Precise Inside-Out Electromagnetic Input Tracking

Farshid Salemi Parizi

A thesis
submitted in partial in fulfillment of the
requirement for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

University of Washington

2019

Reading Committee:
Shwetak Patel, Chair
Payman Arabshahi

Program Authorized to Offer Degree:
Electrical and Computer Engineering
University of Washington

Abstract

Precise Inside-Out Electromagnetic Input Tracking

Farshid Salemi Parizi

Chair of the Supervisory Committee:
Washington Research Foundation Entrepreneurship Endowed Professor Shwetak Patel
Paul G. Allen School of Computer Science and Engineering & Department of Electrical and Computer Engineering

Wearable computing platforms, such as smartwatches and head-mounted mixed reality displays represent a promising direction for next-generation computing platforms. As computing platforms evolve from devices we carry with us to devices we wear on us, there is a renewed demand for input techniques that are decoupled from the display. These input devices demand precise tracking for high-fidelity interaction and must be continuously available and subtle to support various contexts of use while enabling robust and expressive interaction.

In this thesis, I leverage electromagnetic tracking with data-driven approaches to enable new input devices that are more precise, subtle, and computationally simpler.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>List of Figures</th>
<th>iii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1: Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Magnetic Tracking Background</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Thesis Organization</td>
<td>3</td>
</tr>
<tr>
<td>Chapter 2: Related Work</td>
<td>4</td>
</tr>
<tr>
<td>2.1 Magnetic Tracking</td>
<td>4</td>
</tr>
<tr>
<td>2.2 Inside-out Controller Tracking</td>
<td>6</td>
</tr>
<tr>
<td>2.3 Finger Tracking</td>
<td>7</td>
</tr>
<tr>
<td>2.4 Smart Rings</td>
<td>7</td>
</tr>
<tr>
<td>Chapter 3: 6-DoF controller Tracking</td>
<td>9</td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>9</td>
</tr>
<tr>
<td>3.2 System Implementation</td>
<td>13</td>
</tr>
<tr>
<td>3.3 Calibration</td>
<td>17</td>
</tr>
<tr>
<td>3.4 Tracking Algorithm</td>
<td>20</td>
</tr>
<tr>
<td>3.5 Data Collection</td>
<td>25</td>
</tr>
<tr>
<td>3.6 Evaluation</td>
<td>27</td>
</tr>
<tr>
<td>3.7 Conclusion</td>
<td>35</td>
</tr>
<tr>
<td>Chapter 4: Precise Finger Tracking</td>
<td>36</td>
</tr>
<tr>
<td>4.1 Introduction</td>
<td>36</td>
</tr>
<tr>
<td>4.2 Theory of Operation</td>
<td>39</td>
</tr>
<tr>
<td>4.3 AuraBand Hardware</td>
<td>43</td>
</tr>
<tr>
<td>4.4 Calibration</td>
<td>46</td>
</tr>
<tr>
<td>4.5 Tracking Algorithm</td>
<td>51</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Aura is a 6-DoF electromagnetic tracking system for small, handheld controllers. It estimates the pose of the controller with respect to the head-mounted display.</td>
</tr>
<tr>
<td>3.2</td>
<td>Three transmitter coils embedded in the headset produce three magnetic fields (M_1, M_2, M_3). A three-axis coil inside the handheld controller measures the fields.</td>
</tr>
<tr>
<td>3.3</td>
<td>The transmitter filters the output of a waveform generator and feeds the signal through each of the transmitter coils sequentially.</td>
</tr>
<tr>
<td>3.4</td>
<td>Each transmitter coil is activated for 3 ms, during which each of the three orthogonal receiver coils measures the magnetic flux.</td>
</tr>
<tr>
<td>3.5</td>
<td>On the controller (single-channel depicted), the MCU measures the magnitude (top) and phase (bottom) of the received signal.</td>
</tr>
<tr>
<td>3.6</td>
<td>For calibration, Helmholtz coils produce a small volume where the magnetic field is insensitive to movement.</td>
</tr>
<tr>
<td>3.7</td>
<td>Our proposed model outperforms a linear prediction of the observed signals.</td>
</tr>
<tr>
<td>3.8</td>
<td>Within the Helmholtz coil, the measured field magnitudes should be constant as the controller is rotated. As different calibration steps are applied, the calibrated signal significantly improves.</td>
</tr>
<tr>
<td>3.9</td>
<td>Features extracted from the field vectors are first used to estimate position. The estimated position is used to estimate the field vectors in the headset space. SVD is used to extract the orientation from these paired field vectors.</td>
</tr>
<tr>
<td>3.10</td>
<td>A cross-section at $y = -300$ mm of two of rotation-invariant features from the simulated dipole dataset. The left plot shows the magnitude of the magnetic field from the side one of the side coils, per Equation 3.4, and the right plot shows the dot product between the center and side coil, per Equation 3.5.</td>
</tr>
<tr>
<td>3.11</td>
<td>CDF of simulated tracking error for the dataset generated using dipole field models and numeric integration of the actual prototype coils.</td>
</tr>
<tr>
<td>3.12</td>
<td>Retroreflective markers placed on the HMD and controller enable tracking with a ground truth optical motion capture system.</td>
</tr>
</tbody>
</table>
3.13 Signals used to compute alignment between Aura and the motion capture system. ... 26
3.14 Cross-correlation between the sensor data and the distance from the headset. ... 27
3.15 2D positional tracking performance ... 28
3.16 CDF of 2D positional error .. 29
3.17 3D positional tracking performance ... 30
3.18 CDF of 3D positional error .. 31
3.19 CDF of orientation tracking error .. 32
3.20 CDF of stationary measurement jitter .. 32

4.1 AuraBand is 5-DoF electromagnetic tracker that enables precise, accurate, and fine-grained finger tracking for AR, VR and wearable applications. Left: Show a user writing the word "hello" in the air. Right: Person using AuraBand to play a song in a music application on a smart glass. 37
4.2 AuraBand uses a wire coil wrapped on a ring to produce an AC magnetic field around the hand which is measured by three 3-axis coils embedded in a wristband. ... 40
4.3 By embedding three sensor coils in the wristband, AuraBand achieves a well-conditioned minimum that makes AuraBand robust. As depicted, having one or two coils will result in confusing other points with the target point. 43
4.4 AuraBand contains two controller and three sensor boards embedded in a wristband and a ring worn device. ... 44
4.5 Block diagram of AuraBand. The ring generates a magnetic field at a particular frequency which is measured by the sensor boards. They send these signals to the controller board where where an ADC samples the data and communicates with a host computer using an ultra low power MCU. 45
4.6 The AuraBand system needs a one-time factory calibration to match the synthetic data to its measurements. In real-time, the iterative model uses this calibration to refine the pose estimation and the neural network model regresses directly to pose. ... 47
4.7 We place retromarkers on the ring and wristband to get the ground truth measurement from an optical capture system. 48
4.8 The one-time factory calibration process is necessary to match the synthetic data to the data measured by AuraBand. 51
4.9 Data collection setup. IR retroreflective markers are placed on the ring, palm, and wristband to facilitate tracking. The user moves the index finger and wrist while measurements are collected. AuraBand streams data to the PC over a USB connection.

4.10 CDF of 3D position tracking among all participants using the iterative model vs the neural network model. The best accuracy is achieved by using the recalibrated iterative model.

4.11 CDF of orientation tracking among all participants using all models.

4.12 A representative few seconds of 3D positional tracking for two of the participants. While the tracking error is relatively higher for the one on the right, the relative motion still tracks the ground truth motion.

4.13 A zoomed in trace for the x-direction. Aura leverages a Kalman filter to smooth out the estimated position. Even when the neural network has a static offset, the relative motion is preserved.

4.14 The AuraBand hardware is sensitive to 100 microns of movement. A single channel of one of the sensors depicted as the transmitter is moved by a motorized linear stage.

4.15 AuraBand is capable of measuring high-speed events such as taps. A user performs multiple taps after moving their finger in the air. (Top): nine raw sensor measurements. (Bottom): Spectrogram of the recorded data.

4.16 Handwriting examples using wrist-only motion from motion capture (top) and wrist motion + AuraBand (bottom). The left example shows large hand motion. The right example shows small writing on a handheld object.
ACKNOWLEDGMENTS

I would like to take this opportunity to thank all the people who have helped me to reach this significant milestone of my life. First, my family who without all their sacrifice, I would have not got here. They have influenced me tremendously and I will always remember and appreciate all their hard work to help me thrive. Your constant love and support is definitely the most important ingredient in all my achievements.

Second, I want to express sincere appreciation to Prof. Shwetak Patel for being an amazingly talented and supportive advisor. Your creativity, optimism, generosity, and energy will always remain inspirational and I feel very lucky to be working with you.

I would also want to thank greatly Dr. Eric Whitmire. I could have not asked for a better mentor, collaborator and friend. I enjoyed working with you on many project and you have completely changed the way I think, work and approach problems.

In addition I would like to thank all the members of the Ubicomp Lab at UW for all their help, discussion, and guidance. In particular, I want to send my thanks to Alex Marikakis, Edward Wang, Josh Fromm, Elliot Saba, Manoj Gulati, Hanchuan Li, Alvin Cao, Lilian Degreif, Morelle Arian, Manuja Sharman, Chunjong Parkm Ruth Ravichandran, Mohit Jain, Matt Whitehill, Alex Ching and Xin Liu.
DEDICATION

to my dear parents, Faranges & Abbas who I love.
Chapter 1
INTRODUCTION

For the past couple of years, we have seen amazing progress in wearable devices such as rings, wristbands, smart watches, augmented reality (AR) and virtual reality (VR) devices. Existing user-input solutions for these devices don’t have the subtlety and form-factor to have widespread use. In this thesis, I leverage electromagnetic tracking with data-driven approaches to enable new input devices that are more precise, subtle, and computationally simpler.

1.1 Magnetic Tracking Background

The use of electromagnetic (EM) fields for 6-DoF tracking has a rich history that dates back to the 1980’s [33, 53]. This technique is characterized by extremely precise position and orientation tracking. Since then, it has been used in contexts ranging from surgery [17, 34] to biomechanics [40, 48] to localization [11].

In general, magnetic tracking systems rely on two types of sources: the permanent magnet [39], which generates a static magnetic field, and alternating current (AC) electromagnetic coils [62, 61]. While permanent magnet systems are affected by the Earth’s geomagnetic field, AC electromagnetic coils generate a magnetic field at a particular frequency that can be more easily measured by filtering out all other frequencies.

A typical electromagnetic tracking system contains a transmitter base station with a three-axis orthogonal coil transmitter and one or more three-axis receivers, typically realized using orthogonal coils. The oscillating magnetic flux through the coils induce an oscillating voltage of the same frequency which can be amplified and measured. Filtering or synchronous detection is used to isolate the field of interest from other ambient magnetic fields, including
the geomagnetic field.

Using an alternating current to drive an electromagnet formed by a wire coil is an effective method of generating a magnetic field that oscillates at a particular frequency. According to Maxwell’s equations, an electric current flowing along a wire coil will generate a magnetic field. The oscillating magnetic flux from these generator coils intersects the sensor coils, inducing a voltage of the same frequency according to Faraday’s law of induction. The voltage induced in the coil is proportional to the rate of change of the magnetic flux through the surface bounded by the coil and the number of windings in the coils.

The flux through the coil depends on its orientation within the magnetic field. If the coil is aligned with the field—that is, the normal vector to the coil is aligned with the field—then the flux and the magnitude of the induced voltage will be maximal. As the coil rotates away from the field, the induced voltage decreases to zero. If the coil flips around, the voltage acquires a 180° phase shift, which could manifest as a negative amplitude, depending on the measurement technique.

To track position and orientation in real time, researchers have historically relied on tracking pose changes [53] or on iterative algorithms that find the pose which best explains the observed sensor values [50] These systems are usually realized by approximating the magnetic sources as dipoles and, in multi-axis systems, as orthogonal dipoles. These pose estimation approaches rely on analytical or numerical analysis of forward models, which describe the magnetic field at the sensor as a function of pose. More recently, closed-form solutions [30] have been developed that analytically invert the forward models. In all of these approaches, deviations from these ideal models cause inaccuracies in the estimated pose.

