This work has been submitted to the Journal of Climate.

Copyright in this work may be transferred without further notice.
Plant Physiology Increases the Magnitude and Spread of the Transient Climate Response to CO₂ in CMIP6 Earth System Models

Claire Marie Zarakas

A thesis
submitted in partial fulfillment of the
requirements for the degree of

Master of Science

University of Washington
2020

Committee:
Abigail Swann
Kyle Armour
Gerard Roe

Program Authorized to Offer Degree:
Atmospheric Sciences
University of Washington

Abstract

Plant Physiology Increases the Magnitude and Spread of the Transient Climate Response to CO₂ in CMIP6 Earth System Models

Claire Marie Zarakas

Chair of the Supervisory Committee:
Abigail Swann
Department of Atmospheric Sciences

Increasing concentrations of CO₂ in the atmosphere not only influence climate through CO₂’s effect as a greenhouse gas but also through its impact on plants. Plants respond to atmospheric CO₂ concentrations in several ways that can alter surface energy and water fluxes and thus surface climate, including changes in stomatal conductance, water use, and canopy leaf area. These plant physiological responses are already embedded in most Earth System models, and a robust literature demonstrates that they can affect global-scale temperature. However, the physiological contribution to transient warming has yet to be assessed systematically in Earth System models. Here this gap is addressed using carbon cycle simulations from the 5th and 6th phases of the Coupled Model Intercomparison Project (CMIP) to isolate the radiative and physiological contributions to the transient climate response (TCR). In CMIP6 models, the physiological effect contributes 0.12°C (σ: 0.09°C; range: 0.02 - 0.29°C) of warming to the TCR, corresponding to 6.1% of the full TCR (σ: 3.8%; range: 1.4 - 13.9%). Moreover, variation in the physiological contribution to the TCR across models contributes disproportionately more to the inter-model spread of TCR estimates than it does to the mean. The largest contribution of plant
physiology to CO₂-forced warming – and the inter-model spread in warming – occurs over land, especially in forested regions.
TABLE OF CONTENTS

LIST OF FIGURES...6

LIST OF TABLES..8

Chapter 1. INTRODUCTION..10

Chapter 2. METHODS ...15
 2.1. CMIP Experiments ..15
 2.2. Models ..16
 2.3. Calculation of Climate Sensitivity Metrics TCR and T140 ...17
 2.4. Isolating Physiology’s Influence on Temperature ...18
 2.5. Partitioning Physiological Influences on Evapotranspiration ..19

Chapter 3. RESULTS ...20
 3.1. Physiology’s Contribution to the TCR and T140 ...20
 3.2. Spatial Pattern of Physiologically-Driven Warming ..24
 3.3. Physiology’s Contribution to Uncertainty in CO₂-Forced Warming27
 3.4. Mechanisms of Physiologically-Driven Warming ...30
 3.4.1. Mechanisms over Land ...30
 3.4.2. Mechanisms over Ocean ...34

Chapter 4. DISCUSSION AND IMPLICATIONS ..36
 4.1. Magnitude of the Physiological Contribution to the TCR ...36
 4.2. Broad Implications of Carbon Cycle Uncertainty ..37

BIBLIOGRAPHY ..41
Appendix A. LITERATURE REVIEW ...50
Appendix B. DESCRIPTION OF MODELS USED ..52
Appendix C. NONLINEARITIES BETWEEN THE PHYSIOLOGICAL AND
RADIATIVE EFFECTS OF CO₂ ...54
Appendix D. DERIVATION OF EQUATION 1 ..58
Appendix E. MODEL AGREEMENT ...60
Appendix F. INTERNAL VARIABILITY AND SIGNIFICANCE TESTING63
LIST OF FIGURES

