© Copyright 2019

Guillermo Gallacher
Essays on Globalization and Structural Change

Guillermo Gallacher

A dissertation
submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

University of Washington

2019

Reading Committee:
Fabio Ghironi, Chair
Yu-chin Chen
Alessandro Barattieri

Program Authorized to Offer Degree:
Economics
In this dissertation I explore the relationship between structural change and globalization. In particular, I focus on the impact of international trade on sectoral labor markets.

- In Chapter 1, by using a growth accounting framework I provide quantitative estimates of the impact of international trade on sectoral employment shares, in the presence of structural change. I find that in the USA between 1995 and 2014, international trade accounts for 16 percent of the decline in the goods sector employment share. Across countries, the impact of trade on the goods sector employment share is heterogeneous in sign and magnitudes, and is correlated with comparative advantage in the goods sector. I then introduce a Ricardian model of trade with structural change, to shed light on the comparative advantage mechanism. In the data and in the model, international trade mitigates structural change forces in countries with a comparative advantage in the goods sector, while it magnifies structural change forces in countries with a comparative advantage in the service sector. The framework and results I present suggest that trade policy has a limited role in “bringing the manufacturing jobs back”.

- In Chapter 2 I first document that changes in sectoral relative wages have been hetero-
geneous across countries and then show that these changes in sectoral relative wages matter for understanding employment reallocation. I then ask: why do sectoral relative wages evolve over time? I argue that a likely explanation is the existence of idiosyncratic sectoral labor demand shocks in the context of employment reallocation frictions. I argue that aggregate trade integration can generate such shifts. The intuition is simple: trade liberalization tends to increase labor demand in sectors in which the country has a comparative advantage, and to decrease labor demand in sectors in the rest of sectors. If labor cannot fully reallocate after such shocks, wages tend to adjust: relative wages tend to increase in sectors in which the country has a comparative advantage and tend to shrink in the rest of the economy. Trade integration thus impacts sectoral relative wages and that this impact varies across countries. I introduce a model of international trade with labor market frictions and show that countries with a comparative advantage in the goods (service) sectors tend to experience increasing relative wages in the goods (service) sector. Using the Revealed Comparative Advantage Index, I confirm this relationship in the data. Employment reallocation frictions thus shed light on the empirical relevance of the Ricardian model of international trade.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Figures</td>
<td>ii</td>
</tr>
<tr>
<td>List of Tables</td>
<td>iv</td>
</tr>
<tr>
<td>Chapter 1: Manufacturing Employment, Trade and Structural Change</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Empirical Growth Accounting Framework</td>
<td>7</td>
</tr>
<tr>
<td>1.3 Comparative Advantage and the Trade Balance Effect</td>
<td>21</td>
</tr>
<tr>
<td>1.4 A Ricardian Model with Structural Change</td>
<td>25</td>
</tr>
<tr>
<td>1.5 Conclusion</td>
<td>40</td>
</tr>
<tr>
<td>Chapter 2: Sectoral Wages, Reallocation Frictions and Trade</td>
<td>41</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>41</td>
</tr>
<tr>
<td>2.2 Why Sectoral Relative Wages Matter</td>
<td>44</td>
</tr>
<tr>
<td>2.3 A Model of International Trade with Employment Reallocation Frictions</td>
<td>46</td>
</tr>
<tr>
<td>2.4 Empirical Analysis</td>
<td>55</td>
</tr>
<tr>
<td>2.5 Conclusion</td>
<td>64</td>
</tr>
<tr>
<td>Appendix A: Appendix A</td>
<td>71</td>
</tr>
<tr>
<td>A.1 Proofs and Derivations</td>
<td>72</td>
</tr>
<tr>
<td>A.2 Data Source</td>
<td>92</td>
</tr>
<tr>
<td>A.3 Confidence Intervals</td>
<td>98</td>
</tr>
<tr>
<td>A.4 Tables</td>
<td>101</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure Number</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Goods Sector Employment Share</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Imports relative to total GDP (1995=100)</td>
<td>3</td>
</tr>
<tr>
<td>1.3</td>
<td>All Countries, Goods Sector Decomposition: Trade Balance Effect, 1995-2014</td>
<td>19</td>
</tr>
<tr>
<td>1.4</td>
<td>All Countries, Goods Sector Decomposition: 1995-2014</td>
<td>20</td>
</tr>
<tr>
<td>1.5</td>
<td>Goods Sector: Trade Balance Effect and RCA</td>
<td>23</td>
</tr>
<tr>
<td>1.6</td>
<td>Employment Shares and Aggregate Productivity</td>
<td>30</td>
</tr>
<tr>
<td>1.7</td>
<td>Home: Goods Sector Employment Share and Aggregate Productivity</td>
<td>34</td>
</tr>
<tr>
<td>1.8</td>
<td>Foreign: Goods Sector Employment Share and Aggregate Productivity</td>
<td>34</td>
</tr>
<tr>
<td>1.9</td>
<td>Home: Goods Sector Employment Share and Aggregate Productivity</td>
<td>35</td>
</tr>
<tr>
<td>1.10</td>
<td>Foreign: Goods Sector Employment Share and Aggregate Productivity</td>
<td>36</td>
</tr>
<tr>
<td>2.1</td>
<td>Sectoral Relative Wage Evolution</td>
<td>42</td>
</tr>
<tr>
<td>2.2</td>
<td>Goods Sector Employment Share: Data vs. Prediction</td>
<td>47</td>
</tr>
<tr>
<td>2.3</td>
<td>USA, All Sectors Employment Share: Data vs. Prediction</td>
<td>48</td>
</tr>
<tr>
<td>2.4</td>
<td>Autarky, frictionless labor markets</td>
<td>52</td>
</tr>
<tr>
<td>2.5</td>
<td>Trade Integration, frictionless labor markets</td>
<td>53</td>
</tr>
<tr>
<td>2.6</td>
<td>Trade integration, full employment reallocation friction (segmented markets): goods sector (left) and service sector (right)</td>
<td>54</td>
</tr>
<tr>
<td>2.7</td>
<td>Labor markets with Frictions: goods sector (left) and service sector (right)</td>
<td>55</td>
</tr>
<tr>
<td>2.8</td>
<td>Sectoral Relative Wage Evolution and RCA</td>
<td>57</td>
</tr>
<tr>
<td>2.9</td>
<td>Sectoral Relative Wage Evolution and RCA</td>
<td>59</td>
</tr>
<tr>
<td>2.10</td>
<td>Changes, 1995-2007: Relative Wages, High Skill Wages and High Skill Intensity</td>
<td>61</td>
</tr>
<tr>
<td>A1</td>
<td>Demand functions ("Engel Curves")</td>
<td>79</td>
</tr>
<tr>
<td>A2</td>
<td>Goods Sector Employment Share and GDP per Capita, 2014</td>
<td>93</td>
</tr>
<tr>
<td>A3</td>
<td>WIOD 2013 and 2016 Comparison example: Goods Sector Employment Share in the USA</td>
<td>98</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Growth Accounting Decomposition for $i = USA$, $s = Goods, Services$, 1995-2014 period</td>
<td>15</td>
</tr>
<tr>
<td>1.2</td>
<td>Key Variables for $i = USA$, $s = Goods, Services$, $t = 1995, 2014$</td>
<td>15</td>
</tr>
<tr>
<td>1.3</td>
<td>Growth Accounting for $i = USA$, $s = Goods, Services$, $\tau = 1995, v = 2014$</td>
<td>16</td>
</tr>
<tr>
<td>1.4</td>
<td>Growth Accounting Decomposition for $i = USA$, $s = Goods, Services$, $\tau = 1995, v = 2014$</td>
<td>17</td>
</tr>
<tr>
<td>1.5</td>
<td>Trade Balance Effect (1995-2014) and Revealed Comparative Advantage: 1995-2014 period (RCA 2014)</td>
<td>24</td>
</tr>
<tr>
<td>2.1</td>
<td>Sectoral Relative Wage Change (1995-2014) and Revealed Comparative Advantage</td>
<td>58</td>
</tr>
<tr>
<td>2.2</td>
<td>Sectoral Relative Wage Change (1995-2014) and Skill Intensity</td>
<td>63</td>
</tr>
<tr>
<td>A1</td>
<td>Sectors in WIOD 2013 Release</td>
<td>102</td>
</tr>
<tr>
<td>A2</td>
<td>Sectors in WIOD 2016 Release (Agriculture and Manufacturing Sectors)</td>
<td>103</td>
</tr>
<tr>
<td>A3</td>
<td>Sectors in WIOD 2016 Release (Service Sectors)</td>
<td>104</td>
</tr>
<tr>
<td>A4</td>
<td>Growth Accounting Decomposition for $s =$Goods, $\tau = 1995, v = 2014$ for all Countries</td>
<td>105</td>
</tr>
<tr>
<td>A5</td>
<td>Trade Balance Effect and Revealed Comparative Advantage, 17 year window</td>
<td>106</td>
</tr>
<tr>
<td>A6</td>
<td>Trade Balance Effect and Revealed Comparative Advantage (trade balance effects :17 year window averages, significant vs non-significant estimates)</td>
<td>107</td>
</tr>
<tr>
<td>A7</td>
<td>Trade Balance Effect and Revealed Comparative Advantage: 1995-2014 period (different years RCA)</td>
<td>108</td>
</tr>
</tbody>
</table>
ACKNOWLEDGMENTS

Thanks to Fabio Ghironi for comments, guidance and encouragement during all these years. Thanks to all participants in Fabio’s workshops for comments, patience and support. Thanks to the Washington Center for Equitable Growth and the UW Ensley Fellowship for funding.

Thanks to Yu-chin Chen, Alessandro Barattieri, Philip Bond, Simon Reeve-Parker, the UW Economics community (fellow graduate students, staff, faculty and undergraduate students). Thanks to Chris Fendrich.

Thanks to all the friends I met in Seattle and to all my friends back in Buenos Aires and in other parts of the world. Thanks to Chloe. Thanks to my mom, my dad, my sister, grandparents, aunts, uncles and cousins. Thanks to music, art, forests, running, walking, water, rain, coffeeshops, plants, food, and everyone involved in these moments. Gracias.
DEDICATION

A mi mamá, papá y hermana.
Chapter 1

MANUFACTURING EMPLOYMENT, TRADE AND STRUCTURAL CHANGE

1.1 Introduction

As can be observed in Figure (1.1a), the goods sector employment as a share of total employment has fallen in the USA from 16.4% in 1995 to 10.7% in 2014. This had led to political pressure to reverse this trend, as evidenced in claims to "bring the jobs back" via more protectionists policies aimed to reverse the goods sector trade deficit. During this period, the trade integration in both goods and services in the USA has increased significantly, as seen in Figure (1.2a).

Among economists, however, there seems to be a qualitative agreement: most of the decline in the goods sector employment share is due to structural change, not international trade. Closing the economy, thus, would not increase the goods sector employment share substantially. Furthermore, both the decline in the goods sector employment share and the increasing trade integration are a global phenomena, as Figures (1.1b) and (1.2b) suggest.

However, there is no quantitative consensus about the exact impact of international trade on sectoral employment in the presence of structural change. My paper thus attempts to answer two main questions: (i) What is the quantitative impact of international trade on sectorial employment shares?, and (ii) Why is there a different impact of trade on sectorial

1 Service trade is on the rise. As can be observed in Figure (1.2a), service trade has increased in this period more than trade in goods. Service trade is still smaller than trade in goods: in the USA, for instance, services exports are around 30% of goods exports (but this value is increasing over time). See Mattoo et al. [2008] and Francois and Hoekman [2010] for a detailed discussion on service trade.
Notes: I classify Agriculture and Manufacturing as goods, and all other sectors as services, as described in Appendix (A.2.3). I classify countries in three groups according to their level of GDP per capita in 2014. See Appendix (A.2.1) for more details.

employment shares across countries? The key goal is in decomposing the total change in sectorial employment share as the sum of a structural change effect and an international trade effect:

\[\text{Change in Sectoral Employment Share} = \text{Structural Change Effect} + \text{International Trade Effect} \]

To tackle this, I develop a growth accounting framework based on a world economy with multiple-sectors and trade in both final and intermediates goods and services. I use data from the World Input Output Database (henceforth WIOD), that traces the flow of goods
Figure 1.2: Imports relative to total GDP (1995=100)

(a) USA

(b) World

Source: WIOD.
and services across 35 industries and 40 countries over the period 1995-2014.

I show that in the 1995-2014 period in the USA the trade balance accounts for 16% of the decline in the goods sector employment share. In the manufacturing sector, the trade-balance accounts for 9% of the decline in the employment share. Most of the decline in the goods and manufacturing employment share in the USA is due to structural change (in particular capital biased technological change and the evolving input-output structure).

Across countries, the trade balance effect is heterogeneous in sign and magnitudes: it is positive in some countries (such as the USA and France) and negative in others (such as China and Germany). A positive sign means that international trade tended to reduce the goods sector employment share, while a negative sign means that trade tended to mitigate the decline in the goods sector employment share (the goods sector employment share declines across all countries in the sample between 1995 and 2014).

I then move from the 'what' to the 'why': I show that across countries, the trade balance effect for a given sector is correlated with an empirical measure of comparative advantage for that sector. To shed light on this relationship, I build a theoretical model of structural change with international trade and Ricardian comparative advantage. In the model, the goods sector employment share tends to decline across all countries, due to structural change. However, trade integration ”magnifies” structural change forces in countries with a comparative advantage in the services sector and ”mitigates” structural change forces in countries with a comparative advantage in the goods sector. The main predictions of the model are thus consistent with the reported empirical patterns.

\(^2\)See Tables (A1)-(A3) for the sector classification and aggregation criteria. I later also present results for the manufacturing sector separately.
1.1.1 Contribution to the Literature

As they develop, economies undergo large sectoral reallocations of output, employment and expenditures. This process is commonly known as "structural change" (Kuznets [1973]; Comin et al. [2015]). Economies also undergo large sectoral reallocations as they open up to international trade (Ricardo [1817]; Feenstra [2003]).

Most of the literature on structural change has been in a closed economy context. Matsuyama [2009] however argues that in order to understand cross-country patterns of structural change one needs a world economy model in which the interdependence across countries is explicitly spelled out. There is now an increasing literature in what can be called "open economy structural change". In particular, some papers also attempt to estimate the (quantitative) impact of trade on sectoral employment shares. My results for the USA are overall consistent with those in Kehoe et al. [2018].

In contrast to most of the literature that tends to focus on one country, I use a large sample of countries in the empirical application. Furthermore, the growth-accounting framework I use is very flexible and allows for several mechanisms that affect the evolution of employment shares. Methodologically, I build on the work by Berlingieri [2013], extending his framework in three key dimensions. First, I allow for international trade. Second, I include capital. Third, I allow for evolving factor income shares. With these modifications, in addition to the

3 Theories of (closed economy) structural transformation can be classified based on whether they consider mechanisms involving demand or production (Comin et al. [2015]). Demand-side theories emphasize the role of heterogeneity in income elasticities of demand across sectors (Engel’s law/non-homotheticity preferences) in driving the observed reallocations accompanying income growth (see Comin et al. [2015] and references therein). Production-side theories, in turn, focus on the differences across sectors in the rates of technological growth (Baumol [1967]; Ngai and Pissarides [2007]), capital intensities (Acemoglu and Guerrini [2008] and intermediate-input demand (Berlingieri [2013]).

4 Other papers that also study the link between international trade and structural change are Uy et al. [2013], Swiecki [2017], Cravino and Sotelo [2016], Sposi [2015], Teignier [2009] and Reyes-Heroles [2018].

demand and input-output mechanisms in Berlingieri [2013], I show that sectoral employment
reallocation also depends on the evolution of the sectoral trade balance and on the (sectoral
and aggregate) labor intensity. While Berlingieri [2013] focuses on the role of outsourcing
and structural change in the USA, I focus on the role of trade and structural change in
a large sample of countries. The multi-country production structure and notation I use is
similar to the one in Johnson [2014].

To the best of my knowledge my paper is the first to use the ”Price Independent Generalized Linearity” (PIGL) preference structure in an international trade model. The PIGL
(a non-homothetic preference) was developed by Muellbauer [1975] and recently used by
Boppart [2014] in the context of a closed economy structural change model. The model
is linked with data using the revealed comparative advantage index (RCA), following the
goods/services application in Barattieri [2014].

The rest of the paper is organized as follows. Section (1.2) presents the empirical frame-
work and the estimation results. Section (1.3) links the empirical findings with empirical
measures of comparative advantage. Section (1.4) introduces a theoretical model of structural
change with comparative advantage that is consistent with the empirical findings. Section
(1.5) concludes.

6Traditionally, growth accounting frameworks assume constant factor income shares, in line with ”Kaldor’s Facts”. I show however that the labor income share has changed significantly in most countries in the 1995-2014 period. To the best of my knowledge, only Fernald and Neiman [2011] and some references therein discuss some of the implications of changing factor income shares in a growth accounting setting. Also see comments by Brent Neiman on the Fall 2013 Brookings paper by Elsby et al.

7Most of the studies in the open economy structural change literature have used Stone-Geary preferences. However, Stone-Geary is well known to have limitations. Stone-Geary is ”asymptotically homothetic” (Matsuyama [2016]), which implies that the income elasticity differences across sectors decline with per capita income. This property is not observed in the data (see Comin et al. [2015] and references therein). In this paper I consider a sample with countries at very different stages of development, which makes the PIGL better suited than the Stone-Geary.
1.2 Empirical Growth Accounting Framework

Consider a multi-period world economy with many countries \((i, j \in \{1, 2, ..., N\})\) and many sectors \((s, s' \in \{1, 2, ..., S\})\). Country \(i\) produces output in sector \(s\) using capital \(K_{it}(s)\), labor \(L_{it}(s)\), and composite intermediate input bundle \(X_{it}(s)\), which is an aggregate of intermediate inputs produced by different source countries.

I assume that the sector-level production function takes a nested Cobb-Douglas form:

\[
Q_{it}(s) = Z_{it}(s)[V_{it}(s)]^{\beta_{it}(s)}[X_{it}(s', s)]^{1-\beta_{it}(s)} \tag{1.1}
\]

Where \(Z_{it}(s)\) is sector-specific productivity, \(V_{it}(s)\) is a composite domestic factor input composed of labor, \(L_{it}(s)\), and capital, \(K_{it}(s)\):

\[
V_{it}(s) = [L_{it}(s)]^{\alpha_{it}(s)}[K_{it}(s)]^{1-\alpha_{it}(s)} \tag{1.2}
\]

Furthermore, \(X_{it}(s', s)\) is a composite of intermediate inputs used by sector \(s\), which is composed of a bundle of \(X_{jit}(s', s)\), the quantity of intermediate inputs from sector \(s'\) in country \(j\) used by sector \(s\) in country \(i\):

\[
X_{it}(s', s) = \prod_{s'=1}^{S} \prod_{j=1}^{N} (X_{jit}(s', s))^{\gamma_{jit}(s', s)} \tag{1.3}
\]

Finally, \(\{\beta_{it}(s), \alpha_{it}(s), \gamma_{jit}(s)\}\) are parameters that govern shares of inputs in gross output, individual factors in value added, and individual inputs in total input use, respectively. Note that labor, capital and intermediate input shares are allowed to differ across sectors, countries, and time. The Cobb-Douglas formulation for the production of gross output is quite common in growth accounting (see Berlingieri [2013]).

In the Appendix [A.1.1] I show that perfect competition, firm optimization and market
clearing imply that the employment share \(l_{it} (s) \equiv \frac{L_{it}(s)}{L_{it}} \) in sector \(s \) is

\[
l_{it} (s) = \frac{\alpha_{it}(s)}{\alpha_{it}} \beta_{it} (s) \left[f_{Nit} (s) + x_{Nit} (s, s') + tb_{iJt} (s) \right] (1.4)
\]

where the new variables introduced are,

1. \(\alpha_{it} \equiv \frac{w_t L_{it}}{p_{it} V_{it}} \) is the labor share of income in GDP.

2. \(f_{Nit} (s) \equiv \sum_{j=1}^{N} \frac{p_{it}(s)F_{jit}(s)}{p_{it} V_{it}} \) is the domestic absorption of sector \(s \) good in country \(i \), as a fraction of GDP.

3. \(x_{Nit} (s, s') \equiv \sum_{j=1}^{N} \sum_{s'=1}^{S} \frac{p_{it}(s)X_{jit}(s, s')}{p_{it} V_{it}} \) are the intermediate inputs from sector \(s \) used in country \(i \), as a fraction of GDP.

4. \(tb_{iJt} (s) \equiv \sum_{j \neq i}^{N} \frac{p_{it}(s)TB_{ijt}(s)}{p_{it} V_{it}} \) is the trade balance of sector \(s \) in country \(i \), as a fraction of GDP.\(^8\)

According to this expression, the employment share in sector \(s \) in country \(i \) increases

1. the more labor-intensive sector \(s \) in country \(i \), relative to the economy of country \(i \) as a whole,

2. the higher the share of value added in output of sector \(s \) in country \(i \),

3. the higher the domestic absorption in the sector \(s \) in country \(i \),

4. the higher the intermediate inputs from sector \(s \) used in country \(i \),

5. the higher the trade balance of country \(i \) in sector \(s \).

\(^8\)The notation can be interpreted as using \(N \) to represent the set of all countries, and \(J \) for the set of all countries except \(i \).
To get some intuition, consider an economy with no capital ($\alpha_{it} = \alpha_{it}(s) = 1$) and no intermediate inputs ($\beta_{it}(s) = 1$ and $x_{Nit}(s,s') = 0$). Thus, Equation (1.4) now becomes $l_{it}(s) = f_{Nit}(s) + tb_{iJt}(s)$: the employment share of sector s increases with domestic expenditure in sector s and with the trade balance of sector s. Consider the case of the Goods sector: evidence suggest that the expenditure share of goods decreases with income, so as economies get richer, expenditure in the goods sector falls. This ”Engel Curve” mechanism is the main demand-side channel that explains structural change (Comin et al. 2015). A decline in $f_{Nit}(G)$ then would tend to reduce $l_{it}(G)$. However, there is also the trade-balance channel. The US has experienced an increasing goods sector trade-deficit: $tb_{it}(s)$ is negative and has increased (got more negative) in the 1995-2014 period. Thus, $tb_{iJt}(s)$ would also tend to reduce $l_{it}(G)$. However, it could be the case that either the expenditure channel or trade-balance channel tend to increase the goods sector employment share. Figure (1.1b) shows that all countries in the sample have experienced declines in the goods sector employment share. Thus, even if one of these components tends to increase the goods sector employment share, in all countries the net result has been negative.

