Pubertal Changes in Gonadotropin-Releasing Hormone and Proopiomelanocortin Gene Expression in the Brain of the Male Rat

JEFFREY N. WEMANN, DONALD K. CLIFTON, AND ROBERT A. STEINER

Departments of Obstetrics and Gynecology (D.K.C., R.A.S.), Physiology and Biophysics (J.N.W., R.A.S.), and Zoology (R.A.S.), and the Population Center for Research in Reproduction (D.K.C., R.A.S.) University of Washington, Seattle, Washington 98195

ABSTRACT. Pubertal development in mammals is in part attributable to a brain-dependent process, whereby increased pulsatile GnRH secretion leads to the awakening of the entire reproductive system. However, the brain mechanisms controlling this event are unknown. The apparent increase in GnRH secretion at puberty could reflect an autonomous change in the activity of GnRH neurons themselves or in the afferent networks leading to GnRH neurons. If there were a significant increase in the secretion of GnRH with puberty onset, we hypothesized that there would be a concomitant increase in the biosynthetic capacity of GnRH neurons to meet the increasing demand. We tested this hypothesis by comparing the level of cellular prepro-GnRH mRNA (GnRH mRNA) observed between prepubertal (25-day-old; n = 5) and adult (75-day-old; n = 4) male rats by in situ hybridization. We detected no significant change with puberty in GnRH mRNA signal levels in any of the anatomical areas examined, which included the vertical limb of the diagonal band of Broca, medial septum, lateral preoptic area, and medial preoptic area. Given the variance of our analytical techniques, we determined that there was a greater than 90% probability that we would have detected a 20% increase in GnRH mRNA had there been one. Endogenous opioid peptides have been implicated in timing the onset of puberty in the rat, with the argument being that a loss in opioid tone could effect a disinhibition of GnRH secretion. One opioid peptide, β-endorphin, is among several peptides cleaved from the precursor POMC. We hypothesized that with puberty, POMC neurons in the arcuate nucleus would have an attenuated capacity to produce β-endorphin. We tested this hypothesis by comparing cellular prepro-POMC mRNA (POMC mRNA) levels in the arcuate nucleus of prepubertal (n = 6) and adult (n = 7) male rats with in situ hybridization. We observed an increase in POMC mRNA levels with puberty; prepubertal rats had relative POMC mRNA signal levels of 119 ± 10 grains/cell, while adult rats contained 167 ± 12 grains/cell (P < 0.02). This increase in cellular POMC mRNA was confined to the rostral portion of the arcuate nucleus. We conclude that the GnRH gene is fully expressed well before the time of normal puberty onset and that the increase in POMC mRNA that occurs with the onset of puberty may be important for the development of pulsatile GnRH secretion. (Endocrinology 124: 1750–1767, 1989)

Puberty in the rat is heralded by increasing plasma levels of pituitary gonadotropins, which are believed to be attributable to the augmentation of pulsatile GnRH secretion. The factors responsible for the development of pulsatile GnRH secretion remain enigmatic, indeed virtually unknown (for review, see Ref. 1). It is conceivable that increased activity of the GnRH pulse generator at the time of puberty reflects a slow maturational process of the GnRH neuron itself, which before puberty may be incapable of synthesizing and secreting GnRH. In support of this argument is the observation that over the course of puberty in the rat, the hypothalamic GnRH content gradually increases (2, 3), suggesting that GnRH synthesis, and hence secretion, is a rate-limiting event for the timing of puberty onset. This pubertal accretion in hypothalamic GnRH content could be due to either an autonomous change in the activity of GnRH neurons or an alteration in the activity of afferent pathways leading to GnRH neurons, which could, in turn, stimulate GnRH synthesis and secretion. While these possibilities are neither mutually exclusive nor exhaustive, we sought evidence to support the concepts that first, GnRH synthetic capacity may be limiting for the onset of puberty, and second, a change in neuronal afferent pathways controlling GnRH secretion could account for the change in GnRH secretory activity at the time of puberty.

Endogenous opioid peptide (EOP)-containing neurons form an afferent pathway to GnRH neurons that has been implicated in controlling the onset of puberty in the rat (4). Opiates are potent inhibitors of GnRH secretion (5, 6), and EOPs are thought to mediate, at least in

Received November 11, 1988
Address all correspondence and requests for reprints to: Robert A. Steiner, Department of Obstetrics and Gynecology, RH-20, University of Washington, Seattle Washington 98195.