These assumptions lead to traditional electromagnetic tracking systems that use large high-power transmitter coils that can be approximated as dipoles and are intended to be placed in the environment away from any metallic elements. In contrast, in this thesis I try to forgo these constraints and designed input devices that are optimize for form-factor, power and precision.
1.2 Thesis Organization

This thesis is organized in the following manner. Chapter two, expands on related work on finger and controller tracking. Chapter three and four elaborates on a new 6-DoF handheld controller for head mounted displays and a precise finger tracking for smart rings respectively. The last chapter concludes the thesis with discussion and future work.
Chapter 2

RELATED WORK

In this chapter I will first elaborate on advances in electromagnetic tracking for both finger and controller. Then expand on inside-out controller and finger tracking using other approaches.

2.1 Magnetic Tracking

Magnetic tracking can be classified as DC and AC tracking. In DC tracking systems, a magnetic sensor, often a magnetometer, measures the magnetic field generated by a permanent magnet. This technique has seen extensive use in the HCI field, since magnetometers are commonly found in wearable devices and permanent magnets can be easily attached to the body.

Dai et al. demonstrate an electromagnetic tracking technique using a single transmitter coil and a 3-axis magnetometer [14]. In Finexus, Chen et al. use four magnetometers to track the position of electromagnets placed on the fingertips [10]. Both of these approaches are limited to shorter distances (less than 20 cm). Islam et al. show a technique using resonance coupling to improve the efficiency of electromagnetic tracking systems [27]. Our experimentation with this technique suggests that while range is increased, the crosstalk due to the mutual coupling of different coil axes makes field reconstruction difficult.

Abracadabra [22] used a permanent magnet affixed to the fingertip to interact with a smartwatch that measures the magnetic field direction and strength using a magnetometer. Similarly, uTrack [9], affixed a permanent magnet to the thumb and two magnetometers to the fingers to track 3D thumb pose. FingerPad [8] also affixes a magnet to thumb but uses Hall-effect sensor grid on the index fingernail to sense pinch gestures. The Nenya system [4]
used a ring with two permanent magnets attached that could be twisted to change the shape of the resulting magnetic fields, which were measured by a magnetometer on a smartwatch. In 2016, Lyons showed a smartphone-based magnetometer tracking system that enabled 2D interaction on the side of a cardboard VR device using a permanent magnet [37]. Reyes et al demonstrated SynchroWatch [54], which recognizes synchronous thumb gestures using a permanent magnet attached to a thumb ring.

Magnetic tracking systems that rely on permanent magnets have size and complexity advantages because they can rely on off-the-shelf magnets and magnetometers. However, this comes at the cost of precision. Magnetometers are generally limited in their accuracy and sampling rate and such systems must contend with interference from the Earth’s geomagnetic field. As a result, the operating range of such systems is generally limited to several centimeters.

In contrast, AC magnetic tracking relies on one or more oscillating magnetic fields. AC electromagnetic tracking has a rich history of enabling precise, 6-DoF tracking [53, 33]. Since its inception in the late 1970’s, the technique has been used for surgical tracking [34, 17, 76], biomechanical analysis [48, 40], virtual reality tracking [30, 74], and HCI [49, 10].

Original systems relied on iterative approaches to estimate the pose of the tracked objects, however, recent techniques have explored closed-form or closed-loop solutions that improve performance [30, 18]. Ge et al. use rotating transmitters [18] to continuously track the object. Kim et al. show a closed form solution when using a 3-axis dipole generator [30], but only evaluate their approach on a small 3D trajectory with no ground truth reference. These approaches rely on analytic solutions to the forward and reverse problems.

Magnetic field distortions when tracking near metallic objects is a common drawback of AC magnetic tracking, particularly when used in dynamic environments. Some work has attempted to account for magnetic interference through a secondary calibration step [31, 32].

Unlike most EM systems, which rely on environmentally placed transmitter coils, Pirkl et al. developed a wearable low-power electromagnetic system [49]. However, this solution was only used for gesture recognition, not positional tracking. Roetenberg et al. created
a wearable EM tracking system with 5 mm accuracy [55] using a pyramidal structure of transmitter coils. For a more thorough review of magnetic positioning systems, see [47].

In the commercial space, electromagnetic tracking is performed by products from Polhemus, NDI, and Sixense. These products consist of a large transmitter that emits a consistent magnetic field that spans a volume on the order of a cubic meter. The base stations are coupled with small receiver sensors that plug into a large processing hub. In general, such devices offer incredible tracking precision and accuracy, but rely on large infrastructure and distortion-free fields that make integration into a mobile device difficult. For example, the Polhemus G4 [51] tracking system uses a 5 W transmitter and 2.5 W receiver hub.

Magic Leap has recently released a proprietary electromagnetic tracking solution. However, this system uses a multi-frequency transmitter in the controller while placing the receiver coil in the headset. This configuration makes it difficult to scale to multiple controllers, as nearby controllers may interfere with each other.

2.2 Inside-out Controller Tracking

Some commercial devices (Windows Mixed Reality, Oculus Quest) use head-mounted cameras that track a controller with an external LED ring. While this technique is precise, it requires the use of bulky controllers and line of sight to the headset, preventing use with arms at the side. The upcoming Vive Focus uses ultrasound and IMU tracking, though there are few details about how this works.

In the research space, a number of different techniques have been explored to eliminate the use of bulky tracking rings and markers. Pocket6 is a solution that uses ARKit on an iPhone X to localize the controller using the built-in SLAM and IMU fusion algorithms [5]. Pandey et al. demonstrate a technique to track markerless controllers using only the front-facing camera on the HMD [45]. These classes of solution tend to demand significant power and computation.

Though not explicitly a controller tracking technique, Shen et al. show a method [57] to track the position of a smartwatch using IMU sensors and a kinematic model. Ultra-
sound tracking systems have long been used for tracking the head [15, 16]. These rely on pairs of beacons and microphones that use time-of-flight measurements to estimate 6-DoF pose. Though they are usually small and light, they are sensitive to temperature, occlusion, and ultrasound noise. Nandakumar et al. use RF backscatter to track the position of sub-centimeter scale devices [42]. Although they can localize objects tens of meters away, their accuracy is not sufficient for VR controller trackers and requires instrumenting the environment. See Baillot et al. for a more complete review of VR tracking technologies [6].

2.3 Finger Tracking

Beyond magnetic tracking approaches, researchers have leveraged other sensing techniques to estimate fine-grained finger motion. Kim et al used infrared illumination from the wrist to track hand pose [29]. Project Soli [70] uses radio frequency signals to recognize subtle finger gestures. Pyro uses the pyroelectric effect to recognize small thumb gestures [20]. Bioimpedance has been used to reconstruct the cross-sectional impedance of the arm and recognize various hand gestures [82, 83].

Other systems use sensors on the opposing arm or in the environment to track finger motion. FingerIO uses sonar from a smartphone to measure the 2D position of the fingertip [43]. SkinTrack uses a ring-smartwatch pair that leverages electrical waveguides to track the 2D position of the finger on the opposing arm [84].

Still other systems use gloves or finger strips to estimate finger and hand pose [80, 79, 25, 26, 72, 3, 19, 1, 65]. These systems require significant augmentation and are less appropriate for everyday usage.

Finally, camera-based approaches are a common approach to hand- and finger-tracking. These commonly rely on infrared depth sensing [66] or markers on the hand [69].

2.4 Smart Rings

Smart rings provide an attractive form-factor for always-available subtle input. Rings have been shown useful for subtle input [4], interaction with 2D surfaces [78, 41, 28]. LightRing [28]
uses a gyroscope and IR proximity sensor to track finger motion on a 2D surface. Commercial smart rings offer features like fitness tracking, heart-rate tracking, inertial gesture sensing, and NFC payments.
Chapter 3

6-DOF CONTROLLER TRACKING

3.1 Introduction

Head-mounted displays (HMDs) for virtual (VR) and augmented (AR) reality represent a promising direction for next-generation computing platforms. Although early iterations of such devices are intended for use in fixed environments, the promise of mobility offers exciting new opportunities for the future of personal computing. The handheld controller is a useful input device and offers advantages such as physical buttons with tactile feedback, a platform for rich haptic feedback [71, 81, 64, 12], and, most importantly, a mechanism for precise tracking. Controller tracking is classified as either 3-DoF rotational tracking (i.e. roll, pitch, yaw) or 6-DoF rotational and positional tracking (i.e. roll, pitch, yaw, x, y, z). The use of 6-DoF positional tracking enables an additional class of spatial computing applications by allowing the controller to serve as a virtual tool or a proxy for the user’s hand.

Today, there is a significant divide between handheld controllers for mobile VR/AR platforms and those for high-end desktop VR systems. Mobile systems, such as the Samsung Gear VR or Google Daydream, use a small handheld controller that relies on 3-DoF inertial orientation tracking, with limited positional tracking support. On the other hand, desktop VR systems like the Oculus Rift, use a larger controller with external light emitting diodes (LEDs) for 6-DoF optical tracking. These external elements are tracked using cameras placed in the environment. Though these controllers are much larger, the positional tracking they offer results in a substantially more immersive experience compared to the simple orientation tracking on mobile VR. Efforts to remove the need for environmental infrastructure often move the tracking cameras to the head. This approach leads to additional HMD power consumption, limits cameras’ line of sight, and still requires bulky tracking elements on the
controller.

If head-mounted displays are to become a compelling personal computing platform with applications beyond gaming, they must support mobility and robust usage. Handheld controllers must rely on inside-out tracking to enable mobility while maintaining low power consumption for extended use on battery power. The form factor should be small enough to fit within the hand during use and in a pocket or bag when not in use. They should also support a robust set of interaction scenarios and maintain usability outside of the view of a head-mounted camera—for example, with the hands at the side on a crowded bus or under a table during a meeting. In this chapter, I seek to close the gap between the attractive form-factor and mobility of 3-DoF inertial controllers and the performance and usability of high-end 6-DoF controllers.

We propose Aura, a novel low-power electromagnetic tracking technique to bring high-precision 6-DoF controllers to any head-mounted mixed-reality system without the need for line-of-sight, bulky tracking rings, or environmental sensors. Our proposed tracking system uses three coils embedded in a head-mounted display that each generate a unique magnetic field oscillating at 100 kHz. The generated fields induce a sinusoidal voltage in orthogonal receiver coils embedded in a handheld controller. As the user moves the controller, the signal in each receiver coil varies depending on its position and orientation within the field.
In a traditional electromagnetic tracking system, one would carefully construct a 3-axis dipole transmitter and place it far away from any other metallic objects. This significantly limits the design space of HMDs, which strive to be small and lightweight. Unlike traditional electromagnetic tracking systems, Aura makes no assumptions about the size, shape, or position of the transmit coils and no assumptions about nearby ferromagnetic material on the headset. This freedom enables custom coil shapes and configurations that open the design space for small and lightweight form factors. To demonstrate this capability, Aura foregoes the use of precisely manufactured orthogonal transmit coils and explicitly uses irregularly shaped coils designed to fit the contours of a Samsung Gear VR headset. The use of irregularly-shaped coils significantly complicates the pose estimation task. To solve this challenge, Aura uses a hybrid tracking approach that leverages a physics model to calibrate the sensor coils and a closed-form data-driven model using neural networks to directly estimate pose from the calibrated sensor data. While electromagnetic tracking has a rich history [53, 33, 17, 34, 40, 48, 11], to our knowledge, Aura is the first system to demonstrate 6-DoF pose estimation using irregularly-shaped, non-orthogonal coils.