Now consider a version of this framework with capital but still without intermediate inputs. The employment shares becomes $l_{it}(s) = \frac{\alpha_{it}(s)}{\alpha_{it}} [f_{Nit}(s) + tb_{iJt}(s)]$. Now, the arguments about expenditure and trade-balance from the previous paragraph still hold, but conditional on what is happening to $\alpha_{it}(s)$ and α_{it}. One can interpret $\alpha_{it}(s)$ as the labor-intensity in sector s: it increases with the ratio of labor inputs to capital used in the production process. A decline in this parameter can be interpreted as capital-biased technical change: capital is substituting labor in sector s.

This channel is most frequently modeled via non-homothetic preferences.

Note that I have assumed perfect competition and hence value added is the sum of labour and capital compensation. In an economy with profits, however, a decline in the labor income share does not necessarily correspond to an increase in the capital income share, since the profit share can be increasing. See Chapter 2 for further discussion.
In an economy that also has with intermediate inputs, Equation (1.4) holds. Here it is important to distinguish between the intermediate inputs used by sector \(s \), and the intermediate inputs from sector \(s \) used in the economy. For the former, intermediate inputs have a similar effect that capital does: intermediate inputs can substitute labor, so the higher the share of intermediate inputs in value added (the lower \(\beta_{it}(s) \)), the lower the employment share in sector \(s \). For the later, as in Berlingieri [2013], the changing nature of the input-output (henceforth I-O) structure of the economy affects sectoral employment: in a model with intermediate inputs, employment shares depend on the input-output I-O structure of the economy through the Leontief inverse matrix. Equation (1.4) boils down to the one in Berlingieri [2013] for \(\alpha_{it} = \alpha_{it}(s) = 1 \) and a closed economy, \(tb_{iJt}(s) = 0 \).

All right hand side components of Equation (1.4) are taken as exogenous.\(^{11}\) In particular, the expenditure/demand side is not modeled in this section.

1.2.1 Growth Accounting

Equation (1.4) can be expressed in percentage-changes terms (see Appendix (A.1.1) for details),

\[
\hat{l}_{it}(s) = \hat{\alpha}_{it}(s) - \hat{\alpha}_{it} + \hat{\beta}_{it}(s) + \frac{f_{N\tau}(s)}{y_{\tau}(s)} f_{N\tau}(s) + \frac{x_{N\tau}(s, s')}{y_{\tau}(s)} x_{N\tau}(s, s') + \frac{tb_{iJ\tau}(s)}{y_{\tau}(s)} tb_{iJ\tau}(s)
\]

where the hat notation indicates percentage-changes of a variable, \(\hat{l}_{it}(s) = \frac{l_{u}(s) - l_{\tau}(s)}{l_{\tau}(s)} \) with \(u > \tau \). Period \(t = \tau \) represents the initial period and \(t = u \) represents the end period. Note that if \(\hat{l}_{it}(s) = \frac{l_{u}(s) - l_{\tau}(s)}{l_{\tau}(s)} > 0 \), \(l_{it}(s) \) is increasing over time, while it is decreasing over time if \(\hat{l}_{it}(s) = \frac{l_{u}(s) - l_{\tau}(s)}{l_{\tau}(s)} < 0 \). Variable \(y_{\tau}(s) \) denotes the fraction of gross output to value added.

\(^{11}\) As Berlingieri [2013] notes, the approach is close in spirit to the work of Carvalho and Gabaix [2013] who take the change of the Domar weights as given.
and hence $\frac{\theta_{iJt}(s)}{\hat{y}_{it}(s)}$ is the ratio of the sectorial trade balance to gross output (since value added is diving both numerator and denominator).

Equation (1.5) says that the evolution of the sectoral employment share over time is given by the sum of the evolution of each of the variable on the right hand side of Equation (1.4). While the three first variables impact the sectoral employment shares one-to-one, the effect of the latter three variables are dampened by their weight in gross output production.

Decomposition

Re-arranging Equation (1.5) yields the contribution of each variable to the change in the sectoral employment share. Dividing both sides by $\hat{l}_{it}(s)$,

$$1 = \frac{\hat{\alpha}_{it}(s)}{\hat{l}_{it}(s)} - \frac{\hat{\alpha}_{it}(s)}{\hat{l}_{it}(s)} + \frac{\hat{\beta}_{it}(s)}{\hat{y}_{it}(s)} + \frac{f_{Nit}(s) \hat{f}_{Nit}(s)}{\hat{y}_{it}(s)} + \frac{x_{Nit}(s, s') \hat{x}_{Nit}(s, s')}{\hat{y}_{it}(s)} + \frac{\theta_{iJt}(s) \hat{\theta}_{iJt}(s)}{\hat{y}_{it}(s)}$$

"Structural Change Channel"

"Trade Balance Channel"

(1.6)

Each element of the right hand side of this equation now indicates how much it contributes to the change in the sectoral employment share. Note that the right hand side elements have been separated into two groups: the "Trade Balance Channel" is the effect that net-exports have on sectoral employment shares, while the "Structural Change Channel" is the effect that the rest of variables have on the sectoral employment shares. In this paper I focus on the trade-balance channel as the main way in which international trade affects an economy.\(^{12}\)

\(^{12}\)International trade can impact an economy in ways that go beyond the trade balance. For instance, trade integration can alter the factor input prices, thus affecting optimal input demand by firms, ultimately changing $\alpha_{it}(s)$. Trade integration can also affect global value chains, and thus affect $\beta_{it}(s)$. One can imagine more channels in which trade integration affects the items what I have termed the "Structural Change Channel". Studying and incorporating the impact of international trade on the first five components of Equation (1.4) goes beyond my objective at this stage. Having said this, however, I think that my framework is a reasonable starting point, and in particular $\alpha_{it}(s)$ (which turns out to be one of the most empirically important variables), might indeed be a fully "Structural Change" variable: if interna-
As described before, the main focus of the growth accounting exercise is in the last item, \(\frac{\theta_{bt, t}}{y_{it}(s)} \), which is the fraction of the change in the employment share that is accounted by the (output-weighted) change in the trade balance.

For ease of exposition, it will be convenient for later to name each of these channels as follows,

\[
1 = \frac{\hat{\alpha}_{it}(s) - \hat{\alpha}_{it}}{\hat{\alpha}_{it}} - \frac{\hat{\alpha}_{it}}{\hat{\alpha}_{it}} + \frac{\hat{\beta}_{it}(s)}{\hat{\alpha}_{it}} + \frac{\hat{f}_{Nit}(s)}{\hat{\alpha}_{it}} + \frac{\hat{x}_{Nit}(s,s')}{\hat{\alpha}_{it}} + \frac{\hat{tb}_{it}(s)}{\hat{\alpha}_{it}}
\]

"Technical Change Channel"

"Value Added Share Channel"

"Final Demand Channel"

"Input Demand Channel"

"Trade Balance Channel"

where \(\hat{\alpha}_{it}(s) - \hat{\alpha}_{it} \) can be interpreted as the capital-biased technological change in a given sector, relative to the economy as a whole.

1.2.2 Empirical Counterpart: Observed and Predicted Sectoral employment share

Denote by \(l_{it}(s) \) the observed sectoral employment share and by \(l_{it}^p(s) \) the predicted one that corresponds to plugging the appropriate data to Equation (1.4),

\[
l_{it}^p(s) = \frac{\alpha_{it}(s)}{\alpha_{it}} \beta_{it}(s) \hat{f}_{Nit}(s) + \hat{x}_{Nit}(s,s') + \hat{tb}_{it}(s)
\]

\[(1.7) \]

Itonal trade impacts \(\alpha_{it}(s) \) via prices equally across sectors (which is reasonable to think in competitive markets), and since only the relative evolution of \(\alpha_{it}(s) \) impacts the employment share (relative to the aggregate \(\alpha_t(s) \)), then the only relevant force explaining differences in evolution of \(\hat{\alpha}_{it}(s) - \hat{\alpha}_{it} \) across sectors is structural change, not international trade.
Similarly for the expression in percentage-changes (Equation (1.5)), we can denote by $\hat{l}_{it}(s)$ the observed sectoral employment share percent change and by $\hat{p}_{it}(s)$ the predicted one that corresponds to plugging the appropriate variables to Equation (1.8),

$$\hat{p}_{it}(s) = \hat{\alpha}_{it}(s) - \hat{\alpha}_{it} + \hat{\beta}_{it}(s) + \frac{f_{Nir}(s)}{y_{ir}(s)} \hat{f}_{Nit}(s) + \frac{x_{Nir}(s, s')}{y_{ir}(s)} \hat{x}_{Nit}(s, s') + \frac{tb_{iJr}(s)}{y_{ir}(s)} \hat{tb}_{iJt}(s) \quad (1.8)$$

If the framework matched the data perfectly well, then $l_{it}(s) = \hat{p}_{it}(s)$ and $\hat{l}_{it}(s) = \hat{p}_{it}(s)$. However, one would expect that this would generally not be the case. Let $\hat{\Gamma}_{it}$ be a measure of framework fitness,

$$\hat{\Gamma}_{it}(s) \equiv \frac{\hat{p}_{it}(s)}{\hat{l}_{it}(s)} \quad (1.9)$$

The rest of this section will consist of measuring all right hand side variables of Equations (1.7) and (1.8) and applying the decomposition procedure described before.

1.2.3 Data Source

Data used to conduct the growth accounting exercise is obtained from the World-Input Output Database (WIOD), which is publicly available at www.wiod.org (see Timmer et al. 2015 and references therein for a detailed explanation of its construction). I use both the World Input Output Tables (henceforth WIOT) and the Socio-Economic Accounts (henceforth SEA). WIOT provides bilateral final and intermediate input sectoral country transactions. SEA contains information on industry-level employment, labour compensation, gross output and value added among other variables. I use yearly data for the 1995-2014 period for 37 countries.

I use two main sector classification criteria: (i) Goods/Services (which results I focus on
this paper), and (ii) Agriculture/Manufacturing/Services (which results are available in the online appendix). I will study the case of the USA first and then the full sample of countries in WIOD (excluding Luxembourg).13

1.2.4 USA Case

USA, Goods and Service Sectors

Table (1.1) shows the decomposition results for the USA for the goods and service sectors in the 1995-2014 period. The goods sector decomposition results, reported in the first column, indicate that international trade, via the "Trade Balance Channel", accounts for 16% of the decline in the goods sector employment share. Most of the decline in the goods sector employment share, however, is due to structural change forces: in particular the "Productivity Channel" (50% of the decline) and the "Input Demand Channel" (30% of the decline).

The second column reports the decomposition results for the service sector. Note that the interpretation of these numbers are conditional on the sign on the denominator: $\hat{l}_{it}(s)$ is negative in the goods sector and positive in the service sector. A positive sign in Table (1.1) means that a given channel tends to decrease the employment share in the goods sector, and tends to increase it in the service sector.

The last row of each column indicate the sum of all decomposition channels. They add up to a number close to, but not exactly, 1. This fact is similar to the existence of the growth accounting prediction error, $\hat{\Gamma}_{it}(s)$, as discussed previously.14

According to these results, 16% of the decline in the goods sector employment share

13In Appendix (A.2.3) I describe the aggregation criteria. In Appendix (A.2.4) I describe the procedure to merge the 2013 and 2016 releases of WIOD.

14In fact, the sum is equal to $\hat{\Gamma}_{it}(s)$. In the next Chapter I study the sources of prediction error across countries.
between 1995 and 2014 is due to the increase in the goods sector trade deficit.\footnote{This results is statistically significant. See Appendix \ref{appendix:a3} for a discussion on a methodology to construct confidence intervals.} This corresponds to the fact that the goods sector trade balance as a fraction of sector GDP, $tb_{i,t} (s)$ has also decreased (got more negative): the goods sector trade deficit increased, as seen in the third to last column of Table \ref{table:table1.1}. This has tended to reduce the goods sector employment share. This is overall consistent for previous estimates for the USA: Kehoe et al.\cite{kehoe2018} estimate that the trade balance explains between 11 and 20 percent of the decline in the U.S. goods-sector employment share, having a preferred estimate of 15.1 percent.

In the service sector, the trade balance channel accounted for 4\% of the rise in the employment share. This is due to the fact that the service trade surplus increased slightly, thus contributing also slightly to the rise in the service sector employment share.

\begin{table}[h]
\centering
\caption{Growth Accounting Decomposition for $i = USA$, $s = Goods, Services$, 1995-2014 period}
\begin{tabular}{lcc}
\hline
 & Goods Sector & Service Sector \\
\hline
Technical Change Channel & 0.50 & 0.44 \\
Value Added Share Channel & -0.04 & -0.44 \\
Final Demand Channel & 0.05 & 0.33 \\
Input Demand Channel & 0.30 & 0.61 \\
Trade Balance Channel & 0.16 & 0.04 \\
Sum & 0.98 & 0.97 \\
\hline
\end{tabular}
\end{table}

\begin{table}[h]
\centering
\caption{Key Variables for $i = USA$, $s = Goods, Services$, $t = 1995, 2014$}
\begin{tabular}{lcccccccccc}
\hline
Country & Year & Sector & $l_{it} (s)$ & $\alpha_{it} (s)$ & $\alpha_{it} \beta_{it} (s)$ & $f_{Nit} (s)$ & $x_{Nit} (s, s')$ & $tb_{i,t} (s)$ & $P_{it} (s)$ & $\Gamma_{it} (s)$ \\
\hline
USA & 1995 & Goods & 0.16 & 0.59 & 0.60 & 0.34 & 0.20 & 0.35 & -0.03 & 0.18 & 1.07 \\
USA & 2014 & Goods & 0.11 & 0.47 & 0.58 & 0.34 & 0.19 & 0.30 & -0.06 & 0.12 & 1.12 \\
USA & 1995 & Services & 0.84 & 0.60 & 0.60 & 0.64 & 0.81 & 0.46 & 0.02 & 0.82 & 0.99 \\
USA & 2014 & Services & 0.89 & 0.60 & 0.58 & 0.62 & 0.84 & 0.51 & 0.02 & 0.88 & 0.98 \\
\hline
\end{tabular}
\end{table}
In order to better understand the forces behind these channels, we can look at the data used in the growth-accounting exercise. Table (1.2) presents the key variables needed for the decomposition growth accounting exercise presented before in Table (1.1). Among other things, we can see in the fourth column that the sector employment share, \(l_{it}\) (\(s \)), declined in the goods sector (and hence risen in the service sector, since \(l_{USA,t} (Goods) + l_{USA,t} (Services) = 1 \)). Columns 5 to 10 show the values of the key variables for the growth-accounting. The last two columns of Table (1.2) show the predicted employment share and the prediction error, as defined in the previous subsection. These predicted values correspond to "plugging-in" the data into Equation (1.7).

Table (1.3) in turn shows the percentage-change between 1995 and 2014 in the goods and service sector, respectively.\(^{16}\) The goods sector employment share declined while the service sector one increased, hence the negative and positive values of the fourth column. These changes are accounted by the sum of columns 5 to 10. As before, the last two columns indicate the predicted and prediction error values, which now refer to the percent-changes.

Table 1.3: Growth Accounting for \(i = USA, s = Goods, Services, \tau = 1995, \nu = 2014 \)

<table>
<thead>
<tr>
<th>Country</th>
<th>Period</th>
<th>Sector</th>
<th>(l_{it})</th>
<th>(\hat{\alpha}_{it})</th>
<th>(-\hat{\alpha}_{it})</th>
<th>(\beta_{it})</th>
<th>(\frac{1}{w} \bar{N}_{it}(s))</th>
<th>(\frac{1}{y} \bar{X}_{it}(s, s'))</th>
<th>(\frac{\bar{N}{it}(s)}{y} \bar{b}{it})</th>
<th>(\bar{P}_{it}^p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td>1995-2014</td>
<td>Goods</td>
<td>-0.35</td>
<td>-0.21</td>
<td>-0.04</td>
<td>0.01</td>
<td>-0.02</td>
<td>-0.10</td>
<td>-0.06</td>
<td>-0.34</td>
</tr>
<tr>
<td>USA</td>
<td>1995-2014</td>
<td>Services</td>
<td>0.07</td>
<td>-0.01</td>
<td>-0.04</td>
<td>-0.03</td>
<td>0.02</td>
<td>0.04</td>
<td>0.00</td>
<td>0.07</td>
</tr>
</tbody>
</table>

Dividing the entries of each row in Table (1.3) by the corresponding percent-change in the sectoral employment share, we get the decomposition results, as seen in Table (1.4). I report these decomposition results again for transparency, but notice that these are the same results presented before in Table (1.1). The only difference between these tables, other than

\(^{16}\)Note that for space limitation I have modified the notation of variables in fractions: for instance, \(\frac{\bar{N}_{it}(s)}{y} \bar{b}_{it} \) instead of \(\frac{\bar{N}_{it}(s)}{y_{it}(s)} \frac{\bar{b}_{it}}{l_{it}(s)} \). I will keep this simplified notation for the rest of tables throughout the paper.
the labels, is that the "Productivity Channel" is \(\hat{\alpha}_{it}(s) - \hat{\alpha}_t(s) \), and that in Table (1.3) I present separately \(\frac{\hat{\alpha}_{it}(s)}{l_{it}(s)} \) and \(\frac{\hat{\alpha}_t(s)}{l_{it}(s)} \) (notice that they do add up to the same number).

Table 1.4: Growth Accounting Decomposition for \(i = USA \), \(s = Goods, Services \), \(\tau = 1995 \), \(\nu = 2014 \)

<table>
<thead>
<tr>
<th>Country</th>
<th>Period</th>
<th>Sector</th>
<th>(\frac{\hat{\alpha}{it}(s)}{l{it}(s)})</th>
<th>(-\frac{\hat{\alpha}t(s)}{l{it}(s)})</th>
<th>(\hat{\beta}_{it}(s))</th>
<th>(f \hat{N}_{it}(s))</th>
<th>(\frac{\hat{\beta}{it}(s) \hat{N}{it}(s)}{y})</th>
<th>(\frac{x \hat{N}_{it}(s,s')}{y})</th>
<th>(\frac{t \hat{b}_{it}(s)}{y})</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td>1995-2014</td>
<td>Goods</td>
<td>0.62</td>
<td>-0.12</td>
<td>-0.04</td>
<td>0.05</td>
<td>0.30</td>
<td>0.16</td>
<td>0.98</td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td>1995-2014</td>
<td>Services</td>
<td>-0.16</td>
<td>0.59</td>
<td>-0.44</td>
<td>0.33</td>
<td>0.61</td>
<td>0.04</td>
<td>0.97</td>
<td></td>
</tr>
</tbody>
</table>

With these detailed tables in hand, with can better understand the forces that explain sectoral employment reallocation:

- Recall that the "Productivity Channel" is given by \(\frac{\hat{\alpha}_{it}(s) - \hat{\alpha}_t(s)}{l_{it}(s)} \) and that \(\alpha_{it}(s) \) measures the labor intensity in each sector while \(\alpha_{it} \) is the labor intensity of the aggregate economy. Empirically, these are the labor compensation share in value added. While both sectors used to be approximately equally labor intensive in 1995, in 2014 the goods sector has become more capital intensive, while the service sector has not. The aggregate labor income share decline is a combination of the low increase in the service sector labor income share (the largest sector in the economy) and the large decline in the goods sector labor income share.

- The share of goods sector value added to goods output has increased slightly. In the service sector, on the other hand, it has fallen, indicating that the service sector relies more in intermediate inputs than before and tending to reduce the amount of labor needed in the service sector. Since we know that the service sector employment share increased, this means that other factor is compensating for this decline in \(\beta_{it}(s) \) in the service sector.
• The expenditure share in goods—as a fraction of sector GDP—has declined. Although small, this expenditure side contributes to the decline in the goods sector employment share. In the service sector, the expenditure as a fraction of sectoral output has increased.\(^\text{17}\)

• In the goods sector, \(x_{Ndt} (s, s')\), the demand (both domestic and foreign) for intermediate goods produced in the USA—as a fraction of sector GDP—has declined significantly. This is another major force accounting for the decline in the goods sector employment share. In the service sector, however, it has increased, meaning that more services are being demanded as intermediate inputs.

1.2.5 Full sample Decomposition: Goods Sector

International trade, as shown before, contributed to 16% of the decline in the goods sector employment share in the USA in the 1995-2014 period. What is this number across all countries in the sample? Figure (1.3) reports the trade balance effect by country, ranked from smallest to largest. The bar length indicates the size of the goods sector trade balance channel for each country. There is considerable heterogeneity in signs and magnitudes of this channel across countries.