* This work was supported by NIH Grants HD-12629 and HD-12625.

1760
part, the negative feedback effects of testosterone on GnRH release in the male rat (7–9). An important member of the EOP family, β-endorphin is one of several peptides cleaved from the precursor molecule POMC (10–12), and β-endorphin secreted from neurons in the arcuate nucleus figures prominently in the control of GnRH secretion (13, 14). One theory for the onset of puberty contends that the inhibitory tone on GnRH secretion exerted by OEP activity diminishes over the course of pubertal development, thereby disinhibiting GnRH secretion and awakening the cascade of sexual maturation (4).

In this report we explored two possible mechanisms to account for the pubertal increase in hypothalamic GnRH content and, presumably, the capacity to secrete and elaborate GnRH pulses in the male rat. First, we tested the hypothesis that the biosynthetic capacity of GnRH neurons increases as a function of puberty. Using mRNA levels as an index of biosynthetic capacity, we measured levels of prepro-GnRH mRNA (GnRH mRNA) in individual cells of the hypothalamus and forebrain by in situ hybridization and compared levels observed between prepubertal and adult male rats. Second, we tested the hypothesis that the activity of POMC neurons declines as a function of puberty. Again using in situ hybridization, we measured levels of pre-POMC mRNA (POMC mRNA) in neurons of the arcuate nucleus and compared levels between prepubertal and adult male rats. We report that POMC mRNA levels increase with the onset of puberty and that this increase is localized to a population of neurons in the anterior aspect of the arcuate nucleus; in contrast, we found no evidence that the amount of GnRH mRNA changes as a function of sexual development.

Materials and Methods

Animals

Male Sprague-Dawley rats were purchased (Tyler Laboratories, Bellevue, WA) and housed under light-controlled conditions (14 h of light, 10 h of darkness), with lights on at 0700 h. Animals were provided rat chow and tap water ad libitum. Twenty-five-day-old (prepubertal; n = 6) and 75-day-old (adult; n = 7) animals were anesthetized with ether and decapitated. The animals were brought into the laboratory, and individual rats from the two groups were alternately killed in order to control for the stress of being in the laboratory. The brains were quickly removed, frozen on dry ice, and stored at −80 C. Trunk blood was collected, and the serum fractions were stored at −20 C before assay for testosterone.

GnRH oligoprobe synthesis

We used a 48-base oligodeoxynucleotide probe that was complementary to the entire GnRH coding region and the first 18 bases of the GnRH-associated-peptide region of GnRH mRNA (15). The probe was synthesized by the Solid Phase Synthesis Center of the Howard Hughes Medical Institute of the University of Washington (Seattle, WA). The full-length oligomer was purified by electrophoresis through a 20% polyacrylamide-50% urea gel. The main band was cut out, and the oligomer was eluted into a solution of 100 mM Tris and 1 mM EDTA (pH 7.8). Final purification of the oligomer was performed on a New England Nuclear (NEN; Wilmington, DE) Nensorb-20 column according to the manufacturer’s directions. The final concentration of oligomer was determined by absorption at 260 nm.

The purified oligomer was 3’ end labeled with 32P-dATP in a reaction containing GnRH oligomer (0.06 μM), 3 μM 32P-dATP (NEN), 0.8 U/μl terminal deoxynucleotidyl transferase (Bethesda Research Laboratories (BRL), Gaithersburg, MD), and tailing reaction buffer supplied by BRL. This reaction was incubated at 37 C for 90 min and then stopped by transferring it to a 65 C bath for 5 min. The labeled oligomer was purified on a Nensorb-20 column and reconstituted in TED (10 mM Tris HCl, 1.0 mM EDTA, and 10 mM dithiothreitol (DTT)) to a probe concentration of 0.22 μM. The specific activity was approximately 8.4 × 108 dpm/μg. This stock solution of GnRH probe was then diluted into hybridization buffer consisting of 4 × SSC (1 × SSC = 150 mM NaCl and 15 mM Na citrate), 1 × Denhardt’s solution (1% each of Ficoll, polyvinylpyrrolidone, and BSA), 2.5 μg/ml tRNA, 0.5 mg/ml single stranded salmon sperm DNA, 50% deionized formamide, 10% dextran sulfate, and 10 μM DTT.

