardner．
$W=$ Winter，$S P=$ Spring，$S U=$ Summer，AU - Autumn．

$$
\begin{aligned}
& \text { ъ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 3ニニ } \\
& 3 \underset{0}{\stackrel{\omega}{0} \frac{\infty}{0}} \stackrel{\underset{0}{\pi}}{\stackrel{\pi}{5}}
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{\text { w }}{\text { w }} \\
& \text { 응응 } \\
& \begin{array}{llll}
\text { ₹ } & \widehat{\omega} & \widehat{\circ} & \widehat{\circ} \\
0 & \stackrel{\circ}{5} \\
\hline
\end{array} \\
& \stackrel{9}{\stackrel{0}{6}} \\
& \text { そ } \quad \stackrel{\pi}{0} \\
& \text { 둥 ₹ 등 } \\
& \text { 邓 } \quad \frac{\pi}{0} \\
& \stackrel{\text { F }}{\stackrel{5}{\circ}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 등 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ล }
\end{aligned}
$$

> Flatish Species
> $\begin{aligned} & \text { Rex sole } \\ & \text { Flathead sole }\end{aligned}$ Rock sole $\begin{aligned} & \text { Slender sole } \\ & \text { Dover sole }\end{aligned}$ English sole
> $\begin{aligned} & \text { Rex sole } \\ & \text { Flathead sole }\end{aligned}$ $\begin{aligned} & \text { Rock sole } \\ & \text { Slender sole }\end{aligned}$ $\begin{aligned} & \text { Slender sole } \\ & \text { Dover sole }\end{aligned}$ English sole

Table 8. Measurements of temperature, salinity and water clarity by station and season at Port Gardner. $W=$ Winter, $S P=$ Spring, SU $=$ Summer, $A U=$ Autumn, $N S=$ not sampled.

| Site | Surface |  |  | Bottom |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Tem | re ${ }^{\circ}$ |  |  |  |
|  | W | SP | SU | AU | W | SP | SU | AU |
| NAVY | 7.0 | 10.5 | 11.9 | 14.0 | 7.5 | 9.5 | 11.0 | 12.0 |
| PSDDA 2 | 6.5 | 10.0 | 15.2 | 15.0 | 8.0 | 9.0 | 11.0 | 13.0 |
| PSDDA 1 | 6.0 | 10.2 | 15.0 | 14.4 | 7.5 | 9.3 | 9.9 | 12.0 |
| Tran 120 mS | NS | 10.8 | 18.1 | 15.0 | NS | 9.5 | 11.5 | 13.0 |
| Tran 240 mS | 6.5 | 10.5 | 10.5 | 14.0 | 7.5 | NS | 11.5 | 12.0 |
| Tran 4 145mS | 6.0 | 10.5 | 12.0 | NS | 8.0 | 9.0 | 12.5 | NS |


|  |  |  |  | Salinity | $0 / 00$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NAVY | 29.85 | 16.79 | 22.34 | 28.73 | NS | 29.73 | NS | 30.58 |
| PSDDA 2 | 21.23 | 18.53 | 23.58 | NS | NS | 29.67 | 29.81 | 30.81 |
| PSDDA 1 | NS | 22.98 | 24.99 | 28.23 | NS | 29.85 | 24.99 | 30.56 |
| Tran 120 mS | NS | NS | 19.58 | 28.32 | NS | 29.16 | 29.58 | 30.07 |
| Tran 240 mS | NS | NS | 29.81 | NS | NS | 29.53 | 29.77 | 30.33 |
| Tran 4145 mS | 22.01 | NS | 23.58 | NS | NS | 30.10 | 29.70 | NS |


|  |  |  |  | Secchi Disc | m |
| :--- | :---: | :---: | :---: | :---: | :---: |
| NAVY |  | 3.50 | 3.00 | 3.00 | 5.00 |
| PSDDA 2 | 5.50 | 4.25 | 4.50 | 4.00 |  |
| PSDDA 1 | 8.50 | 7.25 | 4.50 | NS |  |
| Tran 1 20 mS | NS | 3.50 | 3.00 | 5.50 |  |
| Tran 2 40 mS | 3.50 | 3.00 | 3.00 | 5.00 |  |
| Tran $4 \quad 145 \mathrm{mS}$ | 4.50 | NS | 3.50 | NS |  |

include: 1) current and wind conditions at the time of sampling, 2) gear selectivity relative to each fish species and life history stage, and 3) variability in area swept.

## Commencement Bay

Several trawling studies have previously been conducted in Commencement Bay. These studies concentrated their efforts in the nearshore areas (Becker 1984; Weitcamp and Schadt 1981; Tetra Tech 1985) and in the inner part of Commencement Bay (e.g., the old flood channels of the Puyallup River (Malins et al. 1982; Tetra Tech 1985; Weitkamp and Schadt 1981). Becker (1984) and Tetra Tech (1985) used the same otter trawl as the present study; however, sampling depths only reached 32 meters in contrast to the 175 meter depths of the proposed PSDDA sites. Weitkamp and Schadt (1981) used a different smaller otter trawl and again only sampled the nearshore shallow portions of Commencement Bay.

Data from Commencement Bay indicate that three of the four indices of site utilization by fish varied inversely with depth. As depth increased, species richness, total abundance and total biomass decreased. No correlation between depth and species diversity was evident. However, Tetra Tech (1985) found the species diversity in the inner harbor waterways to be much higher (3.5) compared to study. Results of this study suggest higher catches occurring in deeper water during autumn, while Weitkamp and Schadt (1981) found abundance in shallower areas was highest in summer and lower during other seasons of the year. Becker (1984) found that Dover sole were located at deeper stations while English sole were typically found in shallower waters, similar to the findings of the present PSDDA study.

Fish health was generally good for the flatfish caught in Commencement Bay during this study. The only disease found was blood worm infection in

English sole. Incidence for this disease reached $100 \%$ at some stations, but the sample sizes were small (less than five individuals per sample) for locations with high incidence rates. Low incidences ( $<1 \%$ ) of fin erosion and skin tumors have been previously found in flatfish inhabiting the inner (shallow) portions of Commencement Bay in areas known to be contaminated with industrial wastes (Malins et al. 1982, Tetra Tech 1985). Histopathological analyses of livers from flatfish found inhabiting these areas also revealed a low incidence of liver tumors (Malins et al. 1982, Tetra Tech 1985).

Environmental measurements were only available for the autumn period. Dissolved oxygen, temperature, salinity and Secchi disc measurements were all within the ranges found in other parts of Puget Sound (Stober and Chew 1984).

The preliminary PSDDA sites in Commencement Bay had the greatest depth and the lowest abundance, biomass and species richness measures of the stations sampled during this study. The number of adult and juvenile flatfish captured in the preliminary PSDDA sites was low in absolute terms and small When compared to stations outside of the PSDDA sites.

## Elliott Bay

Several studies have been conducted within and adjacent to Elliott Bay (Bingham 1978; Miller et al. 1974; Miller et al. 1977; Miller 1980; Malins et al. 1982; Stober and Chew 1984). Donnelly et al. (1984) and Bingham (1978) were the only studies that sampled the same areas as the present PSDDA study.

The results of fish sampling in Elliott Bay revealed that the PSDDA sites generally had higher values of species richness than their corresponding reference stations. The PSDDA 2 (Fourmile Rock) site and the adjacent reference stations exhibited a pattern much like PSDDA 1 (inner Elliott Bay): summer season abundance, biomass and species richness figures were comparable,
whereas the autumn values of biomass and species richness for the PSDDA 2 site exceeded the reference stations. Species diversity did not show any clear pattern.

PSDDA 2 samples were taken in close proximity to samples collected for the Renton Sewage Treatment Plant Project (Donnelly et al. 1984). Donnelly et al. found biomass values higher at the deeper sites in contrast to this study where the PSDDA 2 site had higher biomass values than the deeper reference stations. Donnelly et al. (1984) also indicated that species richness and species diversity increased with depth to 50 m and then decreased. This would suggest that the PSDDA 2 site would have higher species richness and species diversity values than the PSDDA 2 reference stations. Indeed, PSDDA 2 values were either comparable to, or exceeded, the reference station values for species richness and species diversity. Neither study was conducted during all four seasons, thus, results from this study should not be considered indicative of conditions at the sample sites throughout the year.

The PSDDA 1 site was compared with a report on the effects of dredged materials disposal on benthic invertebrates in inner Elliott Bay (Bingham 1978). The 1978 report found no substantial difference in infaunal (invertebrate) species richness or biomass, but did find that the shallower stations had the greatest species richness and biomass. The same observation was made at the PSDDA 1 sites (for fish) where the deeper reference station had lower species richness and biomass. Neither Bingham (1978) nor this study found any clear trend in species diversity versus depth.

Fish health was generally good. Blood worm infection in English sole was the only disease noted. The incidence was somewhat lower than the findings of Donnelly et al. (1984). Donnelly et al. also noted the presence of other diseases: skin tumors and fin erosion. Fin erosion, skin tumors and liver
tumors have been found in Elliott Bay, but typically near the inner shore and the Duwamish River (Malins et al. 1982). The present study sites were located in the deeper regions away from the shore of Elliott Bay and may explain why the disease incidence was found to be lower than at previous inshore sampling locations.

Environmental measurements were available for both seasons. The dissolved oxygen values were all near saturation. Dissolved oxygen, temperature, salinity and Secchi disc measurements were all within the values found elsewhere in Puget Sound (Miller et al. 1977; Donnelly et al. 1984).

The preliminary PSDDA sites generally had the highest values for abundance, biomass and species diversity of the locations sampled in Elliott Bay. Dover sole and English sole, two commercially important flatfish, were found in higher numbers and biomass at the PSDDA 2 site and adjacent reference stations than at PSDDA 1. These results suggest that disposal of dredged materials would have less impact on commercial flatfish at the PSDDA 1 site than at PSDDA 2 site.

## Saratoga Passage

The Saratoga Passage PSDDA site ecological measures were generally higher than the adjacent, shallower stations. A tagging study done by Day (1976) suggests that the deeper area of Saratoga Passage was a residence or spawning area for English sole. Day captured English sole in the deep area of Saratoga Passage where they were tagged and transported to other areas of Puget Sound. The majority of tag recoveries were within the deep area of Saratoga Passage, suggesting a homing ability to a preferred feeding location or possibly a spawning area. No English sole were caught at the PSDDA site during the sampling cruise; however, English sole were caught nearby at 80 m . Sampling was too limited to make any concluding statement about the Saratoga Passage

PSDDA site.
No diseases were found in any flatfish.

## Port Gardner

English (1979) and Washington Department of Ecology (1976) sampled bottom fish at several depths along a transect line very close to Transect 2 of the PSDDA study. During the PSDDA study the catches of English sole less than 150 mm were lower than those found by English (1979). Each study used different capture gear; the earlier study used a 3 m beam trawl, while study used the 7.6 m otter trawl. Other explanations for the abundance differences may be biological or environmental in origin. Shephard et al. (1984) indicated three major reasons for variation in stock size from one year to the next: 1) annual changes in environmental conditions, 2) ecological interactions during early life history, and 3) variations in adult spawning abundance.

The results of the fish sampling in Port Gardner showed that the PSDDA sites had low abundance and biomass values when compared to other stations for spring, summer and autumn. In contrast, winter sampling at the PSDDA sites produced abundance values higher than most stations except for the NAVY and the 40 m depth. Furthermore, biomass values at the two PSDDA sites during the winter were second only to the NAVY site. These data suggest that the larger, older fish move into the preliminary PSDDA sites during the winter months and disperse during the rest of year.

Species diversity did not show any trends that could be related to differences between stations or sites.

Fish health was generally good. Malins et al (1982), using microscopic examination of flatfish livers, found only low levels of nonspecific degenerative/necrotic lesions and intracellular storage disorders in Port

Susan (adjacent to Port Gardner). Gross examination of livers for this study showed no evidence of tumors.

Washington Department of Fisheries (WDF) allows an annual commercial flatfish harvest during the spring and early summer in Port Gardner. The fishing area includes not only Port Gardner, but the adjacent main basin and the area adjoining Port Gardner to Saratoga Passage. Catches from the combined area contribute about $9 \%$ to the total annual Puget Sound flatfish harvest. Catches within Port Gardner itself contribute only a small portion of the 9\% (WDF personal communication).

The preliminary PSDDA sites may be subjected to low levels of commercial trawling since they are located in the deeper portions of Port Gardner and, for most of the year, had low values for abundance and biomass relative to other stations. In contrast, winter abundance and biomass values at the preliminary PSDDA sites were much higher and second only to the NAVY site. The levels of abundance and biomass were very similar between the two PSDDA sites during every season, thus equal consideration (relative to fish resources) should be given to both preliminary PSDDA sites for disposal of dredged materials. However, data from Transect 4, Station 145 S , which is deeper and located more near the mouth of Port Gardner, show much lower abundance and biomass values than the PSDDA sites. The fish data from Port Gardner has not been fully compiled and analyzed, but when completed, will be issued as part of the Port Gardner report to the U. S. Army Corps of Engineers.

LITERATURE CITED

Amish, R. 1976. Infestation of some Puget Sound demersal fishes by blood worm, Philometra americana. M.S. Thesis, Univ. Washington, Seattle. 41 pp.

Angell, C. L., B. S. Miller, and S. R. Wellings. 1975. Epizootiology of tumors in a population of juvenile English sole (Parophyrs vetulus) from Puget Sound, Washington. J. Fish. Res. Board Canada 32:1723-1732.

Becker, D. S. 1984. Resource partitioning by small-mouthed pleuronectids in Puget Sound, Washington. Ph.D. Dissertation, Univ. Washington, Seattle. 139 pp.

Bingham, C. R. 1978. Aquatic disposal field investigations, Duwamish Waterway disposal site, Puget Sound, Washington; Appendix G: Benthic community structural changes resulting from dredged material disposal, Elliott Bay disposal site. U.S. Army Eng. Waterways Exp. Stn. Vicksburg, MI, Tech. Rep. D-77-24.

Butler, T. H. 1980. Shrimps of the Pacific Coast of Canada. Can. Bull. Fish. Aquatic Sci. 202:280 pp.

Chew, K. K. Unpublished. Shrimp trawl data collected from Hood Canal and Puget Sound from 1967 to 1979. School of Fisheries, University of Washington, Seattle.

Clarke, D. G. 1986. Benthic resources assessment technique evaluation of disposal sites in Puget Sound and adjacent waters. Environmental Lab, U.S. Army Corps Engineers, Vicksburg, Mississippi. Unpublished manuscript.

Day, D. 1976. Homing behavior and population stratification in Central Puget Sound English sole (Parophrys vetulus). J. Fish. Res. Board Can. 33:278282.

Desbruyers, D., J. Y. Bervas, and A. Khripovnoff. 1980. Un cas de colonisation rapide d'un sediment profond. Oceonol. Acta 3:285-291. Dinnel, P. A., D. A. Armstrong, and C. Dungan. 1985a. Initiation of a Dungeness crab, Cancer magister, habitat study in North Puget Sound. Pp. 327-337 In: Proceedings of the Symposium on Dungeness Crab Biology and Management. Univ. Alaska, Alaska Sea Grant Rpt. No. 85-3.

Dinnel, P. A., D. A. Armstrong, and R.O. McMillan. 1985b. Survey of Dungeness crab, Cancer magister, in Oak Harbor, Washington. Final Rpt. to the Seattle District, U.S. Army Corps of Engineers by School of Fisheries, Univ. Washington, Seattle. 23 pp.

Dinnel, P. A., D. A. Armstrong, and R.O. McMillan. 1986. Dungeness crab, Cancer magister, distribution, recruitment, growth and habitat use in Lummi Bay, Washington. Final Report to Lummi Indian Tribe by Fish. Res. Institute, University of Washington, Seattle. FRI-UW-8612. 61 pp.

Dinnel, P. A., D. A. Armstrong, B. S. Miller, and R. F. Donnelly. 1987. U. S. Navy homeport disposal site investigations. Final Report to Seattle District, U.S. Army Corps of Engineers by Fish. Res. Institute, University of Washington, Seattle. (In preparation).

Donnelly, R., B. Miller, R. Lauth, and J. Shriner. 1984. Fish ecology. Vol. VI, Section 7 In: Renton Sewage Treatment Plant Project: Seahurst Baseline Study (Q. J. Stober and K. K. Chew, Eds.). Final report by University of Washington, Fish. Res. Institute to METRO. FRI-UW-8413. 276 pp.

Eaton, C. Skipper of Research Vessel Kittiwake, Seattle, Washington (personal communication).

English, T. S. 1979. Biological systems acoustical assessments in Port Gardner and adjacent waters. 1 Sept. 1978 to 30 June 1979. Annual Rpt. to WDOE, Rep. A79-13. Univ. Washington, Dept. Oceanography. 86 pp.

Grassle, J. F. 1977. Slow recolonization of deep-sea sediment. Nature, London. 265:618-619.

Gunderson, D. R., and I. E. Ellis. 1986. Development of a plumb staff beam trawl for sampling demersal fauna. Fisheries Research 4:35-41.

Lunz, J. D. and D. R.Kendall. 1982. Benthic resources assessment technique, a method for quantifying the effects of benthic community changes of fish resources. P. 1021-1027 In Conference Proceedings, Oceans 82.

Malins, D. C., B. B. McCain, D. W. Brown, A. K. Sparks, H. O. Hodgins, and S. L. Chan. 1982. Chemical contaminates and abnormalities in fish and invertebrates from Puget Sound. NOAA Tech. Memo. OMPA-19, 168 pp.

McArn, G. E., R. G. Chuinard, B. S. Miller, R. E. Brooks, and S. R. Wellings. 1968. Pathology of skin tumors found on English sole and starry flounder of Puget Sound, Washington. J. Nat. Cancer Inst. 41:229-242.

Mearns, A. J., and M. J. Allen. 1978. Use of small otter trawls in coastal biological surveys. Contribution No. 66, South. Calif. Water Res. Project. EPA-600/3-78-083.

Miller, B. S. 1980. Survey of resident marine fishes at Terminals 91 and 73 (Elliott Bay, Seattle, Washington). Univ. of Wash. Coll. of Fish. Tech. Rept. FRI-UW-8014, 29 pp .

Miller, B. S., B. B. McCain, R. C. Wingert, S. F. Borton, K. V. Pierce, and D. T. Griggs. 1977. Ecological and disease studies of demersal fishes in Puget Sound near METRO-operated sewage treatment plants and in the

Duwamish River. Puget Sound Interim Studies Rpt., Univ. of Wash. Coll. of Fish. FRI-UW-7721, 164 pp.

Miller, B. S., and S. R. Wellings. 1971. Epizootiology of tumors on flathead sole (Hippoglossoides elassodon) in East Sound, Orcas Island, Washington. Trans. Am. Fish. Soc. 100:247-266.

Miller, B. S., R. C. Wingert, and S. F. Borton. 1974. Ecological survey of demersal fishes in the Duwamish River and at West Point. Univ. of Wash. Coll. of Fish. Tech. Rpt. FRI-UW-7509, 35 pp.

Morton, J. W. 1977. Ecological effects of dredging and dredge spoil disposal: a literature review. U.S. Fish and Wildiffe Serv., Washington, D.C. Tech. Paper \#94.

Orensanz, J. M. and V. F. Gallucci. 1982. Post catastrophic benthic recovery: process and management implications. Monografias Biologicas (2): 181-198.

Paquette, R. G. 1958. A modification of the Wenrie-Smith-Soule salinity bridge for the determination of salinity in seawater. Tech. Rpt. 61, Dept. Ocean., Univ. Wash., Seattle.

Pielou, E. C. 1978. Population ecology and community ecology: principles and methods. Gordon and Breach Sci. Pub., New York, 424 pp .

Saila, S. G., S. D. Pratt, and T. T. Polgar. 1972. Dredge spoil disposal in Rhode Island Sound. Univ. Rhode Island. Mar. Tech. Rep. 2, 48 pp. Shepherd, J. G., J. G. Pope, and R. D. Cousens. 1984. Variations in fish stocks and hypotheses concerning their links with climate. Rapp. P.-v. Reun. Cons. Int. Explor. Mer. 185: 255-267.