Aura is inside-out; that is, it tracks the position of the controller with respect to the head. For high-end AR or VR systems with positional head-tracking, e.g. using inside-out SLAM-based tracking [24], Aura provides an upgraded controller tracking experience by enabling more robust and subtle usage without the need for line-of-sight or bulky tracking rings. On low-end VR systems that rely on inertial head-tracking, the ability to locate the hand with respect to the eyes still enables many new interactive experiences. On such devices, Aura serves as a snap-on upgrade that provides positional tracking of the controller. Positional head-to-controller tracking allows a VR system to render the hand or virtual objects within the hand at the correct visual position and orientation no matter how the user moves their head. This capability would allow the user to perform any of the pointing-based interactions common in today’s VR applications, without having to frequently recalibrate to compensate for drift. Moreover, it would allow the user to directly manipulate objects locked or loosely locked to the body. For example, a user might reach out and type on a virtual keyboard.
Figure 3.2: Three transmitter coils embedded in the headset produce three magnetic fields (M_1, M_2, M_3). A three-axis coil inside the handheld controller measures the fields.

placed directly in front of them, a task that is nearly impossible with inertial tracking. We note that on low-end systems with only inertial head-tracking, the ability to directly grasp other objects located in the world is still limited by the system’s head-tracking capabilities.

In the following sections, I provide a brief overview of electromagnetic tracking techniques and design decisions I made in Aura, implementation and calibration details for the Aura system, and results from a system evaluation and characterization. Our results demonstrate that Aura can track a handheld controller with millimeter accuracy.

Specifically, our contributions include:

1. An efficient, novel, closed-form tracking algorithm that works with arbitrary transmitter coil shapes and configurations and accounts for static magnetic field distortions

2. A low-power hardware architecture for a 6-DoF handheld controller

3. A prototype implementation of the Aura system and evaluation of tracking accuracy that demonstrates a median 3D error of 5.5 mm and 0.8°.
3.2 System Implementation

The Aura system consists of an HMD attachment that generates magnetic fields and a controller that measures the resulting fields. Figure 3.2 depicts the Aura system components. The following sections provide details of the Aura hardware and explore the capabilities and design challenges of the devices.

3.2.1 Transmitter

Aura’s transmitter consists of three low-profile generator coils embedded in a head-mounted display that sequentially emit a magnetic field oscillating at 100 kHz. Each of the side generator coils consists of 30-40 turns of 22 AWG magnet wire wound around a 3D printed ABS frame. The central coil is wrapped in an oval shape of size 20 cm × 7.5 cm. The inductances for the three coils are measured as 358 μH, 476 μH and 279 μH.

One of the contributions of this chapter is the use of non-orthogonal coils for the transmitter. This allows Aura to have a configuration of coils that can be fit into any HMD. The

![Diagram of Aura's transmitter setup](image)

Figure 3.3: The transmitter filters the output of a waveform generator and feeds the signal through each of the transmitter coils sequentially.
 coils are rigidly mounted on a 3D-printed support structure such that the magnetic flux is directed toward the user’s hand. Our implementation is designed to fit on a Samsung Gear VR (Figure 3.2) but could easily be modified to fit other HMD designs.

Figure 3.3 shows the block diagram of Aura’s transmitter. The transmitter uses a programmable waveform generator (AD9833) to generate a 100 kHz square wave. This frequency was chosen to enhance sensitivity without approaching any of the coils’ self-resonant frequencies or inducing troublesome eddy currents in nearby metallic objects. This signal is passed through a two-stage active bandpass filter (AD8616) with a Q-factor of 15.9 and gain of 0.5 dB. The resulting sinusoid is time-multiplexed (ADG1604) and fed through each of the generator coils.

Each coil generates a magnetic field for 3 ms in sequence; once the cycle is completed, all of the channels are turned off for 2 ms to synchronize the transmitter and receiver (Figure 3.4). Because Aura cycles through each coil every 11 ms, the resulting frame rate is 91 Hz. An ultra-low power microprocessor (MSP430FR2100) controls the multiplexing and interfaces with the components on the transmitter board. We use passive matching networks to tune the coils impedance, resulting in improved power transmission efficiency at 100 kHz.

![Figure 3.4: Each transmitter coil is activated for 3 ms, during which each of the three orthogonal receiver coils measures the magnetic flux.](image)

3.2.2 Receiver

While the HMD-based transmitter uses hand-wound coils to generate three unique AC magnetic fields, the controller uses an off-the-shelf three-axis orthogonal receiver coil (Grupo Premo 3DCC08) to reconstruct the 3D magnetic field vector. Because the tracking system
relies on interpreting the demodulated sensor measurements as field vectors, it is important to maximize precision and orthogonality in this procedure. The signal from each of the coils is fed to an amplifier (INA826) with a gain of 33.9 dB. The resulting amplified signal is fed to a two-stage active bandpass filter (AD8616) with a Q-factor of 10.2 and a gain of 33.5 dB. Then, I use a low-noise and low-voltage drop Schottky diode network (SMS7630) in a full-wave bridge rectifier configuration[21] to demodulate each of the channels. Finally, each channel is sampled at 4 kHz using the 24-bit sigma-delta ADCs of an MSP430i2031. Figure 3.5 (Top) summarizes the analog signal processing pipeline in Aura’s receiver.

This method effectively captures the magnitude of the magnetic fields but does not resolve the phase of the oscillating fields. Reconstructing position or rotation would be very difficult from this approach since rotating the controller 180° along one of its axes would result in the same overall magnitude for each of the coils but with a 180° phase shift on two of the axes. Since Aura uses a three-axis receiver and each axis could be in- or out-of phase with the transmitter, there are $2^3 = 8$ possible vectors that would deliver the same sensor values. For each frame of three vector fields (one from each transmit coil), there are a total of $8^3 = 512$ possible rotation states given the same channel magnitudes.

Aura uses a low-power solution to reduce this sign ambiguity. First, comparators binarize each of the amplified signals from the receiver coils prior to rectification. The comparator outputs logic low when the amplified signal of the channel is less than its common-mode voltage ($V_{CM} = 1.2$ V) and logic high otherwise. An XOR gate estimates the relative phase between a receiver channel and a reference signal. The output of the XOR gate is low when the two signals are in-phase and high when the two are out-of-phase. One can produce a referenced signal locked to the transmitter using a phase locked loop, but to save power and simplify the design, I have chosen channel 1 of the receiver as the reference. The resulting logic signal is low-pass filtered by an RC network to remove any glitches due to phase mismatch. These digital signals are then sampled by GPIO pins of the microcontroller unit (MCU). Using this low-power approach, the ambiguity of the signs reduces to $2^3 = 8$ possible solutions since the phase of the reference channel with respect to the transmitter.
is still unknown. The exact signs can be determined by placing the controller in a known start state and temporally filtering to ensure consistency over time. Figure 3.5 (bottom) summarizes Aura’s sign detection capabilities.

With the amplitude demodulation and phase estimation components, the MCU now has access to a signed magnitude for each channel every 250 µs (4 kHz). This data stream contains the time multiplexed transmit signals and resembles the diagram in Figure 3.4. A segmentation step recovers each of the 9 measurements from this data stream. The segmentation algorithm will search for a local minimum to find the “off state” and synchronize itself

![Diagram of Aura's sign detection system](image)

Figure 3.5: On the controller (single-channel depicted), the MCU measures the magnitude (top) and phase (bottom) of the received signal.
Figure 3.6: For calibration, Helmholtz coils produce a small volume where the magnetic field is insensitive to movement.

with the transmitter. It then uses the known timing of the signal to extract the 9 mean values of each coil measurement ($r_{1\{xyz\}}$, $r_{2\{xyz\}}$, and $r_{3\{xyz\}}$). The MCU then sends the nine reconstructed signals to a PC over USB. In software, a digital second-order Butterworth filter with a 10 Hz cutoff frequency is applied to the raw signals for further noise reduction.

3.3 Calibration

In order to treat the measurements from the ADC as magnetic field strengths, a calibration procedure must be performed to account for imperfections in the signal processing chain and channel gains. This calibration is intended to be performed only once per device, i.e. through a factory calibration step. While calibration in magnetic tracking systems often refers to modeling magnetic field distortions, Aura inherently accounts for this in the tracking algorithm described in Section 3.4.

To assist in the calibration process, a set of Helmholtz coils as shown in Figure 3.6 is constructed. With this device, current through two parallel coils (I_1 and I_2) generate AC magnetic fields. Because of the spacing of the coils, the tangential components of the fields...
cancel, and the coil pairs create a small volume with a uniform magnetic field, indicated by the red shaded region in Figure 3.6. Within that region, the magnetic field direction and magnitude are relatively insensitive to the receiver coil’s position. By controlling the amplitude of the AC current through the coils with a function generator, I can precisely control the magnetic field strength within this volume.

3.3.1 Signal chain modeling

In an ideal sensor, the measurement for any axis would be linearly correlated with strength of the magnetic field along that axis. To measure this linearity, I place the Aura controller within the Helmholtz coil and use the function generator to step up the magnetic field strength linearly in small increments and record the Aura measurements. Figure 3.7 shows the observed signal and the ideal linear response. Though the signal is linear for much of the observed field strengths, significant nonlinearities were observed in the presence of weak magnetic fields.

We model these observations using three parameters: a gain term \(g \), Gaussian noise \(n \) inherent to the signal chain, and a bias term \(b \) due to the forward voltage drop across the diodes. Equation 3.1 summarizes how these effects influence magnetic field strength \(f \) to produce the Aura measurement \(r \).

\[
 r = g \sqrt{f^2 + n^2} - b \quad (3.1)
\]

After collecting data from the Helmholtz coil, I use an optimization procedure (SciPy) to fit this model to the observed data. As shown in Figure 3.7, this model is a good fit for the observed data. We then invert this model to derive an expression, as shown in Equation 3.2, for the desired magnetic field strength \(f \) as a function of the ADC measurements \(r \). We preserve the sign of the original signal as described in Section 3.2.

\[
 f = \sqrt{\left(\frac{r + b}{g} \right)^2 - n^2} \quad (3.2)
\]
At runtime, I further improve the device performance by assuming the bias and gain terms remain constant and dynamically adjusting the noise term of this model based on the signal observed during the 2 ms off period of the device, when $f = 0$. The dynamic noise term is derived according to Equation 3.3.

$$n = \frac{r_0 + b}{g}$$

3.3.2 Channel gains

Due to component tolerances, each channel has a slightly different gain. To measure these gains, I place the controller within the Helmholtz coils and rotate it while recording data. In a properly calibrated system, the magnitude of the magnetic field measurement would remain constant as the device is rotated. We use a second optimizer to learn the optimal gains such that the magnitude of the calibrated field remains constant.

Figure 3.8 shows the observed magnitude (blue) and calibrated magnitudes after accounting for the signal chain model (orange), channel gains without the signal chain model (green), and both models (red). The constant magnitude obtained after calibration validates these models and shows that both are critical in obtaining correct magnetic field measurements.
Figure 3.8: Within the Helmholtz coil, the measured field magnitudes should be constant as the controller is rotated. As different calibration steps is applied, the calibrated signal significantly improves.

3.4 Tracking Algorithm

Because it is infeasible to construct an analytic formulation of the magnetic fields, there is no closed-form analytic solution for the inverse problem. Instead, I rely on a closed-form data-driven solution based on machine learning techniques. Our proposed closed-form tracking approach is summarized in Figure 3.9. We treat the process of position and orientation estimation separately. At a high level, I train a neural network to regress from extracted rotation-invariant features to position. We then train a separate network to estimate the magnetic field vectors from position and use SVD to compute orientation.

Unlike other approaches, this pipeline makes no assumptions about the shape of the transmit coils or the resulting field (other than it being separable by the features I extract). This frees us from some of the restrictions of a model-based approach, which excels only when the magnetic field model accurately represents the empirical data. The training methods I
describe are intended to be a one-time factory calibration.