POMC riboprobe synthesis

A cDNA clone, pMKSU16, containing the entire coding sequence for the mouse pituitary POMC precursor, was kindly given to us by Michael Uhler. The 925-basepair (bp) HindIII-EcoRI cDNA fragment from pMKSU16 was subcloned into pGS64 and pSP65 (Promega Biotech, Madison, WI), and the orientation of the fragment in each clone was confirmed by restriction mapping. This fragment consisted of 98 bp of 5’ noncoding sequence, 195 bp of 3’ noncoding sequence, the entire 705 bp of coding sequence, and 8 bp of synthetic linker at each end (16). The subclone pLV09 contained the fragment cloned into pGS64, and pLV16 contained the insert cloned into pSP65. This was used to produce antisense RNA (cRNA complementary to POMC mRNA), which was the probe used in this experiment. Radioactive cRNA was synthesized in vitro from pLV09 and pLV16 as previously described (17). The transcription reaction contained a total of 75 μmol α-thio-UTP (NEN), of which 5.3 μmol were 32S labeled and 69.7 μmol were unlabeled α-thio-UTP. The final specific activity was 6.58 × 109 dpm/μg. The probe was hydrolyzed to an average length of 150 bases and diluted in riboprobe hybridization buffer.

Tissue preparation

Coronal slices (20 μm) were cut in a −15 C cryostat with consecutive slices thaw mounted onto three sets of poly-l-lysine-coated slides, thereby placing every third slice into a given set. Sections were collected from the point where the corpus callosum joins at the midline, through the preoptic area.
and the hypothalamus. Slides were stored in airtight boxes at
−80 °C until hybridization histochemistry was conducted. One
set of slides from each animal was then processed for GnRH
mRNA and another for POMC mRNA in situ hybridization.

GnRH cDNA in situ protocol

Tissue section slides were taken out of the −80 °C freezer,
dried, and postfixed in 4% paraformaldehyde (pH 7.4) for 5
m. The slides were then washed in 0.1 M phosphate buffer
(20 mM Na2HPO4·H2O and 80 mM NaH2PO4·7H2O) and placed
into 0.1 M triethanolamine·0.14 M NaCl, pH 8.0, with 0.25%
acetic anhydride for 10 min. Next, the tissue was rinsed in 2 ×
SSC and delipidated by passing the slides through a graded
series of alcohols, ending in chloroform. The slides were then
dried, 60 μg GnRH oligonucleotide were applied to each slide, and a
Parafilm coverslip was placed over the tissue sections. The
slides were incubated in moist chambers at 37 °C for approxi-
mately 20 h. After incubation, the coverslips were floated off
in 1 × SSC, and the slides were washed in a second dish of 1 ×
SSC for 15 min. The slides were then floated in 15 mM
Na2HPO4 and 2-mercaptoethanol at 4°C for 1 h. The slides
were then floated in 0.1 M phosphate buffer, and 60 μg POMC riboprobe were placed on a slide, followed by a
Parafilm coverslip. Tissue sections were incubated with
riboprobe for approximately 20 h in moist chambers at 45 °C.
After incubation, the coverslips were floated off in 4 × SSC
containing 4.2 mM EDTA. After a series of washes and RNase
treatment, the slides were passed through a series of alcohols
and air dried (for more detail, see Ref. 17).

 Autoradiography and histological staining

After in situ hybridization histochemistry, the slides were
dipped into NTB-2 photographic emulsion (Eastman Kodak,
Rochester, NY) that was diluted 1:1 with 600 mM ammonium
acetate and heated to 45 °C. The slides were air dried for 30
m and placed in a moist chamber for 45 min. Next, the slides
were placed in light-tight boxes with desiccant and stored at 4°C
until processed for autoradiographic exposure of silver grains
and counterstained with cresyl violet.

Anatomical matching and image analysis

GnRH mRNA. Ten coronal slices from each animal were ana-
tomically matched across animals to measure relative cellular
GnRH mRNA content. These slices were taken from the an-
terior septal region, through the diagonal band of Broca, and
the preoptic area, with the most caudal slice at the rostral
portion of the supraoptic nuclei and lateral hypothalamus. The
slides were analyzed by an operator unaware of the animal's
experimental group. All cells that labeled positively for GnRH
mRNA were analyzed, and approximately 145 cells were mea-
sured in each animal. The specific anatomical area in which
each labeled cell was located was entered into the image-
processing computer.