Smith, R. T. 1937. Observations on the shrimp fishery in Puget Sound. Washington Department of Fisheries Biol. Rpt. No. 36D, $11+\mathrm{pp}$. Standard Methods. 1980. Standard methods for the examination of water and
wastewater, 15 th edition. APHA, AWWA, WPCF, Wash. D.C., 1,034 pp. Stober, Q. J., and K. K. Chew. 1984. Renton Sewage Treatment Plant Project: Duwamish Head. Final Report by Fisheries Research Institute to the Municipality of Metropolitan Seattle, WA. Tech. Rpt. FRI-UW-8417, 370 pp.

Tetra Tech, Inc. 1985. Commencement Bay nearshore/tideflats remedial investigation. Vol. 1. Washington State Department of Ecology and U.S. Environmental Protection Agency.

Thistle, D. 1981. Natural physical disturbances and communities of marine soft bottoms. Marine Ecology, Progress Series 6: 223-228.

Washington Department of Ecology. 1976. Ecological baseline and monitoring study for Port Gardner and adjacent waters. A sumnary report for the years 1972 through 1975. WDOE Olympia, WA., 545 pp.

WDF (Washington Department of Fisheries). 1974. 1974 Fisheries Statistical Report. Olympia, WA., p. 63.

WDF (Washington Department of Fisheries). 1982. 1982 Fisheries Statistical Report. Olympia, WA., p. 60.

WDF (Washington Department of Fisheries). 1987. Letter from Joseph Blum (WDF) to Frank Urabeck (Army Corps of Engineers) dated 9 January 1987. Weitkamp, D. E., D. Mcentee, and R. Whitman. 1986. Dungeness crab survey of Everett Harbor and vicinity, 1984-1985. Final Rpt. to U.S. Navy by Parametrix, Inc., Bellevue, Washington, 29+ pp.

Weitkamp, D. E., and T. H. Schadt. 1981. Commencement Bay studies technical studies: Volume III, fish and wetlands. Report to the U.S. Army Corps of Engineers, Seattle District. Appendices, 75 pp .

Wellings, S. R., C. E. Alpers, B. B. McCain, and B. S. Miller. 1976. Fin erosion disease of starry flounder (Platichthys stellatus) and English
sole (Parophrys vetulus) in the estuary of the Duwamish River, Seattle, Washington. J. Fish. Res. Board Canada 33:2577-2586.

APPENDIX

PART I
Saratoga Passage beam trawl station location data. The trawl depths are

| Appendix Table 1. |  | Saratoga Passage beam trawl station location data. The trawl depths are averages from those recorded from the February and June, 1986 cruises. All trawls were $1 / 8$ nautical miles (NM) long at approximately 1.5 knots ground speed. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | START SET OF NET |  |  | TRAWL DE | H (m) |
| Station | Depth <br> (m) | Radar Ranges (NM) and Markers | Approximate compass bearing | Start tow | End tow |
| PSDDA Site: |  |  |  |  |  |
| Station 1 | 113 | 2.4 Lowell Pt./1.25 Saratoga Pt. | $200^{\circ}$ | 108 | 106 |
| Station 2 | 106 | 1.4 E. Pt. 1.25 S . Edge Pt. N. of Mabana | $25^{\circ}$ | 110 | 118 |
| Station 3 | 109 | 1.1 E. Pt./1.2 Pt. of Camano N. of Mabana | $30^{\circ}$ | 113 | 125 |
| Transect \#1: |  |  |  |  |  |
| 10W | 11 | 1.56 S. Edge E. Pt. | $290^{\circ}$ | 10 | 17 |
| 20W | 20 | 1.56 S. Edge E. Pt. | $290^{\circ}$ | 24 | 18 |
| 40W | 39 | $1.55 \mathrm{E} . \mathrm{Pt}$. | $290^{\circ}$ | 37 | 46 |
| 80W | 79 | 1.55 E. Pt. | $285{ }^{\circ}$ | 80 | 63 |
| 80E | 80 | 2.25 S. Edge Lowell Pt./1.63 Saratoga Pt. | $280^{\circ}$ | 80 | 79 |
| 40E | 39 | 2.20 S. Edge Lowell Pt./1.71 Saratoga Pt. | $280^{\circ}$ | 45 | 46 |
| 20E | 21 | 2.25 S. Edge Lowell Pt./1.81 Saratoga Pt. | $260^{\circ}$ | 20 | 39 |
| 10E | 11 | 2.13 Lowell Pt. | $290^{\circ}$ | 14 | 11 |
| Transect \#2: |  |  |  |  |  |
| 100N | 102 | 1.2 S. Edge Lowell Pt./0.55 Pt. N. of Mabana | $260^{\circ}$ | 102 | 100 |
| 115N | 117 | 1.65 Lowell Pt./1.15 E. Pt. | $240^{\circ}$ | 121 | 121 |
| 120N | 121 | 1.1 S. Edge Lowell Pt./1.2 E. Pt. | $265^{\circ}$ | 122 | 116 |

Appendix Table 2. Summary of Port Gardner beam trawl station location data. All beam trawl tows were speed. The otter
ransect stations are identified by the approximate depth in meters and area of the bay where:
$\mathrm{N}=$ north, $\mathrm{S}=$ south and $\mathrm{M}=$ middle.


| Station \# | Depth (m) |  |  | Range markers and distance (NM) (at start of net set) | $\begin{gathered} \text { Compass } \\ \text { heading } \\ \text { (degrees magnetic) } \end{gathered}$ | $\begin{gathered} \text { Approximate } \\ \text { wire } \\ \text { out (ft.) } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Start set of net | Start tow | End |  |  |  |
| Transect \#2: |  |  |  |  |  |  |
| 10S | 11 | 12 | 12 | 1.25 SW. corner S. Pier | 260 | 250 |
| 205 | 22 | 20 | 40 | 1.25 SW. corner S. Pier | 250 | 350 |
| 405 | 40 | 40 | 52 | 1.20 SW. corner S. Pier | 250 | 600 |
| 605 | 62 | 65 | 70 | 1.20 SW. corner S. Pier | 250 | 800 |
| 805 | 82 | 81 | 80 | 1.10 SW. corner S. Pier | 240 | 1000 |
| 110 S | 112 | 110 | 110 | 1.14 SW. corner S. Pier | 230 | 1150 |
| 110 M | 111 | 110 | 111 | 1.35 Marker $4 / 1.38$ Darlington | 155 | 1150 |
| 130N | 136 | 134 | 125 | 3.5 Randall/1.6 SE. Gedney/2.0 NW S. Pier | 120 | 1300 |
| 100N | 102 | 95 | 84 | 1.35 Gedney/2.0 Marker 4/1.0 "RBN" | 11.0 | 1050 |
| Transect \#3: |  |  |  |  |  |  |
| 105 | 12 | 12 | 10 | 1.88 S. edge S. Pier | 65 | 250 |
| 205 | 23 | 22 | 21 | 1.87 SW. corner S. Pier | 70 | 350 |
| 405 | 41 | 42 | 46 | 1.85 S. edge S. Pier | 75 | 600 |
| 605 | 61 | 60 | 67 | 1.89 SW. corner S. Pier | 70 | 800 |
| 805 | 80 | 82 | 82 | 1.86 SW . corner S. Pier | 75 | 1050 |
| 1105 | 112 | 116 | 116 | 1.88 S. edge S. Pier | 65 | 1200 |
| 130 M | 129 | 132 | 134 | 2.09 Marker 4/1.35 Edgewater | 145 | 1300 |
| 130N | 137 | 131 | 130 | 2.08 Marker 4/2.08 Edgewater | 145 | 1350 |
| Transect \#4: 11 - 11250 |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
| 205 | 22 | 22 | 21 | 2.57 SW. corner S. Pier | 40 | 350 |
| 405 | 41 | 41 | 42 | 2.63 SW. corner S. Pier | 35 | 600 |
| 605 | 62 | 58 | 62 | 2.65 SW. corner S. Pier | 35 | 800 |
| 805 | 79 | 85 | 83 | 2.68 SW. corner S. Pier | 40 | 1050 |
| 1105 | 113 | 112 | 123 | 2.70 SW. corner S. Pier | 45 | 1175 |
| 145 S | 145 | 147 | 145 | 2.45 SW. corner S. Pier | 210 | 1350 |
| 135 N | 140 | 138 | 139 | 2.26 Randall Pt./2.20 Edgewater/0.85 "RBN" | 140 | 1500 |
| Transect \#5: 31. |  |  |  |  |  |  |
| 205 | 21 | 24 | 22 | At tip of fuel dock | 60 | 350 |
| 405 | 42 | 38 | 52 | 3.11 SW. corner S. Pier | 40 | 600 |
| 605 | 61 | 64 | 43 | 3.13 SW. corner S. Pier | 45 | 800 |
| 805 | 81 | 80 | 82 | 3.12 SW. corner S. Pier | 45 | 1050 |
| 1105 | 119 | 118 | 106 | 3.19 SW. corner S. Pier | 45 | 1200 |
| 1655 | 171 | 169 | 170 | 1.92 nearest shore Whidbey/0.63 tip fuel dock | 280 | 1600 |
| 145M | 151 | 152 | 151 | 1.83 Edgewater/1.83 shore Clinton Dock | 125 | 1500 |

Appendix Table 2 (cont.)


| Appendix Table 3. Elliott Bay beam trawl station location data. The trawl depths are averages from those recorded from the February, June and September, 1986 cruises. All trawls were $1 / 8$ nautical miles (NM) long at approximately 1.5 knots ground speed. |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | START SET OF NET |  |  | TRAWL DEP | (m) |
| Station | Depth <br> (m) | Radar Ranges (NM) and Markers | Approximate compass bearing | Start tow | End tow |
| Fourmile Rock: |  |  |  |  |  |
| Station 1 | 178 | 1.05 Shore/1.57 SW Tip Pier 91 | $79^{\circ}$ | 168 | 160 |
| Station 2 | 168 | 0.81 Shore/1.1 SW Tip Pier 91 | $235{ }^{\circ}$ | 178 | 181 |
| Station 3 | 163 | 0.85 Shore/1.0 SW Tip Pier 91 | $220^{\circ}$ | 185 | 188 |
| Inner Elliott Bay: |  |  |  |  |  |
| Station 1 | 91 | 0.7 Shore D. Head/1.2 NW Corner \#46 | $180^{\circ}$ | 91 | 90 |
| Station 2 | 68 | 0.84 Shore D. Head/1.0 NW Corner \#46 | $160^{\circ}$ | 62 | 62 |
| Station 3 | 78 | 0.98 Shore D. Head/0.83 NW Corner \#46 | $130^{\circ}$ | 78 | 73 |
| Station 4 | 66 | 0.25 Tip Todd Drydock/0.84 NW Corner \#46 | $65^{\circ}$ | 64 | 60 |
| Station 5 | 81 | 1.6 SW Pier 91/0.95 Duw. Head (nearest) | $310^{\circ}$ | 91 | 124 |
| Transect \#1: |  |  |  |  |  |
| 10S | 12 | 0.5 Notch/1.28 Alki | $185^{\circ}$ | 12 | 13 |
| 205 | 21 | 0.5 Notch/1.23 Alki | $190^{\circ}$ | 21 | 20 |
| 405 | 39 | 0.5 Notch/1.34 Alki | $185^{\circ}$ | 43 | 37 |
| 805 | 82 | 1.3 Alki Pt. | $175^{\circ}$ | 80 | 82 |
| Transect \#2: |  |  |  |  |  |
| 10N | 12 | 1.1 SW Tip Pier 91 | $100^{\circ}$ | 11 | 11 |
| 20N | 21 | 0.9 SW Tip Pier 91 | $285{ }^{\circ}$ | 21 | 21 |
| 80N | 87 | 0.95 SW Tip Pier 91 | $290^{\circ}$ | 72 | 68 |

Appendix Table 4.
Commencement Bay beam trawl station location data. The trawl depths are averages from those recorded from the February, June and September, 1986 cruises. All trawls were $1 / 8$ nautical miles (NM) long at approximately 1.5 knots ground speed.

## START SET OF NET

| Station | START SET OF NET |  |  | TRAWL DEPTH (m) |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Depth <br> (m) | Radar Ranges (NM) and Markers | Approximate compass bearing | Start tow | End tow |
| PSDDA Site 1: |  |  |  |  |  |
| Station 1 | 168 | 0.98 Asarco Corner/1.82 Neill/1.35 Br. Pt. | $125^{\circ}$ | 169 | 166 |
| Station 2 | 169 | 1.18 Asarco Corner/2.0 Neill/1.15 Br. Pt. | $140^{\circ}$ | 169 | 168 |
| Station 3 | 173 | 1.4 Asarco Corner/1.8 Neill/1.0 Br. Pt. | $140^{\circ}$ | 168 | 168 |
| Station 4 | 171 | 1.58 Asarco Corner/1.82 Neill/0.82 Br. Pt. | $130^{\circ}$ | 169 | 167 |
| PSDDA Site 2: |  |  |  |  |  |
| Station 1 | 163 | 1.35 Asarco Notch/0.65 Shore | $305{ }^{\circ}$ | 167 | 170 |
| Station 2 | 159 | 1.5 Asarco Notch/2.63 Neill/1.15 Br. Pt. | $305{ }^{\circ}$ | 166 | 166 |
| Station 3 | 158 | 1.65 Asarco Notch/2.62 Neill/0.93 Br. Pt. | $305{ }^{\circ}$ | 166 | 166 |
| PSDDA Site 2B: |  |  |  |  |  |
| Station 1 | 175 | 1.25 Asarco Corner/1.5 Neill/1.3 Br. Pt. | $85^{\circ}$ | 174 | 173 |
| Station 2 | 175 | 1.5 Asarco Corner/1.12 Br. Pt. | $100^{\circ}$ | 175 | 174 |
| Station 3 | 175 | 1.74 Asarco Corner/1.0 Br. Pt. | $105^{\circ}$ | 175 | 173 |
| Transect \#1: |  |  |  |  |  |
| 10E | 12 | $0.08 \mathrm{Br} . \mathrm{Pt}$. | $165^{\circ}$ | 11 | 15 |
| 20E | 22 | 0.09 Br. Pt. | $165^{\circ}$ | 20 | 23 |
| 40E | 40 | 0.09 Abeam Br. Pt. | $165^{\circ}$ | 38 | 48 |
| 80E | 81 | 0.22 Abeam Br. Pt. | $180^{\circ}$ | 86 | 75 |
| 40W | 41 | O.5 Asarco Corner | $300{ }^{\circ}$ | 60 | 40 |
| 20W | 21 | 0.47 Asarco Corner | $300^{\circ}$ | 22 | 20 |
| 10W | 10 | 0.45 Asarco Corner | $290{ }^{\circ}$ | 11 | 10 |

(Cont.)

| Station | START SET OF NET |  |  | TRAWL DEPTH (m) |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Depth <br> (m) | Radar Ranges (NM) and Markers | Approximate compass bearing | Start tow | End tow |
| Transect \#2: |  |  |  |  |  |
| 10S | 14 | 0.48 End of Sitcum Waterway | $120^{\circ}$ | 13 | 15 |
| 205 | 22 | 0.28 Corner Pier 5 | $40^{\circ}$ | 25 | 20 |
| 40S | 42 | 0.38 Corner Pier 5 | $60^{\circ}$ | 33 | 36 |
| 80S | 82 | 1.0 N . Shore (E. of Br. Pt.)/0.95 S. Shore | $215^{\circ}$ | 89 | 98 |
| 1205 | 120 | 1.0 Shore Old Tacoma/1.0 Fr "B" (Hylebos) | $205{ }^{\circ}$ | 120 | 120 |

Appendix Table 5. Dungeness crab catches/hectare in Saratoga Passage during February and June, 1986. The averages listed in the table are means $\pm 1$ standard deviation. The station numbers for the transects indicate approximate trawl depth in meters and location where $\mathbb{N}=$ north, $E=$ east and $W=$ west. N.S. = not sampled.

| Station | Dungeness Crab Catch/Hectare |  |  |
| :---: | :---: | :---: | :---: |
|  | $\frac{\text { February }}{\text { Beam Trawl }}$ | June |  |
|  |  | Beam Trawl | Otter Trawl |
| PSDDA Site 2 (110M): |  |  |  |
| Station 1 | 0 | 0 | 0 |
| Station 2 | 0 | 0 | 0 |
| Station 3 | 0 | 0 | 0 |
| Station 4 | 0 | N.S. | N.S. |
| Average | 0 | 0 | 0 |
| Transect \#1: |  |  |  |
| 10E | 11.2 | 449.4 | N.S. |
| 20E | 0 | 0 | 4.5 |
| 40E | 0 | 56.2 | 0 |
| 80E | 0 | 37.5 | 0 |
| 80W | 1.9 | 18.7 | N.S. |
| 40w | 0 | 18.7 | 0 |
| 20W | 0 | 0 | N.S. |
| 10W | 1.9 | 18.7 | N.S. |
| Average | $1.9 \pm 3.9$ | $74.9 \pm 152.5$ | $1.1 \pm 2.2$ |
| Transect \#2: |  |  |  |
| 100N | N.S. | 0 | N.S. |
| 120 N | N.S. | 0 | N.S. |
| 115N | N.S. | 0 | N.S. |
| Average | -- | 0 | -- |
| Saratoga Pass Average | $1.2 \pm 3.2$ | $42.8 \pm 118.3$ | $0.6 \pm 1.7$ |

113

| SEPTEMBER |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Spot | Sidestripe | Coonstripe | $\begin{aligned} & \text { Smooth } \\ & \text { pink } \end{aligned}$ | Pink | Humpback | ${ }^{111}$ |
| $\bigcirc$ | 37.5 | $\bigcirc$ | 0 | 18.7 | 0 | 56.2 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 37.5 | 0 | 0 | 37.4 | 0 | 74.9 |
| 0 | $25.0 \pm 21.7$ | 0 | 0 | $18.7 \pm 18.7$ | 0 | $43.7 \pm 39.0$ |
| 18.7 | $\bigcirc$ | O | $\bigcirc$ | 112.4 | ${ }_{0}^{0}$ | 131.1 |
| $\bigcirc$ | 0 | 0 | 18.7 | 0 | 0 | 18.7 |
| ${ }_{56.2}^{0}$ | 56.2 | , | $\bigcirc$ | 786.5 | $\bigcirc$ | ${ }_{543.7}$ |
| 56.2 0 |  | + | 18.7 0 | 449.4 74.9 | 18.7 0 | 543.0 74.9 |
| $15.0 \pm 24.4$ | 411.2 $\pm 25.1$ | 1 | $7.5 \pm 10.2$ | $284.6 \pm 329.3$ | $3.7 \pm 8$ | $3.422 .0 \pm 356.9$ |
| 0 | 0 | 56.2 | 0 | 0 | 0 | 56.2 |
| 0 | 0 | 93.6 | 0 | $\bigcirc$ | ${ }^{0}$ | 93.6 |
| $\bigcirc$ | $\bigcirc$ | a | 0 | $\bigcirc$ |  | 0 |
| 0 | - | 0 | 0 | 18.7 | - | 18.7 |
| 0 |  | - | $\bigcirc$ | 0 | $\bigcirc$ | 0 |
| 0 | 0 | 18.7 | 0 | 0 | $\bigcirc$ | 18.7 |
| 56.2 | 0 | 0 | 0 | 37.4 | 0 | 93.6 |
| $8.7 \pm 19.9$ | $8.7 \pm 18.6$ | $1.2 \pm 27$. | ${ }^{2} 2.5 \pm 6.6$ | $102.4 \pm 221.2$ | $1.7 \pm 5.0$ | $0^{134.8 \pm 236.9}$ |

Appendix Table 6. Beam trawl shrimp catches/hectare in Saratoga Passage during February and June, 1986, and in Elliott and Commencement bays during February, June and September, 1986. The averages listed in the table are means $\pm 1$ standard deviation. The station numbers for the transects indicate approximate depths in meters and location where $N=$ North, $E=$ East, $W=$ West and $S=$ South. $\mathrm{N} . \mathrm{S} .=$ not sampled.