Figure 1. Time series of global mean temperature change for (a) all CO₂-forced warming, as calculated from FULL-PI, (b) the radiative contribution to global mean CO₂-forced warming, as calculated from RAD-PI, and (c) the physiological contribution to global mean CO₂-forced warming, as calculated from FULL-RAD. Time series in (a), (b), and (c) are smoothed with a 20-year rolling average. The dark gray vertical line marks the time of CO₂ doubling, and the light gray bar indicates the 20-year period surrounding the time of CO₂ doubling. Colors indicate modeling center and line types indicate CMIP phase (CMIP5: dashed; CMIP6: solid). Temperature changes for GFDL-ESM2M are only shown for years 1-70 because this model stopped ramping up CO₂ concentration after reaching 2xCO₂. Note that the set of models included in the average differs between CMIP5 and CMIP6, and that the y-axis scale in (c) differs from (a) and (b). ...21

Figure 2. Relationship between TCRRAD (RAD-PI) and TCRFULL (FULL-PI). The gray 1:1 line is where we would expect all models to be if the TCR were entirely caused by the radiative effects of CO₂. The added warming from the physiological effect is the vertical distance between the gray 1:1 line and each point. Marker types indicate CMIP phase (CMIP5: circles; CMIP6: triangles) and colors indicate modeling center. Crosses demarcate the CMIP6 (solid) and CMIP5 (dashed) multi-model means, and the width of each cross corresponds to two times the ensemble mean standard deviation in global mean near-surface temperature from the preindustrial control. ..22

Figure 3. Spatial pattern of (a) absolute physiologically-driven warming and (b) physiological percent contribution to total warming at 2xCO₂, where physiologically-driven warming is calculated by FULL-RAD. Multi-model means include the 12 CMIP6 models. Stippling indicates regions where less than 8 out of the 12 models agree on the sign of change.................25

Figure 4. The relationship between the land/ocean warming contrast (the ratio of the change in mean non-glaciated land near-surface air temperature to the change in mean ocean near-surface air temperature) from RAD (RAD-PI) and FULL (FULL-PI) at 2xCO₂. The gray 1:1 line is where we would expect all models to be if the warming contrast were entirely caused by the radiative effects of CO₂. Physiology’s addition to the warming contrast is the vertical distance between the gray 1:1 line and each point. Marker types indicate CMIP phase (CMIP5: circles; CMIP6: triangles) and colors indicate modeling center as in Figure 2. Crosses demarcate multi-model means, where the width of each cross is two standard deviations across models. Note that the set of models included in the average differs between CMIP5 and CMIP6.........................26

Figure 5. Spatial pattern of physiology’s relative contribution to inter-model spread in CO₂-forced warming, as quantified by the ratio of the standard deviation (σ; at each grid cell, across models) of physiologically-forced warming (calculated from FULL-RAD) to σ of radiatively-forced warming (calculated from RAD-PI) at 2xCO₂ for CMIP6 models, i.e. σPHYSlat,lon/
σRADlat, lon. A value of 1 means that the physiological and radiative effects of CO₂ contribute equally to the total uncertainty in local warming at 2xCO₂ across models.

Figure 6. Land zonal means of physiologically-driven changes in (a) land surface albedo and (b) evapotranspiration at 2xCO₂ for CMIP6 models, as calculated by FULL-RAD. (c) Zonal means of how much physiologically-driven changes in different land processes (LAI, stomatal conductance, and evaporation) contribute to the total multi-model mean physiologically-driven change in land evapotranspiration, where the partitioning is calculated with Equation 1. Multi-model means in this figure are averaged across all CMIP6 models for which model output is available, which consists of up to 12 models. Transpiration and LAI data necessary for this partitioning were not available for GFDL-ESM4, MPI-ESM1-2-LR, and ACCESS-ESM1-5 so these models are only included in the multi-model mean for the total evapotranspiration change.

