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We propose a robust video object tracking system in distributed camera networks. The main

problem associated with wide-area surveillance is people to be tracked may exhibit dramatic

changes on account of varied illuminations, viewing angles, poses and camera responses,

under different cameras. We intend to construct a robust human tracking system across

multiple cameras based on fully unsupervised online learning so that the camera link models

among them can be learned online, and the tracked targets in every single camera can be

accurately re-identified with both appearance cue and context information. We present three

main parts of our research: an ensemble of invariant appearance descriptors, inter-camera

tracking based on fully unsupervised online learning, and multiple-camera human tracking

across non-overlapping cameras.

As for effective appearance descriptors, we present an appearance-based re-id framework,

which uses an ensemble of invariant features to achieve robustness against partial occlusion,

camera color response variation, and pose and viewpoint changes, etc. The proposed method

not only solves the problems resulted from the changing human pose and viewpoint, with

some tolerance of illumination changes but also can skip the laborious calibration effort and

restriction.

We take an advantage of effective invariant features proposed above in the tracking.



We present an inter-camera tracking method based on online learning, which systematically

builds camera link model without any human intervention. The aim of inter-camera track-

ing is to assign unique IDs when people move across different cameras. Facilitated by the

proposed two-phase feature extractor, which consists of two way Gaussian mixture model

fitting and couple features in phase I, followed by the holistic color, regional color/texture

features in phase II, the proposed method can effectively and robustly identify the same

person across cameras.

To build the complete tracking system, we propose a robust multiple-camera tracking

system based on a two-step framework, the single-camera tracking algorithm is firstly per-

formed in each camera to create trajectories of multi-targets, and then the inter-camera

tracking algorithm is carried out to associate the tracks belonging to the same identity.

Since inter-camera tracking algorithms derive the appearance and motion features by using

single-camera tracking results, i.e., detected/tracked object and segmentation mask, inter-

camera tracking performance highly depends on single-camera tracking performance. For

single-camera tracking, we present multi-object tracking within a single camera that can

adaptively refine the segmentation results based on multi-kernel feedback from preliminary

tracking to handle the problems of object merging and shadowing. Besides, detection in local

object region is incorporated to address initial occlusion when people appear in groups.
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Chapter 1

INTRODUCTION

1.1 Introduction

For security and safety purpose, the demands for surveillance cameras rapidly increase in the

world in recent years. Because of limitation of Field Of Views (FOVs) and cost-efficiency,

in most cases, multiple cameras are installed in a wide area with no overlap. One of the

most important things in intelligent surveillance and monitoring system is automated object

tracking for a huge amount of recorded and live streaming video data. The goal of automated

object tracking in the camera network is to keep the unique identity of each object within

every single camera and across multiple cameras without human intervention. In other words,

tasks involved in Multiple Camera Tracking (MCT) include multi-object tracking in every

single camera and delivering detected identities to disjoint cameras.

Many MCT approaches exploit a two-step framework, Single-Camera Tracking (SCT) is

firstly performed in each camera to create trajectories of multiple targets, and then Inter-

Camera Tracking (ICT) is carried out to associate the tracks belonging to the same identity.

There are several difficulties in ICT. First, people may exhibit dramatic changes on account

of varied illuminations, viewing angles, poses and camera responses, under different cameras.

Figures 1.1(a)-(c) show examples of ICT. One approach to solve this problem is person re-

identification (re-id), which is to identify the same person in more than two cameras with

only some human image-pairs. Many researchers on person re-id focus on extracting dis-

criminative visual features to characterize the appearance of an individual human without

taking advantage of context information, e.g., group behavior between a pair of accompany-

ing persons. Second, to achieve a good performance in ICT, a robust SCT, which detects

accurate object positions and keeps the same identity on each object, needs to be guaran-



2

(a) (b) (c)

(d) (e) (f)

Figure 1.1: Examples of MCT in NLPR MCT Dataset4 (the same identity is marked with

red bounding box).

teed. Since ICT algorithms derive the appearance and context features by using SCT results,

i.e., detected/tracked objects and segmentation masks, ICT performance highly depends on

SCT.

The research in SCT in recent years has shown significant progress and enhances ICT

performance as well. Figures 1.1(d)-(f) show examples of SCT, where (e) shows partial

occlusion and (f) shows severe occlusion. The task of single-target tracking has been well

addressed by following the cues of appearance or silhouette of the selected target. However,

for multi-target tracking in a video, the situation is more complex due to the data associ-

ation problem and the interactions among objects. Furthermore, because of variations in

a number of targets, we need to employ effective schemes to initialize the object locations

in every frame, which are usually derived from appearance-based object detection [9, 10] or
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background subtraction [11]. The former category is called tracking by detection, and the

latter tracking by segmentation. In [12], most of the state-of-the-art methods are in the

tracking-by-detection school, in which they exploit the continuity in space and time, but the

information of object appearance is seldom considered to facilitate tracking.

In this paper, we propose a robust MCT system based on a two-step framework. For

SCT, we present multi-object tracking within a single camera that can adaptively refine the

segmentation results based on multi-kernel feedback from preliminary tracking to handle the

problems of object merging and shadowing. Meanwhile, ICT can benefit from the optimal

segmented foreground blobs of each object as well. Besides, detection in local object region

is incorporated to address initial occlusion when people appear in groups. Additionally,

we follow our previous work [13] to rely on Constrained Multi-Kernel (CMK) tracking to

deal with occlusion. The presented SCT method has been partially described in [14]. In

addition to giving a more detailed explanation of our proposed SCT method, we introduce

how to combine the algorithm with advanced change detection to improve segmentation

performance, add the detection module for enhancing robustness against initial occlusion,

and conduct new experiments on the benchmark dataset of MCT.

For ICT, we present a fully unsupervised online learning approach which integrates dis-

criminative visual features and context feature efficiently, and systematically builds camera

link model without any human intervention. With a two-phase feature extractor, which

consists of TWO-Way Gaussian Mixture Model Fitting (2WGMMF) and couple features

in phase I, followed by the holistic color, regional color/texture features in phase II, the

proposed method effectively and robustly identifies the same person across cameras. To

be more specific, illumination variation is dealt with by a fully unsupervised color transfer

method [15], and changes of poses and camera viewpoints are overcome with pose-invariant

features, 2WGMMF and regional color/texture features. The context information is repre-

sented as couple feature, which describes a pair of the person traveling together through the

scene. Those features are integrated with fusion feature weights belonging to camera link

model.
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1.2 Contributions

The contributions of this dissertation are summarized as follows.

• We propose a way of describing distinct visual characteristics and utilizing the domi-

nant color modes from pedestrian images based on human perception. This descriptor,

called Enhanced and Integrated Features (EIFs), is the core of our approaches. The

proposed features consist of the holistic and regional pose-invariant features.

• The invariant holistic features are extracted by using a publicly available pre-trained

Deep Convolutional Neural Network (DCNN), which is originally used in generic object

classification. The DCNN gives rich and discriminative features including color, tex-

ture, shape and other visual cues to describe a human. We investigate the pre-trained

model which is suitable to extract features for person re-id.

• The regional features are extracted from partitioned body parts by exploiting Gaus-

sian Mixture Models (GMMs) on the color histograms. Each Gaussian distribution

of a GMM is exploited to represent a dominant color mode of a human subject. The

proposed GMM based feature matching method is applied to a two-way process, i.e.,

probe-to-gallery and gallery-to-probe, to compensate different poses of the same iden-

tity. A distance between two GMMs is computed by our proposed feature distance

metric.

• In the direct-method (without any specific dataset training) category, our method have

improved recognition rate over the state-of-the-art performance on the challenging

public benchmark datasets, Viewpoint Invariant Pedestrian Recognition (VIPeR) [16]

and 3D People Surveillance (3DPeS) [17] datasets.

• We present an ICT method based on online learning, which systematically builds cam-

era link model without any human intervention.
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• Three pose-invariant color features are effectively integrated with proposed context-

based couple feature.

• We propose a robust two-step MCT method based on SCT by segmentation and local

object detection and a two-phase online feature learning ICT framework.

• To preserve precise foreground segmentation, a combination of the advanced change

detection algorithm and multi-kernel feedback is utilized.

• We validated superior performance on benchmark NLPR MCT dataset.

1.3 Dissertation Roadmap

The rest of this dissertation is organized as follows.

Chapter 2: we review the related works on previously proposed tracking systems including

person re-identification, single-camera tracking, and inter-camera tracking.

Chapter 3: we present an appearance-based re-id framework, which uses an ensemble of

invariant features to achieve robustness against partial occlusion, camera color response

variation, and pose and viewpoint changes, etc. The proposed method not only solves the

problems resulted from the changing human pose and viewpoint, with some tolerance of

illumination changes but also can skip the laborious calibration effort and restriction.

Chapter 4: we present an ICT method based on online learning, which systematically builds

camera link model without any human intervention. Facilitated by the proposed two-phase

feature extractor, which consists of TWO Way Gaussian Mixture Model Fitting (2WGMMF)

and couple features in phase I, followed by the holistic color, regional color/texture features

in phase II, the proposed method can effectively and robustly identify the same person across

cameras. ICT can benefit from the optimal segmented foreground blobs of each object as

well.

Chapter 5: we propose a robust MCT system based on a two-step framework. For SCT,
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we present multi-object tracking within a single camera that can adaptively refine the seg-

mentation results based on multi-kernel feedback from preliminary tracking to handle the

problems of object merging and shadowing. Besides, detection in local object region is in-

corporated to address initial occlusion when people appear in groups. In addition to giving

a more detailed explanation of our proposed SCT method, we introduce how to combine

the algorithm with advanced change detection to improve segmentation performance, add

the detection module for enhancing robustness against initial occlusion, and conduct new

experiments on the benchmark dataset of MCT.

Chapter 6: conclusions of this dissertation are given by summarizing the main contribu-

tions and discussing some extensions to this work that lead to potential research topics in

the future.
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Chapter 2

BACKGROUNDS AND RELATED WORKS

2.1 An Ensemble of Invariant Features for Person Re-Identification

In this section, we review the state-of-the-art person re-id approaches, which can be roughly

divided into two main categories, the learning-based and the direct methods, whose main dif-

ference resides on with/without the requirement of the domain data training. The learning-

based method uses the specific domain data to train the specific features, classifiers, or

metrics. For each camera network environment, the learning-based method needs to collect

many images associated with the same identity in different cameras to optimize the re-id

performance. Instead of using any target-domain data, the direct method discovers the gen-

eral and reliable visual descriptors to represent a person. The desired descriptor has the

property that the intra-class (same identity) pairs have more similar descriptors than the

inter-class (different identity) pairs. The direct method aims to propose the invariant fea-

ture extraction and matching metric which can handle the appearance variations caused by

the different person pose, camera viewpoint, and environmental illumination change. The

occlusion problem is another issue needed to be concerned, however, the existing method

does not show the significant solution to this problem. The common solution is to segment

one person image into many region parts and measure the similarity by accumulating each

part’s score to get the final decision.

The first category of approaches [18], [19] select the domain-driven features or obtain

specific models trained in advance by a dataset separately to achieve high re-id accuracies if

there are enough training data available and the testing environments are similar to the train-

ing environments. In [18], the generic descriptive statistical model and the discriminatively

learned feature model are combined to attain better results. The generic descriptive statisti-
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cal model can generate a rank list initially and the positive and negative training data can be

chosen according to the rank list without any manual process for training the discriminating

learned feature model. Gray et al. [2] propose a viewpoint invariant model by integrating

spatial and color information based on the boosting scheme. Prosser et al. [20] formulate

the re-id problem as a ranking problem, where the Ensemble-Rank SVM is used to learn a

better subspace that the potential true-match is given the highest ranking. Wang et al. [19]

extract the 3D histogram of oriented gradient (HOG) features from the discriminative video

segments where the more reliable space-time features are derived to learn a video ranking

function for re-id. Zhao et al. [21, 22] propose an unsupervised saliency learning framework

for human matching. Some of the researchers focus on metric learning to enhance the accu-

racies using both the similar pairs and dissimilar pairs of training data, e.g., LMNN (Large

Margin Nearest Neighbor) [23], KISS metric [24], and PCCA [25]. In contrast to previously

mentioned work that exploits hand-crafted features, some novel methods [26, 27] apply the

deep convolutional network for learning the features and the similarity metric for person re-id

simultaneously. In the existing person re-id dataset, the image number is too less to train

a deep convolutional network. To solve this problem, Li et al. [26] built the largest person

re-id benchmark, CUHK03, which consists of 13,164 images of 1,360 pedestrians. Based on

these datasets, the deep convolution network structures with the paired images as input can

thus be determined. In the supervised learning framework, each input pair has a binary label

representing whether it is the same or different pair. The re-id problem is transformed to a

two-class classification problem and the softmax loss minimization is performed in the top

layer. When minimizing the loss, the stochastic gradient descent is adopted to update the

weights and decrease the loss. Taking advantage of the end-to-end framework of the deep

convolutional network, the discriminative and effective features and corresponding decision

metric can be learned in the former layers and the top layer at the same time.

Although most learning-based methods achieve better performance than direct methods,

it is worthy of noting that learning-based methods are strongly dependent on the training

datasets and lacking generalization capabilities. Moreover, it is hard to obtain the sam-
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ples with the ground-truth label in the real scenarios where the conditions are dynamically

changing, so they are not quite appropriate for practical use in the real-world surveillance

applications.