|  | february |  |  |  |  |  |  | June |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Area/Station | Spot | Sidestripe | Coonstripe | $\begin{aligned} & \text { Smooth } \\ & \text { pink } \end{aligned}$ | Pink | Humpback | All | Spot Si | Sidestripe | Coonstripe | $\begin{gathered} \text { Snooth } \\ \text { pink } \end{gathered}$ | Pink | Humpback | All |
| SARATOGA PASSAGE |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Station 1 | 0 | 18.7 | 0 | 9.4 | 18.7 | 0 | 46.8 | $\bigcirc$ | 37.5 | $\bigcirc$ | 18.7 0 | 74.9 74.9 | 0 | 93.6 112.4 |
| Station 2 | $\bigcirc$ | 37.5 | 0 | 0 | 0 18.7 | - | $\begin{array}{r}37.5 \\ -\quad 56.2 \\ \hline\end{array}$ | ${ }_{0}^{\circ}$ | 37.5 0 | 0 | $\bigcirc$ | 74.9 0 | 0 | 112.4 0 |
| Station 3 | 0 | 37.5 | 0 | 0 | 18.7 | 0 | $56.2$ | 0 | 0 |  |  |  | - |  |
| Average | 0 | $31.2 \pm 10.9$ | 0 | $3.1 \pm 5.4$ | $12.5 \pm 10.8$ | 0 | $46.8 \pm 9.4$ | 12 | $12.5 \pm 21.7$ | 0 | $6.2 \pm 10.8$ | $49.9 \pm 43.2$ | 0 | $68.7 \pm 60.2$ |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 208 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $\bigcirc$ | 0 | 0 | $\bigcirc$ | 0 | 0 | 0 |
| 408 | 0 | 0 | 0 | 93.6 | 56.2 | 0 | 149.8 | 0 | 0 | 0 | $\bigcirc$ | 0 | 0 | 0 |
| 80E | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 80W | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 37.5 | 0 | 0 | 56.2 | 206.0 | 0 | 299.7 |
| 40w | 0 | 0 | 0 | 93.6 | 187.3 | 0 | 280.9 | 0 | 0 | 0 | - | 0 | 0 | 0 |
| 2 W | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 10W | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Transect \#2: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 100 H | N.S. |  |  |  |  |  |  | 0 | 18.7 | 0 | 0 | 2247 | 0 | 24.3 |
| 12 OH | N.s. |  |  |  |  |  |  | $\bigcirc$ |
| 115 ${ }^{\text {d }}$ | N.S. |  |  |  |  |  |  | 0 | $\bigcirc$ | 0 | 0 | $\bigcirc$ | 0 | $\bigcirc$ |
| Saratoga Bay Average | 0 | $8.5 \pm 15.4$ | 0 | $17.9 \pm 37.5$ | $25.5 \pm 56$. | 0 | $51.9 \pm 88.6$ | $3.4 \pm 11.3$ | $4.0 \pm 10.8$ | $2.7 \pm 10.0$ | $5.4 \pm 15.5$ | $541.5 \pm 78.5$ | 0 | $56.2 \pm 99.1$ |
| elliott bay |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\frac{\text { Fourmile Rock (170M) }}{\text { Station }}$ |  | 0 | 0 | 0 | 0 |  | 0 |  |  |  |  |  |  |  |
| Station 2 | 0 | 56.2 | 0 | 0 | 0 | 0 | 56.2 | 0 | 74.9 | 0 | 0 | 168.5 | 0 | 243.4 |
| Station 3 | 0 | 18.7 | 0 | 0 | 56.2 | 0 | 74.9 | 0 | 0 | 0 | 0 | 187.3 | 0 | 187.3 |
| Average | 0 | $25.0 \pm 28.6$ | 0 | 0 | $18.7 \pm 32.4$ | 0 | $43.7 \pm 39.0$ | 03 | $31.2 \pm 39.0$ | 0 | 01 | $143.6 \pm 60.2$ | - | $174.8 \pm 75.7$ |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Station 1 | $\stackrel{\circ}{0}$ | 18.7 0 | ${ }_{0}^{\circ}$ | 37.5 262.2 | ${ }_{187.3}^{0}$ | $\stackrel{\circ}{\circ}$ | 243.5 262.2 | ${ }^{0} 7.5$ | $\bigcirc$ | $\stackrel{0}{\circ}$ | 37.5 | 93.6 0 | - | 75.0 |
| Station 3 | 0 | 0 | 0 | 37.5 | 355.8 | 0 | 393.3 | 18.7 | 0 | 0 | 18.7 | 37.5 | 0 | 74.9 |
| Station 4 | N.S. |  |  |  |  |  |  | N.s. |  |  |  |  |  |  |
| station 5 | $\underline{ }$ |  | - |  |  | - |  |  | - | - |  |  |  |  |
| average | 0 | $6.2 \pm 10.8$ | 011 | $112.4 \pm 129.7$ | $181.0 \pm 1$ | 78.0 - | $300.0 \pm 81.6$ | $18.7 \pm 18.8$ | 8 | 0 | $18.7 \pm 18.8$ | $43.7 \pm 47.1$ | 0 | $81.2 \pm 10.8$ |
| Transect \#1: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 105 205 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 40 S | 0 | $\bigcirc$ | 18.7 | 0 | - | 0 | 18.7 | 0 | - | 0 | - | 0 | 0 | 0 |
| 80 S | H.s. |  |  |  |  |  |  | 0 | - | 18.7 | 0 | 18.7 | 0 | 37.4 |
| Transect \#2: 0 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ${ }^{10 \mathrm{~N}}$ | $\bigcirc$ |  | 318.4 | $\bigcirc$ | ${ }^{\circ}$ | ${ }^{\circ}$ | 318.4 |  |  |  |  |  |  | $\bigcirc$ |
| 20 N 80 N | $\stackrel{\circ}{\text { n. }}$ | 0 | 74.9 | 0 | 0 | 0 | 74.9 | 0 55.9 | - | $\bigcirc$ | - | $\bigcirc$ | 0 | 0 55.9 |
| Blliott Bay Average | 0 | $8.5 \pm 17.5$ | $37.5 \pm 95.9$ | . 9 | $54.5 \pm 115$. | $\bigcirc$ | $131.1 \pm 144.8$ | $8.6 \pm 18.1$ |  | $1.4 \pm 5.2$ |  | $44.7 \pm 66.9$ | 0 | $66.2 \pm 76.7$ |

Appendix Table 6. (Continued).

| Area/Station | february |  |  |  |  |  |  | June |  |  |  |  |  |  | SBPTEMBER |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Spot | Sidestripe | Coonstripe | $\begin{aligned} & \text { Smooth } \\ & \text { pink } \end{aligned}$ | Pink | Hunpback | 111 | Spot Si | Sidestripe | Coonstripe | Smooth pink | Pink | Humpback | 111 | Spot | Sidestripe | Coonstripe | $\begin{gathered} \text { Smooth } \\ \text { pink } \end{gathered}$ | Pink | Humpback | All |
| commercement bay |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| PSDDA Site 1 $(165 \mathrm{~N})$ : Stition $^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Station Station 2 | $\bigcirc$ | ${ }_{0}^{0}$ | - | $\bigcirc$ | 56.2 56.2 | $\bigcirc$ | 56.2 56.2 | 74.9 0 | 0 | \% | 0 | 74.9 74.9 | $\bigcirc$ | 149.8 74.9 | $\bigcirc$ | 18.7 | 0 | $\bigcirc$ | 18.7 | $\bigcirc$ | 37.4 |
| Station 3 | - | 0 | 0 | 0 | 56.2 | - | 56.2 | 0 | - | - | o | 0 | $\bigcirc$ | 0 | 0 | ( | ${ }_{0}$ | ${ }_{0}$ | 74.9 | $\stackrel{0}{0}$ | 93.6 37.5 |
| Station 4 | n.s. | - | - | $\cdots$ |  |  |  | n.S. | --. | --- | - |  | - |  | $\bigcirc$ | 0 | 0 | 0 | 93.6 | $\bigcirc$ | 37.5 <br> 93.6 |
| Avorage | 0 | 0 | 0 | 0 | $56.2 \pm 0.0$ | 0 | $56.2 \pm 0.0$ | $25.0 \pm 43.2$ | 2 | o | 0 | $49.9 \pm 43$ | 0 | $74.9 \pm 74.9$ | 0 | $10.1 \pm 10.0$ | 0 | 0 | $56.2 \pm 34.2$ | $\bigcirc$ | $65.5 \pm 32.4$ |
| $\frac{\text { PSDDA Site } 2 \text { ( } 165 \mathrm{M} \text { ) }}{\text { Stotion }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Station 1 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | 37.4 | $\bigcirc$ | 37.4 | N.S. |  |  |  |  |  |  | N.S. |  |  |  |  |  |  |
| Station 2 Station | 0 | 18.7 | 0 | 0 | 74.9 | $\bigcirc$ | 93.6 | N.s. |  |  |  |  |  |  | H.s. |  |  |  |  |  |  |
| Station 3 | 0 | 0 | 0 | $\bigcirc$ | 0 | $\bigcirc$ | 0 | N.S. |  |  |  |  |  |  | n.S. |  |  |  |  |  |  |
| Average | 0 | $6.2 \pm 10.8$ | 0 | 0 | $37.4 \pm 37.5$ | 0 | $43.7 \pm 47.1$ | -- |  |  |  |  |  |  | -- |  |  |  |  |  |  |
| $\frac{\text { PSDD }}{}$ Site 2 ( 165 M ): |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Station 2 Station 3 | N.S. N.S. |  |  |  |  |  |  | 0 0 0 | 0 <br> 0 | 0 <br> 0 | 0 <br> 0 | 93.6 37.5 | - | 93.6 37.5 | - | ${ }_{3}^{37.5}$ | $\bigcirc$ | $\bigcirc$ | 112.4 | 0 | - 149.9 |
| Averago | -- |  |  |  |  |  |  | 0 | 0 | 0 | 0 | $68.7 \pm 28.6$ | $\bigcirc$ | $68.7 \pm 28.6$ | $\bigcirc$ | $12.5 \pm 21.7$ | 7 | 0 | $68.7 \pm 47.2$ | 0 | $81.2 \pm 65.8$ |
| Trangect \#1: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ${ }^{108}$ | N.S. |  |  |  |  |  |  | 0 | $\bigcirc$ | 18.7 | 0 | 0 | 0 | 18.7 | $\bigcirc$ | $\bigcirc$ | 1067.4 |  | 0 | o | 1057.4 |
| ${ }_{408}^{208}$ | \% | 0 | 37.5 | 0 | 0 | 0 | 37.5 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | : | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | 93.6 | $\bigcirc$ | $\bigcirc$ | - | 93.6 |
| 808 | H.S. |  |  |  |  |  |  | $\stackrel{\circ}{\circ}$ | ${ }_{0}$ | ${ }_{0}^{\circ}$ | ${ }_{0}^{\circ}$ | ${ }_{0}^{\circ}$ | $\bigcirc$ | $\stackrel{\circ}{\circ}$ | - | $\stackrel{\circ}{\circ}$ | $\bigcirc$ | $\bigcirc$ | 501.7 | $\bigcirc$ | 501.7 |
| 10w | $\bigcirc$ | $\bigcirc$ | 56.2 | $\bigcirc$ | 0 | 0 | 56.2 | $\bigcirc$ | 0 | 0 | 0 | 0 | 0 | - | 0 | - | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | 0 | 0 |
| $20 \%$ | $\bigcirc$ | $\bigcirc$ | 56.2 | $\bigcirc$ | $\bigcirc$ | 0 | 56.2 | $\bigcirc$ | 0 | 0 | 0 | 0 | 0 | 0 | ${ }^{0}$ | $\bigcirc$ | 56.2 | 0 | $\bigcirc$ | $\bigcirc$ | 56.2 |
| 40w | $\bigcirc$ | - | 74.9 | $\bigcirc$ | - | 0 | 74.9 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | - | 0 | - | - | $\bigcirc$ | 0 |
| Transect \#2: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 10S 205 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 |  | 56.2 | 0 | 0 | $\bigcirc$ | 56.2 |
| 205 405 | $\bigcirc$ | $\stackrel{0}{\circ}$ | ${ }_{0}^{0}$ | $\stackrel{0}{112.4}$ | $\stackrel{\circ}{\circ}$ | 0 | $\stackrel{0}{112.4}$ | $\stackrel{0}{\circ}$ | $\bigcirc$ | $\stackrel{0}{0}$ | ${ }_{37}{ }^{\circ} \mathrm{S}$ | 0 | 0 | $\stackrel{\bigcirc}{37.5}$ | $\bigcirc$ | 0 | 18.7 0 | 18.7 23.4 | $\bigcirc$ | $\bigcirc$ | 37.4 |
| 80S | 0 | 18.7 | 0 | 0 | 37.5 |  | 56.2 | - | 0 | - | 37.5 | 0 | 0 | 37.5 | 0 |  | 0 | 18.7 | 18.7 | - | 23.4 |
| 1203 | 0 | 0 | 0 | 0 | 37.5 | 0 | 37.5 | 0 | $\bigcirc$ | 0 | 0 | 0 | 0 | 0 | $\bigcirc$ | 0 | 0 | 0 | 56.2 | $\bigcirc$ | 37.4 56.2 |
| Commencenent Bay |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  | $\pm 29.0$ |  |  |  |  |  |  |  |  |  | 2.1 |  | $3.9+$ | 60.3 $\pm 24.4$ | 3.2 | $53.0 \pm 14.6$ | 0.0 | $128.2 \pm 252.7$ |

Appendix Table 7. Number of shrimp caught/hectare by otter trawl in Saratoga Passage in June and Elliott and

| Station | Spot Prawn | Sidestripe Shrimp | Coonstripe Shrimp | Smooth Pink Shrimp | Pink <br> Shrimp | Humpback Shrimp | Flexed Shrimp |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Saratoga Passage, June 1986: |  |  |  |  |  |  |  |
| PSDDA 2, Sta. 1 | 0 | 54.0 | 0 | 0 | 63.1 | 0 | 0 |
| PSDDA 2, Sta. 2 | 0 | 18.0 | 0 | 0 | 63.1 | 0 | 0 |
| PSDDA 2, Sta. 3 | 0 | 90.1 | 0 | 0 | 90.1 | 0 | 0 |
| Transect $1,40 \mathrm{~W}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Transect 1, 20 E | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Transect 1, 40 E | 0 | 0 | 0 | 0 | 4.5 | 0 | 0 |
| Transect 1, 80 E | 0 | 4.5 | 0 | 0 | 99.1 | 0 | 0 |
| Average ( $\pm 1$ S.D.) | 0 | $23.8 \pm 35.2$ | 0 | 0 | $45.7 \pm 43.4$ | 0 | 0 |
| E11iott Bay, June 1986: |  |  |  |  |  |  |  |
| PSDDA 1, Sta. 1 | 36.0 | 0 | 0 | 301.8 | 126.1 | 4.5 | 0 |
| PSDDA 1, Sta. 2 | 0 | 18.0 | 0 | 0 | 4.5 | 0 | 0 |
| PSDDA 1, Sta. 3 | 0 | 0 | 0 | 0 | 261.3 | 0 | 0 |
| PSDDA 2, Sta. 1 | 4.5 | 27.0 | 0 | 0 | 63.1 | 0 | 0 |
| PSDDA 2, Sta. 2 | 0 | 22.5 | 0 | 0 | 40.5 | 0 | 0 |
| PSDDA 2, Sta. 3 | 0 | 9.0 | 0 | 0 | 117.1 | 0 | 0 |
| Average ( $\pm 1$ S.D.) | $6.8 \pm 14.4$ | $12.8 \pm 11.5$ | 0 | $50.3 \pm 123.2$ | $102.1 \pm 90.5$ | $0.8 \pm 1.8$ | 0 |
| E1liott Bay, September 1986: |  |  |  |  |  |  |  |
| PSDDA 1, Sta. 1 | 40.5 | 13.5 | 0 | 0 | 252.3 | 9.0 | 0 |
| PSDDA 1, Sta. 2 | N.S. | N. S. | N.S. | N.S. | N.S. | N. S. | N.S. |
| PSDDA 1, Sta. 3 | 0 | 0 | 0 | 0 | 567.6 | 0 | 0 |
| PSDDA 1, Sta. 4 | 193.7 | 0 | 0 | 0 | 1,747.7 | 22.5 | 0 |
| PSDDA 1, Sta. 5 | 18.0 | 18.0 | 0 | 9.0 | 680.2 | 0 | 0 |
| PSDDA 2, Sta. 1 | 9.0 | 13.5 | 0 | 0 | 0 | 0 | 0 |

Appendix Table 7 (continued):

| Station | Spot <br> Prawn | Sidestripe Shrimp | Coonstripe Shrimp | Smooth Pink Shrimp | Pink <br> Shrimp | Humpback Shrimp | Flexed Shrimp |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PSDDA 2, Sta. 2 | 0 | 103.6 | 0 | 0 | 45.0 | 0 | 0 |
| PSDDA 2, Sta. 3 | 4.5 | 76.6 | 0 | 0 | 31.5 | 0 | 0 |
| Average ( $\pm$ I S.D.) | $38.0 \pm 70.1$ | $32.2 \pm 40.9$ | 0 | $1.3 \pm 3.4$ | $474.9 \pm 622.8$ | $4.5 \pm 8.6$ | 0 |
| Commencement Bay, June 1986: |  |  |  |  |  |  |  |
| PSDDA 1, Sta. 1 | 4.5 | 9.0 | 0 | 4.5 | 220.7 | 0 | 0 |
| PSDDA 1, Sta. 2 | 0 | 4.5 | 0 | 0 | 342.3 | 0 | 0 |
| PSDDA 1, Sta. 3 | 0 | 0 | 0 | 4.5 | 243.2 | 0 | 0 |
| PSDDA 2B, Sta. 1 | 0 | 4.5 | 0 | 0 | 130.6 | 0 | 0 |
| PSDDA 2B, Sta. 2 | 0 | 22.5 | 0 | 0 | 108.1 | 0 | 0 |
| PSDDA 2B, Sta. 3 | 0 | 13.5 | 0 | 0 | 436.9 | 0 | 0 |
| Transect 1, 20 E | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Transect 1, 40 E | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Average | $0.6 \pm 1.6$ | $6.8 \pm 8.0$ | 0 | $1.1 \pm 2.1$ | $185.2 \pm 156.0$ | 0 | 0 |
| Commencement Bay, September 1986: |  |  |  |  |  |  |  |
| PSDDA 1, Sta. 1 | N.S. |
| PSDDA 1, Sta. 2 | 0 | 76.6 | 0 | 0 | 310.8 | 0 | 0 |
| PSDDA 1, Sta. 3 | 9.0 | 85.6 | 0 | 0 | 378.4 | 0 | 0 |
| PSDDA 1, Sta. 4 | 0 | 94.6 | 0 | 0 | 414.4 | 0 | 0 |
| PSDDA 2B, Sta. 1 | 0 | 99.1 | 0 | 0 | 387.4 | 0 | 0 |
| PSDDA 2B, Sta. 2 | 4.5 | 67.6 | 0 | 0 | 297.3 | 0 | 0 |
| PSDDA 2B, Sta. 3 | 0 | 162.2 | 0 | 0 | 409.9 | 0 | 0 |
| Transect 1, 20 E | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Transect 1, 40 E | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Average ( $\pm 1$ S.D.) | $1.7 \pm 3.3$ | $74.1 \pm 52.1$ | 0 | 0 | $274.8 \pm 174.8$ | 0 | 0 |

Appendix Table 8. Beam trawl catches of Dungeness crab (per $1000 \mathrm{~m}^{2}$ ) from Port Gardner during winter (February 4-7, 1986).

|  | Dungeness Crab/1000m² |  |  |
| :---: | :---: | :---: | :---: |
| Station* | Females <br> with eggs | Females <br> without eggs |  |


| Navy Disposal |
| :--- |
| Site: $(80 \mathrm{~m})$ |


60 gal . mud, wood, debris
50 gal . mud, wood, trash
30 gal . wood, trash
-N


| 1.9 |
| :---: |
| 0 |
| 1.9 |
| $1.3+1.1$ |


| 0 |
| :---: |
| 0 |
| 0 |
| 0.0 | | $\begin{array}{c}9.4 \\ 28.1 \\ 24.3\end{array}$ |
| :---: |
| $20.6 \pm 9.9$ |