Figure 7. Spatial pattern of multi-model mean physiologically-driven changes in surface energy fluxes as calculated by FULL-RAD at the point of CO₂ doubling (averaged over years 61-80) for (a) clear-sky downwelling shortwave radiation, (b) cloudy downwelling shortwave radiation, (c) upwelling shortwave radiation, (d) net shortwave radiation, (e) clear-sky downwelling longwave radiation, (f) cloudy downwelling longwave radiation, (g) upwelling longwave radiation, (h) net longwave radiation, (i) latent heat (LH), (j) sensible heat (SH), (k) heat uptake (G), and (l) net radiation (Rnet). Because the surface energy budget is balanced, LH + SH + G = Rnet. The cloudy radiative fluxes in (b) and (e) are calculated as the difference between all-sky and clear-sky radiative fluxes. Multi-model means include all CMIP6 models for which model output is available; this consists of up to 12 models. Data for some surface energy fluxes were not available for the following models: GFDL-ESM4 (panels a, b, d, and f), GISS-E2-1-G, 3 (panels c and j) and CNRM-ESM2-1 (panels e and f). Stippling indicates regions where less than 8 models agree on the sign of change.
LIST OF TABLES

Table 1. Summary of CMIP experiments used...16

Table 2. TCR_{FULL}, TCR_{RAD}, and TCR_{PHYS} by model, where TCR_{PHYS} is calculated by both PHYS-PI and FULL-RAD. The consistent model subset refers to the eight models for which the necessary model output is available for both CMIP5 and CMIP6. For the summary statistics in the last four rows, the percentages refer to the mean and standard deviations of the percent contributions across models. ...23

Table 3. Drivers of inter-model spread in global mean warming, as quantified by the standard deviation. ..28
ACKNOWLEDGMENTS

I would like to thank my advisor, Abigail Swann, for her exceptional mentorship, advising, enthusiasm, and support. I would also like to thank my other collaborators on this project - Marysa Laguë, Kyle Armour, and James Randerson - for their thoughtful feedback and contributions to this research. I also appreciate the guidance from my thesis committee - Abigail Swann, Kyle Armour, and Gerard Roe – and thank them for helpful discussions and feedback related to this project. Funding support for this research came from the University of Washington Program on Climate Change Fellowship, the Department of Energy Computational Science Graduate Fellowship (DE-SC0020347), and the National Science Foundation AGS-1553715 to the University of Washington.

I am very grateful to the many people who have made the department of Atmospheric Sciences and Ecoclimate lab a welcoming community and engaging place to do research – a special thanks to the Ecoclimate lab members Greta Shum, Jennifer Hsiao, Marysa Laguë, Sam Pennypacker, Lucas Vargas Zeppetello, and Fiona Lo; my cohort Yuk Chun Chan, Tyler Cox, Andrew DeLaFrance, Carley Fredrickson, Lily Hahn, Daniel Lloveras, Jacqueline Nugent, Phil Rund, Clayton Sasaki, Greta Shum, Adam Sokol, Lindsey Taylor, Sami Turbeville, and Mingcheng Wang; and the Atmospheric Sciences staff.

Finally, I am thankful to my family, Doug, and friends in and beyond Seattle for their love and support.
Chapter 1.
INTRODUCTION

Increasing concentrations of atmospheric CO$_2$ alter global temperature through both CO$_2$’s role as a greenhouse gas within the atmosphere (radiative effect) and through plants’ response to CO$_2$ at the land surface (physiological effect). Plants respond to atmospheric CO$_2$ concentrations by regulating their stomata (pores on the leaves which modulate the exchange of CO$_2$ and water vapor between the leaf and the atmosphere), changing water use, adjusting canopy leaf area, and ultimately, changing species composition and vegetation cover. These plant physiological responses to higher CO$_2$ can physically influence land surface temperature by altering land evapotranspiration, surface albedo, and surface roughness, which are important controls over the fluxes of water and energy between the land surface and the atmosphere. Here we use the term “physiological effect” to encompass the net biogeophysical effect of all plant responses to increasing CO$_2$, but note that in some previous studies (e.g. Skinner et al. 2018) the term refers solely to the effect of changes in stomatal conductance. The physiological effect in this study may therefore be smaller than some previous estimates (e.g., Skinner et al. 2018; Cao et al. 2010) because increases in leaf area can counteract the influence of changes in stomatal conductance on land evapotranspiration.