The second category of approaches, the direct methods [3, 4, 7, 28], directly run on each

person independently without the training process on a specific dataset. These works mainly

focus on proposing the novel and discriminative features. More specifically, an illumination-

invariant color feature is proposed by Kviatkovsky et al. [4], where the signature is formed

by the log-polar quantization in the log-chromatic color space. The SDALF by Farenzena et

al. [3] divides the human body into head/torso/legs parts and extracts color features based

on the horizontal and vertical asymmetries of the human silhouettes. Cheng et al. [28] use

a pictorial structure to localize the parts, then extract the part descriptor features to match

objects. However, the performance of these approaches is quite unreliable, often subject to

serious human pose and viewpoint issues. Recently, Baltieri et al. [7] propose a framework

which exploits a simplified non-articulated 3D model to spatially map 2D appearance de-

scriptors (color and gradient histograms) into the vertices of a regularly sampled 3D body

model. This model effectively mitigates the problem of occlusion, partial views and poses

changes. However, the image-to-model mapping needs the perspective projection matrix (in-

trinsic parameters) and extrinsic calibration matrix to estimate the rotation and translation

between the world reference coordinate and the model one, resulting in critical inconvenience

to the practical use.

2.2 Inter-Camera Tracking Based on Fully Unsupervised Online Learning

Human tracking across multiple cameras has been one of the most active research topics in

computer vision [29] and many approaches have been proposed to address this problem. Most

of these approaches utilize appearance cues, which include color [30–32], texture [33,34], and

shape [35, 36] of targets, to describe human and match correct correspondence with spatio-

temporal reasoning. However, the color appearance is easily influenced by illumination and

viewpoint changes across cameras. To solve the problem, Brightness Transfer Functions
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(BTFs) [37, 38], which map color information between a pair of cameras, and appearance

relationship [39–41] are modeled from training data. For the spatio-temporal feature, tran-

sition time distribution, which is the probability of an object entering a camera view with

a certain travel time given the location and velocity of its exit from the other camera view,

is estimated [32, 42, 43]. However, it requires training data whose correspondences are pre-

labeled. Since methods relying on human operators are ineffective and lacking in scalability,

these supervised learning approaches are less feasible in practice.

For this reason, recently unsupervised [33], graph modeling [44, 45], and online learn-

ing [36, 46] methods are exploited. More specifically, Chu et al. [33] estimate camera link

model as an optimization problem to build the relationship between directly connected cam-

era pairs based on an unsupervised learning scheme. However, they need separate training

data for training stage, and transition time distribution included in camera link model is

less reliable in case of longer transition time, because the variance of traveling time between

connected cameras increases. Chen et al. [44] treat multi-camera object tracking as a global

tracklet association, which is formulated as a global Maximum A Posteriori (MAP) problem

with Piecewise Major Color Spectrum Histogram Representation (PMCSHR) and minimum

uncertainty gap measurements. Tracking performance is enhanced with an improved similar-

ity metric, which equalizes the inter-camera similarities in [45]. However, the disappearing

points need to be manually selected in each enter/exit area. Chen et al. [46] employ an

adaptive learning method, which uses the spatio-temporal information and Markov chain

Monte Carlo sampling, to learn both spatio-temporal and appearance relationships among

cameras. Kuo et al. [36] collect the online training samples by observing the spatio-temporal

constraints in a time sliding window and use the Multiple Instance Learning (MIL) algo-

rithm to learn a discriminative appearance model online. However, their method is limited

to utilize low-level appearance features.

To further improve the tracking performance, group information is also exploited as

complementary features in recent approaches [35, 47, 48]. Cai et al. [35] propose a rela-

tive appearance context model of groups to mitigate ambiguities in individual appearance
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matching. However, their relaxed definition of the group-named neighboring set has no social

connection, therefore their assumption that the same set of people will reappear in the neigh-

boring camera is not always valid. Wei et al. [47] propose a subject-centric group feature to

reduce the re-id ambiguity. However, the group feature is limited to improve the accuracy

of individual re-id when there is an outlier, who is seen in just one camera without being

seen in the other, and sensitive to noise of persons positions and velocities. Chen et al. [48]

integrate social grouping behavior of an elementary group [49] and an online learned target-

specific appearance model by using AdaBoost. The tracking problem is formulated using an

online learned Conditional Random Field (CRF) model that minimizes a global energy cost.

However, the effectiveness of grouping information is not guaranteed when object detection

is not sufficiently robust.

2.3 Online-Learning-Based Multiple-Camera Human Tracking Across Non-
Overlapping Cameras

Many MCT approaches exploit a two-step framework, Single-Camera Tracking (SCT) is

first performed in each camera to create trajectories of multiple targets, and then Inter-

Camera Tracking (ICT) is carried out to associate the tracks belonging to the same identity.

Among many SCT techniques for tracking a single target, kernel-based object tracking such

as mean shift tracker [50] that searches for similar candidate model around local neighboring

regions, has gained lots of popularity, because of its fast convergence and low computation.

To improve kernel-based tracking, Chu et al. [13] propose to handle occlusion based on

adaptive multiple kernels with constraints on their spatial relation, i.e., CMK tracking, and

the accuracy is comparable to the state-of-the-art trackers. In [51], they embed CMK tracking

into a Kalman filtering tracking system to further increase computational efficiency. To

extend the application to multi-object tracking, it is necessary to find a way to automatically

define the locations of targets. Most of the top-ranked methods in SCT depend on object

detection for target initialization [12], but none of them considers to combine the information

from segmentation to jointly improve performance.
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Robust object segmentation is essential to feature extraction in ICT and supporting intra-

camera tracking by segmentation. Many recent works in this field emphasize the concept

of adaptation. In [52], a regularized background adaptation for automatically controlling

the learning rate of Gaussian Mixture Model (GMM) is presented. Hoffmann et al. propose

the Pixel-Based Adaptive Segmenter (PBAS) in [53], which utilizes two dynamic controllers

to adaptively adjust the decision threshold and learning rate. Self-Balanced SENsitivity

SEgmenter (SuBSENSE), as introduced by St-Charles et al. [54], further improves PBAS by

adding adaptation to local sensitivity and update rate, which allows the technique to rank

among the top of the benchmark dataset of change detection, CDnet [55]. Nevertheless,

none of the algorithms are designed specifically for supporting tracking, as they can easily

fail when the target(s) enter into an area with similar background color (i.e., the problem

of object merging), or encounter strong shadowing effect when the subsequent SCT will be

negatively influenced as well.
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Chapter 3

AN ENSEMBLE OF INVARIANT FEATURES
FOR PERSON RE-IDENTIFICATION

3.1 Overview

This chapter describes our proposed Ensemble of Invariant Features (EIFs), which can prop-

erly handle the variations of color difference and human poses/viewpoints for matching pedes-

trian images observed in different cameras with a non-overlapping field of views. Our pro-

posed method is a direct re-identification method, which requires no prior domain learning

based on pre-labeled corresponding training data. The novel features consist of the holistic

and region-based features. The holistic features are extracted by using a publicly available

pre-trained Deep Convolutional Neural Network (DCNN) used in generic object classifica-

tion. In contrast, the region-based features are extracted based on our proposed Two-Way

Gaussian Mixture Model Fitting (2WGMMF), which overcomes the self-occlusion and pose

variations. To make a better generalization during recognizing identities without additional

learning, the ensemble scheme aggregates all the feature distances using the similarity nor-

malization. The proposed framework achieves robustness against partial occlusion, pose and

viewpoint changes. Moreover, the evaluation results show that our method outperforms the

state-of-the-art direct re-identification methods on the challenging benchmark VIPeR and

3DPeS datasets.

3.2 Holistic Pose-Invariant Features

The holistic features are desired to extract the meaningful information to describe the whole

person. The information should include color, texture, shape and other reliable visual cues.

Recently, the DCNNs show its powerful capability to extract the rich and discriminative
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features from images [1,56]. Based on the end-to-end structure of a DCNN, the local low-level

features (e.g., specific orientation gradient on a person’s shoulder) and the global high-level

features (e.g., the heads and legs of pedestrians) can be trained and extracted hierarchically

from the low-to-high layers [57] during the loss minimization.

Indeed, the DCNN is a supervised learning mechanism which typically requires lots of la-

beled training data to train model, i.e., learning the network weights parameters to minimize

the objective loss. It is difficult and time-consuming to collect thousands of training data for

the specific task or domain. Recently, domain transferring method has shown a significant

boost performance for object classification [56, 58, 59]. When the labeled training data is

scarce and insufficient to train a complicated DCNNs, the domain-specific fine-tuning can

transfer the discriminative features learned from a supervised pre-training DCNNs model

to the target dataset. Specifically, the transfer procedure can be achieved by the following

two steps, pre-training on a large dataset, e.g., ImageNet Large-Scale Visual Recognition

Challenge (ILSVRC) [60], and fine-tuning on a smaller target dataset. Although this ap-

proach shows a significant performance improvement, it still requires hundreds or thousands

of target-domain data for performing the fine-tuning. Therefore, it is still very infeasible and

unpractical to employ for the person re-id in a real case.

Based on the most common scenario that no image can be obtained for training or fine-

tuning the model, we want to discover a potential solution, using the existing pre-trained

DCNN models without domain fine-tuning. Since a large-scale DCNN is learned by a great

amount of image data, so the extracted features can inherently possess many different types

of visual information. The rich features can thus enhance the invariance of different poses,

lightings, and viewpoints. Therefore, many researches [56,61,62] for object detection, object

segmentation, object tracking, etc., have accommodated the DCNN features to achieve better

results. Therefore, we evaluate the different features extracted from three popular large-

scale DCNNs, Krizhevsky et al. AlexNet [1], Chatfield et al. VGG [63] and Szegedy et al.

GoogLeNet [64]. All these networks are trained by the data of ImageNet Large-Scale Visual

Recognition Challenge (ILSVRC) [60]. The ILSVRC 2014 classification challenge involves the
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task of classifying an image into one of 1,000 leaf-node categories in the ImageNet hierarchy.

There are about 1.2 million images for training, 50,000 for validation and 100,000 images for

testing. Each image has a label associated with its ground truth category belonged to one

of 1,000 categories.

The classifier network is achieved by following the top feature extraction layer with an

n-way, i.e., 1,000, softmax layer. Given a training example x that produces n dimensional

feature map Xsoft at the softmax layer, for each possible label i = 1, ..., n, this layer computes

probability distribution pi over the n classes by

pi =
exp(Xsoft(i))∑n
k=1 exp(Xsoft(k))

. (3.1)

When training the model, it minimizes the cross-entropy loss, which we call the classifi-

cation loss and is denoted as

lossclass(Xsoft, y, θ) = −
n∑
i=1

yi log pi, (3.2)

where yi = 1 if x has label i and 0 otherwise, and θ denotes the weight parameters of softmax

layer. Note that this loss does not depend on just θ, because the computation of the feature

map Xsoft involves the weights of the early convolutional and fully-connected layers.

To correctly classify all the classes simultaneously, the early layers will be updated to

search the most discriminative and category-related features, i.e., features with large inter-

category variations. Generally, the higher layers can provide more global information with

better discriminative power as holistic features [56,57]. Therefore, we extract the activation

of the top layer with/without employing the Rectified Linear Unit (ReLU), as visual rep-

resentations, which is 4,096 dimensions features from FC7 (fully-connected 7th layer) and

FC7+ReLU of both AlexNet [1] and Chatfield et al. VGG [63], and 1,024 dimensions of

Pool5 which represents the Average-Pooling after inception 5 in GoogLeNet [64].

In order to evaluate the capability of representations extracted from different model or set-

ting, we apply a specific distance measurement to compute the distances dDCNNk(Ip(i), Iq(j)),

where k denotes the separate features extracted from the following DCNNs, {Alex FC7, Alex
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Figure 3.1: An example to show feature from the AlexNet [1]. Data augmentation generates

ten sampled images with various geometric distortions before applying the DCNN. The

holistic features are extracted the high level representation from the top layers of the pre-

trained DCNNs.

FC7+ReLU, VGG FC7, VGG FC7+ReLU, and Pool5 GoogLeNet}. Though the DCNN has

pooling layers to eliminate the problem raised by person misalignment in the image, the

performance can still easily be affected in the fine-grained recognition.

We thus propose to solve the misalignment problem by additionally generating ten sam-

pled images with various geometric distortions before applying the DCNN. Given two im-

ages, the probe image Ip and the corresponding gallery image Iq, the additionally generated

sampled images for both probe and gallery images are denoted as Ip(i) and Iq(j), where

1 ≤ {i, j} ≤ 10, and the extracted DCNN feature vector for an image I is denoted as

fDCNNk(I). The holistic feature distance dDCNNk(Ip, Iq) can be obtained by the minimum of

the distance dmetric among all the sampled pairs. This data augmentation procedure is able

to improve about 40% of accuracy in general.

dDCNNk (Ip, Iq) = dmetric

(
fDCNNk

(
Ip(̂i)

)
, fDCNNk

(
Iq(ĵ)

))
, (3.3)

where î, ĵ = arg min
i,j

dmetric (fDCNNk (Ip(i)) , fDCNNk (Iq(j))) and the metric can be applied by

L1, L2, or Chi-squared distance metric. Fig. 3.1 shows an example of data augmentation

procedure.



17

3.3 Regional Invariant Features

We propose regional invariant features based on color appearance for person re-id. Most

persons wear two separate clothes for upper and lower bodies, e.g., a shirt and a pair of

pants, which have several distinctive dominant colors. To extract discriminative information,

we derive features after dividing a human body into three parts, head, torso and legs. Even

if the person wears a single piece dress or a long coat, this division can still be applicable.