Station 1
Station 2
Station 2
Station 3
squәшшол
60 gal. mud, wo
50 gal. mud, wo
30 gal. wood, t
-
$6^{\circ} \mathrm{L}$
$22.5 \pm 9.8$

| 0 |
| :---: |
| 0 |
| 1.9 |
| $0.6+1.1$ |


$000 |$| 0 | 000 | 0 |
| :--- | :--- | :--- |
| 0 |  |  |
| 0 |  |  |

$0.0 \quad 0.6 \pm 1.1$
5 gal. wood, debris
2 gal. fish, detritu
2 gal. fish, detritus
gal. wood, detritus

$000 \left\lvert\, \begin{aligned} & 0 \\ & 0 \\ & 000 \\ & 0\end{aligned}\right.$

| 000 | 0 |
| :--- | :--- |
| 0 |  |



$00 \stackrel{\Im}{-} |$| - |  |  |  |
| :---: | :---: | :---: | :---: |
| $\vdots$ |  |  | 0 |
| +1 |  | 000 | 0 |
| 0 |  |  |  |
| $\dot{0}$ | $\bar{\xi}$ |  |  | PSDDA Site 2: (120m)

Station 1
tation 1
Station
Station 2
Station 3
-
Average
PSDDA Site 1: $(160 \mathrm{~m})$
Average
Station 1
Station 2
Station 2
-
tation 1
Station 1
Station 2
Station 3
Average
Appendix Table 8 (continued)

| Station* | Dungeness Crab/ $1000 \mathrm{~m}^{2}$ |  |  |  | Comments |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Females with eggs | Females without eggs | Males | All crabs |  |
| Transect \#1 |  |  |  |  |  |
| 10-S | 0 | 1.9 | 13.1 | 15.0 | 1 gal algae detritus |
| 20-S | 1.9 | 0 | 5.6 | 7.5 | 2 gal. algae, detritus |
| $40-S$ $80-5$ | 11.2 | 3.7 | 0 | 15.0 | 15 gal. algae, wood |
| $80-\mathrm{S}$ $100-\mathrm{M}$ | 20.6 | 0 | 0 | 20.6 | 20 gal. algae, wood, trash |
| $100-\mathrm{M}$ $80-\mathrm{N}$ | 1.9 | 0 | 0 | 1.9 | 2 gal. algae, wood, detritus |
| $80-N$ $40-N$ | 7.5 | 1.9 | 0 | 9.4 | 3 gal. wood, detritus |
| 40-N | 11.8 | 0 | 0 | 11.8 | 2 gal. fish; bent beam, torn net |
| Average | $7.8 \pm 7.3$ | $1.1 \pm 1.5$ | $2.7 \pm 5.0$ | $11.6 \pm 6.1$ |  |
| Transect \#2: |  |  |  |  |  |
| 10-S | 1.9 | 7.5 | 20.6 | 30.0 | 4 gal. crabs |
| 20-S | 5.6 | 5.6 | 5.6 | 16.8 | 25 gal. algae, eelgrass |
| $40-\mathrm{S}$ $80-5$ | 1.9 318 | 0 | 0 | 1.9 | 15 gal. rock, shell |
| re-S | 31.8 0 | 3.7 | 0 | 35.5 | 25 gal. wood, crabs |
| 120-M | 0 | 0 | 0 | 0 | 25 gal. mud, wood, detritus |
| 150-N | 1.9 | 0 | 0 | 0 1.9 | 2 gal. Worm tubes, detritus |
| $100-\mathrm{N}$ | 1.9 | 0 | 0 | 1.9 | 3 gal. wood, detritus |
| Average | $5.6 \pm 10.7$ | $\underline{2.1 \pm 3.1}$ | $3.3 \pm 7.3$ | $1.0 \pm 14.6$ |  |
| Transect \#3: |  |  |  |  |  |
| 101-S | 0 | 3.7 | 7.5 | 11.2 | 8 gal. algae, eelgrass, shell |
| $20-5$ $40-5$ | ${ }^{0}$ | 1.9 | 0 | 1.9 | 20 gal . wood, trash |
| $40-S$ $80-S$ | 3.7 | 0 | 0 | 3.7 | 25 gal. wood, starfish, bottles |
| $80-S$ $120-S$ | 3.7 | 3.7 | 0 | 7.4 | 7 gal. wood, starfish, bottles |
| 150-M | 9.4 | 3.7 | 1.9 | 15.0 | 30 gal. clay balls, rock, wood |
| $150-\mathrm{N}$ | 0 | 0 | 0 | 0 | 2 gal. wood, worm tubes |
| Average | $2.4 \pm 3.5$ | $\overline{1.9 \pm 1.9}$ | . $3 \pm 2.8$ | ¢ $\pm^{ \pm} 5$ |  |

Appendix Table 8 (continued)

| Station* | Dungeness Crab/1000m ${ }^{2}$ |  |  |  | Comments |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Females with eggs | $\begin{gathered} \text { Females } \\ \text { without eggs } \end{gathered}$ | Males | All crabs |  |
| Transect \#4: |  |  |  |  |  |
| 10-S | 0 | 0 | 1.9 | 1.0 | 2 gal. rock, algae, and large tire |
| 20-S | 30.0 | 11.2 | 13.1 | 54.3 | 5 gal. algae, wood, shell |
| 40-S | 1.9 | 0 | 1.9 | 3.8 | 2 gal. wood, starfish, bottles |
| $80-5$ | 16.9 | 0 | 1.9 | 18.8 | 5 gal. gravel, wood, bottles |
| 120-S | 5.6 | 0 | 0 | 5.6 | 5 gal. gravel, detritus |
| 175-S | 0 | 0 | 0 | 0 | 2 gal. worm tubes, detritus |
| 160-N | 1.9 | 0. | 0 | 1.9 | 1 gal. worm tubes |
| Average | $8.0 \pm 11.3$ | $1.6 \pm 4.2$ | $2.7 \pm 4.7$ | $12.3 \pm 19.5$ |  |
| Transect \#5: |  |  |  |  |  |
| $20-S$ | 0 | 1.9 | 5.6 | 7.5 | 100 gal. wood chips |
| 40-S | 1.9 | 0 | 3.7 | 5.6 | 30 gal . wood, algae |
| 80-S | 5.6 | 1.9 | 0 | 7.5 | 40 gal. wood, starfish, trash |
| 120-S | 9.4 | 1.9 | 0 | 11.3 | 4 gal . detritus, fish |
| 200-S | 0 | 0 | 0 | 0 | 2 gal. worm tubes, detritus |
| $175-\mathrm{M}$ | 0 | 0 | 0 | 0 | 2 gal. worm tubes, heart urchins |
| Average | $2.8 \pm 3.9$ | $1.0 \pm 1.0$ | $1.6 \pm 1.5$ | $5.3 \pm 4.5$ |  |
| Transect \#6: |  |  |  |  |  |
| 80-S | 18.7 | 18.7 | 0 | 27.4 | 50 gal. wood, trash |
| $80-M$ | 45.0 | 3.7 | 0 | 48.7 | 10 gal. wood, cans |
| 40-N | 11.2 | 13.1 | 9.4 | 33.7 | 25 gal. wood, trash |
| 20-N | 3.7 | 0 | 5.6 | 9.3 | 2 gal. wood, debris |
| $10-\mathrm{N}$ | 3.7 | 9.4 | 7.5 | 20.6 | 2 gal. wood, bottles |
| Average | $16.5 \pm 7.1$ | $9.0 \pm 7.4$ | $4.5 \pm 4.3$ | $29.9 \pm 15.3$ |  |


#### Abstract

Appendix Table 8 (continued)

^[ (continued) ] 


$\xrightarrow{2}$
Station*
Appendix Table 9.
Dungeness Crab Densities Per Hectare Calculated From Beam Trawl Catches In Port Gardner During April, 1986.
Comments
1 gal. ULVA, Wood Chips
səlifog 'poom ' $\overline{\forall \pi 7 \pi} \cdot$ Le6 0 I sd!̣う poom 'snz!elzag 'Lé z


 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $N$ |  |  |  |  |  |  |  |

 $\stackrel{\bullet}{\sim}$
$\qquad$


(continued)
1 gal. ULVA, Wood Chips
1 gal. ULVA, Wood Chips
6 gal. ULVA, Wood Chips 5 gal. Zostera, ULVA
20 gal. ULVA
4 gal. ULVA, Wood, Shell
8 gal. Wood, Debris, Cans
5 gal. Wood, Detritus
2 gal. Detritus
2 gal. Wood, Detritus, Cans
1 gal. Wood
N.S.
Table Appendix 9.

| Transect \#1 |
| :---: |
| $10-\mathrm{S}$ |
| $20-\mathrm{S}$ |
| $40-\mathrm{S}$ |
| $80-\mathrm{S}$ |
| $100-\mathrm{M}$ |
| $80-\mathrm{N}$ |
| $40-\mathrm{N}$ |
| Average |
| Transect \#2 |
| $10-\mathrm{S}$ |
| $20-\mathrm{S}$ |
| $40-\mathrm{S}$ |
| $80-\mathrm{S}$ |
| $110-\mathrm{S}$ |
| $110-\mathrm{M}$ |
| $130-\mathrm{N}$ |
| $100-\mathrm{N}$ | Average

Females



$$
\text { is is } \infty
$$

- 

$$
1 \text { gat. Wood }
$$

ULVA

$$
\text { saqn」 uлom 'su!uoun } 712 \partial H \cdot L e 6 z
$$

$$
\text { poom ' LOAedy ead 'pnW • Leb } \varepsilon
$$

Table Appendix 9.
(continued)
$\begin{array}{r}\text { Transect \#3 } \\ 10-\mathrm{S} \\ 20-\mathrm{S} \\ 40-\mathrm{S} \\ 80-\mathrm{S} \\ 110-\mathrm{S} \\ 130-\mathrm{M} \\ 130-\mathrm{N} \\ \text { Average } \\ \text { Transect \#4 } \\ \hline 10-\mathrm{S} \\ 20-\mathrm{S} \\ 40-\mathrm{S} \\ 80-\mathrm{S} \\ 110-\mathrm{S} \\ 145-\mathrm{S} \\ 135-\mathrm{N} \\ \text { Transect \#5 } \\ \hline 10\end{array}$
$20-S$
$40-S$ $80-S$ 110-S $165-\mathrm{S}$ 145-M Average
Dungeness Crab Densities Per Hectare Calculated From Beam Trawl Catches
In Port Gardner During April, 1986.
-

[^1]Fema les
Males
\[

$$
\begin{gathered}
\text { A11 Crabs } \\
57 \\
38 \\
115 \\
95 \\
0 \\
0 \\
19 \\
46+45
\end{gathered}
$$
\]

$$
50 \text { gal. Wood Chips Gravel }
$$

$$
60 \text { gal. Rock, Gravel, Bottles }
$$

$$
2 \text { gal. Wood Chips, Worm Tubes }
$$

Table Appendix 9.

| Transect \#6 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 80-S | 191 | 0 | 191 | 60 gal. ULVA, Wood, Shell |
| 80-M | 573 | 19 | 592 | 25 gal. Wood, Debris, Bottles |
| $40-\mathrm{N}$ | 248 | 57 | 305 | 20 gal. Wood, Bottles |
| $20-\mathrm{N}$ | 210 | 19 | 229 | 4 gal. Wood, Detritus |
| $10-\mathrm{N}$ | 229 | 19 | 248 | 2 gal. Wood Chips |
| Average | $290 \pm 160$ | $23 \pm 21$ | $313 \pm 161$ |  |
| Transect \#7 |  |  |  |  |
| 100-S | 57 | 0 | 57 | 4 gal. ULVA, Wood Chips |
| 100-M | 38 | 0 | 38 | 2 gal. Detritus, Worm Tubes |
| 100-N | 38 | 0 | 38 | 2 gal. Detritus |
| $80-\mathrm{N}$ | 76 | 0 | 76 | 2 gal. Detritus, Wood Chips |
| $40-\mathrm{N}$ | 153 | 0 | 153 | 3 gal. Wood Chips |
| 20-N | 114 | 0 | 114 | 4 gal . Wood |
| 10-N | 19 | 19 | 33 | 0.1 gal. Detritus, Shell |
| Average | $71 \pm 47.7$ | $3 \pm 7$ | $73 \pm 45$ |  |
| Grand Average | $79 \pm 122$ | $6 \pm 12$ | $85 \pm 127$ |  |

[^2]Appendix Table 10. Dungeness crab densities per hectare calculated from beam trawl catches in Port Gardner during June, 1986.

$₹ \hat{m} \left\lvert\, \begin{gathered}\stackrel{\sim}{\sim} \\ +1 \\ \hat{N}\end{gathered}\right.$

- o 잉
$0 \quad 0 \quad 010$

Density/Hectare

Appendix Table 10 (Continued)

|  | Females | Males | All Crabs | Corments |
| :---: | :---: | :---: | :---: | :---: |
| Transect \#1 |  |  |  |  |
| 10-S | 0 | 56 | 56 | 3 gal. Ulva, wood |
| 20-s | 19 | 37 | 56 | 20 gal . Ulva |
| 40-s | 19 | 0 | 19 | 10 gal . wood, Ulva |
| 80-s | 169 | 0 | 169 | 6 gal. wood, Ulva |
| $100-\mathrm{m}$ | 0 | 0 | 0 | 2 gal. detritus |
| $80-\mathrm{N}$ | 918 | 0 | 918 | 8 gal . detritus |
| 40-N | $\text { N.S. }{ }^{3}$ | N.S. | N.S. |  |
| Average | $188 \pm 364$ | $16 \pm 25$ | $203 \pm 355$ |  |
| Transect \#2 |  |  |  |  |
| 10-S | 19 | 0 | 19 | 15 gal . U1va, wood |
| 20-s | 19 | 0 | 19 | 20 gal . Ulva, wood |
| 40-S | 19 | 0 | 19 | 5 gal. wood, shell, Ulva |
| 80-S | 94 | 0 | 94 | 20 gal. wood, gravel |
| 110-S | 112 | 0 | 112 | 10 gal. pea gravel, wood |
| 110-M | 19 | 0 | 19 | 2 gal . Ulva, wood, worm tubes |
| 130-N | 37 | 0 | 37 | 2 gal. wood chips, worm tubes |
| 100-N | 56 | 0 | 56 | 1 gal. wood chips, detritus |
| Average | $47 \pm 37$ | 0 | $47 \pm 37$ |  |

Appendix Table 10 (Continued)

|  | Females | Males | All crabs | Comments |
| :---: | :---: | :---: | :---: | :---: |
| Transect \#3 |  |  |  |  |
| 10-S | 0 | 0 | 0 | 3 gal. wood, Ulva, shell |
| 20-5 | 37 | 0 | 37 | 25 gal. wood chips, Ulva |
| 40-S | 56 | 19 | 75 | 15 gal. wood chips |
| 80-S | 56 | 0 | 56 | 5 gal. wood chips, cans, bottles |
| 110-S | 37 | 0 | 37 | 8 gal. clay balls |
| 130-M | 0 | 0 | 0 | 1 gal. wood, worm tubes |
| 130-N | 0 | 0 | 0 | 2 gal. wood, worm tubes, kelp |
| Average | $27 \pm 26$ | $3 \pm 7$ | $29 \pm 30$ |  |
| Transect \#4 |  |  |  |  |
| 10-S | 19 | 37 | 56 | 3 gal . Ulva, detritus |
| 20-S | 0 | 37 | 37 | 15 gal . wood, Ulva, shell |
| 40-S | 56 | 19 | 75 | 30 gal . wood, bottles |
| 80-S | 75 | 0 | 75 | 4 gal. wood, cans |
| 110-S | 37 | 19 | 56 | 2 gal. pea gravel, wood |
| 145-S | 0 | 0 | 0 | 2 gal. worm tubes, wood |
| 135-N | 0 | $-0$ | 0 | 1 gal. worm tubes, heart urchins |
| Average | $27 \pm 30$ | $16 \pm 17$ | $43+32$ |  |

Appendix Table 10 (Continued)

|  | Females | Males | All crabs | Comments |
| :---: | :---: | :---: | :---: | :---: |
| Transect \#5 |  |  |  |  |
| 20-S | 94 | 37 | 131 | 20 gal. pea gravel, Ulva |
| 40-S | 75 | 0 | 75 | 40 gal. wood, bottles, gravel, debris |
| 80-S | 56 | 0 | 56 | 25 gal. wood, bottles, gravel |
| 110-S | 19 | 0 | 19 | 3 gal. worm tubes, wood, pea gravel |
| 165-S | 0 | 0 | 0 | 2 gal. worm tubes, wood, heart urchins |
| 145-M | 0 | 0 | 0 | 2 gal. worm tubes, heart urchins |
| Average | $41 \pm 40$ | $6 \pm 15$ | $47 \pm 51$ |  |
| Transect \#6 |  |  |  |  |
| 80-S | 56 | 19 | 75 | 50 gal . wood |
| 80-M | 262 | 0 | 262 | 15 gal. wood, cans |
| 40-N | 206 | 0 | 206 | 20 gal . wood |
| 20-N | 281 | 19 | 300 | 4 gal. wood chips |
| 10-N | 112 | 19 | 131 | 3 gal. bottles, wood |
| Average | $183 \pm 97$ | $11 \pm 10$ | $195 \pm 92$ |  |

Appendix Table 10 (Continued)

Appendix Table 11. Dungeness crab densities per hectare calculated from beam trawl
Appendix Table 11 (continued)

| Station | Density/Hectare |  |  | Substrate Comments |
| :---: | :---: | :---: | :---: | :---: |
|  | Fema les | Ma Tes | All Crabs |  |
| Transect \#2 |  |  |  |  |
| 10-S | 19 | 19 | 38 | 1 gal. algae, detritus |
| 20-S | 210 | 19 | 249* | 15 gal. algae, shell |
| 40-S | 153 | 0 | 153 | 15 gal. algae, wood |
| 80-S | 305 | 0 | 305 | 25 gal. wood, algae, clay balls |
| 110-S | 0 | 0 | 0 | 3 gal. detritus, algae wood |
| 110-M | 38 | 0 | 38 | 1 gal. worm tubes, wood rhips |
| 130-N | 38 | 0 | 38 | 1 gal. detritus, shell |
| $100-\mathrm{N}$ | 0 | 0 | 0 | 2 gal. wood chips |
| Average | $95 \pm 114$ | $5 \pm 9$ | $103 \pm 119$ |  |
| Transect \#3 |  |  |  |  |
| 10-S | 0 | 19 | 19 | 6 gal. algae, shell |
| 20-S | 38 | 0 | 38 | 50 gal . wood, a lgae |
| 40-S | 553 | 19 | 572 | 30 gal. bark |
| 80-S | 95 | 0 | 95 | 8 gal. rock, algae, detritus |
| 110-S | 57 | 0 | 57 | 3 ga 1. wood, a lgae |
| 130-M | 76 | 0 | 76 | 1 gal. worm tubes, wood, shell |
| $130-\mathrm{N}$ | 19 | 0 | 19 | 1 gal. worm tubes |
| Average | $120 \pm 194$ | $5 \pm 9$ | $125 \pm 199$ |  |
| Transect \#4 |  |  |  |  |
| 10-S | 19 | 0 | 19 | 1 ga 1. algae, shell |
| 20-S | 38 | 38 | 76 | 6 gal. algae, wood, shell |
| 40-S | 172 | 38 | 210 | 30 gal. wood chips, bottles |
| 80-S | 115 | 0 | 115 | 4 gal. wood, algae, cans |
| 110-S | 153 | 0 | 153 | 4 gal. detritus, wood, gravel |
| 145-S | 38 | 19 | 57 | 2 gal. algae, worm tubes |
| 135-N | 0 | 0 | 0 | 1 gal. worm tubes, wood chips |
| Average | $76 \pm 69$ | $14 \pm 18$ | $90 \pm 75$ |  |