Aura must estimate the position of the controller from the three measurements of magnetic field vectors \((f_1, f_2, f_3)\). Because the controller can exist at the same position with any rotation, I first extract six features that are invariant to the rotation of the controller. The first three features (Equation 3.4) include the magnitude of all measured fields. As the controller rotates, the magnitude of each of the three fields remains constant. The second three features (Equation 3.5) relate to the angle between two fields. As the controller rotates, the direction of each measured field in controller space, \(f_i\) will change, but the angle between any two fields will remain constant. Note that in Equation 3.5, I take the absolute value of the dot product. This is because Aura do not have an absolute sign reference between our transmitter and receiver coils. That is, Aura do not know whether an ideal sensor would have measured \(f_i\) or \(-f_i\). By removing the sign of the dot product, Aura remain invariant to this ambiguity.

\[
|f_i|, \forall i \in \{1, 2, 3\} \tag{3.4}
\]
Figure 3.10: A cross-section at $y = -300$ mm of two of rotation-invariant features from the simulated dipole dataset. The left plot shows the magnitude of the magnetic field from the side one of the side coils, per Equation 3.4, and the right plot shows the dot product between the center and side coil, per Equation 3.5.

\[
\frac{|f_i \cdot f_j|}{|f_i| \times |f_j|}, \forall (i, j) \in \{(1, 2), (2, 3), (1, 3)\} \tag{3.5}
\]

These features summarize the relative directions and strengths of the three magnetic fields. A cross-sectional slice of two of these features from the simulated dipole dataset are depicted in Figure 3.10.

3.4.1 Position

We propose the use of computationally simple models to regress to a position vector. In order to keep the models small, we split the tracking volume into four subspaces along two dimensions: 1) left ($x < 0$ mm) / right ($x > 0$ mm) and 2) near ($|P| < 200$ mm) / far ($|P| > 200$ mm). These volumes were empirically determined to balance model performance and complexity. By reducing the tracking volume for each model, I can train much smaller models than I could if the entire tracking volume were lumped together. For each of the four subspaces, I train a computationally simple neural network model with a single hidden
layer of 32 nodes to fit a function that maps the six rotationally invariant features to a 3-dimensional position vector. Training is performed using the Levenberg-Marquardt algorithm. At runtime, position estimation equates to two matrix multiplications (6 × 32 and 32 × 3), that can easily run on a mobile processor.

It must be noted that this approach adds a dependency on knowing the position before one of these four models can be chosen (to then estimate position). In this work, I use the ground truth position to pick the correct subspace model in order to validate each model separately. However, since the controller will be tracked over time, the next position can easily be estimated from temporal extrapolation or Kalman filter prediction with an IMU. This rough estimate can be used to choose the appropriate model for that frame. Additional redundancy can be added by training intermediate models that straddle two subspaces.

We simulated our approach using magnetic field simulation tools that rely on quasi-static assumptions to generate two datasets. First, I model our transmitter coils as ideal dipole models and use physics calculations to compute the magnetic field due to each of the three coils at many locations around the head. As a comparison, I also use the BSMag toolbox [52] in MATLAB to model the specific shape of our transmitter coils and create a similar dataset of magnetic field locations.

Figure 3.11: CDF of simulated tracking error for the dataset generated using dipole field models and numeric integration of the actual prototype coils.
Each dataset consists of 100,000 points generated within a tracking volume of $1.6 \text{ m} \times 0.8 \text{ m} \times 0.8 \text{ m}$. Our model is able to estimate the position of the synthetic datasets with a median error of 1.04 mm for the dipole model and 1.9 mm for the simulation of the Aura coil design. Figure 3.11 shows the positional tracking error CDF for simulated data on the dipole model and Aura prototype model.

3.4.2 Orientation

We derive the orientation, or attitude, of the controller by comparing the measured magnetic field vectors in controller-space ($\hat{f}_1, \hat{f}_2, \hat{f}_3$), with estimates of the magnetic field vectors in head-space ($\hat{h}_1, \hat{h}_2, \hat{h}_3$), derived from a forward model. In some electromagnetic tracking systems, one can compute the magnetic fields (\hat{h}) as a function of position using a magnetic field model, often a dipole model [30]. In our system, I anticipate significant deviations from an ideal dipole model due to the presence of electronics around the head, the non-circular nature of our coils, and the arbitrary positioning of the coils for form-factor purposes. Instead, for a forward model, I train a separate neural network to estimate the magnetic field vector at any position, p around the headset. We again adopt a computationally-simple neural network with a single hidden layer of 32 nodes that maps the 3D position, \hat{p}, to three 3D vectors, $\hat{h}_1, \hat{h}_2,$ and \hat{h}_3. The model is trained using a ground truth source of position and an estimate of \hat{h} computed by rotating the measured \hat{f} by a ground truth source of orientation. This training process is again intended to be a one-time calibration procedure.

To obtain an orientation estimate at runtime, Aura uses the magnetic field estimates and the well-known singular value decomposition (SVD) method to find the least-squared error between the two coordinate systems. For a complete review of this approach, see Sorkine-Hornung and Rabinovich [63].
Figure 3.12: Retroreflective markers placed on the HMD and controller enable tracking with a ground truth optical motion capture system.

3.5 Data Collection

3.5.1 Optical Motion Capture

A ground truth source for position and orientation is required to train and evaluate Aura’s tracking models. To this end, we use a seven-camera Vicon motion capture system to record the real-time position and orientation of both the headset and the controller at 240 Hz. To enable tracking, we place retroreflective spheres on both devices in known locations, as shown in Figure 3.12.

Importantly, we define the coordinate system of the controller to be the precise center of the magnetic coil so that a rotation about the origin does not change the position of the sensor. We run a one-time calibration step to find the rigid body transform between the object coordinate systems reported by Vicon and our desired coordinate system. We use the average position of the markers from Vicon and the expected marker positions from the known geometry of our system to derive this transformation, which we then apply to each
Figure 3.13: Signals used to compute alignment between Aura and the motion capture system.

Because Aura estimates the relative pose of the controller with respect to the head, we use standard coordinate system transformations to compute this 6-DoF pose from the pose of each device in room coordinates.

3.5.2 Synchronization

Once data has been recorded from both the 91 Hz Aura system and the 240 Hz motion capture system, we must align and synchronize the two data streams. Without an electrical synchronization signal between the two, we rely on characteristics of each signal for alignment. For this, we compare the distance between the controller and headset as measured from motion capture with an approximation of the distance from Aura as specified by Equation 3.6. While this signal does not have a physically significant value, it was found to correlate strongly with the distance from the headset, as shown in Figure 3.13.

\[
\frac{1}{\sqrt{\sum_{i=1}^{9} f_i^2}}
\]

Equation 3.6
Figure 3.14: Cross-correlation between the sensor data and the distance from the headset.

We first use these signals to achieve alignment at the start and end of the recorded data streams. However, due to effects like temperature changes, it was observed that the two clocks drift relative to each other over time by as much as 1 part per thousand. At a typical hand speed of 10 cm/sec, each frame misalignment represents an additional error of over 1 mm, so mitigating the effects of this drift is essential.

We use sliding cross-correlation between the two signals to compute a dynamic estimate of frame shift and filter this signal for smoothness. Figure 3.14 shows how the two systems drift over time. We then resample the motion capture data to align with the Aura system.

3.6 Evaluation

The main performance metrics for Aura are position and orientation accuracy, precision analysis, latency, and power consumption. We also evaluated the effects of magnetic interference on Aura’s measurements.
3.6.1 Position Estimation Accuracy

2D Position Accuracy

As an initial verification of the tracking capabilities of Aura, we evaluated its positional tracking accuracy in a constrained 2D task. For this experiment, the headset was placed on a flat surface while the controller was manually moved along the surface at a mean distance of 0.5 m from headset. First, training data was collected by sweeping the controller across a 44 cm × 32 cm area. A test set was collected by randomly moving the controller about within the same tracking area.

Figure 3.15 shows the trace from the Vicon data and the reconstructed path from Aura. The Aura system is able to track the controller with a 2D median tracking error of 1.6 mm. A Kalman filter is used to smooth the estimate of position and reduces the median error to 1.5 mm. Figure 3.16 shows the CDF of 2D position accuracy for the raw and filtered estimated of position.
3D Position Accuracy

While the 2D test demonstrates the feasibility of this approach, Aura is intended to track handheld controllers in 3D space. For evaluating the 3D positional tracking capabilities, one of the authors wore the headset while holding the handheld controller and moving it about within arm’s reach. Training data was collected for 15 min by systematically exploring the space in front of the user. An additional two minutes of random motion was then collected as the test set.

Figure 3.17 shows the ground truth and estimated position over a representative 30 s segment of the test set. Aura is able to track the controller with a 3D median error of 7.0 mm. After applying the Kalman filter, the median error drops to 5.5 mm. Figure 3.18 shows the CDF of 3D position accuracy for the raw and filtered estimates of position. We expect further performance gains by fusing the electromagnetic tracking with an onboard IMU.
Figure 3.17: 3D positional tracking performance
3.6.2 Orientation Accuracy

We use the same dataset to train the magnetic field models for orientation estimation. Aura estimates the orientation of the handheld controller using the algorithm described in Section 3.4 and reached a median accuracy of 0.8°. Once again, we expect significant performance gains after fusing this data source with an IMU. However, as an initial approximation, we simulate the effects of leveraging an accelerometer to recover the gravity vector. We derive this estimate of the gravity vector from the ground truth motion capture system. Adding this additional vector reference to the SVD calculation improves the median orientation accuracy to 0.5°. Figure 3.19 shows the CDF of orientation accuracy for both Aura and the simulated approach using the added gravity vector.

3.6.3 Precision Analysis

We also evaluated Aura’s precision in its tracking estimates. To measure the precision, we used the same set up as in Section 3.6.1. However, instead of continuous motion, the device was placed in eight different locations and left motionless for a few seconds. We then compute the jitter in the estimated position while the device is motionless. The median jitter across all points is calculated to be 0.4 mm. This calculation includes the digital low-pass
Figure 3.19: CDF of orientation tracking error

Figure 3.20: CDF of stationary measurement jitter

filter applied to the raw magnetic signals, but no additional Kalman filtering of the position. Figure 3.20 shows the CDF of jitter.

3.6.4 Speed and Latency

Although the tracking analysis was performed offline, it was designed with realtime operation in mind. Like any handheld controller, we envision Aura to be used alongside an onboard IMU to capture high-speed motions. Nonetheless, we characterize the latency and speed aspects of our system.

Aura’s latency is impacted by delays introduced by the analog signal chain, digital signal
processing, and tracking algorithm. To quantify the impact of the analog signal chain, we place the Aura controller within the Helmholtz coil and activate the field while measuring both the current through the Helmholtz coil and the input to the Aura ADC on an oscilloscope. The time between the field turning on and the signal stabilizing is 200 µs. This introduces negligible latency and validates our decision to use 3 ms “on” states for each coil. On the digital side, the use of interpolation to resample the magnetic signal reduces the impact of the 3 ms delay between channels. An additional digital filter is used to smooth data and can be set according to anticipated device usage. In our prototype, a second-order Butterworth filter with a 10 Hz cutoff frequency was used. Finally, we anticipate negligible latency from the tracking algorithm, which was designed with simple computation in mind. The computation consists primarily of a few small matrix multiplications, which can be performed in real time on most microprocessors.

3.6.5 Power

We measured the power consumption of both the Aura transmitter and receiver. Our measurement setup consists of a National Instruments (NI) USB 6003 data-acquisition (DAQ) unit configured for taking analog measurements in fully differential mode —10 V to 10 V at a sampling rate of 10 kHz. We measure the voltage drop across a shunt resistor of size 10 Ω for 5 s and calculate the power consumed in Aura.

The handheld controller consumes an average of 13.5 mA (45 mW). Using a 700 mA h LiPo, which would comfortably fit in the controller housing, the Aura handheld controller could be tracked continuously for over two full days. Note that this does not include power consumption for a Bluetooth module or other wireless communication device.

The head-mounted transmitter consumes 29.8 mA average current (224 mW). Using a 9 V battery (600 mA h), the transmitter lasts for 24 h of continuous use. Although the current design of the transmitter uses a 9 V battery to operate, the Aura design is easily modified to operate at 3.3 V. Adding more windings to the transmitter coils and reducing the operating voltage has led to prototype designs that consume only 30 mW on the head-mounted
transmitter with similar field strengths. With this design, the Aura transmitter would last nearly four days on a 700 mAh LiPo battery.