How can difference in signs of the trade balance effect be interpreted? One interpretation is the following: if a country has a positive trade balance effect, then international trade magnified the structural change forces, and thus contributed to the decline on the good sector employment share. If a country has a negative trade balance effect, however, then international trade mitigated the structural change forces, and thus tended to make the decline in the goods sector employment share smaller (recall from Figure (1.1b) that all

\(^{17}\)This is the ”Engel Curve” mechanism: note however that both price and quantities affect expenditure shares.
Figure 1.3: All Countries, Goods Sector Decomposition: Trade Balance Effect, 1995-2014

<table>
<thead>
<tr>
<th>Country</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEU</td>
<td>-0.4</td>
</tr>
<tr>
<td>HUN</td>
<td>0.0</td>
</tr>
<tr>
<td>AUT</td>
<td>0.4</td>
</tr>
<tr>
<td>EST</td>
<td></td>
</tr>
<tr>
<td>KOR</td>
<td></td>
</tr>
<tr>
<td>LTU</td>
<td></td>
</tr>
<tr>
<td>SVN</td>
<td></td>
</tr>
<tr>
<td>SVK</td>
<td></td>
</tr>
<tr>
<td>PRT</td>
<td></td>
</tr>
<tr>
<td>IRL</td>
<td></td>
</tr>
<tr>
<td>CHN</td>
<td></td>
</tr>
<tr>
<td>ESP</td>
<td></td>
</tr>
<tr>
<td>MEX</td>
<td></td>
</tr>
<tr>
<td>AUS</td>
<td></td>
</tr>
<tr>
<td>BEL</td>
<td></td>
</tr>
<tr>
<td>IND</td>
<td></td>
</tr>
<tr>
<td>FIN</td>
<td></td>
</tr>
<tr>
<td>TUR</td>
<td></td>
</tr>
<tr>
<td>RUS</td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td></td>
</tr>
<tr>
<td>FRA</td>
<td></td>
</tr>
<tr>
<td>SWE</td>
<td></td>
</tr>
<tr>
<td>HKG</td>
<td></td>
</tr>
<tr>
<td>POL</td>
<td></td>
</tr>
<tr>
<td>JPN</td>
<td></td>
</tr>
<tr>
<td>GBR</td>
<td></td>
</tr>
<tr>
<td>CAN</td>
<td></td>
</tr>
<tr>
<td>BGR</td>
<td></td>
</tr>
<tr>
<td>NLD</td>
<td></td>
</tr>
</tbody>
</table>

Source: WIOD.

Countries experienced declines in the goods sector employment share.

For instance, the USA, as already described before, has a positive effect: the trade balance accounted for 16% of the decline in the US goods sector employment share. In China, the trade balance accounts for -7% of the decline. Therefore, in China, the trade balance tended to mitigate the decline in the goods sector trade balance. In conclusion, international trade tends to shrink the goods sector in some countries (USA and others), but tends to expand it in some others (China and others).

In Figure 1.4, in turn, we can observe the decomposition estimates for all the growth-accounting components. Countries have been ranked by the trade balance effect, as before.

The expenditure share in goods -as a fraction of sector GDP- has declined in all countries, as can be implied by the always positive value: The Engel-curve type mechanism thus operates in all countries. However the magnitude of this mechanism has been different.
According to the growth-accounting decomposition framework, all these mechanisms should add up to one, as mentioned before. In some countries they do add up close to one (as the previously analyzed case of USA), which means that the framework closely matches the changes in the sectoral employment share. However, in some countries the framework’s prediction power is much weaker. This issue is addressed in the next Chapter.
1.3 Comparative Advantage and the Trade Balance Effect

Why is there heterogeneity (in sign and magnitude) in the trade balance channel across countries? A first hypothesis is comparative advantage (Ricardo 1817): trade integration tends to decrease the goods sector employment share in countries with a comparative advantage in the service sector, while it tends to increase the goods sector employment share in countries with a comparative advantage in the goods sector.

As I later formally show in Section (1.4), in a Ricardian model with structural change, employment reallocation across sectors is explained by both structural change and international trade. The relevant employment measure that would be correlated with comparative advantage is the change in sectoral employment that is due to international trade. In the context of the framework presented here, this corresponds to the trade balance effect. To test the comparative advantage hypothesis in the presence of structural change, then, we can check the correlation between a comparative advantage measure and the trade balance effect.

1.3.1 Revealed Comparative Advantage

We need an empirical measure of comparative advantage. I use the Revealed Comparative Advantage (RCA) to proxy for comparative advantage. The RCA, first introduced by Balassa 1965, is an index of relative export specialization. It was used in the context of service trade and global imbalances by Barattieri 2014.

Denoting sectors by \(\omega = G, S \) ("goods" and "services"), the RCA for the goods sector in country \(i \) at time \(t \) is

\[
RCA_{\text{Goods}, t}^i = \frac{\sum_{\omega} EXP_{\omega, t}^i}{\sum_{\omega} EXP_{\omega, t}^{\text{World}}}
\]
where $\text{EXP}_{i,t}^\omega$ are sector $\omega = \{G, S\}$ exports from country i and $\text{EXP}_{W,t}^\omega$ are sector $\omega = \{G, S\}$ world exports.

If $\text{RCA}_{it}(G) > 1$, the country has a revealed comparative advantage in the goods sector, while it has a comparative advantage in the service sector if $\text{RCA}_{it}(G) < 1$. In the case of two sectors as I focus on here, $\text{RCA}_{it}(G) > 1$ implies $\text{RCA}_{it}(S) < 1$. In other words, a country cannot have a comparative advantage in both sectors.

1.3.2 Correlation

Figure (1.5) shows the correlation between the trade balance effect for the goods and services sector and the two empirical measures of comparative advantage. As I explain in detail in the next section, we would expect the slopes to be negative in the goods sector, and positive in the service sector. This figure thus provides preliminary evidence of the Ricardian comparative advantage force at work.

1.3.3 Regression Analysis

In order to formally test whether the trade balance effect is related to these measures of comparative advantage, I run the following regression:

$$
\frac{\hat{tb}_{it}(\omega)}{\hat{y}_{it}(\omega)} \frac{\hat{b}_{it}(\omega)}{\hat{l}_{it}(\omega)} = \delta_0 + \delta_1 \text{RCA}_{it}(\omega) + \delta_2 \text{Poor}_{it} + \delta_3 \text{Medium}_{it} + \epsilon_{it}(\omega) \quad (1.10)
$$

where $\text{RCA}_{it}(\omega)$ is the revealed comparative advantage of sector ω. Variables Poor$_{it}$ and Medium$_{it}$ are dummy variables to control for the level of development of the country.

As explained in detail in the next section, according to the comparative advantage hypothesis we would expect $\delta_1 < 0$ for the case of the goods sector and $\delta_1 > 0$ for the case of the service sector.

In Table (1.5) we can see the results for the Goods sector (first two columns) and Services
Figure 1.5: Goods Sector: Trade Balance Effect and RCA

Source: WIOD.
sectors (last two columns) when using the RCA for the 2014 year. The signs of the coefficients on the revealed comparative advantage measures are as expected. The RCA is statistically significant when controlling for the level of development.

Table 1.5: Trade Balance Effect (1995-2014) and Revealed Comparative Advantage: 1995-2014 period (RCA 2014)

<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{tb}{y})</td>
<td>+0.389</td>
<td>−0.562</td>
<td>0.351</td>
<td>0.390</td>
</tr>
<tr>
<td>(\frac{tb}{l})</td>
<td>(0.272)</td>
<td>(0.254)</td>
<td>(0.104)</td>
<td>(0.110)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sector</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goods</td>
<td>Poor</td>
<td>0.141</td>
<td>0.177</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.143)</td>
<td>(0.199)</td>
<td></td>
</tr>
<tr>
<td>Medium</td>
<td>−0.298</td>
<td>0.071</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.117)</td>
<td>(0.162)</td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>0.364</td>
<td>0.610</td>
<td>−0.270</td>
<td>−0.327</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.263)</td>
<td>(0.246)</td>
<td>(0.142)</td>
</tr>
</tbody>
</table>

Observations	37	37	37	37
R²	0.055	0.294	0.245	0.278
Adjusted R²	0.028	0.230	0.223	0.212

*Note: * p<0.1; ** p<0.05; *** p<0.01

Several robustness checks are done in Appendix (A.4): Table (A5) reports results for a regression using the 17 year window (which increases the data by a factor of 3), using the RCA for the final year in each sub-period. Table (A6) reports results for a regression using the 17 year window average estimates, distinguishing between countries with statistically significant trade balance effects. Overall, the main conclusion from before hold, in terms of
signs of the relationships (some of the alternative specifications are not statistically significant though)

Table (A7) reports results for a regression for the 1995-2014 period using RCA measures of different years: the initial year (1995), end year (2014), and the average 1995-2014.

The signs of the relationships are the same as before. The initial year RCA is not statistically significant though.

Thus, the signs of the coefficients on the RCA supports the conclusion from the Figure (1.5) and hence the evidence seems to support the Ricardian comparative advantage at work: in the goods sector, the trade balance effect declines with comparative advantage in the goods sector, while in the service sector the trade balance effect increases with comparative advantage in the service sector.

Next I introduce a model to formalize these mechanisms.

1.4 A Ricardian Model with Structural Change

The model features a perfect competitive environment where countries produce the same goods using different technologies and where labor is the only factor of production. The production side of the model follows the benchmark textbook version of the Ricardian model, as exposed in Allen and Arkolakis [2015]. However, the key difference is in the demand side: preferences are now non-homothetic.

There are two countries, \(i = H, F \) (“home” and “foreign”) and two sectors, \(\omega = G, S \) (“goods” and “services”).

\(^{18}\)This reflects the fact that the RCA varied between 1995 and 2014. A way to interpret the fact that only the 2014 measure is statistically significant is that production and export specialization occurs ex-post trade integration. RCA will reflect comparative advantage fuller after trade integration happened. Later measures of RCA would tend to be correlated with trade balances effects more than earlier ones.
Firms: The production technologies in the two countries \(i = H, F \) are different for the two sectors \(\omega = G, S \) and given by

\[
y_{i\omega}^i = Z_{i\omega}^i z_{i\omega}^i l_{i\omega}^i
\]

(1.11)

where \(y_{i\omega}^i \) is output, \(l_{i\omega}^i \) is labor and \(Z_{i\omega}^i z_{i\omega}^i \) is productivity. Note that productivity is a product of an aggregate term \((Z_{i}^i) \) and sector specific term \((z_{i\omega}^i) \). Each country is endowed with \(\bar{l}^i \) units of labor, where \(l_{iG}^i + l_{iS}^i = \bar{l}^i \).

I assume that "home" has a comparative advantage in the production of services.

\[
\frac{z_H^F}{z_F^G} < \frac{z_S^H}{z_F^G}
\]

(1.12)

Households: Preferences are specified over the prices of “goods” and “services” \((p_{iG}^i, p_{iS}^i) \) and the expenditure level of the household \(e^i \). The indirect utility function takes the form

\[
V \left(p_{iG}^i, p_{iS}^i, e^i \right) = \frac{1}{\varepsilon} \left[\frac{e^i}{p_{iS}^i} \right]^\varepsilon - \frac{v}{\gamma} \left[\frac{p_{iG}^i}{p_{iS}^i} \right]^\gamma - \frac{1}{\varepsilon} + \frac{v}{\gamma}
\]

(1.13)

where \(0 \leq \varepsilon \leq \gamma \leq 1 \) and \(v \geq 0 \). The specified utility function represents a subclass of “price independent generalized linearity” (PIGL) preferences \(\text{(Boppart 2014)} \)\(^{19}\) This preference specification imply ”Engel Curves”, as can be seen in Figure (A1). See Appendix (A.1.2) for more properties and the demand function derivations.

1.4.1 Autarky Equilibrium

An autarky equilibrium is defined here as follows:

\(^{19}\)In general, whenever \(\varepsilon \neq 0 \), a closed form representation of the direct utility function does not exist \(\text{(Boppart 2014)} \).
Definition 1. An autarky equilibrium is a vector of allocations for consumers \((c^i_\omega, i = \{H, F\}, \omega = \{G, S\}) \), allocations for the firm \((l^i_\omega, i = \{H, F\}, \omega = \{G, S\}) \), and prices \((w^i, p^i_\omega, i = \{H, F\}, \omega = \{G, S\}) \) such that

1. Given prices consumer’s allocation maximizes her utility for \(i = H, F \).

2. Given prices the allocations of the firms solve the cost minimization problem in \(i = H, F \).

3. Markets clear

\[
c^i_\omega = y^i_\omega \quad \text{for} \quad i = \{H, F\}, \omega = \{G, S\}
\]

\[
\sum_\omega l^i_\omega = \bar{l}^i \quad \text{for} \quad i = \{H, F\}
\]

Proposition 2. Autarky equilibrium prices \((w^i, p^i_\omega, i = \{H, F\}, \omega = \{G, S\}) \) and employment allocations \((l^i_\omega, i = \{H, F\}, \omega = \{G, S\}) \) are given by

\[
p^i_G Z^i z^i_G = w^i = p^i_S Z^i z^i_S
\] (1.14)

\[
\frac{p^i_G}{p^i_S} = \frac{z^i_S}{z^i_G}
\] (1.15)

\[
\frac{l^i_G}{l^i} = v \left[\frac{z^i_S}{z^i_G} \right]^\gamma \left[\frac{1}{Z^i z^i_S l^i} \right]^\varepsilon
\] (1.16)

\[
\frac{l^i_S}{l^i} = 1 - v \left[\frac{z^i_S}{z^i_G} \right]^\gamma \left[\frac{1}{Z^i z^i_S l^i} \right]^\varepsilon
\] (1.17)
Proof. See Appendix (A.1.3).

Given the constant returns to scale production function, relative prices are a function of technology alone (as in the homothetic case) and given by the slope of the (linear) production possibility frontier (PPF), which is \(y_G^i = Z^i z_G^i \bar l - \frac{z_G^i}{z_S^i} y_S^i \). Home’s autarky relative price of goods is higher than foreign’s (since home has a comparative advantage in services),

\[
\frac{p_G^F}{p_S^F} = \frac{z_S^F}{z_G^F} < \frac{z_H^S}{z_G^S} = \frac{p_G^H}{p_S^H}
\]

Structural Change The autarky equilibrium allocations provide the intuition to understand the role of economic growth on structural change. The equilibrium equations imply that aggregate productivity increases will create structural change in this economy: the goods sector employment share declines and the service sector employment share rises. This result holds as long as preferences are non-homothetic. The autarky equilibrium thus resembles most of the structural change literature, since it consists of a closed economy equilibrium (Boppart [2014]).

If preferences are instead homothetic, the model boils down to the textbook version of the Ricardian model under autarky, as in [Allen and Arkolakis 2015]: sectoral employment shares are constant and equal across countries. There is no structural change under homothetic preferences.

We can formalize this in the following proposition.

Proposition 3. If preferences are non-homothetic \((0 < \varepsilon < \gamma < 1)\), the autarky goods sector employment share declines and the service employment share rises with aggregate productivity gains. If preferences are homothetic \((\gamma = \varepsilon = 0)\) the autarky employment shares are constant.

Proof. Taking partial derivatives of equations (1.16) and (1.17) with respect to aggregate
productivity yields

$$\frac{\partial \left(\frac{y_i}{P} \right)}{\partial Z_i} = -v \varepsilon \left[\frac{z_i^S}{z_i^G} \right]^{\gamma} \left[\frac{1}{z_i^S i} \right]^{\varepsilon} \left[\frac{1}{Z_i} \right]^{1+\varepsilon} < 0$$

$$\frac{\partial \left(\frac{y_i}{P} \right)}{\partial Z_i} = v \varepsilon \left[\frac{z_i^S}{z_i^G} \right]^{\gamma} \left[\frac{1}{z_i^S i} \right]^{\varepsilon} \left[\frac{1}{Z_i} \right]^{1+\varepsilon} > 0$$

Note that for the homothetic case in which \(\gamma = \varepsilon = 0 \), employment shares are constant and unaffected by economic growth, \(\left. \frac{\partial \left(\frac{y_i}{P} \right)}{\partial Z_i} \right|_{\gamma=\varepsilon=0} = v \) and \(\left. \frac{\partial \left(\frac{y_i}{P} \right)}{\partial Z_i} \right|_{\gamma=\varepsilon=0} = 1 - v \). Thus \(\left. \frac{\partial \left(\frac{y_i}{P} \right)}{\partial Z_i} \right|_{\gamma=\varepsilon=0} = 0 \) and \(\left. \frac{\partial \left(\frac{y_i}{P} \right)}{\partial Z_i} \right|_{\gamma=\varepsilon=0} = 0 \).

The above can be interpreted in terms of a shift of the PPF. An aggregate productivity increase is represented by an increase in the intercept while the slope (and thus relative price) remains unchanged. Given that preferences imply that expansion paths are not linear, then consumption (and hence production and employment) tilts towards services.

This proposition can be seen graphically. Figure 1.6 shows a numerical example for the employment shares as a function of aggregate productivity. As can be observed, the goods sector employment share decreases with aggregate productivity \(Z_i \) (or level of development of the country), while service sector employment share increases with productivity. If preferences are homothetic however, employment shares are constant and unaffected by economic growth, as indicated by the dashed lines.

1.4.2 Free Trade Equilibrium

Under free trade international prices equalize and relative productivity patterns will determine specialization. As in the benchmark Ricardian model, there can be three possible
specialization patterns: two where one country specializes and the other diversifies and one where both countries specialize.

Definition 4. A free trade equilibrium is a vector of allocations for consumers \((c^i_\omega, i = \{H, F\}, \omega = \{G, S\})\), allocations for the firm \((l^i_\omega, i = \{H, F\}, \omega = \{G, S\})\), and prices \((w^i, p^i_\omega, i = \{H, F\}, \omega = \{G, S\})\) such that

1. Given prices consumer’s allocation maximizes her utility for \(i = H, F\).

2. Given prices the allocations of the firms solve the cost minimization problem in \(i = H, F\).

3. Markets clear

\[
\sum_i c^i_\omega = \sum_i y^i_\omega \text{ for } \omega = \{G, S\}
\]

\[
\sum_\omega l^i_\omega = \bar{l} \text{ for } i = \{H, F\}
\]
Proposition 5. Under the assumptions stated, at least one country specializes in the free trade equilibrium.

Proof. If not then the firm’s cost minimization would imply \(\frac{z_F}{z_G} = \frac{z_H}{z_G} \), a contradiction with the comparative advantage assumption.

\[\text{In the three different equilibria that can emerge the countries export what they have comparative advantage on (specialization into exporting). Under free trade this relative price has to be in the range:} \]

\[
\frac{z_S}{z_F} \leq \frac{p_G}{p_S} \leq \frac{z_S}{z_H} \tag{1.18}
\]

\[\text{In this paper I will focus on the incomplete specialization equilibriums. Note that the complete specialization equilibrium is less relevant for the question I have in mind, since if an economy completely specializes, then after trade there is no further movements of employment shares.} \]

Incomplete Specialization Equilibrium Next I describe the two incomplete specialization cases.

Proposition 6. Home diversifies: in the free trade equilibrium where home diversifies, the equilibrium goods sector employment shares \((l^G_{\omega}, i = \{H, F\})\) are given by

\[
\frac{l^H_G}{l^H} = v \left[\frac{Z^H}{Z^G} \right] \frac{1}{z^H} \left[\frac{1}{z^H} \right]^\varepsilon + \frac{z^F}{z^H} \frac{Z^F}{Z^H} \frac{l^F}{l^H} \left(\left[\frac{Z^H}{Z^G} \frac{1}{z^F} \right] \left[\frac{1}{z^F} \right]^\varepsilon - 1 \right) \tag{1.19}
\]

\[
\frac{l^F_G}{l^F} = 1 \tag{1.20}
\]

Proof. See Appendix (A.1.4).
Proposition 7. Foreign diversifies: in the free trade equilibrium where foreign diversifies, the equilibrium goods sector employment shares \((l^G_i, i = \{H, F\})\) are given by

\[
\frac{l^H}{l^G} = 0 \quad (1.21)
\]

\[
\frac{l^F}{l^G} = v \left[\frac{z^F_S}{z^F_G} \right]^{\gamma} \left[\frac{1}{Z^F z^F_{H}} \right]^{\epsilon} \frac{1}{Z^H z^H_{S} l^H} \frac{1}{Z^F z^F_{S} l^F} \quad (1.22)
\]

Proof. See Appendix (A.1.5).

Trade Liberalization Now that both incomplete specialization equilibria are solved for, we can study the impact of trade integration on employment shares. I will focus on the goods sector employment share of the country that diversifies.

Proposition 8. Holding productivity constant, trade integration increases the employment share of the sector in which the country has a comparative advantage.

Proof. See Appendix (A.1.6).

Thus, as in the benchmark comparative advantage model, countries export what they have a comparative advantage on and hence reallocate resources towards that sector. The good sector employment share in home declines while it increases in foreign.\(^{20}\) These equations also imply a link between the magnitude of the reallocation of employment and the magnitude of comparative advantage.

\(^{20}\)Note that these relationships hold as well in the country that specializes, in which case all employment reallocates to the sector in which the country has a comparative advantage.
Economic Growth under Free Trade

The previous results were conditional on aggregate productivity. Within the free trade equilibria, however, we can also analyze the effect of economic growth on the goods sector employment shares.

While under the autarky equilibrium only domestic aggregate productivity affected the goods sector employment shares, in the free trade equilibria aggregate productivity of both countries affect the goods sector employment share21 In other words, the autarky goods sector employment share -Equation (1.16)- is a function of Z^i but not Z^j, while the free trade goods sector employment shares in the country that diversifies -Equation (1.19) for home and Equation (1.19) for foreign- depend on aggregate productivity of both countries, Z^G and Z^F. In Figures (1.7) and (1.8) we can observe the employment share in each country as a function of aggregate productivity in home and foreign.

The goods sector employment share in home (foreign) declines with home (foreign) aggregate productivity, conditional on foreign’s (home’s) aggregate productivity. The sign of this relationship is in line with the autarky case. Interestingly, however, the impact of the other country’s growth on employment share is asymmetric between countries: foreign growth causes the home goods sector employment share to shrink will home growth causes the foreign goods sector employment share to rise.

1.4.3 Trade Liberalization and Economic Growth

Trade liberalization decreases the goods sector employment share in home and increases it in foreign, conditional on productivity (Proposition 8). As shown in Figure (1.9): in home, the autarky goods sector employment share is always above the free trade one. The opposite

21Recall that I focus on the country that diversifies. In the country that specializes all employment is reallocated to the sector in which the country has a comparative advantage, and thus the goods sector employment share is one, constant, and independent of aggregate productivity
Figure 1.7: Home: Goods Sector Employment Share and Aggregate Productivity

Note: numerical example for given parameter values consistent with the model assumptions.