Appendix Table 11 (continued)

| Station | $\text { Fema } \frac{\text { Densit }}{\text { les }}$ | $\frac{\text { Hectare }}{\text { Ma Tes }}$ | A11 Crabs | Substrate Conments |
| :---: | :---: | :---: | :---: | :---: |
| Transect \#5 |  |  |  |  |
| 20-S | 76 | 57 | 133 | 20 gal. algae, gravel, wood, shell |
| 40-S | 496 | 57 | 553 | 30 gal. wood, rock, algae |
| 80-S | 95 | 19 | 174 | 40 gal. wood, algae, rock, debris |
| 110-S | 153 | 0 | 153 | 3 gal. wood, detritus |
| 165-S | 0 | 0 | 0 | 1 gal. worm tubes |
| 145-M | 0 | 0 | 0 | 1 gal. worm tubes |
| Average | $137 \pm 186$ | $22 \pm 28$ | $159 \pm 204$ |  |
| Transect \#6 |  |  |  |  |
| 80-S | 76 | 19 | 95 | 50 gal. algae, wood, cans |
| 80-M | 191 | 0 | 191 | 20 gal. wood, debris, cans |
| 40-N | 76 | 0 | 76 | 10 gal. wood, debris |
| 20-N | 19 | 0 | 19 | 2 gal. wood, detritus |
| 10-N | 38 | 0 | 38 | 1 gal. detritus, wood |
| Average | $80 \pm 67$ | $4 \pm 8$ | $84 \pm 67$ |  |

Appendix Table 11 (continued)


| Station $\frac{\text { Density/Hectare }}{\text { Males }}$ All crabs Substrate Comments |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Transect \#7 |  |  |  |  |
| 100-S | 76 | 0 | 76 | 40 gal. wood chips, bottles, cans |
| 100-M | 38 | 0 | 38 | 2 gal. wood chips |
| 100-N | 0 | 0 | 0 | 2 gal. wood, detritus |
| $80-\mathrm{N}$ | 210 | 19 | 229 | 3 gal. wood, cans |
| $40-\mathrm{N}$ | 229 | 0 | 229 | 1 gal. wood, detritus, shell |
| 20-N | 95 | 0 | 95 | 4 gal. wood, shell |
| 10-N | 76 | 0 | 76 | 0.5 gal. detritus, shell |
| Average | $10 \overline{3 \pm 85}$ | $3 \pm 7$ | $10 \overline{ \pm} 89$ |  |
| GRAND AVERAGE | $92 \pm 173$ | $8 \pm 15$ | $100 \pm 119$ |  |

Appendix Table 12. Dungeness crab densities per hectare calculated from beam trawl catches at

Appendix Table 13. Commercial shrimp densities per hectare in Port Gardner calculated from beam trawl catches in February and April, 1986.
STATION 1 FEBRUARY APRIL

Navy Disposal Site ( 80 m )

| Station 1 | 95 | 0 |
| :--- | :---: | :--- |
| Státion 2 | 1,069 | 0 |
| Station 3 | $\frac{935}{700} \pm 528$ | 0 |
| Average | - |  |

PSDDA Site 2 (110m)

| Station 1 | 76 | 19 |
| :--- | :--- | :--- |

Station 2
Station 3
Average
76
0
$\frac{95}{32 \pm 11} \quad \frac{19}{13 \pm 11}$
PSDDA Site 1 (130m)

| Station 1 | 0 | 38 |
| :--- | :--- | :--- |
| Station 2 | 0 | 95 |
| Station 3 | 0 | $\frac{57}{2} \pm 29$ |
| Average | 0 | $63 \pm$ |

Transect \#1

| $10-S$ | 0 | 0 |
| :---: | :---: | :---: |
| $20-S$ | 0 | 0 |
| $40-S$ | 57 | 0 |
| $80-S$ | 57 | 38 |
| $100-M$ | 19 | 57 |
| $80-N$ | 248 | 0 |
| $40-N$ | 95 | N.S. $^{3}$ |
| Average | $68 \pm 87$ | $16 \pm 25$ |

Transect \#2

| $10-S$ | 0 | 0 |
| :--- | ---: | ---: |
| $20-S$ | 95 | 19 |
| $40-S$ | 0 | 0 |


| Appendix Table 13. | Commercial shrimp densities per hectare <br> in Port Gardner calculated from beam traw |
| :--- | :--- |
| (Cont'd.) | catches in February and April, 1986. |

STATION 1 FEBRUARY APRIL

Transect \#2
80-S 22
2290
110-S
57
19
110-M
33
19
130-N
100-N
Average
$\frac{267}{95 \pm 100}$
19
$\frac{19}{12 \pm 10}$

Transect \#3

| $10-S$ | 0 | 0 |
| :--- | :---: | :---: |
| $20-S$ | 0 | 0 |
| $40-S$ | 0 | 0 |
| $80-S$ | 0 | 0 |
| $110-S$ | 134 | 57 |
| $130-M$ | 76 | 19 |
| $130-N$ | 57 | -19 |
| rage | $38 \pm 53$ | $14 \pm 21$ |

Transect \#4
10-S 95
20-S
40-S
80-S
110-S
145-S
135-N
Average

$$
\frac{95}{84 \pm 63} \quad \frac{0}{22 \pm 43}
$$

0
0
0
0
$115 \quad 115$
76
38

| Appendix Table 13. $\quad$Commercial shrimp densities per hectare <br> in Port Gardner calculated from beam trawl |  |
| :--- | :--- |
| (Cont'd.) | catches in February and April | catches in February and April, 1986.

STATION 1 FEBRUARY APRIL

Transect \#5

| $10-S$ | 229 | 0 |
| :---: | :---: | :---: |
| $40-S$ | 897 | 38 |
| $80-S$ | 153 | 115 |
| $110-S$ | 38 | 30 |
| $165-S$ | 38 | 19 |
| $145-M$ | 0 | 38 |
| Average | $226 \pm 340$ | $40 \pm 39$ |

Transect \#6

| $80-S$ | 57 | 33 |
| :---: | :---: | :---: |
| $80-M$ | 172 | 0 |
| $40-N$ | 76 | 19 |
| $20-N$ | 19 | 0 |
| $10-N$ | 0 | 0 |
| Average | $65 \pm 67$ | $11 \pm 17$ |

Transect \#7

| $100-\mathrm{S}$ | 267 | 0 |
| :---: | :---: | :---: |
| $100-\mathrm{M}$ | 57 | 19 |
| $100-\mathrm{N}$ | 210 | 38 |
| $80-\mathrm{N}$ | 195 | 0 |
| $40-\mathrm{N}$ | 0 | 0 |
| $20-\mathrm{N}$ | 19 | 0 |
| $10-\mathrm{N}$ | $\frac{0}{0} \pm 113$ | $-107 \pm 15$ |
| Average |  | $0 \pm 28$ |
| Grand Average | $123 \pm 218$ | $19 \pm 28$ |

1
Station numbers for the transects indicate depth in meters plus locations where $N=$ North, $M=$ Middie, $S=$ South.

Appendix Table 13. Commercial shrimp densities per hectare in Port Gardner calculated from beam trawl
(Cont'd.) catches in February and April, 1986,

2
Mean $\pm 1$ Standard Diviation
3
N.S. = Not Sampled
Appendix Table 14. Densities per hectare of Dungeness crabs and commercial shrimp calculated from

| Station ${ }^{1}$ | Feburary 1986 |  | April 1986 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Cancer magister | Commercial shrimp | Cancer magister | Conmercial shrimp |
| Navy Disposal Site (80m) |  |  |  |  |
| Station 1 | 27 | 239 | 0 | 90 |
| Station 2 | 9 | 108 | 14 | 131 |
| Station 3 | 27 | 216 | 32 | 117 |
| Average | $\overline{21 \pm 10^{2}}$ | $138 \pm 70$ | $15 \pm 6$ | $113 \pm 21$ |
| PSDDA. Site 2 (110m) |  |  |  |  |
| Station 1 | 0 | 505 | 0 | 50 |
| Station 2 | 0 | 410 | 0 | 36 |
| Station 3 | 0 | 149 | 0 | 27 |
| Average | 0 | $355 \pm 184$ | 0 | $38 \pm 12$ |
| PSDDA Site 1 (130m) |  |  |  |  |
| Station 1 | 5 | 86 | 0 | 36 |
| Station 2 | 0 | 162 | 0 | 27 |
| Station 3 | 0 | 158 | 0 | 9 |
| Average | $2 \pm 3$ | $135 \pm 43$ | 0 | $24 \pm 14$ |
| Transect 1 |  |  |  |  |
| 20-S | 5 | 0 | 9 | 0 |
| 40-S | 18 | 54 | 0 | 0 |
| 100-M | 9 | 441 | 5 | 27 |
| Average | $11 \pm 7$ | $165 \pm 241$ | $5 \pm 5$ | $9 \pm 16$ |

Appendix Table 14 (con't).

Appendix Table 15. Dungeness crab densities per hectare calculated from otter $\frac{\text { trawl }}{1986 \text {. }}$ catches in Port Gardner in June and early July,

| Station ${ }^{1}$ | Density/Hectare |  |  |
| :---: | :---: | :---: | :---: |
|  | Females | Males | All crabs |
| Navy Site ( 80 m ) |  |  |  |
| Station 1 | 9 | 0 | 9 |
| Station 2 | 14 | 4 | 18 |
| Station 3 | 0 | 0 | 0 |
| Average | $7 \pm 7^{2}$ | $1 \pm 2$ | $9 \pm 9$ |
| $\underline{\text { PSDDA Site } 2 \text { (110m) }}$ |  |  |  |
| Station 1 | 4 | 0 | 4 |
| Station 2 | 0 | 0 | 0 |
| Station 3 | 0 | 0 | 0 |
| Average | $1 \pm 2$ | 0 | $1 \pm 2$ |
| PSDDA Site 1 (130m) |  |  |  |
| Station 1 | 0 | 0 | 0 |
| Station 2 | 0 | 0 | 0 |
| Station 3 | $\bigcirc$ | 0 | $\bigcirc$ |
| Average | 0 | 0 | 0 |
| Transect \#1 |  |  |  |
| 20-S | 0 | 0 | 0 |
| 40-S | 0 | 4 | 4 |
| 100-M | 18 | 4 | 22 |
| Average | $6 \pm 10$ | $3 \pm 2$ | $9 \pm 12$ |
| Transect \#2 |  |  |  |
| 20-S | 0 | 0 | 0 |
| 40-S | 4 | 0 | 4 |
| 110-S | 14 | 0 | 14 |
| Average | $6 \pm 7$ | 0 | $6 \pm 7$ |


| Appendix Table 15 | (Continued) |  |  |
| :---: | :---: | :---: | :---: |
| Station | Females | Males | All crabs |
| Transect \#4 |  |  |  |
| $20-\mathrm{S}$ | 0 | 0 | 0 |
| $40-\mathrm{S}$ | 0 | 0 | 0 |
| $145-\mathrm{S}$ | 0 | 0 | 0 |
| Average | 0 | $1 \pm 2$ | $4 \pm 7$ |
| Grand Average | $4 \pm 6$ | 0 | 0 |

1 Station numbers for the transects indicate depth in meters plus locations where $S=$ south and $M=$ middle.

2
Mean $\pm 1$ standard deviation.

Appendix Table 16. Commercial shrimp densities per hectare calculated from beam and otter trawls in Port Gardner in June and early July, 1986.

| Station ${ }^{1}$ | Density/Hectare |  |
| :---: | :---: | :---: |
|  | Beam trawl | Otter trawl |
| Navy Disposal Site (80m) |  |  |
| Station 1 | 19 | 9 |
| Station 2 | 0 | 0 |
| Station 3 | 0 | 4 |
| Average | $6 \pm 11^{2}$ | $4 \pm 5$ |
| PSDDA Site 2 (110m) |  |  |
| Station 1 | 0 | 228 |
| Station 2 | 0 | 41 |
| Station 3 | 0 | 23 |
| Average | 0 | $117 \pm 148$ |
| PSDDA Site I (130m) |  |  |
| Station 1 | 0 | 131 |
| Station 2 | 19 | 59 |
| Station 3 | 0 | 50 |
| Average | $6 \pm 11$ | $80 \pm 44$ |
| Transect \#1 |  |  |
| 10-S | 0 | N.S. |
| 20-S | 19 | 0 |
| 40-S | 19 | 0 |
| 80-S | 75 | N.S. |
| $100-\mathrm{M}$ | 0 | 221 |
| $80-\mathrm{N}$ | 0 | N.S. |
| 40-N | N.S. ${ }^{3}$ | N.S. |
| Average | $19 \pm 29$ | $74 \pm 128$ |


| Station | Beam trawl | Otter trawl |
| :---: | :---: | :---: |
| Transect \#2 |  |  |
| 10-S | 0 | N.S. |
| 20-S | 19 | 0 |
| 40-S | 19 | 0 |
| 80-S | 0 | N.S. |
| 110-S | 75 | 27 |
| 110-M | 0 | N.S. |
| 130-M | 0 | N.S. |
| 100-N | 0 | N.S. |
| Average | $14 \pm 26$ | $9 \pm 16$ |
| Transect \#3 |  |  |
| 10-S | 0 | N.S. |
| 20-S | 0 | N.S. |
| 40-S | 0 | N.S. |
| 80-S | 0 | N.S. |
| 110-S | 0 | N.S. |
| 130-M | 19 | N.S. |
| 130-N | 0 | N.S. |
| Average | $3 \pm 7$ | -- |
| Transect \#4 |  |  |
| $\cdots$ 10-S | 0 | N, S. |
| 20-S | 0 | 0 |
| 40-S | 0 | 4 |
| 80-S | 0 | N.S. |
| 110-S | 0 | N.S. |


| Station | Beam trawl | Otter trawl |
| :---: | :---: | :---: |
| Transect \#4-Continued |  |  |
| 145-S | - 0 | 36 |
| 135-N | 37 | N.S. |
| Average | $5 \pm 14$ | $13 \pm 20$ |
| Transect \#5 |  |  |
| 20-S | 0 | N.S. |
| 40-S | 787 | N.S. |
| 80-S | 281 | N.S. |
| 110-S | 19 | N.S. |
| 165-S | 19 | N. S. |
| 145-M | 0 | N.S. |
| Average | $184 \pm 315$ | -- |
| Transect \#6 |  |  |
| 80-S | 112 | N.S. |
| 80-M | 19 | N.S. |
| $40-\mathrm{N}$ | 19 | N.S. |
| 20-N | 0 | N.S. |
| 10-N | 0 | N.S. |
| Average | $30 \pm 47$ | . -- |
| Transect \#7 |  |  |
| 100-S | 0 | N.S. |
| 100-M | 0 | N.S. |
| 100-N | 56 | N.S. |
| $80-\mathrm{N}$ | 19 | N.S. |
| $40-\mathrm{N}$ | 0 | N.S. |

Appendix Table 16 (Continued)

| Station | Beam trawl | Otter trawl |
| :--- | :---: | :---: |
| Transect \#7 - Continued |  |  |
| $20-\mathrm{N}$ | 0 | $\mathrm{~N} . \mathrm{S}$. |
| $10-\mathrm{N}$ | -0 | $\mathrm{~N} . \mathrm{S}$. |
| Average | $11 \pm 21$ | -- |
| Grand Average | $30 \pm 112$ | $50 \pm 82$ |

1 Station numbers for the transects indicate depth in meters plus locations where $\mathrm{N}=$ north, $\mathrm{M}=$ middle, and $\mathrm{S}=$ south.

2 Mean $\pm$ standard deviation.
3 N.S. = not sampled.

| Appendix Table 17. Shrimp densities per hectare calculated from both beam and otter trawl catches in Port Gardner during September, 1986. Station numbers for the transects indicate depths in meters and location where $\mathbb{N}=$ North, $\mathrm{S}=$ South, $\mathrm{E}=$ East, and $\mathrm{W}=$ West. The averages are means $\pm 1$ standard deviation. N.S. $=$ not sampled. Estimated crab densities are also given for the otter traw 1 . |  |  |  |
| :---: | :---: | :---: | :---: |
| Station | Beam Trawl | Otter Trawl |  |
|  | Shrimp/hectare | Shrimp/hectare | Crab/hectare |
| Navy Disposal Site ( 80 m ) |  |  |  |
| Station 1 | 581 | 387 | 5 |
| Station 2 | 169 | 536 | 0 |
| Station 3 | 131 | 405 | 0 |
| Average | $294 \pm 250$ | $443 \pm 81$ | $2 \pm 3$ |
| PSDDA: Site $2(110 \mathrm{~m})$ |  |  |  |
| Station 1 | 19 | 77 | 14 |
| Station 2 | 0 | 72 | 18 |
| Station 3 | 0 | 108 | 27 |
| Average | $6 \pm 11$ | $86 \pm 20$ | $20 \pm 7$ |
| PSDDA Site 1 ( 130 m ) |  |  |  |
| Station 1 | 19 | 81 | 9 |
| Station 2 | 38 | 104 | 14 |
| Station 3 | 38 | 117 | 5 |
| Average | $32 \pm 11$ | $101 \pm 18$ | $12 \pm 4$ |
| Transect \#1 |  |  |  |
| 10-S | 0 | N.S. | N.S. |
| 20-S | 375 | 0 | 0 |
| 40-S | 1760 | 5 | 9 |
| 80-5 | 375 | N.S. | N.S. |
| 100-M | 187 | 198 | 0 |
| 80-N | 131 | N.S. | N.S. |
| 40-N | N.S. | N.S. | N.S. |
| Average | $471 \pm 648$ | $68 \pm 113$ | $3 \pm 5$ |

Appendix Table 17 (cont.)

|  | Beam Trawl | Otter Trawl |
| :---: | :---: | :---: | :---: |
|  | Shrimp/hectare | Shrimp/hectare Crab/hectare |

Transect \#2

| $10-\mathrm{S}$ | 0 |
| ---: | ---: |
| $20-\mathrm{S}$ | 300 |
| $40-\mathrm{S}$ | 356 |
| $80-\mathrm{S}$ | 730 |
| $110-\mathrm{S}$ | 38 |
| $110-\mathrm{M}$ | 19 |
| $130-\mathrm{N}$ | 38 |
| $100-\mathrm{N}$ | $\underline{38}$ |
| Average | $190 \pm 258$ |


| N.S. | N.S. |
| :---: | ---: |
| 0 | 18 |
| 0 | 18 |
| N.S. | N.S. |
| 68 | 5 |
| N.S. | N.S. |
| N.S. | N.S. |
| N.S. | N.S. |
| $23 \pm 39$ | $14 \pm 8$ |

Transect \#3

| $10-S$ | 0 |
| ---: | ---: |
| $20-S$ | 0 |
| $40-S$ | 131 |
| $80-S$ | 206 |
| $110-S$ | 38 |
| $130-M$ | 75 |
| $130-\mathrm{N}$ | -56 |
| Average | $72 \pm 74$ |

N.S.
N.S.
N.S.
N.S.
N.S.
N.S.
N.S. N.S.
N.S. N.S.
N.S. N.S.
N.S. N.S.