For reference, the electromagnetic Polhemus G4 tracking system uses 5 W for the transmitter and 2.5 W for the sensor hub [51]. The HTC Vive Lighthouse base stations, an optical head and controller tracking solution, use approximately 5 W each, as measured by an inline power monitor. The Magic Leap One controller contains an 8.4 Wh battery and is rated for 7.5 h of continuous use [35], suggesting a power consumption on the order of 1 W. Aura uses at least an order of magnitude less power than these alternatives.

3.6.6 Interference

Fundamentally, electromagnetic tracking is prone to interference from nearby metallic objects. While this work does not claim any specific algorithmic contributions to account for interference, we note that the use of inside-out tracking, as opposed to outside-in tracking, significantly reduces the scope of possible interference sources. Based on our observations, significant distortion was only observed when metallic objects were placed close to either the transmitter or receiver. To quantify these effects on the Aura system, we investigated the interference from three common electronic devices that are likely to be in close proximity to the system: a smartwatch, a smartphone, and a laptop. The Aura controller and headset are placed on a flat surface as in 3.6.1. The authors then bring each interfering device from a far distance to close proximity to either the handheld controller or the HMD while recording the change on the received signals. The distance at which the signals changed by 1% was recorded. The results from this experiment are summarized in Table 3.1.

In summary, a small electronic device such as a smartwatch, has no effect as long as it is at least a few centimeters from the Aura system. Larger electronic devices must be kept further away before significant distortion is observed. As with any other electromagnetic tracking system, larger ferromagnetic materials, such as iron beams or vehicles, would have a much larger impact on the signal. While accounting for such distortions is out of scope for this work, we note that there is existing research on accounting for sources of interference [32, 31].
Table 3.1: Effects of various devices on the Aura sensor readings. Each distance represents the closest distance at which the device changes the measured signal by less than 1%.

<table>
<thead>
<tr>
<th>Device</th>
<th>Distance to transmitter</th>
<th>Distance to receiver</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smartwatch (Apple Watch Series 2)</td>
<td>2 cm</td>
<td>2 cm</td>
</tr>
<tr>
<td>Smartphone (iPhone 7)</td>
<td>10 cm</td>
<td>5 cm</td>
</tr>
<tr>
<td>Laptop (2018 MacBook Pro)</td>
<td>20 cm</td>
<td>20 cm</td>
</tr>
</tbody>
</table>

We also note the possibility of fusing electromagnetic tracking with inertial or optical tracking to dynamically calibrate in the presence of dynamic sources of interference.

Although not common today, it is important to consider the implications of using multiple devices within the same room. In theory, the signal from one Aura device could interfere with another if they are tuned to the same frequency. Fortunately, the strength of the generated magnetic field falls off with the cube of the distance to the transmitter. We measured the distance from the headset at which the signals fall below the noise floor of the sensor to be 1.5 m. This indicates that there will be negligible interference between separate systems as long as they remain more than 1.5 m apart. For optimal operation at closer distances, the two devices should be set to different frequencies to avoid interfering.

3.7 Conclusion

In this work, we present Aura, a head-mounted inside-out tracking system for handheld devices. We demonstrate a novel low-power architecture that enables precise tracking without the need for external infrastructure, line-of-sight, or bulky tracking markers. In an evaluation with an optical motion capture system, we demonstrate Aura’s ability to track a controller with a median error of 5.5 mm and 0.8° within arm’s reach. We hope that our system enables increased adoption of mobile spatial computing systems.
Chapter 4

PRECISE FINGER TRACKING

4.1 Introduction

New computing platforms are becoming increasingly coupled to the user. Wearable devices like smartwatches, smart rings, and head-mounted mixed reality devices are offering unprecedented access to computing and information on the go. As computing platforms evolve from devices we carry with us to devices we wear on us, there is a renewed demand for input techniques that are decoupled from the display. These input devices must be continuously available and subtle to support various contexts of use while enabling robust and expressive interaction.

In this chapter, we present AuraBand, a precise, millimeter-level finger tracking system. AuraBand consists of two components: a ring and a wristband. The low-power battery-operated ring generates an oscillating magnetic field around the hand. As the user moves their finger and wrist, the relative position and orientation of this field changes. Sensors embedded in the wristband measure these fields at different locations and estimate the pose of the ring with respect to the wristband. By using oscillating magnetic fields, AuraBand is not affected by the Earth’s geomagnetic field. AuraBand is effectively a 5 degree-of-freedom (DoF) tracking system—that is, it tracks three positional components and two rotational components (yaw and pitch) of pose. This allows AuraBand to capture flexion/extension and abduction/adduction of both the wrist and finger metacarpal joint. Although the ring can be worn on any finger, it is intended to be worn on the index finger for pointing tasks.

Compared to prior work, our approach leverages common device form-factors—a wristband and a ring—and does not require affixing magnets [22, 9, 26, 8], iron-core coils [10], or magnetometers [9, 26, 8] to the fingertips. AuraBand leverages the insight that an elec-
Figure 4.1: AuraBand is 5-DoF electromagnetic tracker that enables precise, accurate, and fine-grained finger tracking for AR, VR and wearable applications. Left: Show a user writing the word “hello” in the air. Right: Person using AuraBand to play a song in a music application on a smart glass.

electromagnetic coil is better placed around the finger than on it. Our approach also delivers significant improvements in power, range, portability, and tracking precision.

Electromagnetic tracking has a long history of use in meter-scale tracking applications [33, 58, 60, 47, 44, 51] in a variety of domains. Though precise, electromagnetic tracking has a reputation for being power-hungry and subject to environmental interference. AuraBand overcomes these challenges by explicitly focusing on short-range (10 cm to 15 cm) tracking. This range reduces the scope of possible interfering objects and allows the AuraBand transmitter to use approximately 2000x less power than a typical commercial EM tracking system [51].

Sensor-based efforts to track finger motion in space often focus on discrete, gesture-based interactions [20, 70, 54, 82, 4]. Although gesture recognition is useful, wearable input devices must be robust and support different users and contexts of use. To enable this level of precision and robustness, AuraBand supports high-fidelity continuous tracking, upon which gesture recognition or other interactive systems can be built. Because AuraBand
leverages physics models, it works out of the box after a one-time factory calibration with ground-truth tracking data from a motion-capture system. We demonstrate that at runtime, AuraBand can track finger motion across different users and despite changes in how the device is positioned on the wrist and finger. In cases where additional accuracy is desired, the calibration can be improved with just 60 sec of additional data.

AuraBand offers a flexible solution for tracking the finger in either direct or indirect pointing tasks. We envision that AuraBand can be used either as a standalone input device, or in tandem with a wrist-tracking solution. For standalone scenarios, AuraBand offers a rich input source for smartwatches or smart glasses. With AuraBand, a user can provide input using their finger and wrist while keeping their arm motionless at their side or resting on a table. This capability is particularly useful in public settings, when large hand motions would be distracting and socially unacceptable.

AuraBand can also be used to track the absolute position of the finger in head-space with respect to the user’s vision. In mixed-reality scenarios, precise hand and finger tracking enables many compelling applications. For example, buttons, sliders, and interactive widgets can be placed in the air, on environmental surfaces, or on the body. AuraBand can be operated in concert with a head-mounted camera that tracks the wrist with respect to the head using fiducials on the wristband.

Our primary contributions include:

1. A hardware architecture for a ring and wristband that enables low-power finger tracking in a compact form-factor.

2. Two tracking algorithms, including a physics-based iterative approach and a closed-form neural network approach to 5-DoF pose estimation.

3. A system characterization and user evaluation demonstrating mean tracking a resolution of 100 µm and dynamic accuracy of 4.4 mm on a session-independent task.
4.2 Theory of Operation

4.2.1 AuraBand Physics

Magnetic tracking is generally realized either with magnetometers to track a permanent magnet [4, 9, 26] or with inductive coils to track an alternating current (AC) electromagnet [58, 60, 74, 76, 51, 44, 53, 33]. Static magnetic fields created by a permanent magnet or inseparable from the Earth’s geomagnetic field—an effect which becomes critical when operating at distances beyond a few centimeters. To isolate the signal of interest, AuraBand uses AC electromagnetic coils to generate a magnetic field at a particular frequency (32 kHz). Maxwell’s equations state that an AC magnetic field is generated when an AC electric current is passed through a wire coil. As depicted in Figure ??, AuraBand uses a wire coil wrapped on the ring to produce an AC magnetic field around the hand. According to Faraday’s law, a voltage is induced in the other sensor coils in the presence of an AC magnetic field. The induced voltage is proportional to rate of change of magnetic flux through the coil. For a field generated from the and electromagnetic, the magnetic flux and resulting voltage signal will change as a function of the position and orientation of the sensor coils in respect to the transmitter coil. More specifically, if the sensor coil is aligned with the field (i.e., the normal vector to the coil is aligned with the field), then the magnitude of the induced voltage will be maximized. As the coil rotates away from the field, the induced voltage decreases to zero. If the coil continues to rotate even further, the voltage acquires a 180° phase shift that manifests as a negative amplitude.

Traditional 6-DoF electromagnetic trackers use a 3-axis transmitter and a 3-axis sensor coil, which is difficult to achieve in a ring form-factor where size and battery life are paramount. However, a ring is a convenient form-factor for a single-axis air core coil that wraps around the finger. Using a single-axis coil makes the entire system insensitive to changes in the roll of the transmitter along the magnetic axes; conveniently, such movement is not physically possible in finger-tracking scenarios. To compensate for the lack of three transmitter axes, AuraBand leverages three 3-axis sensor coils embedded at known locations
Figure 4.2: AuraBand uses a wire coil wrapped on a ring to produce an AC magnetic field around the hand which is measured by three 3-axis coils embedded in a wristband.

within a wristband. By measuring the magnetic fields at different points in space, AuraBand reconstructs the 3-DoF position and 2-DoF orientation of the ring. Figure 4.2 illustrates the configuration of the AuraBand transmitter and sensors.

4.2.2 Magnetic Field Model

We construct a physics-based simulation to model the behavior of our system under different configurations, such as changing the number or placement of sensor coils. Because the ring diameter is much smaller compared to the distance between the ring and wristband, we use standard magnetic field equations to model the ring as a dipole emitter. The model seeks to estimate the magnetic field (\vec{B}_s) measured at each sensor coil (s) in the wristband. Because the transmitter is embedded within the object to be tracked, we first conduct a series of coordinate system transformations. In this paper, we adopt the notation \vec{B}_s to represent the \vec{B} vector in the s coordinate frame. We represent a rotation using s_w to represent a transformation from the w frame to the s frame. In practice, these are implemented using quaternions, but other representations would be appropriate as well.

Let d be the dipole coordinate frame with the magnetic axis oriented in the z-direction.
This is coincident with the ring coordinate frame. Let w be the wrist coordinate frame, which contains multiple sensors s_i at positions $\vec{s}_{w,i}$ and orientations $s_{w,i}$, as depicted in Figure 4.2. Given a position of the ring (\vec{d}_w) and the geometry of the sensors (\vec{s}_w), we first compute the position of the sensor in the dipole frame:

$$\vec{s}_d = \vec{d}_w \times (\vec{s}_w - \vec{d}_w)$$ \hspace{1cm} (4.1)

We then use standard magnetic dipole equations derived from the Biot-Savart law under quasistatic assumptions to compute the magnetic field at each sensor location ($\vec{B}_{d,i}$):

$$B_x = \frac{3xz}{r^5} \hspace{1cm} B_y = \frac{3yz}{r^5} \hspace{1cm} B_z = \frac{3z^2 - r^2}{r^5}$$ \hspace{1cm} (4.2)

Finally, we rotate once more to compute the magnetic field in the sensor frame of reference:

$$\vec{B}_s = \vec{d}_w^* \times \vec{B}_d$$ \hspace{1cm} (4.3)

4.2.3 Number of Sensors Required

To inform the design of AuraBand, we conducted a preliminary analysis using this model in which we varied the number of sensor coils. Choosing a sensor coil configurations requires balancing performance versus size and power. Tracking the ring is at least a 4-DoF task, since both the wrist and finger metacarpal joints have two degrees of freedom. As a result, a robust approach requires at minimum two coils; each coil measures a three-dimensional field vector from a single emitter, so two coils would provide six sensor values. In practice, due to the potential for small shifts of the band on the wrist, AuraBand tracks as a 5-DoF task (x, y, z, pitch, yaw), which we require hypothesized might be difficult with just two sensor coils. A configuration is considered robust if, for a set of observed sensor values, there is a unique position and orientation within reasonable bounds that explains those observations.
To explore the design space of coils, we first choose a test point, representative of a typical ring position and orientation, and use the physics model described previously to compute the magnetic field as observed from each sensor. We then compare this observation to a dense sampling of positions and orientations. The x, y, and z axes are defined according to the wrist frame in Figure 4.2, with the finger generally pointing along the \(-Z\) axis. For orientation, we define \(\theta\) as pitch (in the extension/flexion direction) and \(\phi\) as yaw (in the adduction/abduction direction). For position, we sample at 2 mm intervals within the bounds of \(-40\,\text{mm}<x<40\,\text{mm}, -130\,\text{mm}<y<80\,\text{mm},\) and \(-140\,\text{mm}<z<-50\,\text{mm}.