Plant responses to CO$_2$ modulate land evapotranspiration through two opposing mechanisms. Higher concentrations of CO$_2$ in the atmosphere provide a larger gradient over which CO$_2$ diffuses into the interior airspace of leaves. As a result, most plant types close their stomata in response to increasing CO$_2$, thereby decreasing transpiration per unit of leaf area (Field et al. 1995). In contrast, photosynthetic rates under some environmental conditions are limited by access to CO$_2$, and in these instances more CO$_2$ can lead to higher rates of
photosynthesis, which is often referred to as CO₂ fertilization. CO₂ fertilization tends to either have no influence on canopy leaf area or to increase canopy leaf area (Norby and Zak 2011; Donohue et al. 2013), which increases transpiration. The physiological effect’s net influence on land evapotranspiration therefore depends on the relative magnitude of the stomatal response and the leaf area response, as well as the extent to which vegetation influences land-atmosphere interactions in a given region (Lian et al. 2018). Most Earth System models (ESMs; Swann et al. 2016; Lemordant et al. 2018) and field experiments (Hungate et al. 2002; Leakey et al. 2009) suggest that the stomatal response term dominates in areas with moderate to high leaf area, leading to a net decrease in land evapotranspiration. However, future projections of photosynthetic rates, leaf growth rates, and thus transpiration remain highly uncertain (Friedlingstein et al. 2006; Anav et al. 2013; Piao et al. 2013; Smith et al. 2016; Lian et al. 2018).

Physiologically-driven reductions in evapotranspiration can warm local land temperatures directly by decreasing evaporative cooling, as well as indirectly through influences on low level humidity, cloud cover, and precipitation. Recent modeling studies have demonstrated that physiologically-driven decreases in land evapotranspiration can reduce cloud cover by decreasing low level relative humidity (Doutriaux-Boucher et al. 2009; Andrews et al. 2011, 2012; Arellano et al. 2012; Lemordant et al. 2018), which amplifies regional physiologically-driven warming. If the leaf area response were to dominate over stomatal responses, the resulting increase in evapotranspiration could decrease land temperatures through these same mechanisms. Physiologically-forced drying of the boundary layer and warming of the land surface can not only modulate local surface energy fluxes, but can also impact large scale atmospheric dynamics and regional precipitation (Kooperman et al. 2018a; Langenbrunner et al. 2019; Saint-Lu et al. 2019; Park et al. 2020).
In addition to influencing land surface temperature by altering evapotranspiration, the plant physiological response to CO$_2$ can also influence land surface temperature by altering land surface albedo. CO$_2$ fertilization generally decreases albedo (thereby increasing temperature) by increasing leaf area and, within dynamic vegetation models, by shifting plant functional types from grasses to trees (Bala et al. 2006; Andrews et al. 2019). Expansion of forests in boreal and Arctic regions can result in especially large albedo decreases (Betts 2000; Bala et al. 2006; O’ishi et al. 2009; Andrews et al. 2019; Xu et al. 2020) because increases in foliage mask bright snow.

The global-scale temperature implications of plants’ physiological responses to CO$_2$ have been long acknowledged. Sellers et al. (1996) were the first to quantify physiologically-driven warming by coupling a biosphere model to an atmosphere model, finding that under a doubling of CO$_2$ the physiological effect increased global land temperature by about 0.3°C and mean global temperature by about 0.1°C. Since then, multiple modeling studies have demonstrated that the plant physiological response tends to increase land temperature in most modern ESMs on annual timescales (Betts et al. 2007; Cao et al. 2010; Andrews et al. 2011; Arora et al. 2013; Swann et al. 2016; Lemordant et al. 2016, 2018; Arora et al. 2019) and during heatwaves (Lemordant et al. 2016; Skinner et al. 2018; Lemordant and Gentine 2019). In particular, as part of their analysis to disentangle carbon-concentration and carbon-climate feedbacks, Arora et al. (2013, 2019) show that the physiological effect drives modest transient global warming in most CMIP5 (Arora et al. 2013; Figure 2a-c) and CMIP6 (Arora et al. 2019; Figure 4a-c) ESMs, although they explicitly quantify the physiological warming only for the multi-model mean.