Transect \#4

| $10-\mathrm{S}$ | 0 |
| ---: | ---: |
| $20-\mathrm{S}$ | 56 |
| $40-\mathrm{S}$ | 0 |
| $80-\mathrm{S}$ | 75 |
| $110-\mathrm{S}$ | 56 |
| $145-\mathrm{S}$ | 56 |
| $135-\mathrm{N}$ | - |
| Average | $35 \pm 33$ |


| N.S. | N.S. |
| :---: | ---: |
| 0 | 9 |
| 5 | 5 |
| N.S. | N.S. |
| N.S. | N.S. |
| 45 | 0 |
| N.S. | N.S. |
| $17 \pm 25$ | $5 \pm 5$ |

Transect \#5

| $20-S$ | 0 |
| ---: | ---: |
| $40-S$ | 150 |
| $80-S$ | 936 |
| $110-S$ | 131 |
| $165-S$ | 0 |
| $145-M$ | 75 |


| N.S. | N.S. |
| :--- | :--- |
| N.S. | N.S. |

Average $\quad 215 \pm 359$

| Station | Beam Trawl <br> Shrimp/hectare | Otter Trawl |  |
| :---: | :---: | :---: | :---: |
|  |  | Shrimp/hectare | Crab/hectare |
| Transect \#6 |  |  |  |
| 80-S | 655 | N.S. | N.S. |
| 80-M | 1292 | N.S. | N.S. |
| 40-N | 243 | N.S. | N.S. |
| 20-N | 0 | N.S. | N.S. |
| 10-N | 0 | N.S. | N.S. |
| Average | $438 \pm 547$ |  |  |
| Transect \#7 |  |  |  |
| 100-S | 262 | N.S. | N.S. |
| 100-M | 412 | N.S. | N.S. |
| 100-N | 393 | N.S. | N.S. |
| 80-N | 1049 | N.S. | N.S. |
| 40-N | 3127 | N.S. | N.S. |
| 20-N | 0 | N.S. | N.S. |
| 10-N | 0 | N.S. | N.S. |
| Average | $749 \pm 1106$ |  |  |
| Port Gardner Average | $269 \pm 527$ | $123 \pm 159$ | $9 \pm 8$ |

Appendix Table 18. Shrimp densities/hectare calculated from both beam and otter trawl catches at extra stations in Port Gardner during September, 1986. The averages are means $\pm 1$ standard deviation. N.S. = not sampled.

| Station | Shrimp Density/Hectare |  |
| :---: | :---: | :---: |
|  | Beam traw1 | Otter trawl |
| West of Navy Site |  |  |
| Station A ( 105 m ) | 19 | N.S. |
| Station B (110 m) | 0 | N.S. |
| Station C (90 m) | 94 | N.S. |
| Station D (105 m) | 75 | N.S. |
| Station E (115 m) | 38 | 68 |
| Station F (110 m) | 94 | N.S. |
| Average | $53 \pm 40$ | $68 \pm 0$ |

East of PSDDA Site 1

| Station $G(130 \mathrm{~m})$ | 38 | N.S. |
| :---: | :---: | :---: |
| Station $\mathrm{H}(130 \mathrm{~m})$ | $\underline{ }$ | N.S. |
| Average | $28 \pm 13$ |  |

Between Mukilteo and Picnic Point

| Station $1(40 \mathrm{~m})$ | 0 | N.S. |
| :--- | :--- | :--- |
| Station $2(40 \mathrm{~m})$ | 0 | N.S. |
| Station $3(40 \mathrm{~m})$ | 0 | N.S. |
| Station $4(10 \mathrm{~m})$ | 0 | N.S. |
| Station $4(20 \mathrm{~m})$ | 0 | N.S. |
| Station $4(40 \mathrm{~m})$ | 0 | N.S. |
| Station $4(80 \mathrm{~m})$ | 0 | N.S. |

Average 0

APPENDIX

PART II

```
APPENDIX A
Analyses of fish data collected by beam trawls in Commencement Bay, Elliott Bay and Saratoga Passage during 1986.
```

Commencement Bay
Abundance and biomass. The samples collected during the summer cruise were the only ones available for analyses. Abundance values ranged from 1 to 43 individuals per location, while biomass values ranged from 45 to 4,191 grams per location (Appendix A, Table 1). At locations where fish were captured, the two PSDDA sites had by far the lowest value of either measure. Sample sizes were too small to determine dominant species at each site.

Species richness. Species richness values ranged from 1 to 8 showing a similar pattern to the abundance and biomass results. The deeper PSDDA sites had the lowest values. The 20 m station had a much higher value (Appendix $A$, Table 1).

Species diversity. Species diversity values ranged from 0.0 to 0.71 (Appendix A, Table 1). The distribution of values among sites was identical to species richness. The deeper PSDDA sjtes had the lowest values, while the 20-m station had the highest value.

## Elliott Bay

Abundance and biomass. Total abundance ranged from 3 to 22 fish per location, and total biomass ranged from 69 to 1,595 grams per location (Appendix A, Table 2). The results did not suggest any patterns, seasonally or by station.

Species richness. Species richness values ranged from 2 to 6 (Appendix A, Table 2). The distribution among locations was similar to abundance and biomass, and no seasonal or location patterns were evident.

Species diversity. Species diversity values ranged from 0.2 to 0.9 (Appendix A, Table 2), and as with species richness, no pattern by season or location was apparent.

$$
\begin{array}{lll}
\text { Appendix A, Table 2. Abundance, biomass, species richness and species diversity of fish caught } \\
\text { by beam trawl i.n Elliott Bay by season. }
\end{array}
$$

$$
\begin{aligned}
& \text { Appendix A, Table 1. } \begin{array}{l}
\text { Abundance, biomass, species richness and species } \\
\text { diversity of fish caught by beam trawl in } \\
\text { Commencement Bay during summer, 1986. }
\end{array} \\
& \\
& \text { Location }
\end{aligned}
$$

## Saratoga Passage

Abundance and biomass. Saratoga Passage was not sampled during the autumn, therefore only the summer data were analyzed. Total abundance values ranged from 3 to 12 fish per location; total biomass values ranged from 51 to 1,004 grams per location (Appendix A, Table 3). The PSDDA site was the deepest and had the highest values of both abundance and biomass. The abundance and biomass values diminished as station depth decreased.

Species richness. Species richness ranged from 1 to 7 (Appendix A, Table 3). The pattern was the same as that of abundance and biomass: the deeper PSDDA site had the highest values then values diminished as station depth decreased.

Species diversity. Species diversity values ranged from 0.0 to 0.5 (Appendix A, Table 3). The highest values were at the deepest PSDDA location, then values decreased with decreasing depth at all other locations.

Appendix A, Table 3. Abundance, biomass, species richness and species diversity of fish caught by beam trawl in Saratoga Passage during summer.

| Location | Abundance | Biomass (gm) | Species <br> richness | Species <br> diversity |
| :--- | :---: | :---: | :---: | :---: |
| PSDDA Site | 11.7 | $1,004.2$ | 7 | 0.46 |
| 80 m E Station | 7.0 | 109.5 | 3 | 0.41 |
| 40 m E Station | 6.0 | 51.0 | 3 | 0.38 |
| 20 m E Station | 3.0 | 52.0 | 1 | 0.00 |

```
                    APPENDIX B
        Length frequency histograms of abundant,
    non-commercially or recreationally important,
fish caught jn Commencement Bay and Elliott Bay.
```



Appendix B, Figure 1. Length frequency of otter trawl caught ratfish, shown by sex and life history stage, during summer at 156 m in Commencement Bay.


Appendix B, Figure 2. Length frequency of otter trawl caught ratfish, shown by sex, during summer at PSDDA 1 in Commencement Bay.


Appendix B, Figure 3. Length frequency of otter trawl caught ratfish, shown by sex and life history stage, during autumn at PSDDA 1 in Commencement Bay.


Appendix B, Figure 4. Length frequency of otter trawl caught ratfish, shown by sex and life history stage, during summer at PSDDA 1 reference site in Elliott Bay.


Appendix B, Figure 5. Length frequency of otter trawl caught ratfish, shown by sex, during autumn at PSDDA 2, reference site 1 in Elliott Bay.


Appendix B, Figure 6. Length frequency of otter trawl caught ratfish, shown by sex and life history stage, during autumn at PSDDA 2, reference site 2 in Elliott Bay.


Appendix B, Figure 7. Length frequency of otter trawl caught slender sole, shown by sex and life history stage, during autumn at PSDDA 1 in Elliott Bay.


Appendix B, Figure 8. Length frequency of otter trawl caught slender sole males during summer at PSDDA 2 in Elliott Bay.


Appendix B, Figure 9. Length frequency of otter trawl caught slender sole, shown by sex, during autumn at PSDDA 2 in Elliott Bay.

## APPENDIX C

$$
\begin{gathered}
\text { Abundance and biomass (and range at multiple } \\
\text { sample stations) of otter trawl caught fish } \\
\text { by station and species in Commencement Bay, } \\
\text { Elliott Bay, Saratoga Passage, and } \\
\text { Port Gardner }
\end{gathered}
$$

Appendix C, Table 1. Abundance and range at multiple sample stations of otter trawl-caught fish by station and species in Commencement Bay on June 13, 1986.


|  | Location |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Species | PSDDA 1 | $\begin{gathered} \text { PSDDA } 1 \\ \text { (range) } \end{gathered}$ | PSDDA 2 | $\begin{aligned} & \text { PSDDA } 2 \\ & \text { (range) } \end{aligned}$ | $20 \mathrm{~m}$ |  | 156 m |
| Sturgeon poacher |  |  |  |  |  |  |  |
| Bluespotted poacher |  |  |  |  |  |  |  |
| Snailfish UID |  |  |  |  |  |  |  |
| Speckled sanddab- adult <br> " " - juvenile |  |  |  |  |  |  |  |
| Arrowtooth flounder |  |  |  |  |  |  |  |
| ```Rex sole- adult " " - juvenile``` |  |  |  |  |  | 6.0 |  |
| Flathead sole- adult <br> " " - juvenile |  |  |  |  |  |  |  |
| ```Rock sole- adult " - juvenjle``` |  |  |  |  |  | 2.0 |  |
| Slender sole- adult <br> " " - juvenile | 1.0 | 0-2 | 0.3 | 0-1 |  |  |  |
| Dover sole- adult <br> " " - juvenjile | 1.3 | 1-2 | 1.0 | 0-3 |  | 5.0 | 6.0 |
| English sole- adult <br> - juvenile |  |  | 0.3 | 0-1 |  | 40.0 |  |
| $\begin{aligned} & \text { C-O sole- adult } \\ & " \quad \text { " juvenile } \end{aligned}$ |  |  |  |  |  |  |  |
| Totals | 6.9 |  | 3.5 |  |  | 91 | 13 |

Appendix C, Table 2. Biomass (in grams) and range at multiple sample stations of otter trawl-caught fish by station and species in Commencement Bay on June 13, 1986.

Location


```
Appendix C, Table 2. (Continued)
```


## Location



Appendix C, Table 3. Abundance and range at multiple sample stations of otter trawl-caught fish by station and species in Commencement Bay on September 8, 1986.

Location


```
Appendix C, Table 3. (Continued)
```


## Location



| Appendix C, Table 4. Biomass (in grams) and range at multiple sample stations of otter trawl-caught fish by station and species in Commencement Bay on September 8, 1986. <br> Location |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |
| Species P | PSDDA 1 | $\begin{aligned} & \text { PSDDA } 1 \\ & \text { (range) } \end{aligned}$ | PSDDA 2 | $\begin{aligned} & \text { PSDDA } 2 \\ & \text { (range) } \end{aligned}$ | $20 \text { m }$ | $40 \text { m }$ | 156 m |
| $\begin{gathered} \text { Spiny dogfish- adult } \\ \text { " juv. } \end{gathered}$ |  |  |  |  |  |  |  |
| Longnose skate |  |  |  |  |  |  |  |
| Ratfish-adult <br> juvenile$\quad 1$, | $\begin{array}{r} 1,830.0 \\ 7.7 \end{array}$ | $\begin{gathered} 720-3,610 \\ 0-23 \end{gathered}$ | 1,533.3 | 850-2,550 | 635 | 290 | $\begin{array}{r} 3140.0 \\ 550.0 \end{array}$ |
| Pacifjc herring |  |  |  |  |  |  |  |
| Longfin smelt | 0.7 | 0-2 |  |  |  |  |  |
| Plainfin midshipman- adult 219.2 |  |  |  |  |  |  |  |
| ```Pacific cod- adult " " - juvenile``` | $1,573.3$ | 0-4,200 | 180 | 0-540 |  |  |  |
| Pacific hake- adult <br> - juvenile | 140.0 | 0-420 | 0.5 | 0-1.5 |  |  |  |
| Pacific tomcod- adult <br> " " - juvenile | ile |  |  |  |  | $\begin{aligned} & 355 \\ & 210 \end{aligned}$ |  |
| Walleye pollock- adult <br> - juvenile | t | 0-160 | 134 | 0-212 |  |  |  |
| Red brotula |  |  |  |  |  |  |  |
| Pallid eelpout |  |  |  |  |  |  |  |
| Shortfin eelpout |  |  |  |  |  |  |  |
| Black eelpout- adult <br> - juvenile | l 1.2 | 0-3.5 |  |  |  |  | 4.5 |
| $\begin{aligned} & \text { Blackbelly eelpout- adult } \\ & \text { " } \quad \text { juv. } \end{aligned}$ | $\begin{aligned} & \text { dult } \\ & \text { uv. } \end{aligned}$ |  |  |  |  | 116.5 |  |
| Shiner perch- adult <br> " " - juvenjle |  |  |  |  | 57 | 22 |  |
| Pile perch- adult <br> - juvenile |  |  |  |  |  | 300 |  |
| Bluebarred prickleback |  |  |  |  |  |  |  |
| Copper rockfish- adult <br> - juvenile | nile |  |  |  | 820 |  |  |
| Splitnose rockfish |  |  |  |  |  |  |  |
| $\begin{aligned} & \text { Quillback rockfish- adult } \\ & \text { " } \quad \text { juv. } \end{aligned}$ | dult |  | 301.7 | 0-565 | 1,190 | 2,480 | 1,180 |
| Canary rockfish |  |  |  |  |  |  |  |
| Rockfish UID- juvenile 12.5 |  |  |  |  |  |  |  |
| Sablefish- adult <br> " - juvenile |  |  |  |  |  |  |  |
| Lingcod |  |  |  |  |  |  |  |
| Roughback sculpin 177.5 |  |  |  |  |  |  |  |
| Spinyhead sculpin |  |  | 5.0 | 0-8.0 |  |  |  |
| Soft sculpin | 1.8 | 0-5.5 |  |  |  |  |  |
| Tadpole sculpin |  |  |  |  |  |  |  |
| Northern spearnose poacher | cher |  |  |  |  | 33.4 |  |

```
Appendix C, Table 4. (Continued)
```

|  |  |  | Location |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Species | PSDDA 1 | PSDDA 1 <br> (range) | PSDDA 2 | $\begin{gathered} \text { PSDDA } 2 \\ \text { (range) } \end{gathered}$ | 20 m | 40 m | 156 m |
| Sturgeon poacher |  |  |  |  |  |  |  |
| Bluespotted poacher |  |  |  |  |  |  |  |
| Snailfish UID |  |  |  |  |  |  | 5 |
| Speckled sanddab- adult <br> - juv. |  |  |  |  | 21 |  |  |
| Arrowtooth flounder |  |  |  |  |  | 330 |  |
| $\begin{aligned} & \text { Rex sole- adult } \\ & " \text { "- juvenile } \end{aligned}$ |  |  | 36.3 | 0-109 |  | 308 | 285 |
| Flathead sole- adult <br> - juvenile |  |  |  |  |  |  |  |
| $\begin{aligned} & \text { Rock sole- adult } \\ & \text { " } " \text { - juvenile } \end{aligned}$ |  |  |  |  | 490 | 519 |  |
| Slender sole- adult <br> " " - juvenile | 170 | 65-360 | 129.3 | 98-190 |  | 443.7 | 110 |
| Dover sole- adult <br> " " - juvenile | 28,533 | 1,970-4,460 | 1,238.3 | 390-2,810 |  | 1,210 50 | 3975 |
| English sole- adult <br> - juvenile | 190 | 0-290 |  |  | 4,890 | 29,865 | 855 |
| $\begin{aligned} & \text { C-0 sole- adult } \\ & \text { " } " \text { juvenile } \end{aligned}$ |  |  |  |  | 240 |  |  |
| Totals | 6,821 |  | 3,558.4 |  | 8,343 | 36,929.3 | 10,117 |

Appendix C, Table 5. Abundance and range of multiple sample stations for otter trawl-caught fish by station and species in Elliott Bay on July 3, 1986.


Appendix C, Table 6. Biomass (in grams) and range at multiple sample stations for otter trawl-caught fish by station and species in Elliott Bay on July 3, 1986.


Appendix C, Table 7. Abundance and range at multiple sample stations of otter trawl-caught fish by station and species in Saratoga Passage on July 1, 1986.

|  |  |  | Location |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Species | PSDDA | $\begin{aligned} & \text { PSDDA } \\ & \text { (range) } \end{aligned}$ | $\begin{aligned} & \text { PSDDA } \\ & \text { reference } \end{aligned}$ | 20 me | 40m E | 40 m W | 80 m E |
| Spiny dogfish- adult juvenile | 0.3 | 0-1 |  |  |  |  | 3 |
| Longnose skate |  |  |  |  |  |  |  |
| Ratfish- adult <br> juvenile | 1 | 1-1 |  |  |  |  | 1 |
| Pacific herring |  |  |  |  |  |  |  |
| Longfin smelt |  |  |  |  |  |  |  |
| Plainfin midshipman- adult <br> - juvenil |  |  |  |  |  |  |  |
| $\begin{array}{cc} \text { Pacific cod - adult } \\ " & " \text { - juvenjile } \end{array}$ |  |  |  |  |  |  |  |
| Pacific hake- adult <br> " " - juvenile | 2.3 | 0-4 | 2 |  |  |  |  |
| Pacific tomcod- adult <br> - juvenile |  |  |  |  | 1 |  |  |
| Walleye pollock- adult <br> " " - juvenile |  |  |  |  |  |  |  |
| Red brotula |  |  |  |  |  |  |  |
| Pallid eelpout |  |  |  |  |  |  |  |
| Shortfin eelpout | 0.7 | 0-2 |  |  |  |  |  |
| Black eelpout- adult <br> - juvenile |  |  |  |  |  |  |  |
| Blackbelly eelpout- adult <br> - juvenile |  |  |  |  |  |  | 2 |
| Shiner perch- adult <br> " " - juvenile |  |  |  |  |  |  |  |
| $\begin{aligned} & \text { Pile perch- adult } \\ & \text { " - juvenjle } \end{aligned}$ |  |  |  |  |  |  |  |
| Bluebarred prickleback Copper rockfish- adult <br> " " - juvenile |  |  |  |  |  |  |  |
| Splitnose rockfish |  |  |  |  |  |  |  |
| Quj.llback rockfish- adult <br> - juvenile | 0.3 | 0-1 |  |  |  |  |  |
| Canary rockfish |  |  |  |  |  |  |  |
| Rockfish UID- juvenile |  |  |  |  |  |  |  |
| Sablefish- adult <br> " - juvenile |  |  |  |  |  |  |  |
| Lingcod | 0.3 | 0-1 |  |  |  |  |  |
| Roughback sculpin |  |  |  |  | 1 |  |  |
| Spinyhead sculpin |  |  |  |  |  |  |  |
| Soft sculpin |  |  |  |  |  |  |  |
| Tadpole sculpin | 3 | 0-9 |  |  |  |  |  |
| Northern spearnose poacher |  |  |  |  |  |  |  |

Appendix C, Table 7. (Continued)


Appendix C, Table 8. Biomass (in grams) and range at multiple sample stations of otter trawl caught fish by station and species in Saratoga Passage on July 1, 1986.