For orientation we use pitch, \(\theta\) and yaw, \(\phi\), and Euler angles to generate a quaternion orientation at 2° intervals within the bounds \(-90^\circ<\theta<90^\circ\) and \(-60^\circ<\phi<60^\circ\). These bounds correspond to typical bounds of the ring for typical bone lengths and range of motion.

Figure 4.3 illustrates an example result of this analysis for a single target point. The points in each plot indicate locations that can produce a set of sensor measurements similar to that produced at the target point under any tested rotation. This means that for a given point in the plot, there is some ring orientation at that position that could be confused for the target point, shown in red. The color indicates the measure of similarity to the target point.

As expected for a device with only a single sensor, there is a large confusion volume along all dimensions. Interestingly, there is a defined minimum for a 2-sensor setup, but the problem is ill-conditioned along some directions. This suggests that a 2-sensor device might suffice with the proper constraints, but any noise could result in significant errors. The 3-sensor setup produces a well-conditioned minimum, justifying our use of three coils around the wristband. Although this particular example does not reveal much about optimal sensor placements, robustness is maximized when the sensor coils placements are maximally spread apart.
Figure 4.3: By embedding three sensor coils in the wristband, AuraBand achieves a well-conditioned minimum that makes AuraBand robust. As depicted, having one or two coils will result in confusing other points with the target point.

4.3 AuraBand Hardware

The AuraBand system consists of a ring-worn device that generates an AC magnetic field and a wristband device with three embedded sensors that measures the resulting fields. Figure 4.4 depicts the AuraBand system components. The following sections describes the AuraBand hardware, explores the hardware’s capabilities, and enumerates design challenges.

4.3.1 Ring

In designing AuraBand, we pursued a design that would resemble device form-factors that users are already accustomed to in order to present a plausible path forward for everyday use. For the ring-based transmitter, rather than affixing an iron-core coil [10] or permanent magnet [8, 9] to the top of the finger, we designed a custom electromagnet transmitter compatible with a ring form-factor. In doing so, we were forced to put minimal digital electronics on the ring to ensure a slim form-factor and minimize power consumption. AuraBand’s ring consists of a single-axis low-profile transmitter coil that emits a magnetic field oscillating at 32.768 kHz. The generator coils consists of 800 turns of 42 AWG magnet wire wound
around a 3D-printed ABS ring with a diameter of 20 mm. The inductance of the coils is approximately 15 mH. The number of turns and wire gauge was chosen to maximize the magnetic field strength while minimizing DC resistance, skin effects, and weight.

For the transmitter electronics, a small custom PCB (6.9 mm × 11.4 mm), sits horizontally on top of the 3D printed ring. Figure 4.5 (right) shows a block diagram of AuraBand’s transmitter. The transmitter uses a surface-mounted oscillator (ACZ-32.768) to generate a 32.768 kHz square wave. This frequency was chosen because it is a commonly used frequency for low-frequency clocks on microcontrollers and there is an abundance of integrated chips that produce this frequency. We use a capacitor network to tune the coil’s impedance at 32.768 kHz in order to maximize the transmit power of AuraBand. In short, the series capacitor stores charge that can be drawn through the inductive coil on each cycle of the waveform. This effectively reduces the operating voltage required to generate a given field strength. For a detailed discussion of the effect of these resonant networks on tracking systems, see [27]. The transmitter is powered with two 12 mA h, 1.55 V coin cell batteries with a diameter of 4.8 mm and a height of 2.1 mm.
Figure 4.5: Block diagram of AuraBand. The ring generates a magnetic field at a particular frequency which is measured by the sensor boards. They send these signals to the controller board where an ADC samples the data and communicates with a host computer using an ultra low power MCU.

4.3.2 Wristband

The AuraBand wristband consists of three sensors and two controller boards as depicted in Figure 4.5 (left). At a high level, the sensor boards each measure a magnetic field while the controller boards convert these measurements to digital signals and communicate them to a host computer.

The sensor boards measure the magnetic field generated by the ring using an off-the-shelf three-axis orthogonal receiver coil (Grupo Premo 3DC15). The signal from each axis is fed to an amplifier (INA826) with a gain of 44 dB. We then use a low-noise and low-voltage drop Schottky diode network (SMS7630) in a full-wave bridge rectifier configuration to demodulate each of the channels. We have used this passive configuration to demodulate
the field in order to save power. It is worth mentioning that using this method, we only have access to the fields’ magnitudes; AuraBand does not know whether each channel is in- or out-of-phase with the transmitter. Because of the hand’s kinematics, most of the channels’ signs remain constant, so there is not much information lost. In Section 4.5, we show that AuraBand can still track without knowing the exact signs of the fields.

These magnitude signals are passed to a controller board with a 10-wire FFC cable. Each controller board supports two sensor boards. By vertically stacking two controller boards within the center of the wristband, AuraBand supports up to four sensors. Based on the analysis in Section 4.2.3, three coils are sufficient for tracking, so we connect two of the sensors boards to the top controller board and one to the bottom board.

On each of the controller boards, there is an SAR analog-to-digital converter (AD7265) that samples six differential signals simultaneously at 31.25 kHz. Each channel on the controller board has an ADC driver (LTC6363) to achieve high precision, resolution, and throughput. Finally, the sampled data is passed to an ultra-low power MCU (MSP430FR2422) for further processing and communication. Every eight ADC readings, the bottom controller board sends the sampled data to the top controller board where the data is collected and sent to a host computer over USB at 472 kHz. Figure 4.5 summarizes the analog signal processing of AuraBand.

4.4 Calibration

AuraBand’s tracking algorithms have, at their core, a physics model, described in Section 4.2.2. This can be used to generate synthetic data for model training. However, before the physics model can accurately describe the AuraBand measurements, we must learn a number of parameters, such as channel gains and precise sensor positions. In a precise manufacturing environment, these parameters can likely be set based on an analysis of the system geometry and electronics. However, in our prototype, due to the tolerances of 3D printed parts and our selection of electronic components, we opt to learn these parameters empirically by collecting and using data from an optical motion capture system. In the following sections, we
Figure 4.6: The AuraBand system needs a one-time factory calibration to match the synthetic data to its measurements. In real-time, the iterative model uses this calibration to refine the pose estimation and the neural network model regresses directly to pose.

describe our data collection setup, the calibration model, and learning procedure. Figure 4.6 shows a high-level overview of the calibration process and how it relates to the runtime pose estimation task.

4.4.1 Data Collection Setup

We use a 10-camera\(^1\) optical motion capture system (calibrated accuracy of 0.1 mm) to track the ground truth position and orientation of the wrist and ring. To facilitate this, we place IR retroreflective markers on both devices, as shown in Figure 4.7. The motion capture system reports the pose of the wristband \((\vec{w}_m, \vec{w}_m)\) and ring \((\vec{r}_m, \vec{r}_m)\) in room-space at 240 Hz. Software in Python on a PC logs both the motion capture data and AuraBand sensor data to disk for offline analysis.

\(^1\)OptiTrack Prime 13
We first preprocess all of the motion capture data to align the rigid body coordinate space to our coordinate system defined by the device geometry, as shown in Figure 4.2. Next, to reconstruct the relative pose of the ring in wrist space, we apply another coordinate system transformation.

\[
\vec{r}_w = \vec{w}_m \times (\vec{r}_m - \vec{w}_m) \quad (4.4)
\]
\[
\vec{r}_w = \vec{r}_m \times \vec{w}_m^* \quad (4.5)
\]

Finally, we synchronize the sensor stream from AuraBand (472 Hz) with the ground truth ring pose stream (240 Hz). We align the two streams by using the ring pose to roughly estimate the magnetic fields, as described in Section 4.2.2, and comparing these fields to the AuraBand sensor values. We then resample the AuraBand signal through interpolation to 240 Hz, align with the ground truth signal. During this process, we drop any frames in which the motion capture system lost track of either the ring or wristband.

4.4.2 Sensor Model Parameters

Each sensor pipeline in AuraBand transduces the incident magnetic field to a digital value. For a given ring pose, we need to be able to estimate the values reported by each sensor.
Doing so accurately requires additional calibration parameters that define the *sensor model*, which describes how a given pose manifests as sensor measurements. These parameters model effects like the sensitivity of each coil and the relative positioning of the sensor coil on the PCB. Altogether, they capture offsets between the motion capture positions and the effective magnetic origins as well as effects of the AuraBand analog signal processing pipeline. Below, we briefly outline these parameters and how they fit into the AuraBand sensor model.

Coordinate System Offsets

Due to manufacturing tolerances, the exact position of each sensor with respect to origin reported by motion capture may not exactly align with the computed values from the CAD design. Consequently, we define offset positions and orientations to refine each sensor pose in the wrist frame. These slack terms are expected to be small — on the order of a couple of millimeters or degrees.

\[
\vec{s}_w = \vec{s}_{w,CAD} + \vec{s}_{w,\text{offset}} \tag{4.6}
\]

\[
\vec{s}_w = \vec{s}_{w,\text{offset}} \times \vec{s}_{w,CAD} \tag{4.7}
\]

We use a similar technique to define the dipole coordinate frame with respect to the ring coordinate frame.

\[
\vec{d}_w = \vec{r}_w + \vec{r}_w \vec{d}_r \tag{4.8}
\]

\[
\vec{d}_w = \vec{d}_r \times \vec{r}_w \tag{4.9}
\]

Modeling Analog Signal Chain

We then use the model in Section 4.2.2 to compute \(B_s\), the magnetic field in the sensor reference frame. However, the sensors and amplitude demodulation pipeline do not represent a perfect measurement of the magnetic field. For one, the rectifier-based demodulation scheme only provides an unsigned estimate of the field strength along each axis. Moreover, each channel has a slightly different gain, due to different sensitivities and manufacturing
tolerances of both the sensor coil and amplifiers. We also model the effects of noise and the
diode forward voltage drop using a model that was validated for electromagnetic tracking
in [73]. Specifically, we estimate the sensor measurement \(x_i \) as a function of the field \(B_{s,i} \)
and the channel gain \(g_i \), noise \(n_i \), and bias \(b_i \).

\[
x_i = \sqrt{(g_i \times B_{s,i})^2 + n_i^2} - b_i
\]

(4.10)

Altogether, this model includes 23 parameters that must be learned for each sensor coil.

4.4.3 Learning Sensor Model Parameters

To learn these parameters, we collected a dataset that captures a wide range of motion of the
ring. One of the authors wore the wristband while using the other hand to move and rotate
the transmitter freely within in a volume around the hand. During this process, the ring and
wrist pose are captured by the motion capture system and aligned as previously described.
The data was explicitly collected without wearing the ring so that this dataset contains 6-
DoF motion of the ring. Otherwise, the data would constrained by the 4-DoF wrist and
finger kinematics of a particular user and it may be possible to overfit these parameters to
that user.

We took a random sample of 30k frames from this dataset to use for learning and formu-
lated the problem as a non-linear optimization problem, which we solve using Ceres Solver [2].
We learn the 23 parameters for each sensor coil independently. In doing so, the solver seeks
to find the parameter set which minimizes the difference between the observed sensor values
and the estimated sensor values, computed according to the observed pose and the sensor
model. The solver uses the Levenberg-Marquardt trust region algorithm for minimization.