POMC mRNA. We divided the arcuate nucleus into four sec-
tions of approximately equal length in a rostral to caudal
orientation using a rat brain atlas (18) as an anatomical guide.
These subdivisions corresponded to the following: 1) arc A
comprised rostrally at the retrosensory area (plate 18) where
POMC-positive cells first appear, and continued caudally to
the elongation of the third ventricle (plate 19; see Ref. 18 for
plate identification); 2) arc B was continuous with arc A,
beginning at plate 19 and continuing caudally to the appearance
of the dorsal medullary nucleus (DM; plate 20); 3) arc C was
defined as the area containing the DM, beginning rostrally at
plate 20 and continuing caudally through plate 21; and 4) arc
D was defined as the area containing the DM and continued
caudally to the end of the arcuate nucleus and the disappear-
ance of POMC-positive neurons (plate 22). Three tissue sec-
ions/arcuate subdivision/animal were anatomically matched
across animals and analyzed in a blind fashion. The signal
levels in at least 10 individual cells of the arcuate nucleus/
section (usually 5 cells/side) were measured by an automated
countercomputerized image-processing system (19). This same
system was used to analyze the GnRH mRNA data. Clusters of silver
grains were identified as being over a cell nucleus with bright-
field optics, and then individual grains were counted with a
×40 epillumination darkfield objective. For the POMC mRNA
data, the signal from 65–100 cells was measured in each animal.

Control experiments

GnRH mRNA. A saturation curve was constructed to determine
the concentration of GnRH cDNA probe needed to saturate
the endogenous GnRH mRNA molecules. Figure 1 illustrates
that saturation was achieved at a probe concentration of ap-
proximately 0.21 μg/ml kilobase (kb). We performed our experi-
mental results with a GnRH probe concentration of 0.42 μg/ml-kb.
To demonstrate the binding specificity of the GnRH probe,
brain slices taken through the medial preoptic area of intact adult male rats were incubated with a saturating concentration of 35S-labeled probe and a 100-fold excess of unlabeled GnRH oligomer. An absence of grain clusters over cells on the slides treated with excess cold probe indicated that binding of the GnRH cDNA probe was specific.

POMC mRNA. The POMC cRNA probe concentration required to saturate the cells in the arcuate nucleus of male rats was also determined by producing a saturation curve (not shown). The arcuate cells were saturated at a probe concentration of approximately 0.3 µg/ml-kb. Our experiment was carried out with a probe concentration of 0.6 µg/ml-kb.

To demonstrate the binding specificity of the POMC cRNA probe, three control experiments were performed. First, 35S-labeled sense POMC cRNA probe, which had the same, not the complementary, sequence as POMC mRNA, was applied to tissue sections containing the arcuate nucleus. The fact that there were no grain clusters in these sections indicated that the silver grains clusters achieved with the use of antisense POMC cRNA probe were due to the probe binding to POMC mRNA and not the result of nonspecific binding. The second control experiment consisted of treating tissue with 20 µg/ml RNase for 30 min at 37°C before in situ hybridization with our antisense POMC cRNA probe. No silver grain clusters were observed in these sections, which demonstrated that the probe bound specifically to RNA in this experiment. In the third control experiment a 100-fold excess of unlabeled antisense POMC cRNA was added to the saturating concentration of 35S-labeled probe and applied to tissue sections. No grain clusters were discerned in these sections, which indicated that the excess unlabeled probe competed with the radiolabeled probe for specific binding sites.

Testosterone RIA.

Blood samples were analyzed for testosterone by RIA with a kit purchased from Lecco Diagnostics, Inc. (Southfield, MI). Samples were run in duplicate. The assay had a sensitivity of 5 pg/100 µl and an intraassay coefficient of variation of 3.6%; all samples were measured in a single assay.

Statistical analysis.

For both GnRH mRNA and POMC mRNA determinations, the mean grains per cell from a single animal and mean grains per cell from discrete anatomical areas in individuals were used to calculate the mean ± SEM for each group. The difference between prepubertal and adult animals in grains per cell for all of the cells counted in an animal was assessed by Student's t test. To examine differences in GnRH message in specific anatomical regions, any area in which there were at least 10 cells/animal measured in all animals was evaluated individually. Variations across anatomical areas were evaluated by two-way analysis of variance with repeated measures (ANOVA). Power calculations were performed on the GnRH mRNA data to determine the resolution capacity of the protocol.