Location

PSDDA

| Specjes | PSDDA | PSDDA Reference (range) | 20 m E | 40m E | 40 m W 80m E |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\operatorname{Spiny}_{\text {" }}^{\text {Sogfish- }} \underset{\text { juvenile }}{\text { adult }}$ | 351.7 | 0-1055 |  |  | 978 |
| Longnose skate |  |  |  |  |  |
| $\begin{gathered} \text { Ratfish- } \\ \text { " } \quad \text { juvenile } \end{gathered}$ | 441.7 | 255-695 |  |  | 142 |
| Pacific herring |  |  |  |  |  |
| Longfin smelt |  |  |  |  |  |
| Plainfin midshipman- adult <br> - juvenile |  |  |  |  |  |
| $\begin{gathered} \text { Pacific cod- adult } \\ " \quad "-\text { juvenjle } \end{gathered}$ |  |  |  |  |  |
| $\begin{aligned} & \text { Pacific hake- adult } \\ & \text { " } " \text { - juvenile } \end{aligned}$ | 741.5 | $0-1,381.5678$ |  |  |  |
| $\begin{gathered} \text { Pacific tomeod- adult } \\ " \text { - juvenile } \end{gathered}$ |  |  |  | 1.5 |  |
| Walleye pollock- adult <br> " " - juvenile |  |  |  |  |  |
| Red brotula |  |  |  |  |  |
| Pallid eelpout |  |  |  |  |  |
| Shortfin eelpout | 15.2 | 0-45.5 |  |  |  |
| Black eelpout- adult <br> - juvenile |  |  |  |  | 56 |
| Blackbelly eelpout- adult <br> - juvenile |  |  |  |  |  |
| Shiner perch- adult <br> " " - juvenile |  |  |  |  |  |
| $\begin{gathered} \text { Pile perch- adult } \\ \text { " } " \text { - juvenile } \end{gathered}$ |  |  |  |  |  |
| Bluebarred prickleback Copper rockfish- adult " " <br> - juvenile |  |  |  |  |  |
| Splitnose rockfish |  |  |  |  |  |
| $\begin{gathered} \text { Quillback rockfish- adult } \\ \text { " } \\ \hline \text { - juvenjle } \end{gathered}$ | 34.7 | 0-104 |  |  |  |
| Canary rockfish |  |  |  |  |  |
| Rockfish UID- juvenile |  |  |  |  |  |
| Sablefish- adult <br> " - juvenile |  |  |  |  |  |
| Lingcod | 1,666.7 | 0-5,000 |  |  |  |
| Roughback sculpin |  |  | 9.5 |  |  |
| Spinyhead sculpin |  |  |  |  |  |
| Soft sculpin |  |  |  |  |  |
| Tadpole sculpin | 119.0 | 0-357 |  |  |  |

```
Appendix C, Table 8. (Continued)
```

|  |  |  | cation |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Species | PSDDA | $\begin{aligned} & \text { PSDDA } \\ & \text { (range) } \end{aligned}$ | PSDDA <br> Reference | 20m | E | 40m E | 40m W | 80m E |
| Northern spearnose poacher |  |  |  |  |  |  |  |  |
| Sturgeon poacher |  |  |  |  |  |  |  |  |
| Bluespotted poacher |  |  |  |  |  |  |  |  |
| Snailfish UID |  |  |  |  |  |  |  |  |
| Speckled sanddab- adult <br> " " - juvenjile |  |  |  |  |  |  |  |  |
| Arrowtooth flounder |  |  |  |  |  |  |  |  |
| $\begin{aligned} & \text { Rex sole- adult } \\ & \text { " } " \text { - juvenile } \end{aligned}$ |  |  |  |  |  |  |  | 107 |
| $\begin{gathered} \text { Flathead sole- adult } \\ " \mathrm{"} \text { - juvenjile } \end{gathered}$ |  |  |  |  |  |  |  |  |
| $\begin{aligned} & \text { Rock sole- adult } \\ & \text { " " juvenile } \end{aligned}$ |  |  |  | 65 |  | $\begin{array}{r} 448 \\ 19 \end{array}$ |  |  |
| Slender sole- adult <br> " " - juvenile | 97 | 0-245 | 120 |  |  |  |  | 142 |
| Dover sole- adult <br> " " - juvenile |  |  |  |  |  |  |  | 142 |
| English sole- adult <br> - juvenjle |  |  |  | 424 |  | 863 | 137 | 417 |
| C-O sole- adult <br> - juvenile |  |  |  |  |  |  |  |  |
| Totals | 3,467.5 |  | 798 | 498.5 | 1, | 331.5 | 137 | 1,984 |

Appendix C, Table 9.

| Fish Speclas |  |
| :---: | :---: |
| Solentiflo Nam | Common Name |
| Lampotra tridentata | cific lan |
| valus acanthias | y dogfit |
| Aaja Mima | longnose skato |
| Hydrolagus colliel |  |
| as sapidissima |  |
| eap all |  |
|  | plain |
| Gads maacocophans | Pacifa |
| Microgadus proximus | Pacific tomcod - ad |
| Meriuccius productus | Pacific hake - adult |
| cis marginata |  |
|  |  |
| Lycodes diapterns | ck |
| codos pacifica | blackbelly e日lpout |
| Cymatogastor aggregata |  |
| Damalichtys vacca | pile perch - a |
|  |  |
| nquilus jor |  |
| Seteres mine |  |
| bastos mal | quillb |
| oplopoma fimb | sab |
| dodus |  |
| Dasycotus seliger | spinyhead scuipin |
| Chitonotus pugetensis | roughback scu |
| Gilbertidia sigalules | soft sculip |
| Icelinus borealis | thern scu |
| Leptocotus amatus | Pacilic staghorn |
| Nautichthys oculotasciatis |  |
| Radulinus aspreflus | sir |
| Battyagonus nigripinnis | blackin starsno |
| Xeneretimus latitons | blach |
| Xeneretmus tiacar |  |
| Cithaichthys sp. | sand |
|  |  |
| Citharichtys stigmaeus |  |
|  | arrowiooth ill |
| Glyplocephalus zachirus | rex sole - adult |
|  |  |
| Hippoglossididss selassod Lepidopsetta bilineata | fiathead sole rock sole - |
|  |  |
| Lyopsotta exilis | slender sole |
| Microstomus pacificu |  |
| Parophyrs vettus | English sole |
| Platichthy | Houn |
| Pleuronichthys coenosus | Cosode |
| 㐋ys mearasticus | sanc sod |


| Flah Specios |  |  |  | Port Gardner W 86 Tran 2405 bund Blomass |  | $\begin{aligned} & \text { Port Gardner } \\ & \text { W B6 } \end{aligned}$ |  | $\begin{aligned} & \text { Port Gardner } \\ & \text { W } 86 \\ & \text { Tran } 4205 \\ & \text { Abund Blomass } \end{aligned}$ |  | Port Gardner W 86Tran 440 S Abund Blomass |  | Port Gardnar W 86 <br> Tran 4 <br> Tran $4145 S$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Solontifio Na |  |  |  |  |  |  |  |  |  |  |  |
| Lampetra tridentata Squatus acanthia Raja mina | Pacific lamprey spiny dogfish longnose skate ratfish . ad |  |  |  |  |  |  | 2 | 580 |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  | 4 | ${ }_{35}$ |
| $\begin{aligned} & \text { Alosa sapidissima } \\ & \text { Clupea pallasii } \\ & \text { Porichthys notatus } \\ & \text { Gadus macrocephalus } \end{aligned}$ | American shad Pacific herring Pacific cod |  |  |  |  |  |  |  |  |  |  |  |  |
| Microgatus pro | Pacific tomood - adur |  |  | ${ }^{13}$ | 105 |  |  |  |  | 14 | 100 |  |  |
| Merlucitis prodects | $\begin{aligned} \text { Pacific hake } & \text { adult } \\ & \text { - juvenile }\end{aligned}$ |  |  |  |  | 5 | 760 |  |  | , |  | 1 | 410 |
| Brosmophycis marginata Lycodapus mandib Lycodes diapterus | red botula pallidd black eelpout belput |  |  |  |  |  |  |  |  |  |  | 2 | 50 |
| ${ }_{\text {L }}$ LYcooses paticica | blackeoly geipout |  |  | $\frac{1}{2}$ | ${ }_{30}^{10}$ |  |  |  |  | 1 | 20 |  | 50 |
| Damalichtys vacca | plie perch - aduit -juenilo |  |  | ${ }_{7}^{41}$ | 255 105 |  |  |  |  | 34 129 | ${ }_{2210}^{200}$ |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ongulus jordan <br> Ronquilus jordani | norneen roncuil |  |  |  |  |  |  |  |  | 36 | 1065 |  |  |
|  | ${ }_{\substack{\text { quillack } \\ \text { sablefish rockish }}}$ |  |  | ${ }^{8}$ | 50 | 2 | 1320 |  |  |  |  | ${ }^{3}$ | 400 |
|  |  |  |  | 2 | 30 |  |  | 1 | 7 | 5 | ${ }^{65}$ |  |  |
| Dasyochus setiger | spinymad sculpin |  |  |  |  |  |  |  |  |  |  |  |  |
|  | sott scupin |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  | 7 | 225 |  |  |  |  | 2 | 380 |  |  |
| Nautiothtys oovolatsiaus | saillin scuipin |  |  |  |  |  |  |  |  |  |  |  |  |
|  | blackinf tatasnout poacher |  |  |  |  |  |  |  |  |  |  |  |  |
| Xeneretimus ratirons | blackip poacher |  |  |  |  |  |  |  |  |  |  | 2 | 30 |
| Keneratims tizanatus |  | 1 | 27 | 12 | 300 |  |  | 4 |  |  |  |  |  |
|  |  |  |  |  |  |  |  | 5 | 80 |  |  |  |  |
| Citharichthys sordidus Citharichthys stigmaous | spacileded sanddab - adult |  |  |  |  |  |  |  |  | ${ }^{16}$ | ${ }_{810}^{15}$ |  |  |
| Atheresthes stomias | arrowtooth flounder <br> rex sole - adut |  |  | 1 | 145 55 | 1 | 130 |  |  |  |  |  |  |
| Hippoglossocios easassoon | natheas soie |  |  |  |  |  |  | 4 | 310 |  |  |  |  |
| Lepicopsenta bilineata | rock sole - adult | 1 | ${ }^{230}$ | 17 | ${ }^{1480}$ |  |  |  |  | ${ }_{9}^{22}$ | 1650 145 |  |  |
| Lyppsetra extls | slender sole a adut |  |  | 6 | 5 | 1 | 90 | 3 | 610 |  |  | 14 | 830 |
| Microstamus pacticus |  |  |  | 1 |  | ${ }_{8}^{11}$ | ${ }_{17190}^{317}$ |  |  | 140 |  | ${ }^{28}$ | 4900 |
| Parophyrs voius |  |  |  | ${ }_{54}$ | 1920 590 |  |  | 1 | 7.2 |  |  |  |  |
| Platichthys stellatus Pleuronichthys coenosus | starry flounder CO sole |  |  |  |  |  |  | 1 | 50 |  |  |  |  |
|  | Total | 4 | 265 | 242 | 5435 | 30 | 7780 | 20 | 1249.2 | 447 | 8595 |  | 10455 |

Appendix C，Table 10.

|  | ¢ٌ | $\stackrel{\square}{+}$ | ゅ | $=$ | ： |  | 운 | \％ |  | $\stackrel{\bar{y}}{\underline{\text { g }}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ® | － | － | － | － |  | ～～ | $\stackrel{\square}{\square}$ | ～ | $\stackrel{\sim}{\sim}$ |
|  |  |  |  |  |  |  | ＋ |  | － | \％ |
|  |  |  |  |  |  |  | － |  | ${ }_{\sim}$ | － |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  | － |
| 豈 | $\stackrel{\circ}{\square}$ |  | ＋ | $\stackrel{\square}{\circ}$ |  |  | $\stackrel{\text { ¢ }}{\text { ¢ }}$ | 䓂 | － |  |
|  | \％ |  | ² | へ |  |  | $\stackrel{\text { Fios }}{ }$ | \％ | \％ | $\stackrel{\bar{\circ}}{\stackrel{\circ}{\square}}$ |
| 空 | ¢ |  | ¢ั | ＂̈ |  |  | ¢亏 | $\stackrel{\square}{\circ}$ | －\％ |  |
| 皆 | － |  | － | \％ |  |  | 8 \％ | ¢ | \％o | $\stackrel{\square}{8}$ |
| 㐭 |  |  |  |  |  | \％ |  | 華 | － |  |
|  | ¢00 |  |  |  |  | \％ |  | \％ | － | － |
|  | ¢ٌ ${ }_{\text {¢ }}^{\text {¢ }}$ |  |  |  | －ío | ¢ |  | $\stackrel{\circ}{\circ}$ | ¢ |  |
| － | $\stackrel{\text { ci－}}{ }$ |  |  |  | －\％ | \％ |  | 7 | $\stackrel{\text { ® }}{ }$ | $\stackrel{\text { ¢ }}{\text { ¢ }}$ |
| 宮 | － | ¢ |  | ¢ | ¢ ¢ ¢ ¢ \％ | $\stackrel{\circ}{i}$ | ¢ | ¢ |  |  |
|  | $\stackrel{8}{\circ}$ | $\stackrel{\text { \％}}{ }$ | $\stackrel{\circ}{8}$ | \％ |  | \％ | ¢¢\％ | ¢\％ |  | ¢ |
|  | $\stackrel{\square}{¢}$ | \％¢ ¢ | $\stackrel{\oplus}{+}$ | ¢¢ | ¢ | ¢ |  | \％\％ |  |  |
| 号 | $\hat{\mathrm{c}}$ | 숭 | \％ | $\pm$ | $80 \%$ | \％ | 50\％ | $\bigcirc$ |  | ¢ |


Appendix C, Table 11.
Appendix C, Table 11 (continued).

| Flish Specles |  | $\begin{gathered} \text { Port Gardner } \\ \text { SU } 86 \\ \text { Tran } 2205 \end{gathered}$ |  | $\begin{gathered} \text { Port Gardner } \\ \text { su } 86 \\ \text { Tran } 240 \text { S } \end{gathered}$ |  | Port Gardner SU 86 |  | $\begin{gathered} \text { Port Gardnar } \\ \text { SU } 86 \\ \text { Tran } 420 \mathrm{~S} \end{gathered}$ |  | Port Gardner SU 86 PSDDA Ref 2 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Scientific Name | Common Name | Abund | Blomass | Abund | Blomass | Abund | 2 110S Blomass | Abund | Blomass | Aran | $\begin{aligned} & 40 \mathrm{~S} \\ & \text { Blomass } \end{aligned}$ | Tran Abund | $\begin{aligned} & 4 \text { 145S } \\ & \text { Biomass } \end{aligned}$ | PSDDA <br> Abund | Ref 1 Blomass |  | Ref 2 Blomass |
| Lampetra tridentata | Pacilic lamprey |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Squalus acanthias | spiny doglish |  |  | 4 | 7625 | 18 | 2115 |  |  |  |  |  |  |  |  |  |  |
| Raja mina | longnose skate |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 | 1600 |
| Hydrolagus colliei | ratiish - adult - juvenile |  |  |  |  |  | $\begin{gathered} 522 \\ 11 \end{gathered}$ |  |  |  |  | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ | $\begin{gathered} 3970 \\ 13 \end{gathered}$ | 3 | 1055 | 1 | 420 |
| Alosa sapidissima | American shad |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Clupea pallasii | Pacific herring | 1 | 28.5 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Porichthys notatus | plainlin midshipman |  |  | 1 | 148.5 |  |  |  |  |  |  |  |  |  |  |  |  |
| Gadus mactocephatus | Pacific cod |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 | 1500 |
| Microgadus proximus | Pacific tomcod - adult <br> - juvenilla |  |  | 16 | 833 |  |  |  |  |  |  |  |  |  |  |  |  |
| Merluccius productus | Pacilic hake - adult <br> - juvenile |  |  |  |  | 1 | 143 |  |  |  |  | 1 | 181 | 3 | 711 |  |  |
| Erosmophycis marginata | red brotula |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Lycodapus manoibularis | pallid eelpout |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Lycodes diaptarus | black eelpout |  |  |  |  |  |  |  |  |  |  | 3 | 66 |  |  |  |  |
| Lycodes pacifica | blackbelly eelpout |  |  | 1 | 7 |  |  |  |  |  |  |  |  | 1 | 19 |  |  |
| Cymatogaster aggregata | shiner perch - adult - juvenile | 7 | 61.5 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Damalichthys vacca | pile perch |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Ronquilus jordani | northern ronquil |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Lumpenus sagita | snake prickleback |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Sebastes maliger | quillback rocktish |  |  |  |  | 1 | 421 |  |  |  |  |  |  | 1 | 270 | 1 | 360.5 |
| Anoplopoma fimbria | sablefish |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Artedius sp. | sculpin |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Dasycotlus setiger | spinyhead sculpin |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 | 43 |
| Chitonotus pugetensis | roughback sculpin |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Gilbertidia sigalutes | sott sculpin |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Icelinus borealis | northern sculpin |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Leptocotus amatus | Pacific staghorn scutin |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Nautichthys oculofasciatus | saillin sculpin |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Radulinus asprellus | slim scupin |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Bathyagonus nigripinnis | blackfin starsnout poacher |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Xeneretmus latifons | blacktip poacher |  |  |  |  |  |  |  |  |  |  |  |  | 1 | 23 | 1 | 120 |
| Xeneretmus tricanthus | bluespotted poacher |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Citharichthys sp. | sanddab - adult <br> - juvenile | 1 | 22 |  |  |  |  | $\begin{aligned} & 2 \\ & 3 \end{aligned}$ | $\begin{gathered} 31 \\ 10.5 \end{gathered}$ |  |  |  |  |  |  |  |  |
| Citharichthys sordidus | Paciicic sanddab |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Citharichthys stigmaeus | speckled sanddab -adult - juverile |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Atheresthes stomias | arrowtooth flounder |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Glyptocephalus zachirus | rex sole -adult <br> - juvenile |  |  | 3 | 174.5 |  |  |  |  |  |  |  |  |  |  |  |  |
| Hippoglossoides elassooton | flathead sole |  |  | 1 | 6.5 |  |  |  |  |  |  |  |  |  |  |  |  |
| Lepidopsetta bilineata | rock sole - adult | 1 | 23.5 | 5 | 606.5 |  |  |  |  |  |  |  |  |  |  |  |  |
|  | - juvenile | 1 | 13 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Lyopsetta exilis | slender sole - adult - juvenile |  |  | 2 | 24.5 |  |  |  |  |  |  | 1 | 186 | 2 | 92.5 |  |  |
| Microstomus pacificus | Dover sole - adult |  |  | 1 | 50 | 3 | 163 |  |  | 1 | 67.5 | 4 | 1563 | 6 | 1955 | 4 | 494.5 |
|  | - juvenile |  |  |  |  |  |  |  |  |  |  | 1 | 4 |  |  |  |  |
| Parophyrs vetlus | English sole - adult | 2 | 249.5 | 22 | 1870.5 | 4 | 475 | 6 | 439.5 |  |  |  |  | 5 | 1540 | 5 | 1050 |
| Platichthys stallatus | starry flounder | 1 | 259.5 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Plouronichthys coenosus | COsole |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Psettichthys melanostictus | sand sole |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | total | 14 | 657.5 | 56 | 11346 | 30 | 3850 | 11 | 481 | 1 | 67.5 | 12 | 5983 | 22 | 5665.5 | 15 | 5588 |