Upon convergence, this results in a set of parameters that can be used to estimate the
sensor measurements as a function of pose. Figure 4.8 shows the correlation between the
sensor estimates and actual measurements on this dataset before and after applying the
sensor model presented here. Before applying the sensor model, the estimates have a 0.564
Spearman’s rank-order correlation with the actual measurements. After applying the sensor
model, the correlation increases to 0.995, validating the effectiveness of this model.

Figure 4.8: The one-time factory calibration process is necessary to match the synthetic data to the data measured by AuraBand.

4.5 Tracking Algorithm

Taken together, the magnetic field model and sensor model represent a forward model of the system—they estimate the sensor values given the ring pose. To track the ring, we must solve the reverse problem—estimating the ring pose given the sensor values. We implemented two different tracking algorithms to solve this reverse problem and estimate the 5-DoF pose of the ring. The first is an iterative optimization-based solution and the second is a neural network that approximates a closed-form solution to the reverse problem.

4.5.1 Approach 1: Iterative Model

The iterative model is similar to the method of learning calibration parameters discussed in Section 4.4, but operates on each frame separately. We use a non-linear optimizer [2] with the Levenberg-Marquardt algorithm to iteratively find the most likely pose. When a new set of sensor data arrives, the solver minimizes the error between the observed sensor values and the sensor values predicted by the forward model (Equation 4.10). It is allowed to run for a maximum of 100 iterations. For the first frame, the initial pose state is set to a default pose with the index finger pointing forward without bending. For subsequent frames, the solver
uses the solution to the previous frame as the initial state. Further improvements in speed and accuracy may be possible by using a Kalman filter to proactively estimate the next ring pose. Because the sensor measurements in the presence of a weak field fundamentally have a lower signal-to-noise ratio (SNR), we do not want these measurements to significantly effect our measurements. Moreover, because Equation 4.10 has a minima when the field is null, there is the potential to get stuck in this minima. To reduce the impact of these effects, for any of the nine channels in which the measured magnetic field is extremely weak, we simply drop this term from the cost function.

To understand how the specific sensor calibration parameters affect tracking performance, we created a variant of the iterative tracking model that refines the calibration parameters based on two minutes of data from that session. This accounts for drift in parameters like the noise in the analog signal change, which can be impacted by environmental factors like temperature. We refer to the original session-independent iterative as ”precalibrated” and the session-dependent model as ”recalibrated”. Differences between the ”precalibrated” and ”recalibrated” models are likely due to manufacturing tolerances of this particular prototype. With additional engineering effort, we anticipate any performance gap here to be improved.

4.5.2 Approach 2: Neural Network-based Tracking

As an alternative to the iterative model, we used closed-form approximations to the reverse problem that are optimized for use on low-power devices. Specifically, we trained a neural network to predict both the 3 DoF position and 2 DoF orientation of the AuraBand ring directly from the magnetic measurements.

Generating Training Data

To eliminate any dependency on runtime training data, we train the network entirely from data generated by our simulated magnetic and sensor models. This gives us precise control over the sampling distribution of the training data and eliminates issues of over-fitting to a particular user’s hand. We randomly generated different ring poses within a volume relative
to the wrist that spans possible positions of the ring for most adults. Specifically, assuming
the coordinate system defined in Figure 4.2, the generated data covers a volume defined by
$-70 \text{mm} < X < 90 \text{mm}$, $-125 \text{mm} < Y < 60 \text{mm}$ and $-150 \text{mm} < Z < -60 \text{mm}$. We also add
a random 3-DoF rotation to each point to complete the dataset of random poses.

We then use the sensor model to estimate the values of AuraBand’s sensors at each pose.
To improve performance, we further refine the dataset of poses to eliminate infeasible poses
during normal operation by considering the direction of each field. Since AuraBand uses 3
three-axis receivers and each axis could be in or out of phase with the transmitter, there
are $2^9 = 512$ possible combination of phase states for a given frame. However, due to the
spatial geometry of our sensors and the kinematic structure of a hand, the majority of these
states are not feasible during normal use. For example, because the ring always lies in front
of (negative z-direction) the wristband, all of the z-channels of the sensors will have the
same phase. In fact, after reviewing the generated data we found that only ten of these 512
combinations are feasible. We drop any data from the generated dataset that does not match
one of these ten feasible phase states. Since training is done using simulated data, one could
easily change these constraints or even add another state and train a larger network if the
problem demands it. After this culling process, the dataset consists of 166,465 points.

NN Training

We propose to use two computationally simple models to regress to a position vector and the
2-DoF orientation of the ring. Both networks have a single hidden layer of 128 nodes to fit a
function that maps the nine observed sensor values to a 3-dimensional position vector and to
a 3-dimensions direction vector. We use a direction vector to specify orientation in order to
remain invariant to the roll of the ring. Training using the synthetic dataset is performed in
MATLAB with the Levenberg-Marquardt algorithm. With CPU training on a single core of
a Xeon E3-1240 processor, training takes about six hours. Mean training error was 3.06 mm
for the position model and 5.45° for the orientation model. Orientation error was calculated
by computing the angle between the two direction vectors.
4.6 System Evaluation

4.6.1 Tracking Accuracy

User Evaluation Procedure

We evaluate the tracking accuracy of each of these models using data collected from users who we invited to try AuraBand. We do this to provide a realistic estimate of real-world performance under challenging conditions like different hand size, shape, flexibility, slippage of the devices on the hand and finger, and changes in environmental factors. We recruited 14 participants (5 M, 9 F) with different hand sizes to wear AuraBand while exercising the full range of motion of their wrist and fingers. The data collection was carried out in the same 10-camera motion capture lab used to calibrate the sensor model. The researchers helped the participants put on the wristband and placed the ring on the index finger of the right hand. To ensure no issues related to battery life, the ring was powered with a slightly
larger 105 mA h LiPo battery that they held within their hand. As before, markers were placed on an attachment to the ring and wristband to facilitate optical tracking. As showed in Figure 4.9, we placed additional four markers on the top side of the hand for debugging and visualization purposes. The participants were asked to freely and naturally move their wrist and finger for 10 minutes, while being sure to exercise all possible joint motion. During this time, the ground-truth pose and the magnetic sensors data was recorded by a Python program.

After processing the data, we dropped data from two participants due to poor quality of the optical tracking due to occlusions. Altogether this resulted in more than approximately two hours of data consisting of over 1.7 million synchronized data points.

Table 4.1: Shows the position and orientation error among 12 participants using iterative and neural network models

<table>
<thead>
<tr>
<th></th>
<th>NN Model</th>
<th>Precalibrated</th>
<th>Recalibrated</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Iterative</td>
<td>Iterative</td>
<td></td>
</tr>
<tr>
<td>Mean X Error (mm)</td>
<td>2.85</td>
<td>1.65</td>
<td>0.50</td>
</tr>
<tr>
<td>Mean Y Error (mm)</td>
<td>4.18</td>
<td>3.41</td>
<td>1.21</td>
</tr>
<tr>
<td>Mean Z Error (mm)</td>
<td>1.80</td>
<td>1.14</td>
<td>0.51</td>
</tr>
<tr>
<td>Mean Position Error (mm)</td>
<td>6.07</td>
<td>4.41</td>
<td>1.53</td>
</tr>
<tr>
<td>Mean Orientation Error (degrees)</td>
<td>8.35</td>
<td>4.65</td>
<td>1.69</td>
</tr>
</tbody>
</table>

Results

We compare the tracking accuracy for both the iterative and neural network models as well as the session-dependent recalibrated iterative model. Table ?? shows the mean accuracy for the pose of the finger using each algorithm. The full error distribution is shown in the
CDF in Figure 4.10 that aggregates data across all twelve participants. These results show a mean tracking error of 4.41 mm for the precalibrated iterative model and 6.07 mm for the neural network model. The error drops to 1.53 mm after fine-tuning the sensor model for each session.

For orientation, the iterative model tracks the forward direction of the finger with a mean error of 4.65° and the neural network tracks with a mean error of 8.35°. The orientation error drops to 1.69° with the recalibrated model. The full distribution of orientation error for each model is shown in Figure 4.11.

While accuracy is an important measure of tracking performance, the ability to track relative motion is essential if using AuraBand as an input device. Figure 4.12 shows the ground truth and estimated position over a representative few seconds of two representative sample traces. The sample trace on the left, has a below average mean error on the iterative model of 2.56 mm. The trace on the right performs worse at 4.99 mm. Note that even in cases where the error is relatively high, the relative motion still tracks the ground truth motion. These traces do not have any additional Kalman filtering applied to them.

To better understand the dynamics of each model, Figure 4.13 shows a highly zoomed in trace of the x-direction only for a representative 200 ms window. The dark lines indicate estimates that have been smoothed with a Kalman filter. The lighter lines represent the raw estimates from each model. The estimated position is illustrated after implementing a Kalman filter which smooths out the estimated position. This shows that even in the case of a static offset in tracking, the relative pose tracks well, even over timescales of tens of milliseconds. This pattern holds for the neural network model as well.

4.6.2 Resolution

Resolution is an important characterization for a sensor system that quantifies the smallest detectable change in the measure of interest. The use of high-precision electromagnetic sensors represents a significant advantages for AuraBand over other wearable sensing systems because of its ability to capture small and subtle interactions.
Figure 4.10: CDF of 3D position tracking among all participants using the iterative model vs the neural network model. The best accuracy is achieved by using the recalibrated iterative model.

We used a motorized linear stage2 to quantify the resolution of the AuraBand hardware. The stage is software-controllable and has a repeatability of 10 \(\mu\)m and a step size of 0.2 \(\mu\)m. We affix the ring to the stage and place the wristband 125 mm away, a typical operating distance during normal use. The devices were oriented such that most of the magnetic flux is oriented in the z-direction of the wristband. We programmed the stage to move back and forth (in the z-direction) and variable step sizes ranging from 100 \(\mu\)m to 1 mm. Figure 4.14 shows the values measured in one of the sensor coils during this procedure. No filtering was applied to this data. From this figure, one can observe that a step size of 1 mm is clearly visible. As the step size decreases to 100 \(\mu\)m, the difference in sensor reading approaches the size of a single bit of the ADC.

We note that because the device is capable of sampling at speeds much faster than a

2PI VT-80
typical user interface would require, the resolution could likely be significantly improved through filtering. We also note that because we do not have a ground truth measure of the AC magnetic field strength, the resolution here depends on the specific position at which it is measured. Nonetheless, this is a representative example that illustrates the sensitivity of the hardware platform.

4.6.3 Power

We measured the power consumption of both the ring and wristband of AuraBand using a USB oscilloscope to measure the voltage drop across a series resistor of values 9.8 Ω and 109.5 Ω for the ring and wristband respectively. The ring consumes only 715 µA of current (2.34 mW) and the wristband consumes 22.2 mA (73.3 mW). Two 12 mA h batteries that fit comfortable on the ring PCB allow the ring to operate continuously for about 17 hours. A 2 W h battery would allow the wristband to continuously operate for more than a full day. In practice, such a system could have a sleep functionality so that the transmitter and processing circuitry do not need to be on when not in use.
Figure 4.12: A representative few seconds of 3D positional tracking for two of the participants. While the tracking error is relatively higher for the one on the right, the relative motion still tracks the ground truth motion.

4.6.4 Speed and Compute

Although the analysis presented in this work was performed offline, the algorithms used for pose estimation were designed with real-time operation in mind. The iterative approach performs the best, but requires the most compute power. However, despite the iterative nature of the algorithm, it easily exceeds realtime speeds. When fed each data frame sequentially, the algorithm operates at speeds exceeding 1 kHz on a single core of a Xeon E3-1240 processor. We anticipate that, with some care, it is possible to port this algorithm to a mobile processor.

However, in scenarios where compute is at a premium, such as on a mixed-reality HMD, we designed the neural network approach for maximum efficiency. The network contains only
Figure 4.13: A zoomed in trace for the x-direction. Aura leverages a Kalman filter to smooth out the estimated position. Even when the neural network has a static offset, the relative motion is preserved.