Figure 1.8: Foreign: Goods Sector Employment Share and Aggregate Productivity

Note: numerical example for given parameter values consistent with the model assumptions.
is true in foreign: the autarky goods sector employment share is always below the free trade one, as seen in Figure 1.10.

Trade liberalization implies that the goods sector employment share moves (or "jumps") between surfaces: from the red to the blue one. Economic growth implies that the goods sector employment share moves within a surface. When both trade liberalization and economic growth happen, the goods sector employment share moves both between and within surfaces.

With this theoretical apparatus we can now disentangle how much of the change in the goods sector employment share is due to either trade or technological progress. This is done in the next subsection.

1.4.4 Decomposition

Consider a two period economy, \(t = 1, 2 \).
In $t = 1$ the economies are in autarky and productivity is low (Z_i^1).

In $t = 2$ the economies are in free trade and productivity is high ($Z_i^2 > Z_i^1$).

Given the results in the previous sub-sections, we can anticipate that between $t = 1$ and $t = 2$ employment shares will change. How much of the change in employment shares is due to international trade and how much is it due to economic growth (higher aggregate productivity)?

In order to decompose these effects, we need to consider counterfactuals: In particular, how much would employment shares be in $t = 2$ had the economy not opened to trade (Counterfactual 1)? Alternatively, how much would employment shares be in $t = 2$ had productivity not changed (Counterfactual 2)? We can summarize this in the following table:
Note that the goods sector employment share in home will unambiguously fall: trade and growth move the goods sector employment share in same direction. In foreign however, it is not clear what happens to employment shares: on one hand, trade induces a reallocation to the goods sector, on the other, economic growth induces a reallocation to the service sector.

Note that we have already calculated the change from "Start" to Counterfactual 1 in Proposition (3): under autarky, goods sector employment share declines with productivity. Also, we have already calculated the change from "Start" to Counterfactual 2 in Proposition (8): holding productivity constant, trade integration increases the employment share of the sector in which the country has a comparative advantage. We have also calculated the change between Counterfactual 1 and "End", since Proposition (8) was conditional on a level of aggregate productivity, Z^i.

We still need to compare the total effect, the change between "Start" and "End". In the next proposition I do this and show that this total change is the sum of two effects:

Proposition 9. The total change in employment shares is the sum of a "Structural Change” effect and an ”International Trade” effect, and the closed form expressions for the total change are

$$
\Delta \frac{L^H}{L^H} = v \left[\frac{Z^H}{Z^S} \right]^{\gamma} \left(\frac{1}{Z_2} \right)^{\varepsilon} \left(\frac{1}{Z_1} \right)^{\varepsilon} + \frac{z^E}{Z_2} \frac{Z^F}{Z^G} \left(v \left[\frac{Z^H}{Z^S} \right]^{\gamma} \left[\frac{Z^H}{Z^S} \frac{1}{Z^F} \right]^{\varepsilon} - 1 \right)
$$

(1.23)
\[
\frac{\Delta l_F^G}{l_F} = v \left[\frac{z_S}{z_G} \right]^{\gamma} \left(\left[\frac{1}{Z_2^F} \right]^\epsilon - \left[\frac{1}{Z_1^F} \right]^\epsilon \right) + v \left[\frac{z_S}{z_G} \right]^{\gamma} \left(\left[\frac{1}{Z_2^H} \right]^\epsilon \frac{z_H}{z_S} \frac{l_H}{l_F} \right) \quad (1.24)
\]

"Structural Change Effect"

\[\text{"International Trade Effect"}\]

Proof. See Appendix (A.1.7).

\[\square\]

Proposition 10. The total effect is always negative in home while it is negative in foreign only if the increase in productivity is high enough.

Proof. The total change in home is negative (since both terms are negative; see Propositions (3) and (8)).

The total change in foreign is negative if

\[
v \left[\frac{z_S}{z_G} \right]^{\gamma} \left[\frac{1}{Z_2^H} \frac{z_H}{z_S} \frac{l_H}{l_F} \right]^\epsilon + v \left[\frac{z_S}{z_G} \right]^{\gamma} \left[\frac{1}{Z_2^F} \frac{z_F}{z_S} \right]^\epsilon \left(\left[\frac{1}{Z_2^F} \right]^\epsilon - \left[\frac{1}{Z_1^F} \right]^\epsilon \right) < 0
\]

Let \(Z_2^F = g \cdot Z_1^F \) and rearrange,

\[
\left(1 + \left[\frac{Z_2^H z_H l_H}{Z_2^F z_F l_F} \right]^{1-\epsilon} \right)^{-\frac{1}{\epsilon}} - 1 < g - 1
\]

which holds if the growth rate of productivity \((\theta - 1)\) is larger than threshold \(\tilde{\theta} = \left(1 + \left[\frac{Z_2^H z_H l_H}{Z_{high}^F z_F l_F} \right]^{1-\epsilon} \right)^{-\frac{1}{\epsilon}} \).

These results are quite intuitive. As shown in Proposition (3), aggregate productivity increases results in employment shares decline in all countries. As economies open up to trade, employment shares decline only in countries with a comparative advantage in the goods sector, and increase in countries with a comparative advantage in the service sector, as proved in Proposition (8). When both productivity increase and trade integration occur,
the total effect is unambiguously negative in countries with a comparative advantage in the service sector. However, the employment shares decline in countries with a comparative advantage in goods only if the increase in productivity is large enough to compensate the "International Trade Effect".

1.4.5 The Model and the Data

The main predictions of the model are consistent with the empirical patterns reported in Section (1.3): If the Ricardian comparative advantage forces hold, countries with a comparative advantage in the goods sector would experience negative trade-balance effects in the goods sector. Trade integration makes countries that are relatively better at producing goods to specialize in the goods sector. Countries with a comparative advantage in the service sector would experience positive trade-balance effects in the goods sector, since trade integration tends to shrink the goods sector employment share in these countries.

Recall that since the goods sector employment share declines over time, a negative trade balance effect means that the trade-balance tended to increase its goods sector employment share (or it tended to "mitigate" the decline), while a positive trade balance effect means that the trade balance tended to decrease its goods sector employment share (or it tended to "magnify" the decline).

These signs are the opposite in the case of the service sector, since the service sector employment share increases over time: countries with a comparative advantage in the service sector would experience positive trade-balance effects in the service sector: trade integration makes countries that are relatively better at producing services to specialize in the service sector. Countries with a comparative advantage in the goods sector would experience negative trade-balance effects in the service sector, since trade integration tends to shrink the service sector employment share in these countries.
In conclusion, according to the model we would expect the trade-balance effect in the goods sector to be negatively associated with comparative advantage in the goods sector, and the trade-balance effect in the service sector to be positively associated with comparative advantage in the service sector. This is what is observed in the data, as Section 1.3 describes.

1.5 Conclusion

In this paper I have developed a growth accounting framework to study structural change in a globalized context. I estimated the impact of international trade on sectoral employment in 35 countries for the 1995-2014 period. I also provided evidence of the comparative advantage force at work and introduced a model of international trade with structural change that is consistent with it. The model abstracted from empirically relevant mechanisms, for instance input-output linkages. A richer model would allow to tackle an array of new questions: trade costs estimation, counterfactual exercises, etc. A dynamic extension could then tackle business cycle questions.

The framework and estimates presented in this paper have policy implications. Attempts to increase the manufacturing employment share via protectionism should take into account that most of the decline in the manufacturing sector employment share is due to factors that go beyond international trade. In addition, the theoretical results indicate that the impact of protectionism on sectorial employment reallocation is only temporary: in the long run, structural change forces will keep shrinking the goods sector employment share over time, independently of the trade policy. Trade policy, hence, is quite limited at ”bringing the manufacturing jobs back”.
Chapter 2

SECTORAL WAGES, REALLOCATION FRICTIONS AND TRADE

2.1 Introduction

In the USA in 2014, a typical worker in the goods sector earned $72K per year while a typical worker in the service sector earned $63K per year. The sectoral relative wages (of the goods sector over service sector) in 2014 was therefore 1.15. This relative wage has been increasing over time (in 1995 was 1.09). Around the world there has also been considerable changes in sectoral relative wages, but with differences in magnitudes and signs, as Figure (2.1) indicates.

In this Chapter I first show that these changes in sectoral relative wages matter for understanding employment reallocation. I then ask: why do sectoral relative wages evolve over time? I argue that a likely explanation is the existence of idiosyncratic sectoral labor demand shocks in the context of employment reallocation frictions. I argue that aggregate trade integration can generate such shifts. The intuition is simple: trade liberalization tends to increase labor demand in sectors in which the country has a comparative advantage, and to decrease labor demand in sectors in the rest of sectors. If labor cannot fully reallocate after such shocks, wages tend to adjust: relative wages tend to increase in sectors in which the country has a comparative advantage and tend to shrink in the rest of the economy. Trade integration thus impacts sectoral relative wages and this impact varies across countries.

I introduce a model of international trade with labor market frictions and show that trade integration impacts sectoral relative wages and that this impact varies across countries.
Note: Percentage point change in wage of goods sector over wage of service sector between 1995 and 2014, $\Delta \frac{w_{G}}{w_{S}} = \frac{w_{2014,G}}{w_{2014,S}} - \frac{w_{1995,G}}{w_{1995,S}}$. I classify Agriculture and Manufacturing as goods, and all other sectors as services, as described in Appendix (A.2.3). I classify countries in three groups according to their level of GDP per capita in 2014. See Appendix (A.2.1) for more details.
In particular, countries with a comparative advantage in the goods (service) sectors tend to experience increasing relative wages in the goods (service) sector. Using the Revealed Comparative Advantage Index, I confirm this relationship in the data.

Employment reallocation frictions thus shed light on the empirical relevance of the Ricardian model of international trade.

2.1.1 Contribution to the Literature

This paper is related to the two main research agendas:

1. The first one is the literature on employment reallocation frictions and inter-industry wage inequality. Two papers are particularly relevant: first, Lee and Wolpin [2006] who focus on structural change in the USA under worker’s direct psychic or monetary costs of switching sectors. Second, Helwege [1992], who studies labor demand sector specific shifts under worker mobility inhibited by a number of factors that may severely limit arbitrage opportunities.

2. The second one is the literature studying the impact of international trade under sectoral employment reallocation frictions. Artuç et al. [2010], Artuc et al. [2017] and Cosar [2013] study the cases of USA, Argentina and Brazil, respectively. Focusing on geographical mobility costs and local labor markets, David et al. [2013] study the “China Shock” in the USA. In turn, Dix-Carneiro [2014] focuses on Brazil.

These papers tend to focus on one country. I however study cross-country evidence.

1 As pointed out by Cosar [2013], previous theoretical research of trade under sectoral reallocation frictions include Mayer [1974], Davidson et al. [1988] and Hosios [1990]. Theoretically, trade models under such frictions are related to the Ricardo-Viner Specific Factor Model (as exposed in for instance Krugman et al. [2017]).

2 Other papers studying this topic include Caliendo et al. [2019] -using a general equilibrium approach-, and Eriksson et al. [2019] -using a longer term historical perspective-.
I show that employment reallocation frictions shed light on the empirical relevance of the Ricardian model of international trade.

2.2 Why Sectoral Relative Wages Matter

What determines employment shares? Consider the employment share definition, \(l_{st} \equiv \frac{L_{st}}{L_t} \) where \(L_{st} \) is employment in sector \(s \) at time \(t \) and \(L_t = \sum_{s=1}^{N} L_{st} \) is aggregate employment at time \(t \).

Now, let wages in sector \(s \) be \(w_{s,t} \) and average wage in the economy be \(w_t \). These sectoral wages can differ across sectors and over time. Also, let \(V_{s,t} \) stand for value added in sector \(s \) and \(V_t \) stand for aggregate value added.

Then, we can re-express the employment share as

\[
\begin{align*}
 l_{st} & \equiv \frac{L_{st}}{L_t} \\
 & = \frac{w_{s,t} L_{st}}{V_{s,t}} \cdot \frac{V_t}{w_t} \cdot \frac{w_t}{w_{s,t}} \\
 & = \frac{w_{s,t} L_{st}}{V_{s,t}} \cdot \frac{V_t}{V_t} \cdot \frac{w_t}{w_{s,t}}.
\end{align*}
\]

where in the second line I have multiplied and divided \(w_{s,t} \), \(w_t \), \(V_{s,t} \) and \(V_t \), and rearranged.

If we further define the labor share (or labor intensity), for sector \(s \) as \(\alpha_{st} \equiv \frac{w_{s,t} L_{st}}{V_{s,t}} \) and for the aggregate economy as \(\alpha_t \equiv \frac{w_t L_t}{V_t} \), then we can get

\[
l_{st} = \frac{\alpha_{st} V_{st}}{\alpha_t} \cdot \frac{w_t}{w_{s,t}}.
\] (2.1)

Thus employment shares are determined by relative labor intensities, relative value added and relative wages. To understand employment reallocation - the change in employment shares - , what matters is the change in these components: if they evolve at same growth rates across sectors, then they would not contribute to employment reallocation.
To see this, define relative variables as \(x_{st}^r \equiv \frac{x_{st}}{x_t} \) and their percent change as \(\hat{x}_{st}^r \equiv \frac{x_{st} - x_{st-1}}{x_{st-1}} \), then we can express Equation (2.1) as,

\[
\hat{l}_{st} = \hat{\alpha}_{st}^r + \hat{v}_{st}^r - \hat{w}_{st}^r \tag{2.2}
\]

So employment shares evolve according to changes in relative labor intensities, relative value added, and relative wages. Chapter 1 and most of multi-sector macroeconomic models assume \(\hat{w}_{st}^r = 0 \). Under such assumption (which implies homogenous labor and frictionless labor markets, as I will discuss in detail later), then

\[
\hat{l}_{st}^p = \hat{\alpha}_{st}^r + \hat{v}_{st}^r \tag{2.3}
\]

where I have now introduced \(\hat{l}_{st}^p \) as the predicted employment share percent change to distinguish is from the “identity” (or observed) employment share. Note that (2.3) is a prediction (which would hold in a large class of theoretical models), while (2.1) holds by definition (it is assumption free).

Define the prediction error as the difference between the predicted and observed changes in employment share, so using (2.3) and (2.2),

\[
\hat{l}_{st}^p - \hat{l}_{st} = \hat{w}_{st}^r
\]

Understanding the prediction error is understanding differences in sectoral relative wages.

2.2.1 A Look into the Data

Data Source All data is from the WIOD database (see Chapter 1 for a detailed description and references). Using data from the WIOD I observe employment \(L_{st} \), value added \(V_{st} \) and labor compensation, \(LAB_{st} \). Then, I compute wages per employee as \(w_{st} = \frac{LAB_{st}}{L_{st}} \) and labor
The predicted employment share boils down to labor compensation shares $P_{st} = \frac{LAB_{st}}{V_{st}} V_t = \frac{LAB_{st}}{LAB_t}$. The actual employment share, plugging all variables, simplifies to the observed one (recall this is an identity): $l_{st} = \frac{LAB_{st}}{V_{st}} V_t \frac{LAB_t}{LAB_{st}} = \frac{L_{st}}{L_t}$.

Predicted vs Observed Employment Shares Figure (2.2) plots the evolution of the observed employment shares in the goods sector, $l_{\text{Goods},t}$, with the predicted ones, $P_{\text{Goods},t}$, for all countries in the WIOD database and with index 1995=100. Notice the large heterogeneity across countries in the difference between the observed and predicted values. The difference between the red and blue line is entirely due to changes in sectoral relative wage. This difference is not only relevant for the goods sector. We could repeat this for any sector in the economy, an a difference between the predicted and observed value exists. Figure (2.3) plots the evolution of the observed employment shares, $l_{i,t}$, with the predicted ones, $P_{i,t}$, for all sectors in the 2013 release of the WIOD database and with index 1995=100. Again, notice the large heterogeneity across countries in the difference between the observed and predicted values. Changes in sectoral relative wages are relevant across all sectors.

2.2.2 Why do Sectoral Relative Wages Change Over Time?

Sectoral relative wages change over time, and this matter for understanding employment shares. But then the question is: why do sectoral relative wages change over time? Next I introduce a simple theory based on employment reallocation frictions.

2.3 A Model of International Trade with Employment Reallocation Frictions

The model features a perfect competitive environment where countries produce the same goods using different technologies and where labor is the only factor of production. The
Figure 2.2: Goods Sector Employment Share: Data vs. Prediction

Source: WIOD.
Figure 2.3: USA, All Sectors Employment Share: Data vs. Prediction

Source: WIOD.
model is the basic Ricardian model of trade \cite{Ricardo1817}, augmented with employment reallocation frictions. The frictionless case thus resembles the textbook version of the Ricardian model as exposed in \cite{Allen2015}. Relative to the model presented in Chapter 1, I introduce labor market frictions but abstract from structural change (here I use homothetic preferences).

There are two countries, \(i = H, F\) ("home" and "foreign") and two sectors, \(\omega = G, S\) ("goods" and "services").

Firms: The production technologies in the two countries \(i = H, F\) are different for the two sectors \(\omega = G, S\) and given by

\[
y^i_\omega = z^i_\omega l^i_\omega \tag{2.4}
\]

where \(y^i_\omega\) is output, \(l^i_\omega\) is labor and \(z^i_\omega\) is country-sector specific productivity. Each country is endowed with \(\bar{l}\) units of labor, where \(l^i_G + l^i_S = \bar{l}\).

I assume that home has a comparative advantage in the production of services

\[
\frac{z^F_S}{z^F_G} < \frac{z^H_S}{z^H_G} \tag{2.5}
\]

Households: There is a representative consumer in each country with Cobb-Douglas preferences. The consumer’s problem is

\[
\max U^i = \alpha \log c^i_G + (1 - \alpha) \log c^i_S \\
\text{s.t.} \ p^i_G c^i_G + p^i_S c^i_S \leq w^i_G l^i_G + w^i_S l^i_S
\]

where \(c^i_\omega\) is consumption, \(w^i_\omega\) is sector specific wage, and \(0 < \alpha < 1\). Consumer optimization
yields demand functions:

\[c^i_G = \alpha \frac{w^i_G l^i_G + w^i_S l^i_S}{p^i_G} \quad (2.6) \]

\[c^i_S = (1 - \alpha) \frac{w^i_G l^i_G + w^i_S l^i_S}{p^i_S} \quad (2.7) \]

Autarky Equilibrium; frictionless case

Firms’ profits are \(\pi^i_\omega = p^i_\omega z^i_\omega l^i_\omega - w^i_\omega l^i_\omega \). Profit maximization implies:

\[w^i_\omega = p^i_\omega z^i_\omega \quad (2.8) \]

Assuming equal wages across sectors, \(w^i_G = w^i_S = \bar{w}^i \) and using equation (2.8) yields relative prices

\[\frac{p^i_G}{p^i_S} = \frac{z^i_S}{z^i_G} \quad (2.9) \]

Using the goods market clearing condition is \(y^i_G = c^i_G \), together with the production function and demand function (2.6), yields \(z^i_G l^i_G = \alpha \frac{\bar{w}^i l^i_G}{p^i_G} \), so \(\frac{l^i_G}{l^i} = \alpha \frac{\bar{w}^i}{z^i_G p^i_G} \). Using real wage in equilibrium then yields the equilibrium employment share in the goods sector:

\[\frac{l^i_G}{l^i} = \alpha \]

And using labor endowment condition we can solve for equilibrium employment in the service sector:

\[\frac{l^i_S}{l^i} = 1 - \alpha \]
For ease of exposition here I only focus on the home economy in the equilibrium where home diversifies. The case of the foreign economy in the case where Foreign economy diversifies is similar but the goods sector expand while the service sector shrinks after trade liberalization. The cases of the economy that specializes are more straightforward but less empirically interesting: all labor reallocates to the sector in which the country has a comparative advantage.
2.3.1 Graphical Analysis

What happens when the economy opens up to trade and there are reallocation frictions? To tackle this I use the previous cases as frictionless benchmarks and proceed with a graphical analysis.

In Figure (2.4) we can see the frictionless equilibrium autarky equilibrium. Labor demand is downward sloping in labor markets in both the Goods sector (depicted in the left side) and the Service sector (depicted in the right side): quantity demanded of labor decreases with wage. Wage, in turn, is determined by productivity and is equal across sectors: a difference of wages would incentive workers to switch jobs. So lack of wage differentials is a no-arbitrage condition and it is as if sector specific labor supply curves were perfectly elastic.

What happens when the economy opens up to trade? In Figure (2.5) we can see the impact of trade integration under frictionless labor markets in the Home economy. Since
Home has a comparative advantage in the Service sector, trade integration tends to reduce labor demand in the goods sector and increase labor demand in the service sector. Wages are still given by productivity (since Home diversifies in equilibrium, wages do not change in Home after trade integration). Labor markets go from point A to B in both markets: workers move from the Goods sector to the Service sector.

What happens to the economy if it opens to trade under frictions to employment reallocation? To understand this case, it is useful to consider the extreme case of reallocation friction: segmented labor markets. Figure (2.6) depicts such an experiment. In this context, employment cannot (for whatever reason) switch at all between sectors, regardless of the size of labor demand shock. If quantities cannot vary, labor demand shifts would then tend to impact prices: wages in the Goods sector would tend to fall while the wages in the Service sector would tend to increase. Since workers cannot switch between sectors, wage differentials are possible in equilibrium. Labor markets go from point A to C in both markets:
Figure 2.6: Trade integration, full employment reallocation friction (segmented markets): goods sector (left) and service sector (right)

Note: Goods Sector (Left) and Service Sector (Right) labor markets in Home economy.

A more realistic scenario however is one of partial reallocation friction: some workers can reallocate across sectors, but not as much as in the frictionless case. In such a context, depicted in Figure (2.7), both quantities and prices adjust: employment and wages decline in the Goods sector, while both variables increase in the Service sector.