3.3.1 Body Partition

We assume that bounding boxes and silhouettes of the person in our experiments are acquired

and normalized to a fixed template size. Both 3DPeS and VIPeR datasets, which are used

in evaluating our proposed algorithm, furnish the pedestrian images and the corresponding

paired silhouette masks. Background subtraction is exploited to extract the foreground

pixels. In general, a person re-id system, which utilizes color signature, subdivides the human

body into salient parts in order to minimize the effects of mixing colors from different clothing

articles [3,4]. Since a pedestrian is commonly acquired at very low resolution, it is reasonable

to notice that the most distinguishable body parts are three: head, torso and legs [3]. Two

boundary lines are taken on both head-torso and torso-legs, respectively. Fig. 3.2 shows an

example of the body partition. From the top to the bottom of the rectangular foreground

bounding box, we calculate the histogram distance line-by-line between two stripe regions,

i.e., the blue stripe and green stripe regions. Each stripe is of the height δ and the width

W . Intuitively, we expect that color similarity between two different body parts to be low.

Therefore, a boundary line is located at height Ti, which is computed by solving the following

problem, for both head-torso and torso-legs regions, respectively:

max
Ti∈{A,B}

dChisq(h[Ti,Ti+δ],h[Ti−δ,Ti]) (3.4)

where dChisq (·) denotes a function that computes Chi-squared distance and h[a,b] denotes the

color histogram derived from the stripes of a to b. Moreover, the boundary line is assumed
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Figure 3.2: A sample body partition using Eq. (3.4), where left side image is an input and

right side images are partitioned parts.

to be located within {A,B}, e.g., {0.14T, 0.18T} for head-torso and {0.4T, 0.5T} for torso-

legs. After partitioning the whole body into three parts, we extract features from the torso

and the legs parts and discard the information of the head/face region because standard

biometric algorithms usually fail at low-resolution [3]. 8-bin HSV histogram is employed and

the height δ value is empirically set to 5 pixels when the entire segmented foreground are

normalized with the height of T = 128 pixels.

3.3.2 2WGMMF Features

The person re-id problem can be regarded as a task of discriminative feature design to de-

crease the distance between two snapshots of the same identity. The most difficult challenge

is to handle the large variations of poses and viewpoints in feature extraction. Since a human

body is a 3D object in reality, some body parts can be occluded by other parts of the same

body and the unseen parts in a probe image can be visible in a gallery image when their poses

or camera viewpoints are changed. As shown in Fig. 3.3, (a) and (b) are the same person,

however, color appearances of the upper body are not similar with respect to the existing

color representation due to the viewpoint is changed. The existing color-based signatures

such as color histogram, Earth Movers Distance (EMD), and GMM method [65] are not use-
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ful to deal pose variations across disjoint camera views. On the other hand, human eyes can

recognize them as the same identity based on small distinctive regions, e.g., the same jacket.

In this section, we propose a new feature utilizing these human perception characteristics to

solve this problem. Human identifies the same person of different poses through matching

dominant color compositions, which sometimes occupy only a small portion of body [21].

More specifically, a pose-invariant color feature is proposed to describe the dominant color

information of each identity by using GMMs. To calculate a distance between two GMMs,

we do not use conventional distance metric, such as Kullback-Leibler (KL) divergence [66],

but propose a new fitting model.

2WGMMF with concatenated histogram

In Fig. 3.3, there are three pairs of unmasked and masked images. Masked images on the

right side of each pair are the results of Section 3.3.1, i.e., torso and legs part, (a) and (b)

are the same person with ID 57 on the VIPeR dataset, captured in different views, and (c) is

another person with ID 554. Although (a) and (b) are the same person, and (c) is a different

person, torso parts of (a) and (c) look more similar with respect to color composition, since

the torso part mainly shows a shirt and a jacket in (a), but only jacket is visible in (b).

Our goal is to match (a) and (b) as the same identity with a color appearance model. In

Table 3.1, we show the performance of several approaches on Fig. 3.3. The Chi-squared

distance of 32-bin RGB histogram is 1.29 between (a) and (b), and 1.07 between (a) and (c).

The EMD distance also shows that inter-personal variation, (a)-to-(c), is smaller than intra-

personal variation, (a)-to-(b). Intuitively, to solve this problem with color features, we need

to extract main color modes from each image and utilize them to identify a correct pair of

images. In case of Fig. 3.3(a), the main color mode of the jacket region should be exploited

to match with (b) and the shirt region’s color mode needs to be ignored. For extracting

key information, [21, 22] tried to find salient patches and [28] proposed to adopt Pictorial

Structures (PS). However, the saliency matching method needs to build dense correspondence

in advance with additional training datasets, which have to be a part of the target dataset.



20

(a) Probe (ID 57) (b) Gallery (ID 57) (c) Gallery (ID 554)

Figure 3.3: Examples of the VIPeR dataset.

In PS, decomposing a body into 6 parts, i.e., chest, head, thighs, and legs, is not easy because

pedestrian image, as captured by a surveillance camera, is normally low resolution and too

small to detect each body part exactly. Even though body parts are partitioned perfectly, we

should still deal with mixed color components, i.e., a shirt region merged with a jacket in the

torso part of Fig. 3.3(a). Naturally, color histogram includes main color modes and the other

color components of body parts as well. Instead of cropping the salient part in an image

domain, we propose to find main color modes in color histogram domain. We contribute

extracting main color modes among several color modes by using GMM and fitting model.

In [65], GMM is used as a parametric technique for representing the color distribution in a

person’s clothing for person re-id. Furthermore, the number of Gaussians is fixed as only one

to fit a Gaussian distribution to the upper and the lower parts of the target, respectively,

and calculate the distance simply between the overall appearance descriptions using the

KL divergence [66]. On the contrary, our proposed method systematically determines the

number of Gaussian components and successfully distinguishes main color modes from the

others to achieve the re-id.
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Table 3.1: Distance on Fig. 3.3 with Hist, EMD, KL and 2WGMMF

Method
d
(
h

(a)
part,h

(b)
part

)
d
(
h

(a)
part,h

(c)
part

)
Total (torso, legs) Total (torso, legs)

Hist 1.29 (0.56, 0.73) 1.07 (0.55, 0.52)

EMD 18.74 (9.12, 9.62) 14.76 (5.99, 8.77)

KL 4.12 (2.14, 1.98) 4.00 (0.27, 3.73)

2WGMMF(1D) 1.03 (0.60, 0.43) 1.33 (0.67, 0.66)

2WGMMF(3D) 33432 (16285, 17147) 72103 (26063, 46040)

We construct a color histogram from torso and legs parts of the probe and the gallery

images separately as follows:

Hp =
[
hptorso,h

p
legs

]
, Hg =

[
hgtorso,h

g
legs

]
(3.5)

where h denotes a concatenated histogram, which contains m bins and n channels, h ∈

IRmn×1. To build color appearance model of an image, GMM is employed because we believe

that dominant color modes can be universally represented as a mixture of Gaussian compo-

nents in the color histogram. Thus, we have to estimate Gaussian parameters from the color

histogram. We assume that each histogram, h, in H is a mixture of K Gaussian probability

density functions with heteroscedastic components, i.e.,

p(h|θ1, ..., θK) =
K∑
k=1

πkN (h|µk,Σk) (3.6)

where θk = {µk,Σk, πk} denotes the set of parameters for component k, πk denotes the

mixing proportion where πk ≥ 0 and
∑K

k=1 πk = 1, µk denotes the mean vector for component



22

k, Σk denotes the covariance matrix and N (·) denotes the Gaussian distribution. K denotes

the number of Gaussian components, i.e., the number of dominant color modes.

Generally, GMM tries to find θk that maximize p (h), this is equivalent to minimizing the

negative log likelihood function:

− ln p(h) = − ln

(
K∑
k=1

πkN (h|µk,Σk)

)
. (3.7)

Then, color appearance model can be formulated as follows:

min
µ,Σ,π

− ln

(
K∑
k=1

πkN (h|µk,Σk)

)

s.t. πk ≥ 0,
K∑
k=1

πk = 1.

(3.8)

This model fitting problem can be efficiently solved via the Expectation Maximization (EM)

algorithm [67]. In the finite mixture models, determining the number of components K is

an important but very critical problem, which has not been completely resolved. Akaike

information criterion (AIC) and Bayesian information criterion (BIC) have been commonly

used for choosing the number of components for a suitable density estimation [67]. Both

of them are effective measures of the relative quality of statistical models for a given set of

data with the incorporation of a penalty term to discourage overfitting. Since the density

estimate that uses BIC to select the number of components in the mixture has performed

very well in previous simulation studies [68–70], BIC is employed in this paper. The preferred

model is the one with the minimum BIC value, −2 logL(θ)+K log n, where L(θ) denotes the

maximized value of likelihood function, which is equal to the inverse of final prediction error

for the estimated model, K is the total number of parameters and n is the sample size [67].

In Fig. 3.4, BIC score is shown with respect to K from 1 to 20 and the preferred model is

chosen when K equals 4 in case of the torso in Fig. 3.3(a). Fig. 3.5(a) shows the result of

Eq. (3.8), where the blue curve is the color histogram of Fig. 3.3(a), the red curve is the

histogram of GMM and the other curves are the components of GMM on the blue channel.
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Figure 3.4: BIC curve for GMM component estimation of the torso in Fig. 3.3(a).

After modeling GMMs from a torso and a legs part of both a probe and a gallery image,

respectively, we utilize chosen models to measure the difference between each part. The mean

vectors and covariance matrices associated with the Gaussian components of the GMM are

exploited to evaluate mixing weights, π, by solving the least-squares curve fitting problem

as follows:

π̂ = arg min
π

‖G(hpi ) · π − hgi ‖
2
2 s.t. 0 ≤ πk, k = 1, ..., K (3.9)

where hi is normalized color histogram, G(hpi ) denotes a GMM of a probe’s ith part and is

defined as G(hpi ) = [N (hpi |µ1,Σ1), ..., N (hpi |µK ,ΣK)]. Note that N (h|µk,Σk) ∈ IRmn×1 for

i = {torso, legs}. The mixing weights are π ∈ IRK×1 and || · ||22 denotes the squared L2 norm.

Eq. (3.9) is a formulation of applying the GMM of a gallery on a probe. In this step, a

different pose of the same identity can be compensated with changeable mixing proportion,

π. In Fig. 3.5(b) and (c), the red curves denote the 32-bin blue channel histogram of the

torso part of Fig. 3.3(b) and (c), respectively. The yellow curves show the fitting result of Eq.

(3.9) with the GMM components in Fig. 3.5(a). In other words, blue curves are transformed
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(a) GMM of Fig. 3.3(a)
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(b) GMM fit of Fig. 3.3(b) with (a)
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(c) GMM fit of Fig. 3.3(c) with (a)

Figure 3.5: Example of the 2WGMMF application. (a) Result of Eq. (3.8) with Fig. 3.3(a).

(b) Result of Eq. (3.9) with Fig. 3.3(b). (c) Result of Eq. (3.9) with Fig. 3.3(c).

to yellow curves by fitting GMM in Eq. (3.9). More specifically, we find that the second

component, purple curve, in Fig. 3.5(a) increases its scale and the fourth component, sky

blue curve, in the same figure decreases to 0 in Fig. 3.5(b). The residual calculated based

on Eq. (3.10) decreases large enough for us to conclude that these are the same person.

In contrast, the first component, yellow curve, in Fig. 3.5(a) increases its scale π1 and the

second component, purple curve, in Fig. 3.5(a) decreases its scale π2 in Fig. 3.5(c). Thus,

we can conclude that the second peak represents the unique jacket region of ID 57 and the
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fourth peak represents the shirt region. The residual between a target color histogram and

a summed distribution of GMM is computed as a distance:

r(hgi ) = dChisq(G(hpi ) · π̂,h
g
i ). (3.10)

We also need to proceed Eqs. (3.8)-(3.10) on the Gaussian mixture components of Fig. 3.3(b)

and (c) to (a). That is why this feature is named as 2WGMMF since we apply the same

method on both ways, i.e., probe-to-gallery and gallery-to-probe. The sum of residual is

used as the final distance for this probe-gallery pair as follows:

dconcatenate
2WGMMF (Hp,Hg) = r(hptorso) + r(hplegs) + r(hgtorso) + r(hglegs). (3.11)

Algorithm 1 2WGMMF with concatenated histogram

Input: a probe and a gallery image with silhouette masks

Output: a feature distance

1: Construct the concatenated color histogram

Hp =
[
hptorso,h

p
legs

]
, Hg =

[
hgtorso,h

g
legs

]
2: Solve the problem of model fit:

min
µ,Σ,π

− ln

(
K∑
k=1

πkN (h|µk,Σk)

)
s.t. πk ≥ 0,

K∑
k=1

πk = 1.

3: Solve the least-squares curve fitting problem:

min
π
‖G(hpi ) · π − hgi ‖

2
2

s.t. 0 ≤ πk, k = 1, ..., K

4: Compute the residuals

r(hgi ) = dChisq(G(hpi ) · π̂,h
g
i )

5: Compute the feature distance

dconcatenated
2WGMMF (Hp,Hg) = r(hptorso) + r(hplegs) + r(hgtorso) + r(hglegs)

By using 2WGMMF, the distance between Fig. 3.3(a) and (b) is 1.03 and the distance

between (a) and (c) is 1.33, while KL method gives 4.12 between (a) and (b), and 4.00 between
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(a) and (c) in Table 3.1. When we consider d2WGMMF to be a two-way distance, both distances

decrease because 2WGMMF utilizes the Gaussian mixture components on histogram fitting,

resulting in the better matching of jackets with dominant color components. Note that intra-

personal variation becomes smaller than inter-personal’s through 2WGMMF. Algorithm 1

summarizes the complete 2WGMMF procedure with concatenated histograms.