| $\text { Sclentifle Nama }{ }^{\text {Fish Sp }}$ | ${ }_{\text {common Name }}$ | $\begin{gathered} \text { Port Gardner } \\ \text { AU } 86 \\ \text { Tran } 220 S \\ \text { Abund Blomass } \end{gathered}$ |  | $\begin{gathered} \text { Port Gardner } \\ \text { AU } 86 \\ \text { Tran } 2405 \\ \text { Abund Blomass } \end{gathered}$ |  | $\begin{gathered} \text { Port Gardner } \\ \text { AU } 86 \\ \text { Tran } 21105 \\ \text { Abund Blomass } \end{gathered}$ |  | $\begin{gathered} \text { Port Gardner } \\ \text { AU } 86 \\ \text { Tran } 420 S \\ \text { Abund Blomass } \end{gathered}$ |  | $\begin{gathered} \text { Port Gardner } \\ \text { AU B6 } \\ \text { Tran } 4405 \\ \text { Abund Blomass } \end{gathered}$ |  |  |  | $\begin{gathered} \text { Port Gardner } \\ \text { AU } 86 \\ \text { PSDDA Ref } 1 \\ \text { Abund Blomass } \end{gathered}$ |  | $\begin{gathered} \text { Port Gardner } \\ \text { AU } 86 \\ \text { PSDDA Ref } 2 \\ \text { Abund Blomas: } \end{gathered}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lamperata trdennata | 19 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  | 2 | 825 |  |  |  |  |  |  |  |  | 1 | 510 | 1 | 400 |
| Hyproregus solliel | ratish - adut |  |  |  |  |  | 180 |  |  |  |  | 1 | 315 |  |  | 3 | 510 |  |  |
| Alosesespidissima | American shad ${ }^{\text {- }}$ (1)enis |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\underset{\substack{\text { Clupaeapalasit } \\ \text { Porichly } \\ \text { notaus }}}{ }$ |  |  |  |  |  |  |  |  |  | 1 | 4.5 |  |  |  |  |  |  |  |  |
| Cads marosephaus | Pacific cod |  |  |  |  | 3 | 695 |  |  |  |  |  |  |  |  |  |  |  |  |
| Mertucicius prouctus | Pactic hake - aduustion |  |  | 2 | ${ }^{6.5}$ | 2 | 1035 |  |  | ${ }^{37}$ | 165 | 1 | ${ }^{3}$ |  |  | 4 | 266 | 1 | 3.5 |
| Brosmohncis marginata | red broula |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 | 25 |
| Lycodapus mandibuaris | palld opiput black eopout |  |  |  |  |  |  |  |  |  |  | 1 | 25 | 16 | 141 | 2 | 27 |  |  |
| Lycouss pacitica | blackotboly eapout |  |  |  |  | 1 | ${ }^{33}$ |  |  | 2 | ${ }^{21}$ |  |  |  |  |  |  |  |  |
| Cymatogasior ragrogata | shiner perch - adult | 19 | 175 |  |  |  |  |  |  |  | 21 |  |  |  |  |  |  |  |  |
| Damalichtys vacca |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Aonnuilus jordani | northen ronguil |  |  |  | 5.5 |  |  |  |  | 2 | 23.5 |  |  |  |  |  |  |  |  |
| Lempeanus saitua |  |  |  | 2 | 112 | 3 | 485 | 1 | ${ }^{76}$ | 1 | ${ }^{31}$ |  |  |  |  |  |  |  |  |
| Anpopopoma imbia | sabiefsh |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Dasyotus setiger | spinymads scupin rounhock sculin |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 | 76 |  |  |
| Cilubernus pugetensis |  |  |  |  |  | 2 | 6.5 |  |  |  |  |  |  |  |  |  |  | 2 | 7 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Lepiochis ammuns | sailitin sculion |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Raduinus asprelus | silm sculpin |  |  |  |  |  |  |  |  | 2 | 4.5 |  |  |  |  |  |  |  |  |
| Sele | Blackin starsout poacher |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Xeaterimus ticeartus | biluspotood poacher sandono - audit |  |  |  |  |  |  |  |  | 1 | 3 |  |  |  |  |  |  |  |  |
| Citharchinys sp. | sandobob aduit |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Citharichtys sorrious | Pactic sanodab - adut juwent |  |  | 2 | so |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Cilharichthy stigmaus | spoeklod sanddabo a auth | ${ }_{1}^{2}$ | 48 17 |  | ${ }^{36}$ |  |  | 1 | ${ }^{23.5}$ | 2 | 60 |  |  |  |  |  |  |  |  |
| Atheresthes stomias <br> Glyptocephatus zachiru | arrowtooth flounde <br> rex sole - adu |  |  |  |  | 1 | na |  |  | 3 | 220 |  |  |  |  |  |  |  |  |
| Hipogosssidus olassodon | lathead sol |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | 12 |  |  |  |  | 2 |  |  |  |  |  |  |  |  |  |  |  |
| Lyopseta axils | siender sole $e$ adut - ivenile | 2 | 115 | 3 | 36 | 4 | 185 |  |  | 4 | 120 | 1 | 75 |  | 125 |  | ${ }_{7}^{40} 5$ | 6 | 240 |
|  |  | 3 | 325 | 52 | 2685 | ? | ${ }_{9}^{975}$ | 13 |  | ${ }_{28}^{18}$ | 39.5 1755 |  |  | ${ }_{4}^{2}$ | ${ }_{1105}^{575}$ | ; |  | ${ }_{3}^{2}$ | 近 220 |
| Platichthys stollatus Plouronichthys coenosus | starry flounder CO sole sand sole |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Total | ${ }^{28}$ | 692 | 68 | 3187 | 39 | 4934.5 | 21 | 1563 | ${ }^{89}$ | 2697 | 4 | 418 | 34 | 1958.5 |  | 3971.5 |  | 1587.5 |

## APPENDIX D

```
Abundance and biomass (and range of multjple
sample stations) of beam trawl-caught fish by
    station and species in Commencement Bay,
        Elliott Bay and Saratoga Passage.
```

[^3]|  | Location |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Specjes | PSDDA 1 | $\begin{aligned} & \text { PSDDA } 1 \\ & \text { (range) } \end{aligned}$ | PSDDA 2 | $\begin{gathered} \text { PSDDA } 2 \\ \text { (range) } \end{gathered}$ | 20 m |
| Ratfish- adult <br> " - juvenile | 0.67 | 0-1 |  |  | 2 |
| $\underset{\sim}{\text { Plainfin midshipman- adult }}$ <br> - juv. |  |  |  |  | 9 |
| Pacific cod- adult <br> - juvenile |  |  |  |  | 1 |
| Pacific hake- adult <br> - juvenile |  |  |  |  |  |
| Pallid eelpout |  |  |  |  |  |
| Blackfin eelpout |  |  |  |  |  |
| Blackbelly eelpout |  |  |  |  |  |
| Snake prickleback |  |  |  |  |  |
| Bluebarred prickleback |  |  |  |  |  |
| Quilliback rockfish- adult <br> - juvenile |  |  |  |  | 1 |
| Roughback sculpin |  |  | 0.3 | 0-1 |  |
| Tadpole sculpin |  |  |  |  |  |
| Slim sculpin |  |  |  |  |  |
| Bigeye poacher |  |  | 0.3 | 0-1 |  |
| Blackfin poacher |  |  |  |  |  |
| Arrowtooth flounder | 0.3 | 0-1 |  |  |  |
| Flathead sole- adult <br> " " - juvenile |  |  |  |  |  |
| Rock sole- adult <br> - juvenjile |  |  |  |  | 7 5 |
| Slender sole- adult <br> - juvenile |  |  | 0.3 | 0-1 |  |
| Dover sole- adult <br> " " - juvenile |  |  |  |  |  |
| English sole- adult <br> - juvenile |  |  |  |  | 17 |
| Total | 1 |  | 1 |  | 43 |

Appendix D, Table 2. Biomass (in grams) and range at multiple sample stations of beam trawl-caught fish by station and species in Commencement Bay during July 1986.

|  |  |  | cation |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Species | PSDDA 1 | PSDDA 1 <br> (range) | PSDDA 2 | PSDDA 2 <br> (range) | 20 m |
| Ratfish- adult <br> - juvenile | 143.7 | 0-381 |  |  | 770.0 |
| Plainfin midshipman- adult |  |  |  |  | 406.5 |
| Pacific cod- adult <br> - juvenile |  |  |  |  | 106.0 |
| $\begin{gathered} \text { Pacific hake- adult } \\ \text { " } / \text { - juvenile } \end{gathered}$ |  |  |  |  |  |
| Pallid eelpout |  |  |  |  |  |
| Blackfin eelpout |  |  |  |  |  |
| Blackbelly eelpout |  |  |  |  |  |
| Snake prickleback |  |  |  |  |  |
| Bluebarred prickleback |  |  |  |  |  |
| Quillback rockfish- adult <br> - juvenile |  |  |  |  | 175.0 |
| Roughback sculpin |  |  | 3.3 |  |  |
| Tadpole sculpin |  |  |  |  |  |
| Slim sculpin |  |  |  |  |  |
| Bigeye poacher |  |  | 6.7 | 0-20 |  |
| Blackfin poacher |  |  |  |  |  |
| Arrowtooth flounder | 68.3 | 0-205 |  |  |  |
| Flathead sole- adult <br> - juvenile |  |  |  |  |  |
| $\begin{aligned} & \text { Rock sole- adult } \\ & \text { " " - juvenile } \end{aligned}$ |  |  |  |  | $\begin{aligned} & 304.5 \\ & 52.5 \end{aligned}$ |
| Slender sole- adult <br> - juvenjle |  |  | 35.0 | 0-105 |  |
| $\begin{aligned} & \text { Dover sole- adult } \\ & " \mathrm{"} \text { - juvenile } \end{aligned}$ |  |  |  |  | 7.5 |
| English sole- adult <br> - juvenile |  |  |  |  | 2,369.5 |
| Total | 212.0 |  | 45.0 |  | 4,191.5 |

Appendix $D$, Table 3. Abundance and range at multiple sample stations of beam trawl-caught fish by station and species in Elliott Bay during June 1986.


| Appendix $D$, Table 4. Biomass (in grams) and range at multiple sample stations of beam trawl-caught fish by station and species in Elliott Bay during June 1986. |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Location |  |  |  |  |  |
| Species | PSDDA 1 | $\begin{aligned} & \text { PSDDA } 1 \\ & \text { (range) } \end{aligned}$ | PSDDA 1-Ref | PSDDA 2 | $\begin{gathered} \text { PSDDA } 2 \\ \text { (range) } \end{gathered}$ |
| $\begin{aligned} & \text { Ratfish- adult } \\ & \text { " }- \text { juvenile } \end{aligned}$ |  |  |  | 632.3 | 386-1,102 |
| $\begin{gathered} \text { Plainfin midshipman- adult } 4.3 \quad 0-13.0 \\ \text { " juv. } \end{gathered}$ |  |  |  |  |  |
| Pacific cod- adult <br> " - juvenjle |  |  |  |  |  |
| Pacific hake- adult <br> - juvenile |  |  | 258.0 |  |  |
| Pallid eelpout |  |  |  |  |  |
| Blackfin eelpout |  |  |  | 5.7 | 0-17 |
| Blackbelly eelpout | 2.5 | 0-7.5 | 41.0 |  |  |
| Snake prickleback | 5.4 | 0-13.1 |  |  |  |
| Bluebarred prickleback | k 4.4 | 0-13.3 |  |  |  |
| Quillback rockfish- adult <br> - juvenile |  |  |  |  |  |
| Roughback sculpin |  |  |  |  |  |
| Tadpole sculpin |  |  |  | 1.0 | 0-3 |
| Slim sculpin |  |  |  |  |  |
| Bigeye poacher |  |  |  |  |  |
| Blackfin poacher |  |  |  |  |  |
| Arrowtooth flounder |  |  |  |  |  |
| Flathead sole- adult $147.0$ <br> " " - juvenjle |  |  |  |  |  |
| Rock sole- adult <br> - juvenjile |  |  |  |  |  |
| Slender sole- adult <br> " " - juvenile | $\begin{array}{r} 58.3 \\ \mathrm{e} \quad 9.9 \end{array}$ | $\begin{aligned} & 0-153.0 \\ & 0-23.3 \end{aligned}$ | 191.0 |  |  |
| Dover sole- adult <br> - juvenile |  |  | 950.0 | 184.7 | 0-554 |
| English sole- adult <br> - juvenile |  |  |  |  |  |
| Total | 602.2 |  | 1595.0 | 823.7 |  |



|  |  |  | Location |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Species | PSDDA 1 | $\begin{aligned} & \text { PSDDA } 1 \\ & \text { (range) } \end{aligned}$ | PSDDA 1-Ref | PSDDA 2 | $\begin{gathered} \text { PSDDA } 2 \\ \text { (range) } \end{gathered}$ |
| Ratfish- adult <br> " - juvenile |  |  |  |  |  |
| Plainfin midshipman- adult <br> - juv. |  |  |  |  |  |
| Pacific cod- adult <br> " " - juvenile |  |  |  |  |  |
| Pacific hake- adult <br> " " - juvenile |  |  |  |  |  |
| Pallid eelpout |  |  |  | 1.7 | 0-5.2 |
| Blackfin eelpout |  |  |  | 2.4 | 0-7.3 |
| Blackbelly eelpout | 75.6 | 1.5-210 |  |  |  |
| Snake prickleback |  |  |  |  |  |
| Bluebarred prickleback | 15.9 | 14.5-17. |  |  |  |
| Quillback rockfish- adult <br> - juvenile |  |  |  |  |  |
| Roughback sculpin |  |  |  |  |  |
| Tadpole sculpin |  |  |  |  |  |
| Slim sculpin |  |  |  |  |  |
| Bigeye poacher |  |  |  |  |  |
| Blackfin poacher |  |  |  |  |  |
| Arrowtooth flounder |  |  |  |  |  |
| Flathead sole- adult <br> " " - juvenile | 131.3 | 0-330 |  |  |  |
| Rock sole- adult |  |  |  |  |  |
| Slender sole- adult <br> " " - juvenile | $\begin{aligned} & 97.5 \\ & 25.5 \end{aligned}$ | $\begin{aligned} & 26.5-175 \\ & 0-45.6 \end{aligned}$ | 7.6 | 24.8 | 0-74.5 |
| Dover sole- adult <br> " " - juvenile | 70.7 | 0-212 |  | 68.3 | 0-205 |
| English sole- adult <br> - juvenile |  |  |  |  |  |
| Total | 416.5 |  | 68.6 | 111.3 |  |

Appendix D, Table 7. Abundance and range of multiple sample stations of beam trawl-caught fish by station and species in Saratoga Passage during June 1986.

|  | Location |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Species | PSDDA | $\begin{aligned} & \text { PsDDA } \\ & \text { range } \end{aligned}$ | 80 mE | 40 mE | 20 mm |
| Ratfish- adult <br> " - juvenile | 1 | 0-3 |  |  |  |
| Plainfin midshipman- adult |  |  |  |  |  |
| Pacific cod- adult <br> " " - juvenile |  |  |  |  |  |
| Pacific hake- adult <br> " " - juvenile | 0.3 | 0-1 |  |  |  |
| Pallid eelpout |  |  |  |  |  |
| Blackfin eelpout | 0.3 | 0-1 |  |  |  |
| Blackbelly eelpout | 0.3 | 0-1 | 1 |  |  |
| Snake prickleback |  |  |  |  |  |
| Bluebarred prjckleback |  |  | 4 |  |  |
| Quillback rockfish- adult <br> - juvenile | 0.3 | 0-1 |  |  |  |
| Roughback sculpin |  |  |  |  |  |
| Tadpole sculpin |  |  |  |  |  |
| Slim sculpin |  |  |  | 4 |  |
| Bigeye poacher |  |  |  |  |  |
| Blackfin poacher | 1 | 0-2 |  |  |  |
| Arrowtooth flounder |  |  |  |  |  |
| Flathead sole- adult <br> " " - juvenile |  |  |  |  |  |
| $\begin{aligned} & \text { Rock sole- adult } \\ & ": " \text { - juvenile } \end{aligned}$ |  |  |  |  |  |
| Slender sole- adult <br> - juvenile | 8.0 | 4-13 | 2 | $1$ |  |
| Dover sole- adult <br> - juvenile | 0.3 | 0-1 |  |  |  |
| English sole- adult <br> - juvenile |  |  |  |  | 3 |
| Total | 11.7 |  | 7 | 6 | 3 |

Appendix D, Table 8. Biomass (in grams) and range at multiple sample stations of beam trawl-caught fish by station and species in Saratoga Passage during June 1986.

|  | Location |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Species | PSDDA | $\begin{aligned} & \text { PSDDA } \\ & \text { (range) } \end{aligned}$ | 80 me | 40 m E | 20 mm |
| Ratfish- adult <br> - juvenjle | 421.7 | 0-1,265 |  |  |  |
| Plainfin midshipman- adult |  |  |  |  |  |
| $\begin{gathered} \text { Pacific cod- adult } \\ \text { " } \\ \hline \end{gathered}$ |  |  |  |  |  |
| Pacific hake- adult <br> " " - juvenile | 228.7 | 0-686 |  |  |  |
| Pallid eelpout |  |  |  |  |  |
| Blackfin eelpout | 4.3 | $0-13$ |  |  |  |
| Blackbelly eelpout |  |  | 27.0 |  |  |
| Snake prickleback |  |  |  |  |  |
| Bluebarred prickleback |  |  | 19.5 |  |  |
| Quilliback rockfish- adult <br> - juvenile | 65.3 | 0-196 |  |  |  |
| Roughback sculpin |  |  |  |  |  |
| Tadpole sculpin |  |  |  |  |  |
| Slim sculpin |  |  |  | 10.5 |  |
| Bigeye poacher |  |  |  |  |  |
| Blackfin poacher | 6.7 | 0-15 |  |  |  |
| Arrowtooth flounder |  |  |  |  |  |
| $\begin{gathered} \text { Flathead sole- adult } \\ " / "-\text { juvenile } \end{gathered}$ |  |  |  |  |  |
| Rock sole- adult " " - juvenile |  |  |  |  |  |
| Slender sole- adult <br> - juvenile | 276.3 | 117-483 | 63.0 | $\begin{aligned} & 21.0 \\ & 21.5 \end{aligned}$ |  |
| $\begin{gathered} \text { Dover sole- adult } \\ " \text { " - juvenile } \end{gathered}$ | 1.2 | 0-3.5 |  |  |  |
| English sole- adult <br> - juvenile |  |  |  |  | 52.0 |
| Total | 1,004.2 |  | 109.5 | 51.0 | 52.0 |

## APPENDIX E

> Number of flatfish per hectare caught by otter trawl in Commencement Bay, Elliott Bay, Saratoga Passage and Port Gardner, shown by season, station and species.
Appendix E, Table 1. Number of each flatfish species per hectare caught by otter trawl at each



85.5
4.5
171
-
during Commencement
 $\begin{array}{cc}\begin{array}{c}\text { SU86 }\end{array} & \begin{array}{c}\text { PSDDA } \\ \text { Fish/Ha }\end{array} \\ & \\ & \\ \text { Fish/Ha }\end{array}$ Flatfish Species
speckled sanddab -adult arrowtooth flounder
rex sole -adult
rex sole -aduit
flathead sole -adult rock sole - adult Dover sole - adult English sole - adult
CO sole - adult

TOT. FLATFISH/Ha
Appendix E, Table 2. Number of each flatfish species per hectare caught by otter trawl at each station in Elliott Bay during summer and autumn, 1986.

|  |  |  | PSDD | Ref | PS | 2 | PSDDA | Ref 1 | PSDDA 2 Ref 2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Flatish Species | $\begin{gathered} \text { SU86 } \\ \text { Fish/Ha } \end{gathered}$ | $\begin{gathered} \text { AU86 } \\ \text { Fish/Ha } \end{gathered}$ | $\begin{gathered} \text { Su86 } \\ \text { Fish/Ha } \end{gathered}$ | AU86 Fish $/ \mathrm{Ha}$ | SU86 Fish/Ha | AU86 Fish/Ha | $\underset{\text { Fish/Ha }}{\text { SU86 }}$ | $\underset{\text { Fish/ } \mathrm{Ha}}{\mathrm{AUB6}}$ | AU86 Fish/Ha |
| rex sole -adult | 5.85 | 10.35 | 4.5 |  |  | 1.35 |  |  |  |
| - juvenile |  | 5.85 |  |  |  |  |  |  |  |
| flathead sole -adult | 25.65 | 111.15 | 67.5 | 4.5 |  |  |  |  |  |
| rock sole - adult |  | 1.35 |  |  |  |  |  |  |  |
| slender sole - adult | 70.65 | 210.15 | 54 | 36 | 27 | 41.85 | 13.5 | 36 | 40.5 |
| - juvenile | 10.35 | 32.85 | 4.5 |  |  |  |  |  |  |
| Dover sole - adult | 10.35 | 10.35 | 4.5 |  | 19.35 | 30.15 | 40.5 | 9 | 13.5 |
| - juvenile | 4.5 |  |  |  |  |  |  |  |  |
| English sole - adult | 1.35 |  |  |  | 1.35 | 73.35 | 4.5 | 126 | 148.5 |
| TOT. FLATFISH/Ha | 128.7 | 382.05 | 135 | 40.5 | 47.7 | 146.7 | 58.5 | 171 | 202.5 |


each
$\stackrel{\rightharpoonup}{\sigma}$

| $\overrightarrow{3}$ |
| :--- |
| $\substack{3 \\ 4 \\ 4 \\ 4 \\ 4 \\ \hline}$ |

otter
caught by
during winter, 1986.

$\sim$


$$
\cdots
$$

$$
\approx
$$





```
\(+\)
```




```
N
```











[^1]:    Station

[^2]:    1 Station numbers for the transects indicate depth in meters plus location where $N=$ North, $M=$ Middle, $S=$ South Mean $\pm 1$ Standard Diviation

    ## N.S. $=$ Not Sampled

[^3]:    Appendix $D$, Table 1. Abundance and range at multiple sample stations of beam trawl-caught fish by station and species in Commencement Bay during July 1986.