2.3.2 Heterogeneous Impact of Trade Across Countries

For ease of exposition, here I have focused on the Home economy (recall that this is the equilibrium in which Home diversifies, see Footnote [4] for details). The impact on the Foreign economy would be opposite. In particular, under partial reallocation friction, in the Foreign economy relative wages tend to increase in the goods sector following trade liberalization.

More generally, relative sectoral wages tend to increase in the sector in which the country
Figure 2.7: Labor markets with Frictions: goods sector (left) and service sector (right)

Note: Goods Sector (Left) and Service Sector (Right) labor markets in Home economy.

has a comparative advantage. Trade integration therefore has a heterogeneous impact on sectoral relative wages across countries. For some intuition, if China has a comparative advantage in the goods sector, then we expect \(\Delta \frac{w_{CHN,G,t}}{w_{S,t}} > 0 \). If on the other hand USA has a comparative advantage in service sector, we would expect \(\Delta \frac{w_{USA,S,t}}{w_{S,t}} < 0 \).

2.4 Empirical Analysis

2.4.1 Empirical Measure of Comparative Advantage

As in Chapter 1, the empirical measure of comparative advantage I use is the Revealed Comparative Advantage (RCA), following Balassa [1965] and Barattieri [2014]. The RCA is an index of relative export specialization: Given two sectors \(\omega = G, S \) ("goods" and "services"), the RCA for the goods sector is for country \(i \) is
\[RCA_{\text{Goods},t}^i = \frac{\sum_{\omega} \exp_{\omega,t}^i \cdot \sum_{\omega} \exp_{\omega,t}^{WLD}}{\sum_{\omega} \exp_{\omega,t}^i} \]

where \(\exp_{\omega,t}^i \) are sector \(\omega = \{G, S\} \) exports from country \(i \) at time \(t \).

2.4.2 Correlation

Recall that the theory presented in the previous section predicts that in countries with a comparative advantage in the Goods sector \((RCA_{\text{Goods},t}^i > 1) \) we expect the relative wages in the goods sector to increase more than in countries with a comparative advantage in the Service sector \((RCA_{\text{Goods},t}^i < 1) \).

Figure (2.8) provides evidence supporting this mechanism: the wage of the Goods sector (relative to the Service sector) tends to increase more in countries with a comparative advantage in the goods sector.

This relationship is statistically significant, as I show next with a regression analysis. I run the following linear regression:

\[
\Delta \frac{w_{\text{G},\tau,\nu}^i}{w_{\text{S},\tau,\nu}^i} = \beta_0 + \beta_1 RCA_{\text{Goods},t}^i + \varepsilon^i
\]

(2.10)

where \(\Delta \frac{w_{\text{G},\tau,\nu}^i}{w_{\text{S},\tau,\nu}^i} = \frac{w_{\text{G},\tau,\nu}^i}{w_{\text{S},\tau,\nu}^i} - \frac{w_{\text{G},\nu}^i}{w_{\text{S},\nu}^i} \). As in Figure (2.8), I first run the regression for the 1995-2014 difference \((\tau = 2014, \nu = 1995) \) and I use the 2014 year for the RCA \((t = 2014) \). I report the results in Table (2.1). As can be observed, the coefficient on the RCA is positive and statistically significant. The relationship remains when controlling for GDP per capita growth rate, which is not statistically significant, as can be observed in Column 2. When using the RCA for the 1995, however, the relationship is no longer statistically significant, as I report in Columns 3 and 4.

What about different time windows? I repeat regression (2.10) for different combinations
Figure 2.8: Sectoral Relative Wage Evolution and RCA

Source: WIOD.
Table 2.1: Sectoral Relative Wage Change (1995-2014) and Revealed Comparative Advantage

<table>
<thead>
<tr>
<th></th>
<th>Dependent variable:</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\Delta \frac{w_{G,t}^i}{w_{S,t}^i}$</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>$RCA_{Goods,2014}^i$</td>
<td>0.290**</td>
<td>0.295**</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.131)</td>
<td>(0.133)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta GDP.PC_t^i$</td>
<td></td>
<td>−0.014</td>
<td>−0.007</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.025)</td>
<td>(0.026)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$RCA_{Goods,1995}^i$</td>
<td></td>
<td>0.323</td>
<td>0.317</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.221)</td>
<td>(0.225)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>−0.203</td>
<td>−0.183</td>
<td>−0.240</td>
<td>−0.222</td>
</tr>
<tr>
<td></td>
<td>(0.127)</td>
<td>(0.133)</td>
<td>(0.214)</td>
<td>(0.228)</td>
</tr>
<tr>
<td>Observations</td>
<td>37</td>
<td>37</td>
<td>37</td>
<td>37</td>
</tr>
<tr>
<td>R^2</td>
<td>0.123</td>
<td>0.131</td>
<td>0.058</td>
<td>0.060</td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>0.098</td>
<td>0.080</td>
<td>0.031</td>
<td>0.004</td>
</tr>
</tbody>
</table>

Note: *p<0.1; **p<0.05; ***p<0.01
of years (starting in 1995 and finishing in different year). I report the coefficient and 90% confidence interval ($\hat{\beta}_1 \pm 1.645 \times SE$). Figure (2.9) reports such estimates and confidence intervals, for each end year. As can be observed, estimates for $\hat{\beta}_1$ are always positive but only statistically different from zero for a subset of years: 1998, 2002 and all years after 2008 (recall that these are the end years, the initial year is always 1995). The regressions seem to indicate that the relationship between relative wages and RCA is a long run one.

2.4.3 Robustness Check: Skill Intensity

Other things can explain changes sectoral relative wages. In particular, skill intensity changes. To control for this, I will first introduce a simple framework with heterogeneity
in skill.

Wages and Skill Intensity: Notation

Consider workers being heterogeneous in skill, labelled either \(j = L, H \) (“low skill” and “high skill”). Total employment is then:

\[
L_{st} = L_{st}^L + L_{st}^H
\]

Labor compensation is then \(LAB_{st} = LAB_{st}^L + LAB_{st}^H \) and average wage \(\frac{LAB_{st}}{L_{st}} \) is

\[
\frac{LAB_{st}}{L_{st}} = \frac{LAB_{st}^L}{L_{st}} + \frac{LAB_{st}^H}{L_{st}} = \frac{L_{st}^L}{L_{st}} \frac{LAB_{st}^L}{L_{st}^L} + \frac{L_{st}^H}{L_{st}^H} \frac{LAB_{st}^H}{L_{st}^H} = (1 - \phi_{st}) w_{st}^L + \phi_{st} w_{st}^H
\]

where \(w_{st}^j \) is wage of skill \(j \) and \(\phi_{st} = \frac{L_{st}^H}{L_{st}^L} = \frac{L_{st} - L_{st}^H}{L_{st}^L} \) is the high-skill intensity.

Wage of sector \(s \) relative to the economy is then

\[
\frac{w_{st}}{w_t} = \frac{(1 - \phi_{st}) w_{st}^L + \phi_{st} w_{st}^H}{(1 - \phi_t) w_t^L + \phi_t w_t^H}
\]

All else equal, relative sectoral wage increases in

1. high-skill relative intensity: \(\frac{\partial w_{st}}{\partial \phi_t} \Rightarrow \frac{w_{st}}{w_t} \). This correlation would tend the support what we can call the “skill hypothesis”: changes in relative wages explained by changes in skill intensity.

2. skill specific relative sectoral wage: \(\frac{w_{st}^j}{w_t^j} \Rightarrow \frac{w_{st}}{w_t} \). This correlation would tend to
support the what we can call the “friction hypothesis”: changes in relative wages not explained by skill intensity changes, thus potentially explained by frictions, as I argue in previous section.

Note that these hypothesis/correlations are not mutually exclusive.

Skill Intensity: Data

Figure (2.10a) shows that skill specific wages have increased almost as much as average wages, which suggests that wages are not driven by differences in change skill intensity. Figure (2.10b) confirms this: relative wages changes are not strongly correlated with changes in skill intensity. This supports the frictional story of relative wage variations.

To formally test this, I run the following regression
\[\Delta \frac{w_{G,\tau,\nu}^{i,j}}{w_{S,\tau,\nu}^{i,j}} = \beta_0 + \beta_1 \Delta \frac{\phi_{G,\tau,\nu}^{i,j}}{\phi_{S,\tau,\nu}^{i,j}} + \beta_1 \Delta \frac{w_{G,\tau,\nu}^{i,j}}{w_{S,\tau,\nu}^{i,j}} + \varepsilon^i \]

(2.11)

where now \(\Delta \frac{w_{G,\tau,\nu}^{i,j}}{w_{S,\tau,\nu}^{i,j}} \) is the change in relative wage (between the goods and service sectors) of skill \(j = L, H \) group in country \(i \), between years \(\tau \) and \(\nu \).

As can be observed in the Table (2.2), the coefficients on skill intensity are not statistically significant but variation in wages is mostly explained by variations in skill-specific wages (either high skill wage, as in Column 2, or low skill wage, as in Column 3). This conclusion holds when including both changes in skill intensity and skill-specific wages, as in Columns 4 and 5 (high and low skill, respectively).

2.4.4 Extension: Discussion

What About Monopsony Power? Another explanation of changes in sectoral relative wage changes might be differences in the degree of labor market power. A firm with monopsony power can lower wages, relative to the perfect competition equilibrium (Robinson [1969]; Manning [2003]). Differences in monopsony power across sectors, then, could explain changes in relative sectoral wages. However, labor market power seems to be more relevant at the firm level than the sector level. A growing literature is studying labor market power (Berger et al. [2019]), but testing for monopsony power is beyond the scope of this paper. Future work could explore the link between structural change and labor market power.

What About Unemployment? Reallocation frictions imply that it takes time to switch jobs. Several papers have addressed these frictions in closed economy setting (such as Lilien [1982] and Chodorow-Reich and Wieland [2016]), and other papers have studied search and matching friction in the open economy (such Helpman and Itskhoki [2010] and Cacciatori [2014]). I leave for future research the impact of trade integration on unemployment.
Table 2.2: Sectoral Relative Wage Change (1995-2014) and Skill Intensity

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta \frac{w_{G,t}}{w_{S,t}}$</td>
<td>$\Delta \phi_{i,G,\tau,\nu}$</td>
<td>$\Delta \phi_{i,S,\tau,\nu}$</td>
<td>$\Delta w_{i,H}^{G,\tau,\nu}$</td>
<td>$\Delta w_{i,L}^{G,\tau,u}$</td>
<td>$\Delta w_{i,L}^{S,\tau,u}$</td>
</tr>
<tr>
<td></td>
<td>-0.063</td>
<td>-0.177</td>
<td>-0.027</td>
<td>0.220^{***}</td>
<td>0.612^{***}</td>
</tr>
<tr>
<td></td>
<td>(0.294)</td>
<td>(0.238)</td>
<td>(0.153)</td>
<td>(0.049)</td>
<td>(0.050)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.224^{***}</td>
<td>0.612^{***}</td>
<td>0.017</td>
<td>0.072^{**}</td>
<td>0.020</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.050)</td>
<td>(0.053)</td>
<td>(0.012)</td>
<td>(0.031)</td>
<td>(0.019)</td>
</tr>
<tr>
<td>Constant</td>
<td>0.033</td>
<td>0.055^{***}</td>
<td>0.017</td>
<td>0.072^{**}</td>
<td>0.020</td>
</tr>
<tr>
<td></td>
<td>(0.036)</td>
<td>(0.020)</td>
<td>(0.012)</td>
<td>(0.031)</td>
<td>(0.019)</td>
</tr>
<tr>
<td>Observations</td>
<td>37</td>
<td>37</td>
<td>37</td>
<td>37</td>
<td>37</td>
</tr>
<tr>
<td>R²</td>
<td>0.001</td>
<td>0.361</td>
<td>0.737</td>
<td>0.371</td>
<td>0.737</td>
</tr>
<tr>
<td>Adjusted R²</td>
<td>-0.027</td>
<td>0.343</td>
<td>0.729</td>
<td>0.334</td>
<td>0.721</td>
</tr>
</tbody>
</table>

Note: *p<0.1; **p<0.05; ***p<0.01
2.5 Conclusion

In this paper I showed that sectoral relative wages matter for understanding employment reallocation. I then showed that employment reallocation frictions can help explain sectoral relative wage variation, and provided cross-country evidence.

Although I have focused on employment reallocation frictions, other studying other frictions might also shed light on the empirical relevance of international trade models.
BIBLIOGRAPHY

Treb Allen and Costas Arkolakis. Elements of advanced international trade. 2015.

Giuseppe Berlingieri. Outsourcing and the rise in services. 2013.

Marc Teignier. The role of trade in structural transformation. 2009.

Appendix A

APPENDIX A
A.1 Proofs and Derivations

A.1.1 Growth Accounting Derivation

Conditional Factor Demand

Using (1.2) and (1.3) in (1.1),

\[Q_{it}(s) = Z_{it}(s) \left[(L_{it}(s))^\alpha_{it}(s) [K_{it}(s)]^{1-\alpha_{it}(s)} \right]^{\beta_{it}(s)} \left[\prod_{s'=1}^{\bar{s}} \prod_{j=1}^{N} (X_{jit}(s', s))^{\gamma_{jit}(s', s)} \right]^{1-\beta_{it}(s)} \]

(A.1)

Output is produced under conditions of perfect competition. A representative firm in country \(i \), sector \(s \) takes the prices for its output and inputs as given, and the firm rents capital, hires labor and demands intermediate inputs to solve:

\[
\max p_{it}(s) Q_{it}(s) - w_{it} L_{it}(s) - r_{it} K_{it}(s) - \sum_{j=1}^{N} \sum_{s'=1}^{\bar{s}} p_{jt}(s') X_{jit}(s', s)
\]

s.t.

\[L_{it}(s) \geq 0, K_{it}(s) \geq 0, X_{jit}(s', s) \geq 0, \]

where \(p_{it}(s) \) denotes the price of output, \(w_{it} \) is the wage, \(r_{it} \) is the rental rate of capital, and the production function for \(Q_{it}(s) \) is given above by (A.1). The optimality conditions are given by:

\[
p_{it}(s) \alpha_{it}(s) \beta_{it}(s) \frac{Q_{it}(s)}{L_{it}(s)} = w_{it}
\]
The conditional factor demands are

\[
p_{it}(s)[1 - \alpha_{it}(s)] \beta_{it}(s) \frac{Q_{it}(s)}{K_{it}(s)} = r_{t}
\]

\[
p_{it}(s) \gamma_{jit}(s', s)[1 - \beta_{it}(s)] \frac{Q_{it}(s)}{X_{jit}(s', s)} = p_{jt}(s')
\]

The conditional factor demands are

\[
L_{it}(s) = p_{it}(s) \alpha_{it}(s) \beta_{it}(s) \frac{Q_{it}(s)}{w_{t}}
\]

\[
K_{it}(s) = p_{it}(s)[1 - \alpha_{it}(s)] \beta_{it}(s) \frac{Q_{it}(s)}{r_{t}}
\]

\[
X_{jit}(s', s) = p_{it}(s) \gamma_{jit}(s', s)[1 - \beta_{it}(s)] \frac{Q_{it}(s)}{p_{jt}(s')}
\]

Conditional demand for labor in sector \(s \) (Equation (A.2)) will help pin-down the sectoral employment share, and will be a key part of the analysis that follows. Note that equation (A.4) is the conditional input demand that sector \(s \) in country \(i \) demands from sector \(s' \) in country \(j \).

Market Clearing

Sectoral output is used as an intermediate input in production and is also consumed directly as a final product. Denote final shipments from country \(i \) to country \(j \) in sector \(s \) at time \(t \) as \(F_{ijt}(s) \). Gross output of sector \(s \) in country \(i \) then equals final product shipments plus shipments used as intermediates:
\[Q_{it}(s) = \sum_{j=1}^{N} F_{ijt}(s) + \sum_{j=1}^{N} \sum_{s'=1}^{S} X_{ijt}(s, s') \]
\[\text{(A.5)} \]

Note that \(\sum_j F_{ijt}(s) \) is the world aggregate final demand for products shipped from sector \(s \) in country \(i \). In turn, \(\sum_j \sum_{s'=1}^{S} X_{ijt}(s, s') \) is the world demand for intermediate inputs shipped from sector \(s \) in country \(i \). Equation (A.5) represents the world-input output matrix (a system of \(N \times S \) equations).

Note that world demand includes country \(i \)'s own demand. Re-writing condition (A.5),

\[Q_{it}(s) = F_{iit}(s) + \sum_{s'=1}^{S} X_{iit}(s, s') + \sum_{j \neq i}^{N} F_{ijt}(s) + \sum_{j \neq i}^{N} \sum_{s'=1}^{S} X_{ijt}(s, s') \]
\[\text{(A.6)} \]

where \(F_{iit}(s) + \sum_{s'=1}^{S} X_{iit}(s, s') \) is output from country \(i \) in sector \(s \) that is consumed domestically, either as a final product or intermediate input. In turn, \(\sum_{j \neq i}^{N} F_{ijt}(s) + \sum_{j \neq i}^{N} \sum_{s'=1}^{S} X_{ijt}(s, s') \) are exports from country \(i \) in sector \(s \), which are composed of final product as well as intermediate input shipments.

We can express Equation (A.6) in terms of the (sectoral) trade balance. For this, add and subtract \(\sum_{j \neq i}^{N} F_{ijt}(s) \) (sector \(s \) final imports in country \(i \)) and \(\sum_{j \neq i}^{N} \sum_{s'=1}^{S} X_{ijt}(s, s') \) (sector \(s \) intermediate input imports in country \(i \)).

1 It is crucial to be clear with the subscripts to avoid getting confused between variables. For instance,
\(\sum_{j=1}^{N} F_{ijt}(s) \neq \sum_{j=1}^{N} F_{jit}(s) \neq \sum_{j \neq i}^{N} F_{ijt}(s) \neq \sum_{j \neq i}^{N} F_{jit} \).
\[Q_{it}(s) = F_{iit}(s) + \sum_{j \neq i}^{N} F_{jit}(s) \]
\[+ \sum_{s'=1}^{S} X_{iit}(s, s') + \sum_{j \neq i}^{N} \sum_{s'=1}^{S} X_{jit}(s, s') \]
\[+ \sum_{j \neq i}^{N} \left(F_{ijt}(s) + \sum_{s'=1}^{S} X_{ijt}(s, s') - F_{jit}(s) - \sum_{s'=1}^{S} X_{jit}(s, s') \right) \]

(A.7)

Denote line 1 of Equation (A.7), the total final demand in country \(i \) for sector \(s \) products (both domestic and imported), as:

\[\sum_{j=1}^{N} F_{jit}(s) \equiv F_{iit}(s) + \sum_{j \neq i}^{N} F_{jit}(s) \]

(A.8)

Denote line 2 of Equation (A.7), the total intermediate inputs from sector \(s \) used in country \(i \) (both domestic and imported inputs; used by all sectors), as:

\[\sum_{j=1}^{N} \sum_{s'=1}^{S} X_{jst}(s', s) \equiv \sum_{s'=1}^{S} X_{iit}(s, s') + \sum_{j \neq i}^{N} \sum_{s'=1}^{S} X_{jit}(s, s') \]

(A.9)

Denote line 3 of Equation (A.7), the sectoral trade balance of country \(i \) sector \(s \), as:

\[TB_{iJt}(s) \equiv \sum_{j \neq i}^{N} \left(\frac{F_{ijt}(s) + \sum_{s'=1}^{S} X_{ijt}(s, s') - \left[F_{jit}(s) + \sum_{s'=1}^{S} X_{jit}(s, s') \right]}{\text{Shipments from } i \text{ to } j} \right) \]

(A.10)

Note that the term in parenthesis in Equation (A.10) is the bilateral trade balance, and thus the aggregate trade balance is the sum of bilateral ones, \(TB_{iJt}(s) = \sum_{j \neq i}^{N} TB_{ijt}(s) \).

Using Equations (A.8), (A.9) and (A.10) in (A.7) we get,
\[Q_{it}(s) = \sum_{j=1}^{N} F_{jit}(s) + \sum_{j=1}^{N} \sum_{s'=1}^{S} X_{jst}(s, s') + \sum_{j \neq i}^{N} TB_{ijt}(s) \] (A.11)

Output from sector \(s \) in country \(i \) is thus equal to the sum of the total final expenditure in country \(i \) in sector \(s \), the total intermediates from sector \(s \) used in country \(i \), and the sectoral trade balance in country \(i \), sector \(s \). This alternative way of expressing market clearing condition (A.5) will be helpful next.

Sectoral Labor (Re-)Allocation

The employment share \(l_{it}(s) \equiv \frac{L_{it}(s)}{L_{it}} \) of each sector can be written as follows:

\[
l_{it}(s) = \frac{L_{it}(s)}{L_{it}} = \frac{\alpha_{it}(s) \beta_{it}(s)}{L_{it} w_t} p_{it}(s) Q_{it}(s) = \frac{\alpha_{it}(s) \beta_{it}(s)}{L_{it} w_t} \left[p_{it}(s) \sum_{j=1}^{N} F_{jit}(s) + p_{it}(s) \sum_{j=1}^{N} \sum_{s'=1}^{S} X_{jst}(s', s') + p_{it}(s) \sum_{j \neq i}^{N} TB_{ijt}(s) \right]
\]

Where line two has used conditional demand for labor (A.2) and line three has used the alternative way of expressing the market clearing condition (A.11).