2WGMMF with joint histogram

Unlike the concatenated color histogram (we refer to this as the 1D histogram), which is con-

structed and exploited to build GMM in Section 3.3.2, we also generate a three-dimensional

joint color histogram (we refer to this as the 3D histogram), which takes three channels

jointly. For example, RGB 3D histogram takes red, green and blue channel jointly, so it

can offer unique and distinct information from the 1D histogram. The procedure of feature

extraction is similar to Algorithm 1. The difference is the dimension of color histogram

h ∈ IRmn , instead of m× n, where m denotes the number of bins and n denotes the number

of channels. The method for calculating distance is different as well. To compute the differ-

ence between joint color histograms of a probe and a GMM of a gallery, we utilize negative

log likelihood as follows:

dNL(hgi , G(hpi )) = − ln p(hgi |θ
p
1, ..., θ

p
K)

= − ln

(
K∑
k=1

πpkN (hgi |µ
p
k,Σ

p
k)

)
(3.12)

where G(·) denotes GMM from inside color histogram and parameters of GMM, µk, Σk and

πk, are obtained from color histogram of a part of a gallery where i = {torso, legs}. Eq.

(4.4) computes the likelihood function of how much a GMM of a probe in response to the

data of a gallery. The result from Eq. (4.4) is regarded as a one-way distance of i-part and

a small value indicates that they are likely to be the same identity. The final distance can
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be represented as follows:

djoint
2WGMMF(Hp,Hg) = dNL

(
hptorso, G(hgtorso)

)
+ dNL

(
hplegs, G(hglegs)

)
+ dNL

(
hgtorso, G(hptorso)

)
+ dNL

(
hglegs, G(hplegs)

) (3.13)

The complete 2WGMMF procedure with joint histogram is summarized in Algorithm 2.

Algorithm 2 2WGMMF with joint histogram

Input: a probe and a gallery image with silhouette masks

Output: a feature distance

1: Construct the joint color histogram

Hp =
[
hptorso,h

p
legs

]
, Hg =

[
hgtorso,h

g
legs

]
2: Solve the problem of model fit:

min
µ,Σ,π

− ln

(
K∑
k=1

πkN (h|µk,Σk)

)
s.t. πk ≥ 0,

K∑
k=1

πk = 1.

3: Compute the negative log likelihood

dNL(hgi , G(hpi )) = − ln

(
K∑
k=1

πpkN (hgi |µ
p
k,Σ

p
k)

)
4: Compute the feature distance

djoint
2WGMMF(Hp,Hg) = dNL

(
hptorso, G(hgtorso)

)
+ dNL

(
hplegs, G(hglegs)

)
+ dNL

(
hgtorso, G(hptorso)

)
+ dNL

(
hglegs, G(hplegs)

)

3.4 Aggregation of Features

We propose mainly three representations to describe person appearance, a holistic signature

based on the DCNN, regional color with concatenate histogram (2WGMMF1D) and joint

histogram (2WGMMF3D). To perform the person re-id, we should combine these three

features effectively. Since the dynamic ranges of three distances are quite different (see in

Table 3.1), it is not so meaningful to add them directly. Some form of normalization is

necessary to balance the contributions of individual features.
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In case of d2WGMMF, it can integrate several kinds of color space, e.g., RGB, HSV, and

YCbCr. When more than two color spaces are exploited, we collect them according to their

dimensions. For example, RGB, HSV and YCbCr color spaces are used in 2WGMMF, they

are combined as follows:

d1D
2WGMMF = d1D RGB

2WGMMF + d1D HSV
2WGMMF + d1D YCbCr

2WGMMF

d3D
2WGMMF = d3D RGB

2WGMMF + d3D HSV
2WGMMF + d3D YCbCr

2WGMMF

(3.14)

Aggregating similarity scores promises more convincing result than minimizing accumu-

lated distances [71, 72]. Thus, the distances are converted into the similarity as in inverse

proportion, respectively.

sim
(
Hp,Hg

j

)
= 1/d

(
Hp,Hg

j

)
for j = 1, ..., N (3.15)

where N denotes the size of gallery set. In case of 2WGMMF with joint histogram, their

feature distance can be negative because djoint
2WGMMF denotes the sum of negative log-likelihood.

To make them positive, we add the minimum value of them before converting into similarity

scores.

In order to balance the contributions of separate features, min-max normalization is

performed to transform the feature distances into 0-to-1.

ŝim
(
Hp,Hg

j

)
=
sim

(
Hp,Hg

j

)
−minS

maxS −minS
(3.16)

where S = {sim (Hp,Hg
1) , ..., sim (Hp,Hg

N)}.

To stick to direct methods and to show the intrinsic quality of the proposed descriptors,

we have set equal weights as follows:

simFinal

(
Hp,Hg

j

)
=

1

3

3∑
n=1

ŝimn

(
Hp,Hg

j

)
(3.17)

where j = 1, ..., N . Finally we choose the identity of a probe image to be the one with

maximum similarity among N gallery images as follows:

identity(Hp) = arg max
j

SFinal (3.18)
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where SFinal =
{
simFinal

(
Hp,Hg

j

)}
for j = 1, ..., N . Algorithm 3 shows all the steps of

classifying the same identity of a probe in the gallery based on calculating the distance

scores.

Algorithm 3 Person re-identification with aggregation of distance scores

Input: distance scores (dDCNN, d
1D
2WGMMF, d

3D
2WGMMF)

Output: identity

1: Add the distances of the same dimensional 2WGMMF feature together

dnD
2WGMMF = dnD color1

2WGMMF + dnD color2
2WGMMF + ...+ dnD colorM

2WGMMF

2: Transform the distance into the similarity:

sim
(
Hp,Hg

j

)
= 1/d

(
Hp,Hg

j

)
for j = 1, ..., N

where N denotes the size of gallery set.

3: Min-max normalization

ŝim
(
Hp,Hg

j

)
=

sim(Hp,Hg
j)−minS

maxS−minS

where S = {sim (Hq,Hg
1) , ..., sim (Hp,Hg

N)}

4: Compute the final similarity

simFinal

(
Hp,Hg

j

)
= 1

3

3∑
n=1

ŝimn

(
Hp,Hg

j

)
for j = 1, ..., N

5: Classify the same identity

identity(Hp) = arg max
j

SFinal

where SFinal =
{
simFinal

(
Hp,Hg

j

)}
for j = 1, ..., N

3.5 Experimental results

This section presents the evaluation results of our approach on the challenging benchmark

datasets, VIPeR 1 [16] and 3DPeS2 [17] , which are video surveillance datasets designed for

1VIPeR dataset is available at https://vision.soe.ucsc.edu/node/178

23DPeS dataset is available at http://www.openvisor.org/3dpes.asp
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person re-id between multiple cameras with non-overlapping FOVs. We follow the same

cross-validation protocol as reported in [3, 7], where ten random splits of the snapshots for

the probe and gallery sets. There is no overlapped image between the probe and gallery set.

The results are obtained by averaging ten corresponding outcomes. The performances are

represented using the Cumulative Matching Characteristic (CMC) curve and the normalized

Area Under Curve (nAUC). CMC curve represents where the rank-k recognition rate is the

expectation of correct matches within the top k ranks. The nAUC is the area under the CMC

curve and is exploited to summarize the overall performance. The higher nAUC indicates

the better performance.

3.5.1 Analysis of Individual Features

For the pre-trained DCNNs, we apply three popular large scale convolutional neural networks:

AlexNet [1], VGG [63] and GoogLeNet [64]. Since the higher layers can provide more global

information with better discriminative powers [56, 57], we select activations of top layer

and compare the performance with/without employing the unit rectifier, ReLU, for the

AlexNet [1] and VGG [63]. As summarized in Table 3.2, we evaluate the features 4,096

dimensional features from FC7 and FC7+ReLU (ReLU7) of both AlexNet [1] and VGG [63],

and 1,024 dimensional features from Pool5 representing the Average-Pooling after inception

5 in GoogLeNet [64]. To compare the performance of different features, we exploit Eq.

(3.3) based on the same squared L2 distance (metric = sqeuclidean) metric to find the best

matched r instances (top-rank r) in the gallery set. The CMC curves for VIPeR and 3DPeS

datasets are shown in Fig. 3.6(a) and 3.6(b), the performance using features from ReLU7 in

AlexNet [1] outperforms than other forms of VGG [63], and GoogLeNet [64]. Furthermore,

based on the promising features of the ReLU7 in AlexNet [1], Fig. 3.6(c) and 3.6(d) show

that the data augmentation allows to improve about 4% on rank-1 accuracy and it performs

better using Chi-squared distance than the squared L2 or L1 distance on both VIPeR and

3DPeS datasets. Therefore, we decide to adopt the feature vector of AlexNet ReLU7 with

Chi-squared distance metric to generate the holistic invariant features. This holistic invariant
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Figure 3.6: DCNN comparisons on (a) VIPeR and (b) 3DPeS dataset. The features from

FC7+ReLU (ReLU7) layer in AlexNet [1] have a better discriminative power than the other

pre-trained net models. The data augmentation with Chi-squared distance metric can im-

prove about 4% on rank-1 accuracy.
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Figure 3.7: (a)-(b) Comparison of individual 2WGMMF feature with a various of color spaces

and dimensions. (c)-(d) Comparison of color space with 2WGMMF feature (marked values

are rank-1 accuracies).
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Table 3.2: The selected pre-train models and layer for comparison.

Selected Layer Feature Dimension

AlexNet FC7 [1] 4,096

AlexNet ReLU7 [1] 4,096

VGG FC7 [63] 4,096

VGG ReLU7 [63] 4,096

GoogLeNet Pool5 [64] 1,024

features will combine with the regional invariant features for further comparison.

To investigate the characteristics of the 2WGMMF feature, several kinds of experiments

are performed and analyzed. In Fig. 3.7, we show the CMC curve of several 2WGMMF

features on the two datasets. In particular, Fig. 3.7(a) and (b) show the performances of

individual 2WGMMF features with varied color spaces and dimensions. Fig. 3.7(c) and (d)

show the results of 2WGMMF features with both concatenated and joint color histograms

on the marked color space. On both datasets, 2WGMMF features with HSV joint histogram

performs the best consistently as shown in Fig. 3.7(a) and (b). However, the other results

are not consistent. In Fig. 3.7(c) and (d), the best color space is not the same with respect to

rank-1 accuracy. 2WGMMF features with the combination of YCbCr and HSV color spaces

outperforms the others on the VIPeR. In contrast, when three color spaces are combined,

rank-1 accuracy is the highest on the 3DPeS in Fig. 3.7(d). To sum up, the performance of

features in each color space and dimension is not consistent on two different datasets because

2WGMMF features are designed to deal with varied viewpoints and poses, and three kinds

of color spaces are not illumination-invariant. Thus, we expect that the performance can be

improved further when 2WGMMF features are integrated with invariant color space.

3.5.2 VIPeR Dataset

The VIPeR dataset contains 632 pedestrian image pairs taken from two different cameras.

Most of the image pairs contain a viewpoint change of 90◦ and are taken under varying
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Figure 3.8: VIPeR dataset. (a) Comparison of the state-of-the-art single set of features. (b)

Comparison of DCNN, 2WGMMF and their combinations. (c) Comparison to Ensemble [2],

SDALF [3], ColorInv [4], eBiCov [5] and EIFold [6].
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illumination conditions. Each pair is randomly split into two sets. Images from one set are

considered as the probe set and images from the other set are regarded as gallery set. All

the images of VIPeR are scaled to the size of 128×48 pixels for experiments. For each image

on the dataset, a silhouette mask is automatically extracted by using the STEL model [73]

and provided in [3].

To evaluate the performance, we compare the proposed features with the state-of-the-art

methods [2–6, 74]. Farenzena et al. [3] divides a human body into head/torso/legs based on

the horizontal and vertical asymmetries of a human silhouette. They extract three comple-

mentary descriptors including weighted HSV histogram, the spatial arrangement of colors

into stable regions, Maximally Stable Color Regions (MSCR), and Recurrent High-Structured

Patches (RHSP). Similar to our proposed scheme, the Ensemble method by Gray et al. [2] em-

phasizes the viewpoint-invariant features. They propose an ensemble of color-based features

(RGB, HSV and YCbCr histograms) and gradient-based features (the histogram generated

by Gabor filter response). The ensemble features are computed for each of the three fixed size

stripes of a persons silhouette. For the fair comparison, a distance between feature vectors

is computed through the distance metric between the descriptors rather than applying the

additional metric learning as proposed in [2]. Kviatkovsky et al. [4] proposes illumination-

invariant color features. They combine their features with several standard signatures, the

parts shape context descriptor (PartsSC), color histogram (Hist), and the region covariance

descriptor (Cov). BiCov [74] is a representation relied on the combination of Biologically

Inspired Features (BIF) and covariance descriptors used to compute the similarity of the

BIF features at neighboring scale. gBiCov [5] is the extended work of BiCov, combining

covariance similarity with BIF. Furthermore, Ma et al. propose eBiCov (enriched gBiCov)

by combining gBiCov with weighted color histograms and MSCR defined in [3]. In [6], we

proposed EIF by combining 2WGMMF with concatenated histogram, DCNN, and CLBP

(completed local binary pattern), which represents texture information.