Results

GnRH mRNA analysis.

GnRH mRNA-containing cells were identified in the anterior hypothalamic area, bed nucleus of stria terminalis, horizontal and vertical limbs of the diagonal band of Broca, lateral hypothalamus, lateral preoptic area, lateral septum, lateral septal nucleus, mediobasal hypothalamic nucleus, median nucleus of the preoptic area, medial preoptic area, medial septum, nucleus accumbens, olfactory tubercle, organum vasculosum of the lamina terminalis, retrochiasmatic area, subfornical organ, septohypothalamic nucleus, and ventral pallidum. When all of the cells for the two age groups were analyzed and compared, no difference in message signal levels was detected (Fig. 2). The four anatomical areas that warranted a statistical evaluation (diagonal band of Broca, lateral preoptic area, medial preoptic area, and medial septum) were compared by ANOVA, and no changes were found between age groups or across anatomical areas, and there was no interaction between age and area (Fig. 3). Power calculations indicated that the quantitative analysis had sufficient sensitivity to detect a 20% increase in grains per cell between groups 90% of the time at the P < 0.05 level.

POMC mRNA analysis.

Analysis of POMC mRNA levels in individual cells of the entire arcuate nucleus (Figs. 4 and 5) revealed that prepubertal animals had 119 ± 10 grains/cell, while adult cells contained an average of 167 ± 12 grains/cell (P < 0.02, by Student's t test), representing a signal increase of 40%. When the data from the four anatomical subdivisions of the arcuate nucleus were evaluated, it was
found that the difference in POMC mRNA content between prepubertal and adult animals was confined to the most rostral areas (Fig. 6). In arc A, prepubertal animals had 138 ± 17 grains/cell, while adults had 216 ± 12 grains/cell (P < 0.005, by Student’s t test), representing a 57% increase in signal. Arc B in prepubertal rats contained 113 ± 20 grains/cell, and in adults there were 177 ± 12 grain/cell (P < 0.05, by Student’s t test), again representing a 57% increase in signal intensity. There was no statistically significant difference between prepubertal and adult males in the two caudal areas of the arcuate. A significant difference across areas was detected by two-way ANOVA (P < 0.003).

Testosterone analysis

The RIA for testosterone showed that the mean (±SEM) plasma level in the prepubertal rats was less than 0.1 ng/ml, confirming their prepubertal status. The mean plasma testosterone level in adult rats was 3.33 ± 0.81 ng/ml.

Discussion

Measuring GnRH mRNA in neurons throughout the hypothalamus and forebrain of the male rat, we detected no change in message content as a function of puberty. Given the variance of our analytical technique, we determined that there was a greater than 90% probability that we would have detected a 20% increase in GnRH mRNA had there been one. There is, however, a possibility that GnRH message levels do change with sexual development, but that this change is restricted to a relatively small population of GnRH neurons dispersed among a larger heterogeneous population. If this were the case, even a large change in GnRH mRNA in cells within this subset of GnRH neurons could go undetected. Assessing this possibility will require double and triple labeling techniques combined with in situ hybridization.

Finding no significant change in GnRH mRNA with pubertal maturation suggests that the biosynthetic capacity of GnRH neurons of prepubertal animals is essentially in place, at least through the point of GnRH gene transcription and delivery of processed message to the cytoplasm. Evidence from primate species suggests that the prepubertal animal is capable of translating this GnRH message and secreting mature peptide, albeit in small amounts (20). Reinforcing this concept is the observation that pulsatile administration of the excitatory amino acid analog N-methyl-D,L-aspartic acid to prepubertal rats (21) and macaques (22) can stimulate GnRH secretion and, in rats, initiate full pubertal maturation. Furthermore, after castration in the prepubertal rat, gonadotropin secretion increases, with a time course similar to that in the adult animal (23, 24), again suggesting that the prepubertal animal is capable of producing GnRH well before the onset of puberty. Together, these findings argue that the biosynthetic elements required for synthesizing and secreting GnRH are in place in the prepubertal animal, but held in abeyance by some unknown mechanism.