This expression relates sectoral employment shares to final consumption, intermediate input demand, trade balance, and key parameters. Re-express by multiplying and dividing by nominal value-added in country \(i \), \((p_{it} V_{it}) \).

\[
l_{it}(s) = \alpha_{it}(s) \beta_{it}(s) \frac{p_{it} V_{it}}{L_{it} w_t} \left[p_{it}(s) \sum_{j=1}^{N} F_{jit}(s) + p_{it}(s) \sum_{j=1}^{N} \sum_{s'=1}^{S} X_{jst}(s', s') + p_{it}(s) \sum_{j \neq i}^{N} TB_{ijt}(s) \right]
\]
Percent-Changes

Taking logs to (1.4):

$$\log [l_{it} (s)] = \log [\alpha_{it} (s)] - \log [\alpha_{it}] + \log [\beta_{it} (s)] + \log [f_{Nit} (s) + x_{Nit} (s, s') + tb_{i,t} (s)] \quad (A.12)$$

Expressing gross output in terms of value added, $y_{it} (s) \equiv \frac{Q_{it}(s)}{V_{it}(s)}$, then from market clearing condition (A.11) we get that the last term in brackets of Equation (A.12) equals $y_{it} (s) = f_{it} (s) + x_{it} (s, s') + tb_{it} (s)$. Differentiating Equation (A.12) with respect to time then yields Equation (1.6).

A.1.2 Demand Functions under PIGL Preferences

The PIGL includes familiar homothetic preferences as special cases. I will use this property as comparison with benchmark homothetic models. In particular, for $\gamma = \varepsilon = 0$, we obtain Cobb-Douglas preferences. Applying Roy’s identity to the indirect utility function (1.13) gives the Marshallian (partial equilibrium) demand functions:

$$c_{iG} = -\frac{\partial V}{\partial p_{iG}} = -v \left[\frac{p_{iG}}{p_{iS}} \right]^\varepsilon \frac{1}{p_{iG}}$$

$$c_{iS} = -\frac{\partial V}{\partial p_{iS}} = -\left[\frac{\varepsilon}{p_{iS}} \right]^\varepsilon v \left[\frac{p_{iG}}{p_{iS}} \right]^\gamma$$

Rearranging yields:

$$c_{iG} = v \left[\frac{p_{iG}}{p_{iS}} \right]^\gamma \left[\frac{p_{iS}}{e^i} \right]^\varepsilon \frac{e^i}{p_{iG}} \quad (A.13)$$
and
\[c^i_S = \frac{c^i}{p^i_S} \left[1 - v \left[\frac{p^i_G}{p^i_S} \right] \gamma \left[\frac{p^i_S}{c^i} \right] \right] \quad (A.14) \]

With \(\varepsilon > 0 \), the expenditure elasticity of demand is positive, but strictly smaller than unity for goods and larger than unity for services. This means that goods are necessities whereas services are a luxury. These demand functions imply Engel curves: the demand for both goods and services increases with income, but goods demand do so at a decreasing rate while the demand for service does so at an increasing rate. Figure (A1) plots the consumption functions. With \(\varepsilon = \gamma = 0 \), we have homothetic preferences (expenditure elasticities of both sectors are equal to unity). Sign and magnitude of relative price changes on the expenditure shares are controlled by the elasticity of substitution across sectors, which is below one.

Note that \(c^i_s > 0 \) if \(\left[\frac{c^i}{p^i_S} \right] \varepsilon - v \left[\frac{p^i_G}{p^i_S} \right] \gamma > 0 \), or,
\[\left[\frac{c^i}{p^i_S} \right] \varepsilon > v \left[\frac{p^i_G}{p^i_S} \right] \gamma \quad (A.15) \]

which I assume that holds throughout the paper.

Throughout this paper I assume a representative household in each country. In general equilibrium, the representative household splits its labor endowment between the goods and service sector.

A.1.3 Proof of Proposition (2)

Firm’s profits are \(\pi^i = p^i_\omega Z^i z^i l^i - w^i l^i_\omega \). First order conditions for profit maximization imply that optimal employment is reached when the value of marginal productivity is equal to marginal cost, \(p^i_\omega Z^i z^i_\omega = w^i \). This holds for both sectors, thus equations (1.14) and (1.15) hold in equilibrium.

\(^2\)Within country inequality is beyond the scope of this paper. I leave it for future research.
Note: $\varepsilon > 0$. As indicated by the dashed sections, preferences are only well defined if the expenditure exceeds threshold (A.15).

Note that expenditure is in equilibrium equal to income, $e^i = w\bar{l}$ and since wages are pinned down by equation (1.14) then expenditure in equilibrium becomes

$$e^i = p^i_G Z^i z^i_G \bar{l} = p^i_S Z^i z^i_S \bar{l}$$

which implies that $\frac{p^i_S}{e^i} = \frac{1}{Z^i z^i_S \bar{l}}$ and $\frac{p^i_G}{e^i} = Z^i z^i_G \bar{l}$. Plugging these conditions and relative prices (1.15) into equations (A.13) and (A.14) yields the demand functions,

$$c^i_G = v \left[\frac{z^i_S}{z^i_G} \right]^{\gamma} \left[\frac{1}{Z^i z^i_G \bar{l}} \right]^{\varepsilon} Z^i z^i_G \bar{l}$$ (A.16)

$$c^i_S = Z^i z^i_S \bar{l} \left[1 - v \left[\frac{z^i_S}{z^i_G} \right]^{\gamma} \left[\frac{1}{Z^i z^i_G \bar{l}} \right]^{\varepsilon} \right]$$ (A.17)

We can solve for the rest of equilibrium allocations. Using the goods market clearing condition, $c^i_\omega = y^i_\omega$ for $\omega = 1, 2$ together with the consumption and the production functions.
allows to solve for sectoral employment equations shares (1.16) and (1.17).

A.1.4 Proof of Proposition (6)

Since home diversifies then it sets prices, so

\[
\frac{p_G}{p_S} = \frac{z^H_S}{z^H_G}
\]

(A.18)

and since it produces both sectors, then firms optimization imply,

\[
p_G Z^H z^H_G = w^H = p_S Z^H z^H_S
\]

(A.19)

Since foreign only produces goods, then in equilibrium,

\[
w^F = p_G Z^F z^F_G
\]

(A.20)

In order to get consumption allocations, plug equilibrium relative prices into demand functions (A.13) and (A.14):

\[
c^H_G = v \left[\frac{z^H_S}{z^H_G} \right]^\gamma \left[\frac{p_S}{e^H} \right] \frac{e^H}{p_G}
\]

\[
c^F_G = v \left[\frac{z^F_S}{z^F_G} \right]^\gamma \left[\frac{p_S}{e^F} \right] \frac{e^F}{p_G}
\]

\[
c^H_S = \frac{e^H}{p_S} \left[1 - v \left[\frac{z^H_S}{z^H_G} \right]^\gamma \left[\frac{p_S}{e^H} \right] \right]
\]

\[
c^F_S = \frac{e^F}{p_S} \left[1 - v \left[\frac{z^F_S}{z^F_G} \right]^\gamma \left[\frac{p_S}{e^F} \right] \right]
\]
Using equilibrium expenditure relationships \(e^H = w^H l^H = p_G Z_H z_{G}^H l^H = p_S Z_H z_{S}^H l^H \)
and \(e^F = w^F l^F = p_G Z^F z_{G}^F l^F \) together with relative price \(\frac{p_G}{p_S} = \frac{z_{S}^H}{z_{G}^H} \), then the following relationships hold,

\[
\frac{p_S}{e^H} = \frac{1}{Z_H z_{S}^H l^H} \\
\frac{e^H}{p_G} = Z_H z_{G}^H l^H \\
\frac{p_S}{e^F} = \frac{p_G}{p_G Z^F z_{G}^F l^F} = \frac{z_{G}^H}{z_{S}^H} \frac{1}{Z^F z_{G}^F l^F} \\
\frac{e^F}{p_G} = \frac{p_G Z^F z_{G}^F l^F}{p_G} = Z^F z_{G}^F l^F
\]

and plugging in these four equations yield equilibrium consumptions,

\[
c^H_G = v \left[\frac{z_{S}^H}{z_{G}^H} \right]^{\gamma} \left[\frac{1}{Z_H z_{S}^H l^H} \right]^{\varepsilon} Z^H z_{G}^H l^H \tag{A.21}
\]

\[
c^H_S = Z^H z_{S}^H l^H \left[1 - v \left[\frac{z_{S}^H}{z_{G}^H} \right]^{\gamma} \left[\frac{1}{Z_H z_{S}^H l^H} \right]^{\varepsilon} \right]
\tag{A.22}
\]

\[
c^F_G = v \left[\frac{z_{S}^H}{z_{G}^H} \right]^{\gamma} \left[\frac{z_{G}^H}{z_{S}^H} \left(\frac{1}{Z^F z_{G}^F l^F} \right) \right]^{\varepsilon} Z^F z_{G}^F l^F \tag{A.23}
\]

\[
c^F_S = \frac{z_{S}^H}{z_{G}^H} Z^F z_{G}^F l^F \left[1 - v \left[\frac{z_{S}^H}{z_{G}^H} \right]^{\gamma} \left[\frac{z_{G}^H}{z_{S}^H} \left(\frac{1}{Z^F z_{G}^F l^F} \right) \right]^{\varepsilon} \right] \tag{A.24}
\]

For employment shares in home, using the world service sector market clearing condition,
\[y_s^H + y_s^F = c_s^H + c_s^F \]

and the fact that foreign completely specialized in goods \((y_s^F = 0)\), then using production functions and equilibrium demand,

\[
Z^H_z^H l_s^H = Z^H_z^H l_s^H \left[1 - v \left[\frac{z_s^H}{z_H^H} \right] ^\gamma \left[\frac{1}{Z^H z_s^H l_H^H} \right]^\varepsilon + \frac{z_s^H}{z_H^S} Z^F Z^H l_s^F \left[1 - v \left[\frac{z_s^H}{z_H^S} \right] ^\gamma \left[\frac{z_s^H}{z_H^S} \frac{1}{Z^F Z_s^F l_s^F} \right]^\varepsilon \right] \right]
\]

Rearranging,

\[
Z^H_z^H l_s^H = Z^H_z^H l_s^H - Z^H_z^H l_s^H v \left[\frac{z_s^H}{z_H^S} \right] ^\gamma \left[\frac{1}{Z^H z_s^H l_H^H} \right]^\varepsilon + \frac{z_s^H}{z_H^S} Z^F Z^H l_s^F - \frac{z_s^H}{z_H^S} Z^F Z^F l_s^F v \left[\frac{z_s^H}{z_H^S} \right] ^\gamma \left[\frac{z_s^H}{z_H^S} \frac{1}{Z^F Z_s^F l_s^F} \right]^\varepsilon
\]

Solving for home’s service sector employment share,

\[
\frac{l_s^H}{l_H^H} = 1 - v \left[\frac{z_s^H}{z_H^S} \right] ^\gamma \left[\frac{1}{Z^H z_s^H l_H^H} \right]^\varepsilon + \frac{z_s^H}{z_H^S} Z^F l_s^F - \frac{z_s^H}{z_H^S} Z^F Z^F l_s^F v \left[\frac{z_s^H}{z_H^S} \right] ^\gamma \left[\frac{z_s^H}{z_H^S} \frac{1}{Z^F Z_s^F l_s^F} \right]^\varepsilon
\]

Rearranging,

\[
\frac{l_s^H}{l_H^H} = 1 + \frac{z_s^H}{z_H^S} Z^F Z^H l_s^F \left[\frac{z_s^H}{z_H^S} \right] ^\gamma \left(\left[\frac{1}{Z^H z_s^H l_H^H} \right]^\varepsilon + \frac{z_s^H}{z_H^S} Z^F Z^H l_s^F \left[\frac{z_s^H}{z_H^S} \frac{1}{Z^F Z_s^F l_s^F} \right]^\varepsilon \right)
\]

Thus,

\[
\frac{l_s^H}{l_H^H} = 1 + \frac{z_s^H}{z_H^S} Z^F Z^H l_s^F \left[\frac{z_s^H}{z_H^S} \right] ^\gamma \left(\left[\frac{1}{Z^H z_s^H l_H^H} \right]^\varepsilon + \frac{z_s^H}{z_H^S} Z^F Z^H l_s^F \left[\frac{z_s^H}{z_H^S} \frac{1}{Z^F Z_s^F l_s^F} \right]^\varepsilon \right) \quad (A.25)
\]
Home’s goods sector employment share is \(\frac{l^H_G}{l^H} = 1 - \frac{l^H_S}{l^H} \), so equation (1.19) follows.

The foreign case is trivial, since it is completely specialized in goods sector (\(l^F_G = l^F \) and \(l^F_S = 0 \)). Thus equation (1.20) and the following equation hold,

\[
\frac{l^F_S}{l^F} = 0 \tag{A.26}
\]

A.1.5 Proof of Proposition [7]

Since foreign diversifies, it sets prices

\[
\frac{p_G}{p_S} = \frac{z^F_S}{z^F_G} \tag{A.27}
\]

Foreign firms optimization implies

\[
w^F = p_G Z^F z^F_G = p_S Z^F z^F_S \tag{A.28}
\]

Home only produces services so in equilibrium

\[
w^H = p_S Z^H z^H_S \tag{A.29}
\]

In order to get consumption allocations, plug equilibrium relative prices into demand functions (A.13) and (A.14):

\[
c^H_G = v \left[\frac{z^F_S}{z^F_G} \right] ^\gamma \left[\frac{p_S}{p_G} \right] ^\varepsilon \frac{e^H}{p_G}
\]

\[
c^H_S = \frac{e^H}{p_S} \left[1 - v \left[\frac{z^F_S}{z^F_G} \right] ^\gamma \left[\frac{p_S}{e^H} \right] ^\varepsilon \right]
\]
Using equilibrium expenditure relationships \((e^H = w^H l^H = p_S Z^H z_S^H l^H\) and \(e^F = i^F w^F = p_G Z^F Z_G^F l^F = p_S Z^F z_S^F l^F\)) and relative prices \(\frac{p_S}{e^H} = \frac{z_S}{z_G}\), then the following relationships hold,

\[
\frac{p_S}{e^H} = \frac{p_S}{p_S Z^H z_S^H l^H} = \frac{1}{Z^H z_S^H l^H}
\]

\[
\frac{e^H}{p_G} = \frac{p_S Z^H z_S^H l^H}{p_G} = \frac{z_S}{z_S} Z^H z_S^H l^H
\]

\[
\frac{p_S}{e^F} = \frac{p_S}{p_S Z^F z_S^F l^F} = \frac{1}{Z^F z_S^F l^F}
\]

\[
\frac{e^F}{p_G} = \frac{p_S Z^F z_S^F l^F}{p_G} = Z^F z_S^F l^F
\]

Plugging in these four equations yield equilibrium consumptions,

\[
c^H_G = v \left[\frac{z_S^F}{z_G^F} \right]^\gamma \left[\frac{1}{Z^H z_S^H l^H} \right]^\varepsilon \frac{z_S}{z_G} Z^H z_S^H l^H \tag{A.30}
\]

\[
c^H_S = Z^H z_S^H l^H \left[1 - v \left[\frac{z_S^F}{z_G^F} \right]^\gamma \left[\frac{1}{Z^H z_S^H l^H} \right]^\varepsilon \right] \tag{A.31}
\]

\[
c^F_G = v \left[\frac{z_S^F}{z_G^F} \right]^\gamma \left[\frac{1}{Z^F z_S^F l^F} \right]^\varepsilon Z^F z_S^F l^F \tag{A.32}
\]
\[c_S^F = Z^F z_S^F l_F^{\bar{F}} \left[1 - v \left(\frac{z_S^F}{z_G^F} \right)^\gamma \left[\frac{1}{Z^F z_S^F l_F^{\bar{F}}} \right]^\varepsilon \right] \] (A.33)

Using the world goods sector market clearing condition,

\[y_G^H + y_G^F = c_G^H + c_G^F \]

Using the fact that home completely specializes \((y_G^H = 0)\) and using the production functions and equilibrium demand,

\[Z^F z_G^F l_G^{\bar{F}} = v \left[\frac{z_S^F}{z_G^F} \right]^\gamma \left[\frac{1}{Z^H z_S^H l_H^{\bar{H}}} \right]^\varepsilon Z^F z_G^F l_G^{\bar{F}} + v \left[\frac{z_S^F}{z_G^F} \right]^\gamma \left[\frac{1}{Z^F z_S^F l_F^{\bar{F}}} \right]^\varepsilon Z^F z_G^F l_G^{\bar{F}} \]

Rearranging,

\[l_G^F = v \left[\frac{z_S^F}{z_G^F} \right]^\gamma \left[\frac{1}{Z^H z_S^H l_H^{\bar{H}}} \right]^\varepsilon Z^F z_S^F l_F^{\bar{F}} + v \left[\frac{z_S^F}{z_G^F} \right]^\gamma \left[\frac{1}{Z^F z_S^F l_F^{\bar{F}}} \right]^\varepsilon \]

Rearranging yields \((1.22)\). The foreign services employment share is then

\[l_S^F = 1 - v \left[\frac{z_S^F}{z_G^F} \right]^\gamma \left(\left[\frac{1}{Z^H z_S^H l_H^{\bar{H}}} \right]^\varepsilon Z^H z_S^H l_H^{\bar{H}} + \left[\frac{1}{Z^F z_S^F l_F^{\bar{F}}} \right]^\varepsilon \right) \] (A.34)

The home case is trivial, since it is completely specialized in service sector,

\[l_H^S = 1 \] (A.35)

Thus equation \((1.21)\) holds as well.
A.1.6 Proof of Proposition (8)

Denote by $\Delta \frac{L_G}{L_H}$ the change in the goods sector employment share between autarky and free trade.

In the equilibrium where home diversifies, this is equal to the difference between Equation (1.19) and (1.16):

$$\Delta \frac{L_G}{L_H} = \frac{Z^F \bar{z}_G \bar{H}}{Z^H \bar{z}_G \bar{H}} \left(v \left[\frac{z^H}{z^G} \right]^{\gamma} \left[\frac{z^H}{z^S} \frac{1}{Z^S \bar{z}_G} \right]^\varepsilon - 1 \right) < 0 \quad (A.36)$$

which is negative since $v \left[\frac{z^H}{z^G} \right]^{\gamma} \left[\frac{z^H}{z^S} \frac{1}{Z^S \bar{z}_G} \right]^\varepsilon < 1$, or $v \left[\frac{z^H}{z^G} \right]^{\gamma} \left[\frac{z^H}{z^S} \right]^\varepsilon < \left[Z^F \bar{z}_G \right]^\varepsilon$ which is the threshold (A.15) mentioned before. Notice that both coincide since $\frac{Z^F}{Z^H} = \frac{z^F}{z^G}$ and $\frac{p_G}{p_S} = \frac{z^S}{z^G}$, hence $v \left[\frac{p_S}{p_G} \right]^{\varepsilon} \left[\frac{p_G}{p_S} \right]^{\gamma} < \left[Z^F \bar{z}_G \right]^\varepsilon$, or $v \left[\frac{p_S}{p_G} \right]^{\varepsilon} < \left[p_G Z^F \bar{z}_G \right]^{\varepsilon}$. Thus the foreign countries threshold is the relevant one here.

In the equilibrium where foreign diversifies, the change in the goods sector employment share is equal to the difference between Equation (1.22) and (1.16):

$$\Delta \frac{L_G}{L_F} = v \left[\frac{z^F}{z^G} \right]^{\gamma} \left[\frac{1}{Z^H \bar{z}_S \bar{H}} \right]^\varepsilon \frac{Z^H \bar{z}_S \bar{H}}{Z^F \bar{z}_G \bar{F}} > 0 \quad (A.37)$$

Which is positive.