In Fig. 3.8(a), the proposed features are compared with BiCov, Cov, PartsSC, Hist and

gBiCov for analyzing the sensitivity of the single set of features. These results are obtained
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Figure 3.9: Image and mask examples from 3DPeS dataset.

from authors’ reported materials [75, 76]. The 2WGMMF features with joint histogram

show the best performance among the state-of-the-art single set of features both on CMC

curve and nAUC, as marked in the legend. On the VIPeR dataset, we exploit HSV and

YCbCr for 2WGMMF features since they show the best performance with respect to rank-

1 accuracy (see Fig. 3.7(c)). In Fig. 3.8(b), we compared DCNN, 2WGMMF and their

combinations. Among all combination of features, 2WGMMF features with concatenated

and joint histogram outperform all others. In Fig. 3.8(c), the proposed method is compared

to the state-of-the-art, eBiCov, ColorInv, SDALF, Ensemble and EIFold. In case of ColorInv,

we adopt the best signature that combines PartsSC, Hist, and Cov features together as

mentioned in [4]. Our proposed EIF achieves 37.47% at rank-1, which is 13% higher than

eBiCov [5] and 9% higher than the old EIF [6]. EIFold has texture information, which is

not effective in case of viewpoint change. In contrast, EIFproposed exploits joint histogram in

2WGMMF, which is the most accurate single set of features (see Fig. 3.8(a)).
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Figure 3.10: Comparison to the SDALF [3], Ensemble [2], SARC3D [7], ColorInv [4] and

EIFold [6] on the 3DPeS dataset (NvsM : N gallery shots vs M probe shots).
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3.5.3 3DPeS Dataset

The 3DPeS dataset contains short video sequences instead of still images, which increase

the diversity of person poses and camera viewpoints. A collection of snapshots (6 different

shots) are collected for 4 different persons (one person per row) as shown in Fig. 3.9. The

complete dataset is composed of 1,012 snapshots of 192 different people. 3DPeS images are

normalized to the size of 128×64 pixels. The silhouette mask is automatically extracted

by [77] and provided in [17]. In contrast to VIPeR dataset, 3DPeS contains multi-shots for

each person. We evaluate the capability to integrate multi-shots on the 3DPeS.

We compare CMC performance with five approaches, SDALF, Ensemble, SARC3D [7]

,ColorInv and EIFold on the 3DPeS. Baltieri et al. [7] proposes a simplified non-articulated

3D body model to spatially map appearance descriptors (color and gradient histograms)

into a vertex-based 3D body surface. Due to the 3D information, they can directly handle

the issues of occlusions, partial views or pose changes, which normally cause performance

degradation by using 2D descriptors. However, the Image-to-Model mapping needs the per-

spective projection matrix (intrinsic parameters) and extrinsic calibration matrix to estimate

the rotation and translation information between the world reference and the model coordi-

nates. Fig. 3.10 shows the top-rank results of our proposed algorithm, in comparison with

five other state-of-the-art methods, where 2WGMMF features are applied on HSV, RGB and

YCbCr color spaces (see Fig. 3.7(d)). For multi-shot integration, we take a pair of images,

which has maximum similarity, as matching identity. Overall, the performance is improved

by the proposed method about 3%, 9%, 10% and 8% better accuracies at rank-1 with 1vs1,

3vs1, 5vs1 and 3vs3 dataset, respectively. NvsM means a test dataset has N gallery images

and M probe images for an identity. It is noteworthy that the proposed method achieves a

better result than SARC3D, even though our method is purely based on 2D features without

requiring any additional information, e.g., intrinsic parameters, extrinsic calibration matrix,

etc, as needed in SARC3D. Specifically, our method achieves 51% rank-1 recognition rate

and SARC3D obtains 46% in 1vs1 scenarios as shown in Fig. 3.10(a). In the experiments
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of multi-shot, the performance of our algorithm is still superior. At rank-1, our proposed

scheme achieves about 72%, 83% and 88%, while SARC3D achieves 51%, 64% and 70%

with 3vs1, 5vs1 and 3vs3, respectively. For the 3DPeS, we only mark nAUC of ColorInv

since implementation software codes or feature representations of the other methods are not

available. The CMC curves of the rest are acquired in [7].

3.5.4 Discussions

In 2WGMMF, there is no manual tweaking of parameters for experiments. The number

of components K is automatically decided by BIC. We present the results of K on two

datasets in Fig. 3.11. Each figure shows the distributions of K on each body part with both

concatenated RGB-based color histogram and joint color histogram, respectively. On the

VIPeR and 3DPeS datasets, 632 images of 316 identities and 384 images of 192 identities

are exploited to derive K, respectively. Most of the concatenated color histogram has 6 or

7 components in both body parts and the distribution of two parts are very similar on both

datasets. In case of the joint histogram, the number of components is less than that of the

concatenated histogram and the distributions of two parts are comparable on both datasets.

The only difference between the distributions of VIPeR and 3DPeS is the magnitude due

to the difference of dataset sizes (e.g., in case of K = 7, the number of images are 140 and

78 on the VIPeR and the 3DPeS datasets, respectively, in Fig. 3.11(a)). In other words,

the distribution of K is consistent on the disparate datasets of pedestrian images. Since

person appearance, i.e., the composition of clothes, is similar on the street, these results

are reasonable. Thus, we can conclude that our proposed method, 2WGMMF, is robust to

extract the dominant color modes.

We have also conducted experiments to compare the separate importance of holistic and

regional features on the VIPeR. In Fig. 3.12, the use of regional features alone shows the

better performance than that of holistic features. More specifically, 2WGMMF with torso

part gives better result than legs part. That means torso part gives more discriminative

information for re-id. In addition, the green curve in Fig. 3.12 shows the results of no body
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Figure 3.11: Distribution of the number of components K by 2WGMMF.
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Figure 3.13: (a) ID 81 foreground image of VIPeR. (b) Averaged 30 pixel value added image

of (a). (c) Red channel histograms of torsos of (a) and (b). (d) Comparative results of

histogram and 2WGMMF distances with concatenated histogram. (e) GMM of (a). (f)

GMM of (b). (g) GMM fit (a) with (b). (h) GMM fit of (b) with (a).
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partition. When we compare green curve and sky blue curve, we can find that body partition

indeed increases the rank-1 score about 13%. We conjecture that in the process of building

histograms without body partition, pixel values from different colored clothes are overlapped

and mixed in the histogram domain. That prevents us from extracting genuine color com-

ponents, resulting in degraded accuracy. To find out the impact of background removal, we

have evaluated the performance with no mask. Yellow curve shows the performance of 2WG-

MMF without the mask. As expected, the performance without masks degrades significantly

compared to that with the mask, which is shown in sky blue curve. However, 2WGMMF

still outperforms DCNN when no silhouette masks are available. In the proposed method,

masks are exploited in body partition (Section IV-A) and feature extraction (Section IV-B).

If background appearance inside the detected bounding box is included, it can result in less

accurate boundary lines between head-torso and torso-legs in body partition, and disturb

dominant color modes extraction in feature extraction. In other words, color components

from the background can be regarded as dominant color modes of person appearance and

that creates more mismatches.

We also conduct some experiments to show some extent of tolerance on illumination

changes of our method. In person re-id, illumination and viewpoint changes of two non-

overlapping cameras are the most difficult problems to solve. For example, strong light

makes the image in Fig. 4.2(a) brighter, which shown in (b) where red rectangles represent

torso parts and color histogram shifts to the right side in (c). Fig. 4.2(c) shows examples of

red channel histograms of torso parts when we increase the value by 30 on average to each

pixel. Even though color histogram is shifted, Gaussian components are almost retained

in Fig. 4.2(f) compared to (e). Fig. 4.2(d) shows distance curve with respect to several

added averaged values on the Chi-squared distance of histogram and 2WGMMF with the

concatenated histogram. It can be seen that the slope of 2WGMMF is smaller than histogram

distance, which implies 2WGMMF can tolerate more significant color changes caused by

lighting change rather than histogram distance. 2WGMMF fits Gaussian components from

probe to gallery and vice versa. Then, the scale change of each Gaussian is able to mitigate
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the effect of the shifted histogram (see Fig. 4.2(g) and (h)), so that 2WGMMF tolerates

more significant light changes.

In this paper, since we assume that we do not have any additional training set to

train/update our model, it is difficult to increase the model adaptation. But once we are

capable of collecting some training data from a specific camera network, we can improve

from two aspects. One thing is improving ensemble/combination strategy and another one

is enhancing the similarity measurement. The effective feature ensemble or combination have

still not been conclusively addressed in the existing researches [78]. Most reported methods

concatenate all the feature vectors from different cues, which may cause some issues. Firstly,

the total feature dimension is increased when adding new cues, resulting in higher compu-

tational load. Secondly, the direct concatenation does not consider the importance among

different image cues so high dimensional features will probably dominate the low dimensional

ones. In fact, different features may carry complementary information, e.g., our proposed

pre-trained DCNN features and 2WGMMF, and they require effective fusion instead of direct

concatenation, which may lose some useful information for re-id. To tackle these problems,

ensemble learning methods could be applied to get better predictive performance, for exam-

ple, the linear combination of similarity measurements scheme where the weight parameters

w are learned by the SVM, AdaBoost or nonlinear combination by Bagging (e.g., random

forest algorithm).
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Chapter 4

INTER-CAMERA TRACKING BASED ON FULLY
UNSUPERVISED ONLINE LEARNING

4.1 Overview

In this section, we present main components of our proposed ICT methodology. An overview

of the proposed approach is shown in Fig. 4.1. First, the SCT and segmentation results are

acquired from each disjoint surveillance camera as input to ICT. The features are extracted on

image domain, so more precise masks lead to better ICT results (see Table 4.4). Examples are

shown in Fig. 4.2, our proposed method gives more accurate segmentation masks compared

to the SuBSENSE method. To mitigate variations of illumination and color response among

cameras, we transfer color characteristics of a source image to a target image before extracting

features (Section 4.2.1). For extracting appearance features, an object is divided into three

parts, head, torso, and legs (Section 4.2.2). Our feature extractor consists of two phases, and

the phase change occurs after having at least two good matches to build camera link model,

which includes region mapping matrix, region matching weights and feature fusion weights.

In phase I, ICT relies on 2WGMMF (Section 4.2.4) and couple features (Section 4.2.6).

Subsequently, holistic color (Section 4.2.3) and regional color/texture features (Section 4.2.5)

are further incorporated with feature fusion weights in phase II after the camera link model

is systematically and continuously learned and updated (Section 4.2.7).

4.2 Inter-Camera Object Tracking

4.2.1 Color Transfer

The appearance of the same person may appear differently under two cameras because

of illumination changes and different cameras color responses. In [15, 79], an algorithm
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Figure 4.1: An overview of our inter-camera multiple target tracking approach.

corrects/transfers one images color characteristics to the other by de-correlating color space

and statistical computation. More specifically, the RGB color space is transformed to the

lαβ color space and the data points composing the color transformed image are scaled by

factors determined by the respective standard deviations in each channel as follows:

l
′

s =
σlt
σls

(ls − µls) + µlt,

α
′

s =
σαt
σαs

(αs − µαs ) + µαt ,

β
′

s =
σβt

σβs
(βs − µβs ) + µβt ,

(4.1)

where µ and σ denote mean and standard deviation, and subscripts s and t denote source

and target images, respectively.

We apply color characteristics transfer method between bounding boxes of two objects.

Fig. 4.2(g) shows such an example of color transfer.
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(a) (b) (c) (d)

(e) (f) (g) (h) (i)

Figure 4.2: (a) Source frame. (b) Global ID 6 in CAM4. (c) Masked image of (b) with

SuBSENSE segmentation. (d) Masked image of (b) with the proposed segmentation. (e)

Target frame. (f) Global ID 6 in CAM5. (g) Color transferred result of (f). (h) Masked

image of (g) with SuBSENSE segmentation. (i) Masked image of (g) with the proposed

segmentation.
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4.2.2 Body Partition

Since a pedestrian is commonly acquired at very low resolution in surveillance cameras, it

is reasonable to notice that the most distinguishable body parts are three: head, torso,

and legs [3, 80]. Two boundary lines are systematically located and used to separate head-

torso and torso-legs parts, respectively, as shown by the red lines in Fig. 4.3(b) and 4.3(c).

From the top to the bottom of the rectangular foreground bounding box, we calculate the

histogram distance line-by-line between two block regions, i.e., the blue and green blocks in

Fig. 4.3(a). Each block is of height δh and width W from a line Ti. Intuitively, we expect

that color similarity between two different body parts to be low. Therefore, a boundary line

is located at height Ti computed by solving the following problem, for both head-torso and

torso-legs regions, respectively:

max
Ti∈{S,E}

d(h[Ti,Ti+δh],h[Ti−δh,Ti]), (4.2)

where d (·) denotes Euclidean distance and h[a,b] denotes the color histogram derived from

the region from a to b. Moreover, the boundary line is empirically assumed to be located

within {S,E}, i.e., {0.18H, 0.25H} for head-torso and {0.48H, 0.70H} for torso-legs. In our

experiments, 8-bin RGB histogram is employed and the height δh value is empirically set as

5 pixels.