A single layer with 128 hidden nodes. Runtime position and orientation estimation consists of just two matrix multiplications for each (9×128 and 128×3).

4.6.5 Interference

Like all electromagnetic tracking systems, AuraBand’s performance will degrade in the close proximity to metallic, particularly ferromagnetic, objects. Unlike outside-in solutions like Polhemus [51], the AuraBand transmitter and receiver are in relative close proximity, which significantly reduces the scope of possible interference sources.

To quantify the effects of large metallic objects on AuraBand, we measured the effect of two commonly used devices i.e a smartphone and a laptop that are likely to be in close proximity to the AuraBand during operation. The Aura transmitter and receiver are placed on a flat space. One of the researchers brought the devices close to the wristband and ring one at a time. We observed changes in the received signal at a distance of about 15 cm for both devices.
Figure 4.14: The AuraBand hardware is sensitive to 100 microns of movement. A single channel of one of the sensors depicted as the transmitter is moved by a motorized linear stage.

4.7 Additional Functionality

Having the ability to track one’s finger precisely without line-of-sight enables a wide range of applications. However, we believe that the speed and precision which AuraBand’s magnetic tracking enables unlocks additional functionality not commonly found in wearable sensing systems. In this section we discuss and demonstrate a few additional features that AuraBand can enable.

4.7.1 Tap Detection

Visions of free-hand interaction techniques in AR and VR commonly include in-air taps and gestures. However whether you are clicking in an app on your AR glasses or drawing in a VR game, the sensation of touch is one of the critical factors for an immersive experience. The ability to robustly detect taps on environmental and body surfaces enables new kinds of always-available ambient interfaces [23, 77]. AuraBand helps enable this future by providing not only an estimate of finger position, but a high-speed robust signal which can be used to detect taps.

With a data rate of 472 Hz and a sensor bandwidth much higher than this, AuraBand
is capable of measuring high speed events. To demonstrate this, Figure 4.15 shows a series of taps of varying intensities on a tabletop surface after a period of freely moving the finger and wrist in space. The lower portion of the figure shows a spectrogram with a window size of 128. While hand and finger motion contain mostly low frequency content, taps are immediately distinguishable due to their broadband spectrum and appear to contain content up to about 150Hz.

4.7.2 Free-form and Subtle Hand Writing

In today’s AR/VR systems, hand writing is usually done by tracking the wrist using cameras on the HMD. Although this method would work for dexterous and big wrist motions, it fails to track subtle handwriting done with minimal wrist motion.
To demonstrate that AuraBand is useful for much more than just gesture recognition, we show a few example traces of handwriting reconstruction using AuraBand. We consider two types of use cases. For use with a mixed reality HMD, we anticipate the use of wrist-tracking using fiducial markers embedded in the wristband. While one could use the wrist position as a virtual ”pen”, we argue that the dynamics of the wrist and finger joints are crucial to enabling a compelling experience. In Figure 4.16, we show two examples of writing the word ”hello” in the air; one with big large movement over tens of centimeters (left) and another that was ”written” on a notebook held in the opposing hand spanning just a couple of centimeters (right). The top row shows the result if one were to use just the wrist position; in this case, the wrist pose was captured from the motion capture system. On large motions, wrist position is a reasonable proxy that might be useful for gesture recognition, but not for precise input. For smaller motions the wrist position results in a poor quality signal. However, as shown in the bottom row, combining the estimate of finger position from

In other use cases, the wrist may not be tracked, such as with interaction on a smartwatch. In these cases, AuraBand is still capable of providing an accurate reconstruction of relative fingertip position, which is still useful for handwriting tasks. Figure 4.1 (left) shows an
example of a handwriting trace reconstructed without any optical motion capture system. AuraBand results in a significantly more useful signal. With appropriate visual feedback, we anticipate the performance to be even better.

4.8 Conclusion

In this work, we present AuraBand, a wearable ring and wristband that enables precise, subtle and accurate finger tracking. Using minimal, low-power electronics on the ring, AuraBand can operate for about a day on self-contained batteries. We presented two methods for tracking, a neural network-based approach and an iterative model. AuraBand only needs a one-time factory calibration process to match its synthetic data to sensor measurements and can track with a mean error of 4.4 mm. For additional performance, recalibration can be used to achieve a mean positional error of 1.5 mm.
Chapter 5

CONCLUSION AND DISCUSSION

In this thesis, I showed how by using data-driven approaches and leveraging electromagnetic tracking, we can build a more precise, subtle and computationally simpler inputs to the wearable devices.

In chapter three, we demonstrate a 6-DoF tracking system capable of tracking position with a median error of 5.5 mm and a median orientation error of 0.8° within arm’s reach around the head while using less than 50 mW on the controller. This approaches the performance of commercial electromagnetic tracking systems, such as the Polhemus G4, while using an order of magnitude less power and allowing optimization for form-factor. This performance does not include integration with an onboard IMU. In a production-grade system, one would use Kalman filtering techniques to fuse the electromagnetic pose estimate with inertial measurements to improve speed and precision.

In chapter four, we demonstrated AuraBand, a wearable device that enables precise tracking of the pose of a smart ring with respect to the wristband. The use of short-range electromagnetic tracking offers the unparalleled precision of EM tracking while minimizing the effects of environmental interference. In this chapter, we have proposed two methods for tracking. For more precise tracking we use an iterative model that achieve a position accuracy of 4.4 mm and a 2-DoF mean orientation accuracy of 4.65°. In mobile scenarios where computation power is at a premium, we propose a relatively small neural network model with only one hidden layer. Using this approach AuraBandis able to achieve an accuracy of 6 mm across all users. We have also shown that for achieving even better accuracy, a per-session recalibration can reduce the position and orientation error to 1.5 mm and 1.7° respectively.
5.1 Magnetic Interference

By modeling the magnetic fields empirically, Aura can operate near ferromagnetic materials, such as those found within a head-mounted display. However, this approach accounts only for static distortions to the field. Large metallic objects brought nearby the device will degrade tracking performance. Still, because both Aura and AuraBand is inside-out tracking systems, metallic objects must be near the head or hand for distortions to occur. Future work can explore techniques to fuse electromagnetic tracking with optical or inertial tracking to maintain accuracy in the presence of nearby distortions. Dynamic distortions caused by particular electronics within the display or wristband will likely be localized to a particular frequency and can be eliminated by carefully choosing the frequency of operation.

5.2 Calibration

While the approach taken in chapter three demonstrates the feasibility of precise tracking, it does not fully account for all possible sensor positions and orientations. Additional robustness can be achieved by collecting data in all possible configurations, perhaps with the use of a robotic arm. For manufacturing purposes, a separate, externally calibrated sensor can be used to train the magnetic field models, as these depend only on the magnetic field, not on any specific measurement of the Aura device.

In chapter four, the use of a physics and sensor model is a significant advantage of tracking algorithm, compared to other methods. It allows simulation and experimentation to optimize system configuration and decouples model training from user evaluation. That said, AuraBand does still require the use of a one-time factory calibration. For the prototype presented in chapter four], such a calibration is essential, due to the manufacturing tolerances of the device assembly. However, it is possible that for a mass-produced device, the tolerances can be made tight enough such that a single model would suffice for all units.

Although the intend for the factory calibration is to be used across all sessions, presented results showed that tweaking the calibration model using some per-session data can reduce
the tracking error to 1.5 mm. We attribute the change in calibration parameters between sessions to electrical effects in the signal processing chain. Several components in the pipeline, particularly the rectifier diodes, are sensitive to environmental temperature fluctuations. We expect that with more attention paid to analog stability, the global error will approach the per-session error. Another promising approach is migrating to digital processing for demodulation. This could enable reconstruction of both the magnitude and phase of the signals. We leave such explorations to future work.

5.3 Comparison to Related Work

One of the advantages of Aura system over other electromagnetic tracking systems is the ability to use arbitrary transmitter coil configurations. While we designed the Aura prototype as a snap-on device, the transmitter coils could also be placed directly onto a PCB behind the display of a VR system or embedded within the frames of a pair of glasses. By reducing the dependence on orthogonal dipole models, we widen the design space for head-mounted computing systems with tracked devices.

Among related work in sensor-based tracking of the fingers, AuraBand is most similar to Finexus [10]. In AuraBand, we prioritized form-factor and designed the system from the ground up with wearability in mind—both in the design of the ring-worn transmitter and the wrist-based sensors. AuraBand uses significantly less power (2.3 mW on the finger), uses an untethered ring, and estimates 2-DoF rotation in addition to position. In terms of accuracy, AuraBand’s 1.5 mm single-session accuracy is comparable to that reported in the single-session evaluation of Finexus. Moreover, the AuraBand accuracy holds at typical finger-wrist distances, which exceed the operating range of Finexus.

5.4 Extensions, Limitations, and Future Work

Additional performance can likely be achieved by optimizing the placement and shape of the transmitter coils in Aura and the placement of the receiver coils in AuraBand. The Aura coils were designed for the form-factor of a particular HMD, but our simulation results
reveal a performance difference between a dipole model and a model of our coils. Leveraging simulation and optimization tools, we expect one can optimize the design for a particular use case. Despite this, the Aura prototype demonstrates reasonable tracking performance without any iteration over transmit coil design. AuraBand performance could also further be improved by additional optimization of the sensor coil positions on the wristband. In general, the performance will improve as they are more spread out. Since we envisioned the ring to be worn on the index finger which is more close to the inside of the hand, we placed two sensors to the left side of the wristband, assuming right-handed use. AuraBand’s hardware has the ability to support four sensor boards without modification of the electronics. For additional performance or for left-handed use, one could install another sensor board to the right side of the wristband.

With some modifications, AuraBand can support tracking of multiple rings at the same time for full hand tracking. Currently the wristband is tuned to the transmitter frequency, but by tuning each ring to different frequencies, AuraBand can time multiplex between the ring’s frequencies and measure the resulting fields. AuraBand has a maximum sensing range of 30 cm. For multiple users in the same environment, there is likely little that needs to be done. However, if users wish to operate multiple devices in close proximity, different frequencies can be used.

While both Aura and AuraBand was designed with low-power operation in mind, we expect that additional engineering improvements can further reduce power consumption. For example, additional coil windings on the transmitter and the use of a fixed oscillator instead of a programmable function generator in Aura can save significant power on the head-mounted transmitter.

In this thesis tracking models were trained using data collected from an optical motion capture system. However, for researchers who wish to use our system for their own projects, we anticipate that training can also be performed using commodity low-cost trackers, such as the HTC VIVE Tracker.

A challenge in the design of any smart ring is sizing it for an appropriate fit across users.
For the purposes of the study done in chapter four, we made the ring larger than average and used tape to wrap around the finger to ensure a snug fit. A more robust design might use several fixed size coils (e.g. small, medium, large) with replaceable insets in standard ring sizes.

We envision AuraBand’s use either with or without a head-mounted display. For mixed reality scenarios, head-mounted cameras are becoming increasingly capable of tracking the hands and fingers, but doing so comes at a significant power and compute cost. Tracking IR fiducial markers in a wristband is a much simpler task. However, in cases where full five-finger tracking is desired, AuraBand can serve as a robust prior to constrain the search space for a traditional hand-tracking algorithm. For interaction with other wearable devices, AuraBand can be used as an indirect input device.

Although chapter four focuses on the use of a ring to track the finger, AuraBand could also be used as a generic tracking platform for handheld objects. For example, by putting a coil around a stencil or pen, the object is now trackable in respect to the wrist. Pen input could be automatically digitized, a toy could be automatically turned into a gaming controller, or a toothbrush can monitor how someone is brushing their teeth.

Future work can also explore the use of a completely battery-free ring. The AuraBand system uses a transmitter on the ring and measure the resulting fields on the wristband. An alternative method of tracking could be to use AuraBand’s wristband’s coils as both the transmitter and receiver. In this topology, the ring is a tuned LC network that will change the measurements on the wristband based on its pose.
BIBLIOGRAPHY