A.1.7 Proof of Proposition (9)

Denote time-varying variables as $x_{\omega,t}^i$ where $t = 1, 2, C1, C2$, where $t = 1$ denotes the "Start" period, $t = 2$ denotes the "End" period, $t = C1$ denotes "Counterfactual 1" and $t = C2$ denotes "Counterfactual 2". As before, $i = H, F$ and $\omega = G, S$.
Let’s start by analyzing home. The goods sector employment share in different scenarios are:

Start is

\[
\frac{l_{G,1}^H}{l^H} = v \left[\frac{z_S^H}{Z_1^H z_S^H} \right]^{\gamma} \left[\frac{1}{Z_1^H z_S^H l^H} \right]^{\varepsilon}
\]

Counterfactual 1 is

\[
\frac{l_{G,C1}^H}{l^H} = v \left[\frac{z_S^H}{Z_1^H z_S^H} \right]^{\gamma} \left[\frac{1}{Z_1^H z_S^H l^H} \right]^{\varepsilon}
\]

Counterfactual 2 is

\[
\frac{l_{G,C2}^H}{l^H} = v \left[\frac{z_S^H}{Z_2^H z_S^H} \right]^{\gamma} \left(\frac{1}{Z_2^H z_S^H l^H} \right)^{\varepsilon} + \frac{z^F G Z^F_1 l^F}{Z_2^H Z^F_1 l^F} \frac{1}{Z_2^H Z^F_1 l^F} - \frac{z^F G Z^F_2 l^F}{Z^F_2 l^F}
\]

End is

\[
\frac{l_{G,2}^H}{l^H} = v \left[\frac{z_S^H}{Z_2^H z_S^H} \right]^{\gamma} \left(\frac{1}{Z_2^H z_S^H l^H} \right)^{\varepsilon} + \frac{z^F G Z^F_2 l^F}{Z_2^H Z^F_2 l^F} \frac{1}{Z_2^H Z^F_2 l^F} - \frac{z^F G Z^F_2 l^F}{Z^F_2 l^F}
\]

The change between Start and Counterfactual 1:

\[
\Delta \frac{l_{G,1C1}^H}{l^H} = \frac{l_{G,C1}^H}{l^H} - \frac{l_{G,1}^H}{l^H}
\]

\[
= v \left[\frac{z_S^H}{Z_1^H z_S^H} \right]^{\gamma} \left[\frac{1}{Z_1^H z_S^H l^H} \right]^{\varepsilon} - v \left[\frac{z_S^H}{z_S^H l^H} \right]^{\gamma} \left[\frac{1}{Z_1^H z_S^H l^H} \right]^{\varepsilon}
\]

\[
= v \left[\frac{z_S^H}{Z_1^H z_S^H} \right]^{\gamma} \left(\frac{1}{Z_1^H} \right) - \left[\frac{1}{Z_1^H} \right]^{\varepsilon}
\]

The change between Counterfactual 1 and End:
\[
\Delta \frac{l_{G,C12}}{l^H} = \frac{l_{G,2}}{l^H} - \frac{l_{G,C1}}{l^H}
\]
\[
= v \left[\frac{z_S}{z_G} \right] ^\gamma \left(\left[\frac{1}{Z_2^H z_S^H} \right]^\varepsilon + \frac{z_G^F}{z_G^H} \frac{Z_2^F}{Z_2^H} \left[\frac{z_G^H}{z_G^H} \frac{1}{Z_2^F z_G^F} \right]^\varepsilon \right) - \frac{z_G^F}{z_G^H} \frac{Z_2^F}{Z_2^H} \left(v \left[\frac{z_S}{z_G} \right] ^\gamma \left[\frac{1}{Z_2^H z_S^H} \right]^\varepsilon \right)
\]
\[
= \frac{z_G^F}{z_G^H} \frac{Z_2^F}{Z_2^H} \left(v \left[\frac{z_S}{z_G} \right] ^\gamma \left[\frac{z_G^H}{z_G^H} \frac{1}{Z_2^H z_G^F z_G^F} \right]^\varepsilon - 1 \right)
\]

The change between Start and End is, denoted by \(T \) (Total Effect), is

\[
\Delta \frac{l_{G,T}}{l^H} = \frac{l_{G,2}}{l^H} - \frac{l_{G,1}}{l^H}
\]
\[
= v \left[\frac{z_S}{z_G} \right] ^\gamma \left(\left[\frac{1}{Z_2^H z_S^H} \right]^\varepsilon \right) + \frac{z_G^F}{z_G^H} \frac{Z_2^F}{Z_2^H} \left[\frac{z_G^H}{z_G^H} \frac{1}{Z_2^F z_G^F} \right]^\varepsilon - \frac{z_G^F}{z_G^H} \frac{Z_2^F}{Z_2^H} \left(v \left[\frac{z_S}{z_G} \right] ^\gamma \left[\frac{1}{Z_2^H z_S^H} \right]^\varepsilon \right)
\]
\[
= v \left[\frac{z_S}{z_G} \right] ^\gamma \left[\frac{1}{Z_2^H z_S^H} \right]^\varepsilon \left(\frac{1}{Z_2^H} - \frac{1}{Z_2^H} \right)^\varepsilon + \frac{z_G^F}{z_G^H} \frac{Z_2^F}{Z_2^H} \left(v \left[\frac{z_S}{z_G} \right] ^\gamma \frac{1}{Z_2^H z_G^F z_G^F} \right)^\varepsilon - 1
\]

Note that this is the sum of the change between Start and Counterfactual 1 and change between Counterfactual 1 and End. Thus, the total effect can be interpreted as the sum of a "structural change" effect and an "international trade" effects.

\[
\Delta \frac{l_{G,T}}{l^H} = v \left[\frac{z_S}{z_G} \right] ^\gamma \left(\left[\frac{1}{Z_2^H} \right]^\varepsilon \left(\left[\frac{1}{Z_2^H} \right]^\varepsilon - \frac{1}{Z_2^H} \right)^\varepsilon \right) + \frac{z_G^F}{z_G^H} \frac{Z_2^F}{Z_2^H} \left(v \left[\frac{z_S}{z_G} \right] ^\gamma \frac{1}{Z_2^H z_G^F z_G^F} \right)^\varepsilon - 1
\]

"Structural Change Effect"

"International Trade Effect"

Foreign

Start is
Counterfactual 1 is

\[
\frac{l_{G,1}^F}{l^F} = v \left[\frac{z_S^F}{z_G^F} \right]^{\gamma} \left[\frac{1}{Z_2^F z_S^F l^F} \right]^\varepsilon
\]

Counterfactual 2 is

\[
\frac{l_{G,C1}^F}{l^F} = v \left[\frac{z_S^F}{z_G^F} \right]^{\gamma} \left[\frac{1}{Z_2^F z_S^F l^F} \right]^\varepsilon
\]

End is

\[
\frac{l_{G,2}^F}{l^F} = v \left[\frac{z_S^F}{z_G^F} \right]^{\gamma} \left(\left[\frac{1}{Z_2^H z_S^H l^H} \right]^{\varepsilon} + \left[\frac{1}{Z_2^F z_S^F l^F} \right]^{\varepsilon} \right)
\]

The change between Start and Counterfactual 1 is

\[
\Delta \frac{l_{G,1C1}^F}{l^F} = \frac{l_{G,C1}^F}{l^F} - \frac{l_{G,1}^F}{l^F}
\]

\[
= v \left[\frac{z_S^F}{z_G^F} \right]^{\gamma} \left[\frac{1}{Z_2^F z_S^F l^F} \right]^\varepsilon - v \left[\frac{z_S^F}{z_G^F} \right]^{\gamma} \left[\frac{1}{Z_2^F z_S^F l^F} \right]^\varepsilon
\]

\[
= v \left[\frac{z_S^F}{z_G^F} \right]^{\gamma} \left[\frac{1}{z_S^F l^F} \right]^{\varepsilon} \left(\left[\frac{1}{Z_2^F} \right]^{\varepsilon} - \left[\frac{1}{Z_1^F} \right]^{\varepsilon} \right)
\]

The change between Counterfactual 1 and End is
\[\frac{\Delta l_{G,C12}^F}{l^F} = \frac{l_{G,2}^F}{l^F} - \frac{l_{G,C1}^F}{l^F} \]
\[= v \left[\frac{z_S^F}{z_G^F} \right]^\gamma \left(\left[\frac{1}{Z_2^H z_H^S} \right]^\epsilon \frac{Z_2^H z_H^S}{Z_2^F z_S^F} \left[\frac{1}{Z_2^F z_S^F} \right]^\epsilon \right) - v \left[\frac{z_S^F}{z_G^F} \right]^\gamma \left[\frac{1}{Z_2^H z_H^S} \right]^\epsilon \left[\frac{1}{Z_2^F z_S^F} \right]^\epsilon \]
\[= v \left[\frac{z_S^F}{z_G^F} \right]^\gamma \left[\frac{1}{Z_2^H z_H^S} \right]^\epsilon \frac{Z_2^H z_H^S}{Z_2^F z_S^F} \left[\frac{1}{Z_2^F z_S^F} \right]^\epsilon \left(\left[\frac{1}{Z_2^F} \right]^\epsilon - \left[\frac{1}{Z_1^F} \right]^\epsilon \right) \]

The change between Start and End is

\[\frac{\Delta l_{G,T}^F}{l^F} = \frac{l_{G,2}^F}{l^F} - \frac{l_{G,1}^F}{l^F} \]
\[= v \left[\frac{z_S^F}{z_G^F} \right]^\gamma \left(\left[\frac{1}{Z_2^H z_H^S} \right]^\epsilon \frac{Z_2^H z_H^S}{Z_2^F z_S^F} \left[\frac{1}{Z_2^F z_S^F} \right]^\epsilon \right) - v \left[\frac{z_S^F}{z_G^F} \right]^\gamma \left[\frac{1}{Z_2^H z_H^S} \right]^\epsilon \left[\frac{1}{Z_2^F z_S^F} \right]^\epsilon \]
\[= v \left[\frac{z_S^F}{z_G^F} \right]^\gamma \left[\frac{1}{Z_2^H z_H^S} \right]^\epsilon \frac{Z_2^H z_H^S}{Z_2^F z_S^F} \left[\frac{1}{Z_2^F z_S^F} \right]^\epsilon \left(\left[\frac{1}{Z_2^F} \right]^\epsilon - \left[\frac{1}{Z_1^F} \right]^\epsilon \right) \]

Similar as before,

\[\frac{\Delta l_{G,T}^F}{l^F} = v \left[\frac{z_S^F}{z_G^F} \right]^\gamma \left[\frac{1}{z_s^F} \right]^\epsilon \left(\left[\frac{1}{Z_2^F} \right]^\epsilon - \left[\frac{1}{Z_1^F} \right]^\epsilon \right) + v \left[\frac{z_S^F}{z_G^F} \right]^\gamma \left[\frac{1}{Z_2^H z_H^S} \right]^\epsilon \left[\frac{1}{Z_2^F z_S^F} \right]^\epsilon \left(\left[\frac{1}{Z_2^F} \right]^\epsilon - \left[\frac{1}{Z_1^F} \right]^\epsilon \right) \]

Foreign

Rewrite SC effect in equation (1.24) as,
\[SC^F = v \left[\frac{z_S^F}{z_G^F} \right]^\gamma \left[\frac{1}{z_S^F l^F} \right]^\varepsilon \left(\left[\frac{1}{g^F Z_1^F} \right]^\varepsilon - \left[\frac{1}{Z_1^F} \right]^\varepsilon \right) \]

\[= v \left[\frac{z_S^F}{z_G^F} \right]^\gamma \left[\frac{1}{z_S^F l^F} \right]^\varepsilon \left[\frac{1}{Z_1^F} \right]^\varepsilon (g^F - \varepsilon - 1) \]

Similarly, the SC effect is negative, and the larger \(g^F \), the larger the absolute value of the SC effect,

\[\frac{\partial SC^F}{\partial g^F} = -\varepsilon v \left[\frac{z_S^F}{z_G^F} \right]^\gamma \left[\frac{1}{z_S^F l^F} \right]^\varepsilon \left[\frac{1}{Z_1^F} \right]^\varepsilon (g^F)^{-\varepsilon - 1} < 0 \]
A.2 Data Source

A.2.1 Countries classification by GDP per Capita

Throughout the paper I classify countries according to their PPP GDP per capita in 2014 as "Poor" (below $25,000), "Medium" (between $25,000 and $35,000) or "Rich" (above $35,000).

This threshold divides the sample into:

1. 15 ”Rich” countries: AUS, AUT, BEL, CAN, DEU, DNK, FIN, FRA, GBR, IRL, ITA, JPN, NLD, SWE, USA.

2. 14 ”Medium” countries: CYP, CZE, ESP, EST, GRC, HUN, KOR, LTU, LVA, MLT, POL, PRT, RUS, SVK, SVN

3. 8 ”Poor” countries: BGR, BRA, CHN, IDN, IND, MEX, TUR

In Figure [A2] we can see the relationship between goods sector employment share and GDP per capita in 2014, and the difference in terms of development in these two groups.

A.2.2 Service Trade Data

The World Trade Organization (WTO) defines in its General Agreement on Trade in Services (GATS), services trade to span the following four modes of supply:

- Mode 1 - Cross-border: services supplied from the territory of one country into the territory of another,

- Mode 2 - Consumption abroad: services supplied in the territory of a nation to the consumers of another,
Figure A2: Goods Sector Employment Share and GDP per Capita, 2014.

Source: WIOD.

- Mode 3 - Commercial presence: services supplied through any type of business or professional establishment of one country in the territory of another (i.e. FDI), and

- Mode 4 - Presence of natural persons: services supplied by nationals of a country in the territory of another.

As described in Dietzenbacher et al. [2013], in the data set collected for the WIOD, only data on cross-border services trade in the GATS mode 1 has been used: "The WIOTs are constructed on a territorial basis meaning that they include all activities that take place on the territory of the country, either by residents or non-residents, so mode 3 and 4 are not considered as part of imports and exports. Mode 2 activities are already covered by the items 'purchases of non-residents on domestic territory' and 'foreign purchases of residents' in the
national SUTs and are not split further by the country of supply...There is ample space for further improvements in the measurement of services trade. The WIOD database for trade in services should be seen in this light as the best currently available approximation to a comprehensive picture of global trade flows in Mode 1 services.”

The service trade flows used throughout my paper are thus in Mode 1 only.
A.2.3 Aggregation

I use both the 2013 and 2016 releases of WIOD. The different releases of WIOD differ in coverage of years, countries and sectors:

- The 2013 release of WIOD covers 40 countries for the period from 1995 to 2011. Data for 35 sectors are classified according to the International Standard Industrial Classification revision 3 (ISIC Rev. 3).

- The 2016 release of WIOD covers 43 countries for the period from 2000 to 2014. Data for 56 sectors are classified according to the International Standard Industrial Classification revision 4 (ISIC Rev. 4).

Throughout the paper, I focus on two aggregation criteria:

1. Goods sector: for the 2013 release of WIOD, I classify sectors 1 to 16 as Goods (following Kehoe et al. [2018]). I classify the rest as Services.\(^3\) I follow the same criteria for the 2016 release of WIOD, so I classify sectors 1 to 22 as Goods and 23 to 56 as Services.

2. Manufacturing sector: for the 2013 release of WIOD, I classify sectors 1 to 3 as Agriculture, 4 to 16 as Manufacturing and 17 to 35 as Services (following Uy et al. [2013]).\(^4\)

\(^3\)Different from Kehoe et al. [2018]. I include Construction as a Service while they take Construction as a third sector. See their online appendix at http://users.econ.umn.edu/ tkehoe/publications.html

\(^4\)Uy et al. [2013] use sources different from WIOD. The classification criteria they follow (which I apply to the WIOD sectors) is: "Unless otherwise noted, the sectors are defined by the International Standard Industrial Classification, revision 3 (ISIC III) definitions: Agriculture corresponds to ISIC divisions 1-5 (agriculture, forestry, hunting, and fishing), 10-14 (mining and quarry), 15-16 (food, beverages and tobacco-FBT); Manufacturing corresponds to divisions 17-37 (total manufacturing less FBT); Services corresponds to divisions 40-99 (utilities, construction, wholesale and retail trade, transport, government, financial, professional, and personal services such as education, health care, and real estate services)." See their online appendix at https://www.sciencedirect.com/science/article/pii/S030439321300086X
I follow the same criteria for the 2016 release of WIOD, so I classify sectors 1 to 5 as Agriculture, 6 to 22 as Manufacturing, and 23 to 56 as Services.

Table (A1)-(A3) summarizes this sector classification for the 2013 and 2016 release of WIOD.
A.2.4 WIOD 2013 and 2016 releases merge

Since the sectors in the 2013 and 2016 releases of WIOD are different, I merge as follows: for each release, I aggregate by the sector classification described in the previous paragraph. I then merge by using 1995-2007 data from the 2013 release and 2008-2014 data from the 2016 release. Merging the databases is not straightforward since there are discrepancies between them. For example, Figure [A3] shows the discrepancy in the employment share in the goods sector in USA. These discrepancies seem to be mostly on the level of variables, and less so in growth rates. Given these this, I merge by using the 2013 release data until 2007, and then use the growth rates implied by the 2014 release to construct the remaining years until 2014. In other words, I shift the 2016 release data to match the level of the variables in 2007 given by the 2013 release values.
A.3 Confidence Intervals

Estimates in Table (1.4) correspond the single observation using the difference between the years 1995 and 2014. However, one would like to have a confidence interval for these estimations. A description follows on how to construct such intervals.

The growth accounting exercise could be repeated for any given two pairs of years in which the initial year is smaller than the end year \((\tau < \nu)\). The possible year-pair combinations between 1995 and 2014 is then \(^{20}C_2\) = \(\frac{20!}{(20-2)!2!}\) = 190, per country. In practice, I drop window lengths smaller than 5 years to avoid business-cycle led dynamics, which shrink the data to 105.
In this set there are window periods of different lengths. A given length implies a given amount of observations: the larger the window, the lower the amount of observations. Given a window length and these observations, a confidence intervals can be computed, defined as $\bar{x} \pm t^* \frac{s}{\sqrt{n}}$, where \bar{x} is the average, s is the standard deviation and t^* is the critical value of Student’s t distribution, for a given significance level and $n - 1$ degrees of freedom.

In Figure (A4a) we can observe the observed trade balance effects in the USA. The horizontal axis represent the length of the window. In Figure (A4b) we can observe the corresponding point estimates and 95% confidence intervals for each window length.

These confidence intervals can be repeated for each element in the decomposition exercise. In Figure (A5) we can observe the 95% confidence intervals for the decomposition
estimate in the USA, corresponding to a 17 year window \((n = 3)\). As can be observed, all components are statistically different from zero, except for \(\hat{\alpha}_{it}^{s} \) and \(\hat{\beta}_{it}^{s} \). The point estimates are overall similar with respect to the full 1995-2014 estimates.

Figure A5: USA, Goods Sector Decomposition: 95% Confidence Intervals (17 year window length, \(n = 3\)).

Source: WIOD
A.4 Tables
Table A1: Sectors in WIOD 2013 Release

<table>
<thead>
<tr>
<th>Sector</th>
<th>Classification 1</th>
<th>Classification 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Agriculture, Hunting, Forestry and Fishing</td>
<td>Goods</td>
<td>Agriculture</td>
</tr>
<tr>
<td>2 Mining and Quarrying</td>
<td>Goods</td>
<td>Agriculture</td>
</tr>
<tr>
<td>3 Food, Beverages and Tobacco</td>
<td>Goods</td>
<td>Agriculture</td>
</tr>
<tr>
<td>4 Textiles and Textile Products</td>
<td>Goods</td>
<td>Manufacturing</td>
</tr>
<tr>
<td>5 Leather, Leather and Footwear</td>
<td>Goods</td>
<td>Manufacturing</td>
</tr>
<tr>
<td>6 Wood and Products of Wood and Cork</td>
<td>Goods</td>
<td>Manufacturing</td>
</tr>
<tr>
<td>7 Pulp, Paper, Paper, Printing and Publishing</td>
<td>Goods</td>
<td>Manufacturing</td>
</tr>
<tr>
<td>8 Coke, Refined Petroleum and Nuclear Fuel</td>
<td>Goods</td>
<td>Manufacturing</td>
</tr>
<tr>
<td>9 Chemicals and Chemical Products</td>
<td>Goods</td>
<td>Manufacturing</td>
</tr>
<tr>
<td>10 Rubber and Plastics</td>
<td>Goods</td>
<td>Manufacturing</td>
</tr>
<tr>
<td>11 Other Non-Metallic Mineral</td>
<td>Goods</td>
<td>Manufacturing</td>
</tr>
<tr>
<td>12 Basic Metals and Fabricated Metal</td>
<td>Goods</td>
<td>Manufacturing</td>
</tr>
<tr>
<td>13 Machinery, Nec</td>
<td>Goods</td>
<td>Manufacturing</td>
</tr>
<tr>
<td>14 Electrical and Optical Equipment</td>
<td>Goods</td>
<td>Manufacturing</td>
</tr>
<tr>
<td>15 Transport Equipment</td>
<td>Goods</td>
<td>Manufacturing</td>
</tr>
<tr>
<td>16 Manufacturing, Nec; Recycling</td>
<td>Goods</td>
<td>Manufacturing</td>
</tr>
<tr>
<td>17 Electricity, Gas and Water Supply</td>
<td>Services</td>
<td>Services</td>
</tr>
<tr>
<td>18 Construction</td>
<td>Services</td>
<td>Services</td>
</tr>
<tr>
<td>19 Sale, Maintenance and Repair of Motor Vehicles and...</td>
<td>Services</td>
<td>Services</td>
</tr>
<tr>
<td>20 Wholesale Trade and Commission Trade, Except of Mo...</td>
<td>Services</td>
<td>Services</td>
</tr>
<tr>
<td>21 Retail Trade, Except of Motor Vehicles and Motorcy...</td>
<td>Services</td>
<td>Services</td>
</tr>
<tr>
<td>22 Hotels and Restaurants</td>
<td>Services</td>
<td>Services</td>
</tr>
<tr>
<td>23 Inland Transport</td>
<td>Services</td>
<td>Services</td>
</tr>
<tr>
<td>24 Water Transport</td>
<td>Services</td>
<td>Services</td>
</tr>
<tr>
<td>25 Air Transport</td>
<td>Services</td>
<td>Services</td>
</tr>
<tr>
<td>26 Other Supporting and Auxiliary Transport Activitie...</td>
<td>Services</td>
<td>Services</td>
</tr>
<tr>
<td>27 Post and Telecommunications</td>
<td>Services</td>
<td>Services</td>
</tr>
<tr>
<td>28 Financial Intermediation</td>
<td>Services</td>
<td>Services</td>
</tr>
<tr>
<td>29 Real Estate Activities</td>
<td>Services</td>
<td>Services</td>
</tr>
<tr>
<td>30 Renting of M and Eq and Other Business Activities</td>
<td>Services</td>
<td>Services</td>
</tr>
<tr>
<td>31 Public Admin and Defence; Compulsory Social Securi...</td>
<td>Services</td>
<td>Services</td>
</tr>
<tr>
<td>32 Education</td>
<td>Services</td>
<td>Services</td>
</tr>
<tr>
<td>33 Health and Social Work</td>
<td>Services</td>
<td>Services</td>
</tr>
<tr>
<td>34 Other Community, Social and Personal Services</td>
<td>Services</td>
<td>Services</td>
</tr>
<tr>
<td>35 Private Households with Employed Persons</td>
<td>Services</td>
<td>Services</td>
</tr>
</tbody>
</table>
Table A2: Sectors in WIOD 2016 Release (Agriculture and Manufacturing Sectors)