4.2.3 Holistic Color Feature

A Color histogram is widely used for representing color distributions [29]. In case two camera

viewpoints are similar, the color histogram is effective to match the same person. So we utilize

it as the holistic color feature to describe person clothing from head-torso boundary to the

bottom. The total cost function for the holistic color feature is

dholistic color(A,B) = d(hA,hB), (4.3)

in which h∈ IRn denotes the holistic color histogram of the observation concatenating all

color channels. In this paper, we also use 8-bin histogram for each RGB channel.
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Figure 4.3: An example of body partition. (a) Two blocks on masked image to find boundary

lines using (4.2). (b) Two boundary lines on masked image. (c) Seven body regions for

regional features.

4.2.4 2WGMMF Feature

Since some parts of a human body in an image frame can be occluded by other parts of

a human body, and the unseen body parts in an image can be visible in another image

when their poses or camera viewpoints are changed. To handle the variation of poses and

viewpoints, 2WGMMF feature [80] is thus employed.

The main idea of this feature is that main color modes of the same identity in color

histogram domain should be consistent regardless the changes of poses and viewpoints. So

2WGMMF feature represents main color modes of a query person and candidates as GMMs,

and computes the two-way distances (i.e., query-to-target and target-to-query) between the

color histograms and GMMs. In detail, the feature distance between color histogram of

person A and the GMM of person B can be computed by Negative Loglikelihood (NL) as
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follows:

dNL(hAi , G(hBi )) = − ln p(hAi |θB1 , ..., θBK)

= − ln

(
K∑
k=1

πBk N
(
hAi |µB

k ,Σ
B
k

))
,

(4.4)

where h ∈ IRmc
denotes joint color histogram of m-bin and c-channel, which is obtained from

either of the body part i = {torso, legs}, G(·) denotes GMM from given color histogram and

θk = {µk,Σk, πk} indicates the set of parameters for component k. Moreover, πk denotes the

mixing proportion, µk ∈ IRc denotes the mean vector, Σk ∈ IRc×c denotes the covariance

matrix and N (·) denotes the Gaussian distribution. K is the number of Gaussian compo-

nents, i.e., the number of dominant color modes. Equation (4.4) computes the likelihood

function of the GMM of B in response to the histogram of A.

The result from (4.4) is regarded as a one-way distance of i-part, and a small value

resulting from (4.4) indicates that they are likely to belong to the same identity. The

2WGMMF feature distance is represented as follows:

d2WGMMF(A,B) =

dNL

(
hAtorso, G(hBtorso)

)
+ dNL

(
hAlegs, G(hBlegs)

)
+ dNL

(
hBtorso, G(hAtorso)

)
+ dNL

(
hBlegs, G(hAlegs)

)
.

(4.5)

Here, we use 32 bins for each channel in RGB color space.

4.2.5 Regional Color and Texture Features

To enhance the ability of ICT through a more detailed comparison, we divide a human

torso into multiple regions, since torso part usually carries richest and the most discriminant

appearance. After body partition (Section 4.2.2), the torso part is further divided into

six equal-size regions (r1, r2,..., r6) as shown in Fig. 4.3(c). Because the region of legs (r7)

usually changes little under different perspectives, we do not further divide the region of legs.

Since each specific region normally covers different area of the human torso due to different
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(a) (b) (c) (d)

Figure 4.4: (a) Frame 241 in CAM3 of Dataset3. (b) Seven body regions of Global ID 4

in CAM3. (c) Frame 67 in CAM4 of Dataset3. (d) Seven body regions of Global ID 4 in

CAM4.

viewpoints (see Fig. 4.4(b) and 4.4(d)), and as observed in Chu et al. [33] that a walking

human is usually captured at the similar viewing perspective of body by a fixed camera on

either the exit/entrance point, so the histogram extracted from one region of human torso

can be modeled as a linear combination of the histograms extracted from multiple regions of

human torso in the other camera,

hAmapk
=
[
hAr1 . . .h

A
r6

]
wk, (4.6)

where hArk ∈ IRn denotes the regional color histogram extracted from the region k of the

observation A and wk ∈ IR6 is the mapping matrix of region k for linear combination.

Furthermore, because some regions may be visible only under one cameras view, they

should have small weights in the feature distance computation. The distance of regional

color feature is the weighted sum of the distances from all seven regions derived from torso

and legs as
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dregion color (A,B) =
6∑

k=1

qk × d
(
hAmapk

,hBrk
)

+ q7 × d
(
hAr7 ,h

B
r7

)
,

(4.7)

where q= [q1 . . . q7]T denote the weights for all seven region distances. The computation of

region matching weights is discussed in Section 5.3.4. Note that all the seven regions are

included in the feature distance computation, however only the torso regions are considered

for the region mapping by using the mapping matrix Wmap = [w1 . . .w6].

The texture feature distance can be computed similarly to that of the color feature. The

Local Binary Pattern (LBP) [81] is exploited as the texture feature and is represented as

l-dimensional LBP histograms of observation A, hArLBPk
∈ IRl , in which k is from 1 to 7.

Hence, the distance of regional texture feature is

dregion texture (A,B) =
6∑

k=1

qk × d
(
hAmapLBPk

,hBrLBPk

)
+ q7 × d

(
hArLBP7

,hBrLBP7

)
,

(4.8)

where hAmapLBPk
∈ IRl is the linear combination of torso region LBP histograms with the

same weights wk defined in (4.6) as follows:

hAmapLBPk
=
[
hArLBP1

. . .hArLBP6

]
wk. (4.9)

4.2.6 Couple Feature

We present a simple and effective group feature to improve the accuracy of ICT. Fig-

ures 4.5(a)-(c) show examples of a couple on three different cameras. In this paper, a couple

is defined as a pair of persons traveling together through the scene and formulated as∣∣xA − xC∣∣ < δx,
∣∣yA − yC∣∣ < δy, (4.10)∣∣tAexit − tCexit

∣∣ < δt,
∣∣tAentry − tCentry

∣∣ < δt, (4.11)
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Figure 4.5: Examples of couple across multi-cameras. (a) Couple in CAM1. (b) Couple in

CAM2. (c) Couple in CAM3. (d)(e) Cropped and enlarged couples in CAM1 and 3 (A-B

and C-D denote the same person, respectively).

where x and y denote the 2-D coordinate of center of bottom line of the bounding box (see

Fig. 4.5(d)), and texit and tentry denote time stamps when the person exits and enters FOV,

respectively. With these spatio-temporal conditions, couples are detected in each camera.

To identify the same couple across cameras, 2WGMMF feature is again utilized as

dcouple identifier(AC,BD)

= min (d2WGMMF(A,B), d2WGMMF(A,D))

+ min (d2WGMMF(C,B), d2WGMMF(C,D)) .

(4.12)

In phase I, it is the negative of 2WGMMF feature distance between one and couple person
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of target that is used as follows,

dI
couple (A,B) = −d2WGMMF (A,Bcouple)

= −d2WGMMF (A,D) ,
(4.13)

and the couple feature distance exploits other feature distances to match person-to-person

in a couple in phase II. The combination of four feature distances with feature fusion weights

in phase II is shown as follows,

dII
couple (A,B) =

− α1d
Norm
2WGMMF (A,D)− α2d

Norm
holistic color (A,D)

− α3d
Norm
region color (A,D)− α4d

Norm
region texture (A,D) ,

(4.14)

where αj denote feature fusion weights (see Section 5.3.5). Note that (19) only shows a

scenario of Comb1 (see Table II for different feature combinations). Moreover, to normalize

feature distance, min-max normalization is used:

dNorm
j (A,D) =

dj(A,D)−min dj
max dj −min dj

, (4.15)

where min dj and max dj represent the smallest and largest values of each feature j’s distance,

respectively. They are obtained from computing feature fusion weights with training data.

In our experiments, δx, δy and δt are set to 15 empirically.

4.2.7 Final Score

In order to further improve the discriminative power, we utilize a combination of features

for distance measures. Since the value range of each feature distance is different, we use

normalization and fusion methods to get the final score. Feature fusion weights are derived by

exploiting d-prime metric [82] (see Section 5.3.5). In phase I, the final score is a combination

of 2WGMMF and couple features as follows:

dI
Final(A,B) = d2WGMMF(A,B) + dI

couple(A,B). (4.16)
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In phase II, final score is a combination of normalized feature distances of 2WGMMF,

holistic color, regional color/texture and couple features with feature fusion weights. The

following is formulation of the first category of combinations, Comb1:

dII
Final(A,B) = α1d

Norm
2WGMMF(A,B)

+ α2d
Norm
holistic color(A,B) + α3d

Norm
region color(A,B)

+ α4d
Norm
region texture(A,B) + dII

couple(A,B).

(4.17)

4.3 Experimental Results

This section presents the evaluation results of our approaches on the benchmark dataset,

NLPR MCT [8], which is collected for multi-camera pedestrian tracking over non-overlapping

cameras.

4.3.1 Dataset and Evaluation Criteria

The NLPR MCT dataset consists of four sub-datasets. Every sub-dataset includes 3-5 cam-

eras with non-overlapping FOVs and details of them are summarized in Table 4.1, where

GT s is the number of ground truths in a single camera and GT c is the number of ground

truths across cameras. FOVs and the topological relationships of all the cameras are shown

in Fig. 4.6. We assume that the connectivity between entry/exit zones in multiple cameras

has already been specified [32,35,79].

The evaluation metric adopted is called Multi-Camera object Tracking Accuracy (MCTA) [45]:

MCTA

= Detection × TrackingSCT × Tracking ICT

=

(
2× Precision × Recall

Precision + Recall

)(
1−

∑
tmme

s
t∑

t tp
s
t

)(
1−

∑
tmme

c
t∑

t tp
c
t

)
= SCTA×

(
1−

∑
tmme

c
t∑

t tp
c
t

)
,

(4.18)

wheremmet and tpt denote the number of mismatches and ground truths, respectively at time

t. MCTA ranges from 0 to 1, and the higher value indicates better performance. The metric
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Dataset 1-2: Outdoor and Indoor scene
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Figure 4.6: Illustration of the topological relationship during tracking.

Table 4.1: Details of NLPR MCT Dataset [8].

Sub-dataset Dataset1 Dataset2 Dataset3 Dataset4

# of cameras 3 3 4 5

Duration 20 min 20 min 3.5 min 24 min

Resolution 320×240 320×240 320×240 320×240

Frame rate 20 fps 20 fps 25 fps 25 fps

# of persons 235 255 14 49

GT s 71853 88419 18187 42615

GT c 334 408 152 256
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Table 4.2: Description of feature combination in evaluation.

Denotation Feature combination

Comb1 2WGMMF, holistic color, regional color/texture, couple

Comb2 2WGMMF, regional color/texture, couple

Comb3 2WGMMF, holistic color, couple

Comb4 holistic color, regional color/texture, couple

can be divided into three parts, detection, SCT and ICT abilities, which are corresponding

to the three brackets in (4.18). Detection in (4.18) is also known as F1-score, which reaches

its best value at 1 and worst at 0. The new object is counted as inter-camera ground truth,

tpct , by default in this criterion. The evaluation kit is available in [8]. Moreover, to evaluate

the performance of SCT specifically, we define the Single-Camera object Tracking Accuracy

(SCTA) by discarding the term of Tracking ICT.

4.3.2 Tracking results

We have experiments based on the ground-truth of SCT. More specifically, Detection and

TrackingSCT are both 1, thus, MCTA depends only on mmect , which represents the number of

mismatches in time t across different cameras in (4.18). In Table 4.3, the experimental results

of the proposed method are compared with the state-of-the-art [35,44,45,48]. Chen et al. [48]

formulate ICT as an inference problem using the CRF framework. They first obtain the initial

labels using Hungarian algorithm. Then, a global appearance model and an online learned

target-specific appearance model using AdaBoost are combined with grouping information as

high-level context feature to formulate the tracking task as an energy minimization problem.

The problem is solved by their proposed iterative approximation algorithm. Our proposed

method achieves the best result as shown in Table 4.3. With regard to average MCTA,

Comb1 to Comb4 all perform better than the state-of-the-art methods. Moreover, Comb1

outperforms the other methods in every sub-dataset.
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Table 4.3: Performance comparison of inter-camera tracking with ground-truth single cam-

era tracking. The best results are highlighted in colors (Underlined red font is rank-1 and

italicized green font is rank-2).

Sub-

dataset

Evaluation

metric
Comb1 Comb2 Comb3 Comb4

USC-

Vision [35]

CRF

[48]

NLPR

[45]

CRIPAC-

MCT [44]

Hfutdsp-

mct

Dataset1
mmec 13 14 19 17 27 54 55 113 86

MCTA 0.9611 0.9581 0.9431 0.9491 0.9152 0.8383 0.8353 0.6617 0.7425

Dataset2
mmec 30 46 31 36 34 81 121 167 141

MCTA 0.9265 0.8873 0.9240 0.9118 0.9132 0.8015 0.7034 0.5907 0.6544

Dataset3
mmec 32 35 41 36 70 51 39 44 40

MCTA 0.7895 0.7697 0.7303 0.7632 0.5163 0.6645 0.7417 0.7105 0.7368

Dataset4
mmec 62 69 72 80 72 70 157 110 155

MCTA 0.7578 0.7305 0.7188 0.6875 0.7052 0.7266 0.3845 0.5703 0.3945

Average MCTA 0.8587 0.8364 0.8291 0.8279 0.7625 0.7577 0.6662 0.6333 0.6321

Table 4.4: Performance comparison of inter-camera tracking with single features. The best

results are highlighted in colors (Underlined red font is rank-1 and italicized green font is

rank-2).