Whereas our results suggest no change in the biosynthetic capacity of GnRH neurons, others have shown that hypothalamic GnRH content increases with sexual development (2, 3). The mechanism underlying the pubertal accretion of hypothalamic GnRH could involve changes in the patterning and efficiency of GnRH secretion, remodeling the prepubertal secretory pattern from a relatively constant delivery mode to one that is pulsatile and more efficient at stimulating gonadotropin secretion (22, 25). The accumulation of hypothalamic stores of the mature peptide could be explained on the basis of a simple disparity between synthesis and release. This putative remodeling of GnRH secretion could occur as a result of alterations in synaptic input to GnRH neurons or other modifications in the activity of the GnRH neuronal ensemble (26–28). It is also conceivable that pubertal changes in afferent activity to GnRH neurons mediate this possible remodeling event, and here, changes in EOP activity could play an important role. This possibility is reinforced by the fact that β-endorphin neurons from the arcuate nucleus project to the medial preoptic area and make direct, presumably inhibitory, synaptic contact onto GnRH neurons (29, 30).

We have shown that with the onset of puberty in the male rat POMC mRNA levels increase in neurons of the rostral arcuate nucleus. This result would argue against the concept that a reduction in POMC-derived EOP tone...
FIG. 4. Dark-field photomicrographs of the rostral arcuate nucleus showing cells labeled with a probe for POMC mRNA in sections obtained from prepubertal (upper panel) and adult (lower panel) male rats.
may reflect the autonomous (steroid-independent) development of an important inhibitory neurotransmitter system which has, as its function, the orchestration of discrete GnRH pulses. In such a scheme, adult-like GnRH pulses become manifest with the periodic disinhibition of GnRH neurons, brought about by a transitory decrease in the activity of β-endorphin neurons. Although unproven, this hypothesis is attractive, as it provides a rational explanation for the fact that GnRH biosynthetic capacity, as reflected by GnRH mRNA, does not appear to change during puberty. In this model system we infer that GnRH secretion is present long before puberty, but that what is missing in prepubertal life is the ability of the brain to generate discrete GnRH pulses (22), and that the developing POMC (β-endorphin) system could provide the necessary regulatory element.

The pubertal increase in POMC mRNA appears to be restricted to a small subset of neurons located in the anterior aspect of the arcuate nucleus. This finding underscores the heterogeneity of POMC neurons, which could be subserved in part by a rostro-caudal gradient in steroid hormone receptors (32) and, moreover, identifies this region of the arcuate nucleus as an area that is potentially important for mediating the events controlling the onset of puberty. A differing neuronal environment between various areas of the arcuate could affect POMC neurons and bring about the observed regional difference in message levels. Björklund, et al. (33) have demonstrated that the arcuate nucleus dopaminergic neurons within the tubero-hypophyseal system are het-

Fig. 6. A comparison between prepubertal and adult male rats in POMC mRNA signal levels (grains per cell ± SEM) in each of four regions of the arcuate nucleus divided in a rostral to caudal plane with reference to the atlas of Paxinos and Watson (18). Arc A is the most rostral section, and Arc D is the most caudal (see Materials and Methods for a full description).
erogeneous, thereby establishing a precedent for differential organization of a single neurotransmitter system within the arcuate nucleus. It appears that the arcuate pOMC system, like the dopaminergic system, should also be regarded as a diverse assemblage of functionally distinct subsystems, all using a common neurotransmitter.

Acknowledgments

We wish to thank Pam Kolb and Emilie Kabigting for their adept and proficient technical assistance, Dr. Linda Vician for developing the in situ protocol, and Dr. William Bremner for supervising the hormone analysis.

References

5. Barracough CA, Sawyer CH 1955 Inhibition of the release of pituitary ovulatory hormone in the rat by morphine. Endocrinology 57:329
8. Cicero TJ, Schainker BA, Meyer ER 1979 Endogenous opioids participate in the regulation of the hypothalamic-pituitary-luteinizing hormone axis and testosterone's negative feedback control of luteinizing hormone. Endocrinology 104:1296
15. Uhler M, Herbert E 1982 Complete amino acid sequence of mouse pro-opiomelanocortin derived from the nucleotide sequence of pro-opiomelanocortin cDNA. J Biol Chem 258:257
16. Rogers KV, Vician L, Steiner RA, Clifton DK 1987 Reduced preprosomatostatin messenger ribonucleic acid in the periventricular nucleus of hypophysectomized rats determined by quantitative in situ hybridization. Endocrinology 121:90