<table>
<thead>
<tr>
<th>Sector</th>
<th>Classification 1</th>
<th>Classification 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Crop and animal production, hunting and related se...</td>
<td>Goods</td>
<td>Agriculture</td>
</tr>
<tr>
<td>2 Forestry and logging</td>
<td>Goods</td>
<td>Agriculture</td>
</tr>
<tr>
<td>3 Fishing and aquaculture</td>
<td>Goods</td>
<td>Agriculture</td>
</tr>
<tr>
<td>4 Mining and quarrying</td>
<td>Goods</td>
<td>Agriculture</td>
</tr>
<tr>
<td>5 Manufacture of food products, beverages and tobac...</td>
<td>Goods</td>
<td>Agriculture</td>
</tr>
<tr>
<td>6 Manufacture of textiles, wearing apparel and leath...</td>
<td>Goods</td>
<td>Manufacturing</td>
</tr>
<tr>
<td>7 Manufacture of wood and of products of wood and co...</td>
<td>Goods</td>
<td>Manufacturing</td>
</tr>
<tr>
<td>8 Manufacture of paper and paper products</td>
<td>Goods</td>
<td>Manufacturing</td>
</tr>
<tr>
<td>9 Printing and reproduction of recorded media</td>
<td>Goods</td>
<td>Manufacturing</td>
</tr>
<tr>
<td>10 Manufacture of coke and refined petroleum products...</td>
<td>Goods</td>
<td>Manufacturing</td>
</tr>
<tr>
<td>11 Manufacture of chemicals and chemical products</td>
<td>Goods</td>
<td>Manufacturing</td>
</tr>
<tr>
<td>12 Manufacture of basic pharmaceutical products and p...</td>
<td>Goods</td>
<td>Manufacturing</td>
</tr>
<tr>
<td>13 Manufacture of rubber and plastic products</td>
<td>Goods</td>
<td>Manufacturing</td>
</tr>
<tr>
<td>14 Manufacture of other non-metallic mineral products...</td>
<td>Goods</td>
<td>Manufacturing</td>
</tr>
<tr>
<td>15 Manufacture of basic metals</td>
<td>Goods</td>
<td>Manufacturing</td>
</tr>
<tr>
<td>16 Manufacture of fabricated metal products, except m...</td>
<td>Goods</td>
<td>Manufacturing</td>
</tr>
<tr>
<td>17 Manufacture of computer, electronic and optical pr...</td>
<td>Goods</td>
<td>Manufacturing</td>
</tr>
<tr>
<td>18 Manufacture of electrical equipment</td>
<td>Goods</td>
<td>Manufacturing</td>
</tr>
<tr>
<td>19 Manufacture of machinery and equipment n.e.c.</td>
<td>Goods</td>
<td>Manufacturing</td>
</tr>
<tr>
<td>20 Manufacture of motor vehicles, trailers and semi-t...</td>
<td>Goods</td>
<td>Manufacturing</td>
</tr>
<tr>
<td>21 Manufacture of other transport equipment</td>
<td>Goods</td>
<td>Manufacturing</td>
</tr>
<tr>
<td>22 Manufacture of furniture; other manufacturing</td>
<td>Goods</td>
<td>Manufacturing</td>
</tr>
</tbody>
</table>
Table A3: Sectors in WIOD 2016 Release (Service Sectors)

<table>
<thead>
<tr>
<th>Sector</th>
<th>Classification 1</th>
<th>Classification 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>Repair and installation of machinery and equipment</td>
<td>Services</td>
</tr>
<tr>
<td>24</td>
<td>Electricity, gas, steam and air conditioning suppl</td>
<td>Services</td>
</tr>
<tr>
<td>25</td>
<td>Water collection, treatment and supply</td>
<td>Services</td>
</tr>
<tr>
<td>26</td>
<td>Sewerage; waste collection, treatment and disposal</td>
<td>Services</td>
</tr>
<tr>
<td>27</td>
<td>Construction</td>
<td>Services</td>
</tr>
<tr>
<td>28</td>
<td>Wholesale and retail trade and repair of motor veh</td>
<td>Services</td>
</tr>
<tr>
<td>29</td>
<td>Wholesale trade, except of motor vehicles and moto</td>
<td>Services</td>
</tr>
<tr>
<td>30</td>
<td>Retail trade, except of motor vehicles and motorcy</td>
<td>Services</td>
</tr>
<tr>
<td>31</td>
<td>Land transport and transport via pipelines</td>
<td>Services</td>
</tr>
<tr>
<td>32</td>
<td>Water transport</td>
<td>Services</td>
</tr>
<tr>
<td>33</td>
<td>Air transport</td>
<td>Services</td>
</tr>
<tr>
<td>34</td>
<td>Warehousing and support activities for transportat</td>
<td>Services</td>
</tr>
<tr>
<td>35</td>
<td>Postal and courier activities</td>
<td>Services</td>
</tr>
<tr>
<td>36</td>
<td>Accommodation and food service activities</td>
<td>Services</td>
</tr>
<tr>
<td>37</td>
<td>Publishing activities</td>
<td>Services</td>
</tr>
<tr>
<td>38</td>
<td>Motion picture, video and television programme pro</td>
<td>Services</td>
</tr>
<tr>
<td>39</td>
<td>Telecommunications</td>
<td>Services</td>
</tr>
<tr>
<td>40</td>
<td>Computer programming, consultancy and related acti</td>
<td>Services</td>
</tr>
<tr>
<td>41</td>
<td>Financial service activities, except insurance and</td>
<td>Services</td>
</tr>
<tr>
<td>42</td>
<td>Insurance, reinsurance and pension funding, except</td>
<td>Services</td>
</tr>
<tr>
<td>43</td>
<td>Activities auxiliary to financial services and ins</td>
<td>Services</td>
</tr>
<tr>
<td>44</td>
<td>Real estate activities</td>
<td>Services</td>
</tr>
<tr>
<td>45</td>
<td>Legal and accounting activities; activities of hea</td>
<td>Services</td>
</tr>
<tr>
<td>46</td>
<td>Architectural and engineering activities; technica</td>
<td>Services</td>
</tr>
<tr>
<td>47</td>
<td>Scientific research and development</td>
<td>Services</td>
</tr>
<tr>
<td>48</td>
<td>Advertising and market research</td>
<td>Services</td>
</tr>
<tr>
<td>49</td>
<td>Other professional, scientific and technical activ</td>
<td>Services</td>
</tr>
<tr>
<td>50</td>
<td>Administrative and support service activities</td>
<td>Services</td>
</tr>
<tr>
<td>51</td>
<td>Public administration and defence; compulsory soci</td>
<td>Services</td>
</tr>
<tr>
<td>52</td>
<td>Education</td>
<td>Services</td>
</tr>
<tr>
<td>53</td>
<td>Human health and social work activities</td>
<td>Services</td>
</tr>
<tr>
<td>54</td>
<td>Other service activities</td>
<td>Services</td>
</tr>
<tr>
<td>55</td>
<td>Activities of households as employers; undifferent</td>
<td>Services</td>
</tr>
<tr>
<td>56</td>
<td>Activities of extraterritorial organizations and b</td>
<td>Services</td>
</tr>
</tbody>
</table>
Table A4: Growth Accounting Decomposition for $s =$Goods, $\tau = 1995$, $v = 2014$ for all Countries

<table>
<thead>
<tr>
<th>Country</th>
<th>Period</th>
<th>Sector</th>
<th>$\hat{\alpha}{it}(s) / l{it}(s)$</th>
<th>$\hat{\beta}{it}(s) / l{it}(s)$</th>
<th>$f_{it}(s) / y_{it}(s)$</th>
<th>$x \bar{f}{it}(s,s') / y{it}(s)$</th>
<th>$tb_{it}(s) / y_{it}(s)$</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUS</td>
<td>1995-2014</td>
<td>Goods</td>
<td>0.46</td>
<td>-0.13</td>
<td>-0.20</td>
<td>0.19</td>
<td>0.62</td>
<td>0.07</td>
</tr>
<tr>
<td>AUT</td>
<td>1995-2014</td>
<td>Goods</td>
<td>0.44</td>
<td>-0.11</td>
<td>0.71</td>
<td>0.37</td>
<td>-0.39</td>
<td>-0.33</td>
</tr>
<tr>
<td>BEL</td>
<td>1995-2014</td>
<td>Goods</td>
<td>-0.15</td>
<td>0.02</td>
<td>0.79</td>
<td>0.26</td>
<td>-0.03</td>
<td>0.09</td>
</tr>
<tr>
<td>BGR</td>
<td>1995-2014</td>
<td>Goods</td>
<td>-0.70</td>
<td>1.30</td>
<td>1.13</td>
<td>0.33</td>
<td>-0.36</td>
<td>0.51</td>
</tr>
<tr>
<td>BRA</td>
<td>1995-2014</td>
<td>Goods</td>
<td>-1.15</td>
<td>0.80</td>
<td>0.30</td>
<td>0.10</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>CAN</td>
<td>1995-2014</td>
<td>Goods</td>
<td>0.69</td>
<td>-0.22</td>
<td>-0.26</td>
<td>0.04</td>
<td>-0.28</td>
<td>0.45</td>
</tr>
<tr>
<td>CHN</td>
<td>1995-2014</td>
<td>Goods</td>
<td>0.29</td>
<td>-0.29</td>
<td>1.21</td>
<td>0.40</td>
<td>-0.90</td>
<td>-0.07</td>
</tr>
<tr>
<td>CYP</td>
<td>1995-2014</td>
<td>Goods</td>
<td>-0.47</td>
<td>0.06</td>
<td>0.32</td>
<td>0.56</td>
<td>0.31</td>
<td>0.05</td>
</tr>
<tr>
<td>CZE</td>
<td>1995-2014</td>
<td>Goods</td>
<td>-1.46</td>
<td>2.62</td>
<td>1.31</td>
<td>0.70</td>
<td>-0.70</td>
<td>-1.46</td>
</tr>
<tr>
<td>DEU</td>
<td>1995-2014</td>
<td>Goods</td>
<td>0.65</td>
<td>-0.13</td>
<td>0.60</td>
<td>0.33</td>
<td>-0.19</td>
<td>-0.72</td>
</tr>
<tr>
<td>DNK</td>
<td>1995-2014</td>
<td>Goods</td>
<td>0.29</td>
<td>0.10</td>
<td>0.21</td>
<td>0.22</td>
<td>0.12</td>
<td>0.03</td>
</tr>
<tr>
<td>ESP</td>
<td>1995-2014</td>
<td>Goods</td>
<td>0.12</td>
<td>-0.27</td>
<td>0.54</td>
<td>0.36</td>
<td>0.38</td>
<td>-0.06</td>
</tr>
<tr>
<td>EST</td>
<td>1995-2014</td>
<td>Goods</td>
<td>0.28</td>
<td>-0.21</td>
<td>0.23</td>
<td>0.40</td>
<td>0.46</td>
<td>-0.26</td>
</tr>
<tr>
<td>FIN</td>
<td>1995-2014</td>
<td>Goods</td>
<td>-0.24</td>
<td>0.08</td>
<td>0.72</td>
<td>0.10</td>
<td>0.27</td>
<td>0.12</td>
</tr>
<tr>
<td>FRA</td>
<td>1995-2014</td>
<td>Goods</td>
<td>-0.16</td>
<td>0.11</td>
<td>0.48</td>
<td>0.20</td>
<td>0.06</td>
<td>0.16</td>
</tr>
<tr>
<td>GBR</td>
<td>1995-2014</td>
<td>Goods</td>
<td>-0.12</td>
<td>-0.04</td>
<td>0.01</td>
<td>0.33</td>
<td>0.30</td>
<td>0.38</td>
</tr>
<tr>
<td>GRC</td>
<td>1995-2014</td>
<td>Goods</td>
<td>-0.13</td>
<td>0.19</td>
<td>0.90</td>
<td>0.01</td>
<td>0.78</td>
<td>-0.03</td>
</tr>
<tr>
<td>HUN</td>
<td>1995-2014</td>
<td>Goods</td>
<td>0.93</td>
<td>-0.38</td>
<td>0.53</td>
<td>0.34</td>
<td>-0.23</td>
<td>-0.48</td>
</tr>
<tr>
<td>IDN</td>
<td>1995-2014</td>
<td>Goods</td>
<td>0.74</td>
<td>-0.38</td>
<td>-0.43</td>
<td>0.63</td>
<td>0.12</td>
<td>0.16</td>
</tr>
<tr>
<td>IND</td>
<td>1995-2014</td>
<td>Goods</td>
<td>1.10</td>
<td>-0.34</td>
<td>0.72</td>
<td>0.72</td>
<td>0.40</td>
<td>0.11</td>
</tr>
<tr>
<td>IRL</td>
<td>1995-2014</td>
<td>Goods</td>
<td>0.57</td>
<td>-0.40</td>
<td>0.07</td>
<td>0.31</td>
<td>0.70</td>
<td>-0.09</td>
</tr>
<tr>
<td>ITA</td>
<td>1995-2014</td>
<td>Goods</td>
<td>-0.38</td>
<td>0.00</td>
<td>0.48</td>
<td>0.54</td>
<td>0.12</td>
<td>0.06</td>
</tr>
<tr>
<td>JPN</td>
<td>1995-2014</td>
<td>Goods</td>
<td>-0.04</td>
<td>-0.22</td>
<td>0.59</td>
<td>0.14</td>
<td>-0.23</td>
<td>0.25</td>
</tr>
<tr>
<td>KOR</td>
<td>1995-2014</td>
<td>Goods</td>
<td>0.23</td>
<td>-0.28</td>
<td>0.66</td>
<td>0.29</td>
<td>-0.70</td>
<td>-0.22</td>
</tr>
<tr>
<td>LTA</td>
<td>1995-2014</td>
<td>Goods</td>
<td>0.38</td>
<td>-0.00</td>
<td>0.31</td>
<td>0.22</td>
<td>0.54</td>
<td>-0.21</td>
</tr>
<tr>
<td>LVA</td>
<td>1995-2014</td>
<td>Goods</td>
<td>0.06</td>
<td>0.02</td>
<td>0.74</td>
<td>0.37</td>
<td>0.05</td>
<td>0.23</td>
</tr>
<tr>
<td>MEX</td>
<td>1995-2014</td>
<td>Goods</td>
<td>1.25</td>
<td>-0.43</td>
<td>-0.13</td>
<td>0.21</td>
<td>0.24</td>
<td>0.07</td>
</tr>
<tr>
<td>MLT</td>
<td>1995-2014</td>
<td>Goods</td>
<td>-0.10</td>
<td>-0.06</td>
<td>-0.44</td>
<td>0.89</td>
<td>0.62</td>
<td>-0.03</td>
</tr>
<tr>
<td>NLD</td>
<td>1995-2014</td>
<td>Goods</td>
<td>-0.03</td>
<td>-0.01</td>
<td>0.70</td>
<td>0.24</td>
<td>-0.66</td>
<td>0.61</td>
</tr>
<tr>
<td>POL</td>
<td>1995-2014</td>
<td>Goods</td>
<td>1.76</td>
<td>-1.31</td>
<td>0.54</td>
<td>0.13</td>
<td>-0.23</td>
<td>0.25</td>
</tr>
<tr>
<td>PRT</td>
<td>1995-2014</td>
<td>Goods</td>
<td>-0.05</td>
<td>-0.23</td>
<td>0.55</td>
<td>0.36</td>
<td>0.53</td>
<td>-0.11</td>
</tr>
<tr>
<td>RUS</td>
<td>1995-2014</td>
<td>Goods</td>
<td>0.29</td>
<td>0.32</td>
<td>0.17</td>
<td>0.22</td>
<td>0.10</td>
<td>0.14</td>
</tr>
<tr>
<td>SVK</td>
<td>1995-2014</td>
<td>Goods</td>
<td>-0.09</td>
<td>0.22</td>
<td>0.63</td>
<td>0.16</td>
<td>0.05</td>
<td>-0.17</td>
</tr>
<tr>
<td>SVN</td>
<td>1995-2014</td>
<td>Goods</td>
<td>0.88</td>
<td>-0.42</td>
<td>0.11</td>
<td>0.42</td>
<td>0.16</td>
<td>-0.20</td>
</tr>
<tr>
<td>SWE</td>
<td>1995-2014</td>
<td>Goods</td>
<td>-0.20</td>
<td>0.19</td>
<td>0.38</td>
<td>0.15</td>
<td>0.38</td>
<td>0.20</td>
</tr>
<tr>
<td>TUR</td>
<td>1995-2014</td>
<td>Goods</td>
<td>-1.18</td>
<td>0.48</td>
<td>0.90</td>
<td>0.52</td>
<td>-0.08</td>
<td>0.14</td>
</tr>
<tr>
<td>USA</td>
<td>1995-2014</td>
<td>Goods</td>
<td>0.62</td>
<td>-0.12</td>
<td>-0.04</td>
<td>0.05</td>
<td>0.30</td>
<td>0.16</td>
</tr>
</tbody>
</table>
Table A5: Trade Balance Effect and Revealed Comparative Advantage, 17 year window

<table>
<thead>
<tr>
<th></th>
<th>Goods (1)</th>
<th>Goods (2)</th>
<th>Services (3)</th>
<th>Services (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$RCA_{it}(s)$</td>
<td>-0.421***</td>
<td>-0.636***</td>
<td>0.332***</td>
<td>0.362***</td>
</tr>
<tr>
<td></td>
<td>(0.151)</td>
<td>(0.134)</td>
<td>(0.059)</td>
<td>(0.062)</td>
</tr>
<tr>
<td>Poor$_{it}(s)$</td>
<td>0.161**</td>
<td></td>
<td>0.131</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.074)</td>
<td></td>
<td>(0.110)</td>
<td></td>
</tr>
<tr>
<td>Medium$_{it}(s)$</td>
<td>-0.315***</td>
<td></td>
<td>-0.047</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.061)</td>
<td></td>
<td>(0.090)</td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>0.399***</td>
<td>0.686***</td>
<td>-0.259***</td>
<td>-0.305***</td>
</tr>
<tr>
<td></td>
<td>(0.146)</td>
<td>(0.130)</td>
<td>(0.080)</td>
<td>(0.100)</td>
</tr>
<tr>
<td>Observations</td>
<td>111</td>
<td>111</td>
<td>111</td>
<td>111</td>
</tr>
<tr>
<td>R^2</td>
<td>0.067</td>
<td>0.352</td>
<td>0.226</td>
<td>0.244</td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>0.058</td>
<td>0.334</td>
<td>0.219</td>
<td>0.222</td>
</tr>
</tbody>
</table>

Note: p<0.1; **p<0.05; ***p<0.01
Table A6: Trade Balance Effect and Revealed Comparative Advantage (trade balance effects: 17 year window averages, significant vs non-significant estimates)

<table>
<thead>
<tr>
<th></th>
<th>Goods</th>
<th>Goods</th>
<th>Services</th>
<th>Services</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>$RCA_{it}(s)$</td>
<td>-0.694**</td>
<td>-0.792</td>
<td>0.295**</td>
<td>0.252*</td>
</tr>
<tr>
<td></td>
<td>(0.298)</td>
<td>(0.793)</td>
<td>(0.129)</td>
<td>(0.127)</td>
</tr>
<tr>
<td>Poor$_{it}(s)$</td>
<td>0.110</td>
<td>0.165</td>
<td>0.019</td>
<td>0.228</td>
</tr>
<tr>
<td></td>
<td>(0.128)</td>
<td>(0.226)</td>
<td>(0.190)</td>
<td>(0.230)</td>
</tr>
<tr>
<td>Medium$_{it}(s)$</td>
<td>-0.357***</td>
<td>-0.680**</td>
<td>-0.108</td>
<td>-0.029</td>
</tr>
<tr>
<td></td>
<td>(0.110)</td>
<td>(0.243)</td>
<td>(0.164)</td>
<td>(0.249)</td>
</tr>
<tr>
<td>Constant</td>
<td>0.777**</td>
<td>0.885</td>
<td>-0.170</td>
<td>-0.303</td>
</tr>
<tr>
<td></td>
<td>(0.299)</td>
<td>(0.806)</td>
<td>(0.179)</td>
<td>(0.221)</td>
</tr>
<tr>
<td>Observations</td>
<td>37</td>
<td>17</td>
<td>37</td>
<td>13</td>
</tr>
<tr>
<td>R^2</td>
<td>0.337</td>
<td>0.457</td>
<td>0.139</td>
<td>0.357</td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>0.277</td>
<td>0.331</td>
<td>0.060</td>
<td>0.143</td>
</tr>
</tbody>
</table>

Note: *p<0.1; **p<0.05; ***p<0.01
Table A7: Trade Balance Effect and Revealed Comparative Advantage: 1995-2014 period (different years RCA)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Poor (_{it}(s))</td>
<td>0.053</td>
<td>0.141</td>
<td>0.102</td>
<td>-0.019</td>
<td>0.177</td>
<td>0.085</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.147)</td>
<td>(0.143)</td>
<td>(0.144)</td>
<td>(0.218)</td>
<td>(0.199)</td>
<td>(0.205)</td>
<td></td>
</tr>
<tr>
<td>Medium (_{it}(s))</td>
<td>-0.329**</td>
<td>-0.298**</td>
<td>-0.333***</td>
<td>-0.178</td>
<td>-0.071</td>
<td>-0.166</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.136)</td>
<td>(0.117)</td>
<td>(0.122)</td>
<td>(0.202)</td>
<td>(0.162)</td>
<td>(0.175)</td>
<td></td>
</tr>
<tr>
<td>(RCA_{i1995}(s))</td>
<td>-0.288</td>
<td></td>
<td></td>
<td>0.238</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.464)</td>
<td></td>
<td></td>
<td>(0.170)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(RCA_{i2014}(s))</td>
<td></td>
<td>-0.562**</td>
<td></td>
<td>0.390***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.254)</td>
<td></td>
<td>(0.110)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(RCA_{iAverage}(s))</td>
<td></td>
<td></td>
<td>-0.632*</td>
<td></td>
<td>0.417***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.360)</td>
<td></td>
<td>(0.147)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>0.386</td>
<td>0.610**</td>
<td>0.703*</td>
<td>-0.061</td>
<td>-0.327*</td>
<td>-0.298</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.475)</td>
<td>(0.246)</td>
<td>(0.356)</td>
<td>(0.209)</td>
<td>(0.180)</td>
<td>(0.203)</td>
<td></td>
</tr>
</tbody>
</table>

	37	37	37	37	37	37	37
Observations							
R\(^2\)	0.199	0.294	0.259	0.060	0.278	0.199	
Adjusted R\(^2\)	0.126	0.230	0.191	-0.026	0.212	0.127	

Note: *p<0.1; **p<0.05; ***p<0.01