Holistic color 2WGMMF Regional color Regional texture

Sub-

dataset

Evaluation

metric

SuB-

SENSE
Proposed

SuB-

SENSE
Proposed

SuB-

SENSE
Proposed

SuB-

SENSE
Proposed

Dataset1
mmec 34 25 35 23 36 24 44 37

MCTA 0.8982 0.9132 0.8952 0.9311 0.8922 0.9281 0.8683 0.8892

Dataset2
mmec 52 49 60 55 82 64 88 78

MCTA 0.8725 0.8800 0.8529 0.8652 0.7990 0.8431 0.7843 0.8088

Dataset3
mmec 63 59 46 42 77 45 77 45

MCTA 0.5855 0.6118 0.6974 0.7237 0.4934 0.7039 0.4934 0.7039

Dataset4
mmec 95 87 75 72 87 73 94 90

MCTA 0.6289 0.6602 0.7070 0.7188 0.6602 0.7148 0.6328 0.6484

Average MCTA 0.7457 0.7663 0.7881 0.8097 0.7112 0.7975 0.6947 0.7587
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Table 4.5: Performance comparison of couple feature.

Sub-dataset
Evaluation

metric

2WGMMF Comb1

w/o

couple

w/

couple

w/o

couple

w/

couple

Dataset1
mmec 23 19 20 13

MCTA 0.9311 0.9431 0.9401 0.9611

Dataset2
mmec 55 37 46 30

MCTA 0.8652 0.9093 0.8873 0.9265

To validate the effectiveness of every single feature towards the final results, we also

compare the performance of them in Table 4.4. Compared to the performance of their

combinations in Table 4.3, the performance based on each individual feature are worse.

Note that 2WGMMF feature shows the best performance and regional color feature is the

second-best in terms of average MCTA. However, the performance of holistic color feature is

better than 2WGMMF feature in Dataset2 because many people are crossing the cameras,

between CAM1 and CAM2, which have similar viewpoints. In addition, the performance of

the proposed segmentation method and SuBSENSE are compared. From the performance

of every single feature, it can be seen that the proposed segmentation gives better results.

Because erroneously included background or cropped body part makes feature representation

inaccurate, more precise masks lead to better ICT results. Specifically, the performances

of regional color and texture features with SuBSENSE segmentation are much degraded.

Because regional color and texture features are extracted from small areas comparably, they

are more sensitive to the accuracy of segmentation.

In Table 4.5, the performance of couple feature in ICT is compared with 2WGMMF fea-

ture and Comb1. In all cases, the performance is improved when combining with the couple

feature. Since couples only appear in Dataset1 and 2 only, there are no such comparisons for

Dataset3 and Dataset4. USC-Vision [35] exploits relative appearance context learning, which
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Table 4.6: Performance comparison of feature fusion weights and uniform weights on Comb1.

Sub-dataset
Evaluation

metric

Uniform

weights

Feature fusion

weights

Dataset1
mmec 19 13

MCTA 0.9431 0.9611

Dataset2
mmec 33 30

MCTA 0.9191 0.9265

Dataset3
mmec 37 32

MCTA 0.7566 0.7895

Dataset4
mmec 70 62

MCTA 0.7266 0.7578

Average MCTA 0.8364 0.8587

is motivated by the fact that the same sets of people tend to re-appear in the neighboring

camera. However, it is not applicable when FOV is limited with few people being captured.

As a result, their performance is the worst in Dataset3 compared to the other methods in

Table IV.

For showing the effect of feature fusion weights, we put uniform weights in (4.17) in case

of Comb1 and the experimental results are shown in Table 4.6. With feature fusion weights,

the overall accuracy is enhanced. It is because some features become more discriminative and

other features are less effective according to the relative difference of camera viewpoint. For

example, the link between CAM1 and CAM2 is almost the same in Dataset1 and Dataset2

(see Fig. 4.6). Then, the holistic color histogram is the most effective and its weight becomes

larger. However, in case of the link between CAM2 and CAM3, or CAM3 and CAM4 in

Dataset3, regional features, i.e., 2WGMMF and regional color/texture features, should have

larger weights.
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Chapter 5

ONLINE-LEARNING-BASED MULTIPLE-CAMERA HUMAN
TRACKING ACROSS NON-OVERLAPPING CAMERAS

5.1 Overview

Due to the expanding scale of camera networks, multiple camera tracking of human has

received higher attention in recent years. In this chapter, we present a novel approach

to track each human within a single camera and across multiple disjoint cameras. Our

framework includes a multi-object tracking and segmentation system, a two-phase feature

extractor, and an online-learning-based camera link model estimation. For tracking within a

single camera, we apply tracking by segmentation and local object detection with multi-kernel

feedback to adaptively improve the robustness of the algorithm. In inter-camera tracking, we

introduce an effective integration of appearance and context features. Automatically couples

are detected, and the couple feature is also integrated with existing features. The proposed

algorithm is scalable by a fully unsupervised online learning framework. In our experiments,

the proposed method outperforms all the state-of-the-art in the benchmark NLPR MCT

dataset.

5.2 Single-Camera Tracking and Object Segmentation

Since both accurate segmentation and SCT results are necessary for supporting ICT, we de-

velop a robust tracking and segmentation system to achieve the goal. The proposed system

is coined as the MAST, short for “Multi-kernel Adaptive Segmentation and Tracking”, be-

cause we make use of multi-kernel feedback to adaptively control the thresholding parameters

in segmentation for preserving more foreground around object region. Figure 5.1 shows the

overview flow diagram of the MAST architecture. Note that this framework is extendable for
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Input Frame

Regularization

Local Human Detection

Constructing YCbCr Kernel 
Histogram

Constructing CbCr Kernel 
Histogram

Computing Color Similarity
Computing Chromaticity 

Similarity

Penalizing RYCbCr & RLBSP in 
Expanded Kernel Region

Penalizing ��� & ��� in 
Expanded Kernel Region

Output Tracking and Segmentation Results after Feedback Loop

Tracking by Kalman Filtering and CMK Method

Change Detection Based on SuBSENSE
w/ Shadow Detection

Figure 5.1: Flow diagram of MAST for SCT and segmentation. The role of each block is

detailed in Section 5.2.

the use of any object segmentation method, tracking-by-segmentation method, and object

detection method.

To begin with, the state-of-the-art change detection scheme, SuBSENSE [54], is adopted

for object segmentation. Each pixel in the input frame is represented by color (here we choose

to use YCbCr space instead of RGB space since it will facilitate the process of shadow de-

tection) and Local Binary Similarity Patterns (LBSP) feature [83]. The background model

is constructed by a set of background samples Bn(x, y) at each pixel location (x, y), which is

updated according to an automatically adjusted learning rate. When each new pixel arrives

for background/foreground classification, it will be compared with all background samples at

the corresponding location. The comparisons are based on two distance thresholds, RYCbCr
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and RLBSP, in the color space and feature space, respectively. If the number of matching

samples (with sufficiently short distance to the input pixel) is smaller than a specific mini-

mum, the pixel is labeled as foreground. To further enhance robustness of SuBSENSE, we

add a shadow detection block based on YCbCr color space that starts to function after a

pixel is classified as foreground,

Qt(x, y) =


1,

#{
(
αY ≤ IY

t (x, y)/BY
n (x, y) ≤ βY

)
∧
(∣∣ICb

t (x, y)−BCb
n (x, y)

∣∣ ≤ τCb

)
∧
(∣∣ICr

t (x, y)−BCr
n (x, y)

∣∣ ≤ τCr

)
,∀n}

> NQ
max

0, otherwise

(5.1)

where Qt(x, y) indicates shadow when the value is 1, It(x, y) is a pixel from current frame t,

the superscripts of It(x, y) and Bn(x, y) indicate the YCbCr channels, NQ
max is the maximum

number of matches required for the shadow detection, and αY, βY, τCb and τCr are the

thresholds for their corresponding color channels. If a pixel is detected as shadow, it is

discarded from foreground and will be used for updating the background model. After

segmentation, morphological operations, e.g., closing, opening, and flood-filling, are further

applied on the derived foreground mask for shape refinement.

In the segmented foreground, each object blob may contain more than one target, i.e.,

the problem of initial occlusion. Thus, a Histogram of Oriented Gradient (HOG) human

detector [9] is run on the cropped frame image within each object bounding box. If multiple

targets are detected and their overlapping area with each other is small enough, they will be

initialized separately for SCT. Different from traditional tracking by detection that needs to

process each entire frame image, the computation complexity is much reduced since only the

local region around each foreground blob is considered. Other than HOG human detector,

we have also tested Deformable Part Model (DPM) human detector [10] and C4 pedestrian

detector [84]. HOG is chosen for its simplicity and efficiency.

Based on the initialization of object positions from segmentation and local object detec-

tion, we can start tracking each target. The preliminary tracking results are generated by
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the method proposed by Chu et al. that combines Kalman filtering and CMK tracking [51].

Kalman filter prediction is first conducted on all the objects tracked in the previous frame.

Then we detect whether there is an abnormality in size change of each foreground blob,

which can be caused by occlusion or failure in segmentation. The abnormal targets and

those initialized by object detection are tracked by the CMK method, which relies on multi-

ple inter-related kernels to represent different parts of human, so that we can add weights of

trust on different kernels depending on their severity of occlusion. Multiple measurements

are produced from CMK tracking that is handled by probabilistic data association. On

the other hand, the normal foreground blob with a single object is directly selected as the

measurement for Kalman filtering.

From preliminary tracking results, we follow the concept of multiple kernels to measure

the similarity between current frame and background in object regions. In our experiments,

each human target is described by two kernels that cover half of his/her body on the top and

bottom respectively, as people usually wear differently in these two body parts. Moreover,

since the bounding box of each object may include background area, we can use kernel

histogram to emphasize on the central region that the object occupies. Two kernel histograms

are constructed within each kernel region for both current frame and background model: one

of them is built in the YCbCr color space, and the other only uses the Cb and Cr channels to

represent the chromaticity information. Note that the kernel histograms for background use

all background samples and is normalized for comparison. To emphasize the object region

that usually covers the central area of each kernel, a Gaussian kernel function is added for

constructing kernel histograms,

wker =
1

2πσxσy
exp

[
−(x− xm)

2σ2
x

− (y − ym)

2σ2
y

]
, (5.2)

in which σx and σy are set as half of the width and height of the kernel bounding box

respectively, while xm and ym locate the mean point of the foreground shape within the

kernel.

Afterwards, the color similarity and chromaticity similarity are computed as the recipro-
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Figure 5.2: The shape of fuzzy Gaussian penalty weighting function for adaptation of thresh-

olding parameters in object segmentation.

cals of Bhattacharyya distances [85] between corresponding kernel histograms, i.e.,

simicolor = 1

/∑
c

√
hIYCbCr(c) · hBGYCbCr(c), (5.3)

simichrom = 1

/∑
c

√
hICbCr(c) · hBGCbCr(c), (5.4)

where superscripts I and BG denote the kernel histograms in current frame and background

respectively, and c is the index of channel bin. We have also tested other measurements such

as correlation, Kullback-Leibler (KL) distance [66], dual KL distance [4], schemes in Auto-

matic Reference Color Selection (ARCS) [86], etc. The Bhattacharyya distance is selected

for its superior performance in our scenarios. The higher the color similarity of object region

with the background, the more likely the object will mistakenly merge into the background

during segmentation. Likewise, if the object region shares high similarity in chromaticity

with the background, e.g., a human wearing black pants is walking on a grey ground plane, it

is easy for his/her body parts to be wrongly recognized as shadow and removed from the fore-

ground. Next, a second segmentation using thresholding parameters penalized by simicolor

and simichrom is performed in order to preserve more foreground in the local region around

tracking targets. Under the consideration of smoothness of segmentation, the penalty weights

on segmentation thresholds are computed by a fuzzy Gaussian penalty weighting function



65

(a) (b)

Figure 5.3: Comparison of segmentation performance. (a) Segmentation from the prelimi-

nary result of SuBSENSE with shadow detection. (b) Segmentation after the application of

multi-kernel feedback loops (foreground in red, and detected shadow in blue).

as shown in (5.5),

wpen =

 exp
[
− 9·(1.0−simi)2

4·(1.0−simimin)2

]
, simimin ≤ simi ≤ simimax

0, otherwise
(5.5)

in which simi is the color or chromaticity similarity computed from (5.3) or (5.4), re-

spectively, while simimin and simimax indicate the region of simi value to perform re-

segmentation. As shown in the fuzzy Gaussian curve in Fig. 5.2, when simi is smaller

than the lower bound simimin, the preliminary segmentation is considered successful, and

there is no need for further adaptation, which is based on the concept of fuzzy set. On the

contrary, if simi is too large, it is highly likely to be caused by tracking error, where CMK

tracking wrongly shifts to a background area. Hence, to prevent propagation of errors, an

upper bound simimax is necessary for the similarity between current frame and background.

The wpen computed based on simicolor is used to penalize RYCbCr and RLBSP in SuBSENSE,

while the one for simichrom is applied on τCb and τCr in shadow detection, where the penal-

ization is defined by multiplying (1 − wpen). Meanwhile, since the preliminary foreground
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blob may fail to cover the entire object body, the kernel region to conduct re-segmentation

is expanded by a factor of wpen/2. In summary, the adaptive segmentation is operated in

a larger kernel region with lower thresholds for background subtraction and less shadow

detected, therefore, the segmented foreground area is expanded to maintain continuity of

tracking by segmentation. The final foreground mask is created by a union combination of

the first segmentation across the entire frame and local adaptive segmentation in selected

kernel regions.

Lastly, the tracking module is called again to generate the final tracking results from

the updated foreground mask. Note that Kalman filter update is not performed until after

re-segmentation. The optimized segmentation results will also be used in ICT for feature

extraction. The superiority of adding multi-kernel feedback loops to adaptively control the

segmentation thresholds can be seen from Fig. 5.3(b), in which more foreground belonging

to the target is retained, compared to Fig. 5.3(a), when the chromaticity of her clothing is

similar to background.

5.3 Camera Link Model Estimation

After collecting some video samples online (Section 5.3.1), camera link models including

transition time distributions for time window (Section 5.3.2), region mapping matrix (Sec-

tion 5.3.3), region matching weights (Section 5.3.4), and feature fusion weights (Section 5.3.5)

are estimated, and phase change occurs.

5.3.1 Online Sample Collection

In a FOV of a surveillance camera, a pedestrians appearance is usually captured in dozens

of frames. So one good matching pair in ICT is equal to dozens of positive samples. If we

have two good matching pairs, e.g., A-C and B-D, we can collect negative samples as well

by cross-matching pairs, e.g., A-D and C-B.

In our framework, good matching pairs are determined by the distance value calculated

in (4.16). According to the characteristics of the 2WGMMF feature, it has a negative value
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when query and target images are very similar. In other words, there is rarely false positive

pairs with a negative value of the 2WGMMF feature. Thus, good matching pairs are selected

as follows:

dI
Final < 0, (5.6)

for all the camera links. After obtaining two good matching pairs, we can start to build

camera link models and update them by adding good matching pairs continuously.

5.3.2 Estimation of Time Window

People tend to walk in similar paths in most cases considering available pathways, obstructs,

and shortest routes. Hence, the transition time t forms a certain distribution, and it can

be exploited to infer and model the camera network topology [32, 42, 43]. We utilize the

estimated distribution to determine the time window, which helps to reduce the number of

candidates. Transition time distribution is modeled as a Gaussian distribution,

f(∀t ∈ T|µT , σT ) =
1

σT
√

2π
e
− (t−µT )2

2σ2
T , (5.7)

where T = [t1, ..., tN ] represents a set of valid transition time values, µT and σT indicate

the mean and standard deviation of transition time distribution, respectively. Before having

transition time distributions, we fix the length of time window τ = 120 seconds, which can

be set as different values for different known camera topologies. In all experiments, after

estimating them, we set τ = µT ± 6σT .

5.3.3 Estimation of Region Mapping Matrix

Both the regional color and texture features are exploited to estimate region mapping matrix

as follows:

RA =

 hAr1 . . .h
A
r6

hArLBP1
. . .hArLBP6

 = [r1 . . . r6] , (5.8)



68

where rk ∈ IRn+l for k = 1, 2,..., 6. We minimize the following objective function to get each

vector w̄k,

wk = arg min
w̄k

gw (w̄k)

s.t. gw (w̄k) =
Nexit∑
i=1

Nentry∑
j=1

∥∥RA
j w̄k − rAik

∥∥2

2
,

w̄k ≥ 0, ‖w̄k‖1 = 1,

(5.9)

where Nexit and Nentry denote the number of exiting and entering observations respectively.

5.3.4 Estimation of Region Matching Weights

The matching weights method in [82] is employed to determine the region matching weights,

which are inversely proportional to the corresponding estimation error as follows:

qk =
1/εerrork∑7
i=1 1/εerrori

k = 1 – 7, (5.10)

where the estimation error of the mapping vector is defined as εerrork = gw (wk) for k = 1,

2,..., 6 and εerror7 =
∑Nexit

i=1

∑Nentry

j=1

∥∥rAj7 − rBi7
∥∥2

2
. A large weight implies that the body region

in one camera is well visible in the other camera as well.

5.3.5 Estimation of Feature Fusion Weights

Since there are four features, holistic color, 2WGMMF, region color, and region texture

features, used in ICT, we need an efficient method to fuse them together. The feature

fusion weights are systematically determined based on the degree of separation between the

distributions of the values in the positive and negative sets. The separation is measured by

the d-prime metric [82, 87],

dj =
µN
j − µP

j√
(σN

j )
2

+ (σP
j )

2
, (5.11)

where µj and σj denote the mean and standard deviation of the distribution of the feature

distance for each feature j; and superscripts P and N represent positive and negative sets,
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respectively. The feature fusion weights, αj, j = 1, ..., 4, are calculated as

αj =
dj∑4
i=1 di

. (5.12)

5.4 Experimental Results

To evaluate the performance, several combinations of the proposed features are compared

with the state-of-the-art methods [35, 44, 45, 88] in Table 5.1. Experimental dataset and

evaluation metric is the same as in Chapter 4.3.1. The details of feature combinations are

described in Table 4.2. USC-Vision team [35,88] is the winner of the MCT challenge in con-

junction with ECCV 2014, and they utilize a two-step approach. They employ a four-body-

part-based pedestrian detector [89] and a detection-based three-level hierarchical association

approach [88, 90] for SCT. During the three-level association, detections are connected into

the final trajectories by selecting detections discretely and complementing some missing de-

tections. For ICT, they use two kinds of context information, spatio-temporal context, and

relative appearance context, to improve the ICT performance [35]. Spatio-temporal context

is used to collect positive/negative training samples for each tracked object. Relative appear-

ance context is used to model inter-object appearance similarities between the query person

and the people in the neighboring set, which is defined as other people who enter/exit this

zone in a time window with the query person. NLPR team [45] uses the DPM detector [10] to

get the detection results, and applies an equalized global graph model that combines PMC-

SHR with an accurate similarity equalizer to compensate the weak invariance of appearance

representation for ICT. CRIPAC-MCT team [44] exploits a head-shoulder detector [91] and

an adaptive integrated feature (AIF) tracker [92] to get all the tracklets from each camera.

Then, tracklets are merged into trajectories by a global tracklet association, which models

ICT as a global MAP problem. Hfutdspmct team utilizes the Visual Background extractor

(ViBe) algorithm [93] for detecting foreground. For SCT, their method is based on center

location bi-directional matching. As for ICT, adjacency constrained patch matching, as well

as bi-directional weighted matching, are applied.
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Table 5.1: Performance comparison of multiple camera tracking without ground-truth of

object detection. The best results are highlighted in colors (Underlined red font is rank-1

and italicized green font is rank-2).

Sub-

dataset

Evaluation

metric
Comb1 Comb2 Comb3 Comb4

USC-Vision

[88] + [35]

NLPR

[45]

Hfutdsp-

mct

CRIPAC-

MCT [44]

Dataset1

Precision 0.7724 0.6916 0.7967 0.7113 0.1488

Recall 0.6088 0.6061 0.5929 0.3465 0.2154

Detection 0.6809 0.6460 0.6799 0.4660 0.1760

TrackingSCT 0.9981 0.9981 0.9744 0.9229 0.9955

SCTA 0.6796 0.6448 0.6625 0.4301 0.1752

Tracking ICT 0.8851 0.8851 0.8665 0.8789 0.9288 0.6220 0.6534 0.7111

MCTA 0.6015 0.6015 0.5889 0.5973 0.5989 0.4120 0.2810 0.1246

Dataset2

Precision 0.8334 0.6948 0.7977 0.7461 0.1431

Recall 0.7091 0.7843 0.6332 0.3669 0.1933

Detection 0.7662 0.7368 0.7060 0.4919 0.1645

TrackingSCT 0.9991 0.9986 0.9779 0.9347 0.9945

SCTA 0.7655 0.7358 0.6904 0.4598 0.1636

Tracking ICT 0.8842 0.8793 0.8818 0.8768 0.8691 0.6942 0.6122 0.7510

MCTA 0.6769 0.6732 0.6751 0.6713 0.6260 0.4793 0.2815 0.1075

Dataset3

Precision 0.6597 0.4750 0.8207 0.3342 0.0853

Recall 0.7260 0.6615 0.5345 0.0986 0.1206

Detection 0.6913 0.5529 0.6474 0.1523 0.0999

TrackingSCT 0.9864 0.9904 0.9749 0.9682 0.9715

SCTA 0.6819 0.5476 0.6312 0.1475 0.0971

Tracking ICT 0.5461 0.5329 0.5329 0.5000 0.1014 0.2953 0.2432 0.1143

MCTA 0.3724 0.3634 0.3634 0.3410 0.0555 0.1864 0.0359 0.0111

Dataset4

Precision 0.8758 0.5216 0.8355 0.7720 0.0606

Recall 0.8600 0.7938 0.6193 0.1210 0.0944

Detection 0.8678 0.6295 0.7113 0.2092 0.0738

TrackingSCT 0.9977 0.9948 0.9275 0.9865 0.9762

SCTA 0.8658 0.6262 0.6597 0.2064 0.0720

Tracking ICT 0.6270 0.6151 0.5992 0.6071 0.5437 0.4308 0.2944 0.2950

MCTA 0.5429 0.5326 0.5188 0.5257 0.3404 0.2842 0.0608 0.0213

Average MCTA 0.5484 0.5427 0.5366 0.5338 0.4052 0.3405 0.1648 0.0661
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In Table 5.1, all the combinations, Comb1 to Comb4, of our proposed algorithm out-

perform the state-of-the-art methods in terms of average MCTA. Especially, Comb1, which

has a combination of all the features, shows the best results. It proves that the proposed

algorithm is robust in various environments.

We adopt the default setting of parameters in [14] for SCT. From the results of SCT in

terms of F1-score (Detection), mismatches (TrackingSCT) within a single camera, and SCTA,

it can be seen that our proposed method based on MAST also achieves the most robust

overall performance in all the four scenarios. The main advantage of MAST over general

tracking-by-detection is that we effectively combine the information from segmentation with

local object detection so that our method is less affected by the false positives generated

by human detector in the entire frame. Moreover, the continuity of object tracking by

segmentation is superior over those methods based on connecting trajectories, since there

often exist many missing detections during tracking. This explains why the performance

of MAST is more robust compared with the other state-of-the-art SCT used by each team.

It can also be seen that the improved performance of intra-camera tracking and object

segmentation also contribute to robust tracking across cameras. In addition, according to

our parameters setting, the average runtime of our SCT together with object segmentation

is 16.018 fps. The runtime is estimated on an Intel Core i7 PC with 2.67 GHz processor and

6G RAM in a Windows 7 environment.
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Chapter 6

CONCLUSIONS AND FUTURE WORKS

6.1 Conclusions

In this dissertation, we propose a robust video object tracking system in distributed camera

networks. The system includes invariant features for appearance-cue, single camera human

tracking, and two-phase inter-camera tracking across multiple cameras.

We propose a novel enhanced and integrated person re-identification framework, which

consists of three important techniques: holistic invariant feature extraction, regional invariant

feature extraction, and aggregation. A pre-trained DCNN is used for extracting features

describing holistic person appearance including color, texture, shape and other visual cues.

Furthermore, we propose a two-way GMM fitting scheme to model dominant color modes

of the target image as GMM in color histogram domain with the partitioned body parts.

We also propose the integration scheme to combine three feature distances effectively using

min-max normalization. In the experiments, we show that the new framework exceeds the

state-of-the-art methods on the challenging benchmarks.

We propose a robust approach for tracking the same identity across multiple cameras

based on online learning in a fully unsupervised manner. In SCT, we introduce a method

that depends on tracking by multi-kernel adaptive segmentation with the assistance of local

object detection, which also generates optimal foreground mask for the extraction of features

in ICT. We make use of color transfer method to mitigate the change of illumination in

ICT. The pose-invariant appearance features are exploited to overcome variation of poses

and camera viewpoints between adjacent cameras. Moreover, the combination with context

feature improves the performance of ICT. After collecting some video samples online, camera

link models including transition time distributions for the time window, region mapping
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matrix, region matching weights, and feature fusion weights are estimated, and the phase

change occurs. We demonstrate significant advantages compared to the state-of-the-art

methods on the benchmark dataset representing real-world camera network scenarios.

6.2 Future Works

In this dissertation, a robust video object tracking in distributed camera networks is proposed

and developed, including invariant appearance descriptor, context-based feature, two-phase

online-learning-based human tracking across non-overlapping cameras. However, the pro-

posed approaches are limited to static camera networks.

The first future work is extending the proposed method to moving cameras. In terms of

ICT with the real-world positions and motion information, tracking across static cameras or

moving cameras is not different at all. By utilizing motion [94] and spatio-temporal cues, we

are able to prune the outliers of matching candidates. To get the real-world positions and

track the person in 3D space, we consider employing human detector and self-calibration

from tracking [95]. In this way, we believe the system can further improve the capability of

tracking as well.

In addition to the above, we plan to add the facial feature in the tracking. Face detec-

tion [96,97], alignment [98], and recognition [99] methods are well developed. However, most

of the methods had experimented with vivid face images. The frames captured by surveil-

lance cameras are blurry and face is sometimes not available in case rear head is taken. With

utilizing trajectory, we can decrease false positive of face detection. In surveillance camera

network, face poses are not consistent between two different cameras. Then, face frontaliza-

tion [100] can be useful to improve the accuracy of face identification. By adding a facial

feature, human tracking system across cameras can be more complete.
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