Despite this demonstrated physiological influence on global surface temperatures, the physiological effect has received limited recognition in the climate dynamics literature. Although
plants’ physiological responses to CO$_2$ are already embedded in many ESMs which are used to estimate the transient climate response (TCR) and equilibrium climate sensitivity (ECS), studies that explicitly quantify the physiological contribution to such global-scale climate sensitivity metrics have been limited to ESMs from a few individual modeling centers (summarized in Table A1; Sellers et al. 1996; Betts et al. 1997; Cox et al. 1999; Douville et al. 2000; Levis et al. 2000; Bala et al. 2006; Betts et al. 2007; Doutriaux-Boucher et al. 2009; Boucher et al. 2009; Cao et al. 2009; O’ishi et al. 2009; Cao et al. 2010; Andrews et al. 2011; Pu and Dickinson 2012). Physiology’s contribution to the TCR has not been systematically assessed across models and Coupled Model Intercomparison Project (CMIP) phases.

Additionally, past studies in the climate sensitivity literature have not specifically quantified the physiological contribution to the TCR using the same experimental methodology from which the full TCR is calculated. For example, baseline levels of CO$_2$ have ranged from 280 to 400 ppm across experiments (Table A1) and the physiological effect’s influence on temperature has been analyzed from both abrupt (Doutriaux-Boucher et al. 2009; Cao et al. 2010; Andrews et al. 2011) and transient (Bala et al. 2006; Boucher et al. 2009) CO$_2$ perturbations. Modeling studies have also differed in whether they include both the stomatal and leaf area components of the physiological effect or only the stomatal component. While these different experimental designs have provided insights into the mechanisms and timescales of the physiological effect’s influence on climate, they do not provide systematic estimates of the full physiological contribution to the TCR across ESMs.

The lack of systematic inter-model comparison of the physiological contribution to the TCR is a problematic gap in the existing literature because past work suggests that physiologically-driven warming differs across models. Arora et al. (2013, 2019) documented that
the magnitude of global physiologically-driven warming varies across models, reflecting that models differ both in how plants respond to increasing CO₂ (Friedlingstein et al. 2006; Anav et al. 2013; Piao et al. 2013; Smith et al. 2016; Lian et al. 2018) and in how the atmosphere responds to perturbations to the land surface energy budget (Andrews et al. 2009; Devaraju et al. 2018). This suggests that inter-model disagreement about the magnitude of physiologically-driven warming may be an unrecognized contributor to inter-model spread in CO₂-forced warming. Additionally, poor model agreement on the magnitude of physiologically-driven warming would mean that an estimate derived from a single model may not capture the true multi-model mean. To address this gap, we use standardized carbon cycle model simulations from the CMIP phase 5 and 6 archives to assess (1) the magnitude of the physiological effect’s influence on temperature across models, (2) whether trends in the physiological effect contribute to the increase in the TCR noted for many recent models (Andrews et al. 2019; Gettelman et al. 2019; Golaz et al. 2019; Flynn and Mauritsen 2020), (3) the spatial pattern of physiologically-driven temperature changes, (4) how physiological processes contribute to variability in multi-model estimates of the TCR, and (5) the mechanisms through which the physiological effect influences temperature.
Chapter 2. METHODS

2.1. CMIP Experiments

As part of CMIP5 and CMIP6, modeling groups performed three concentration-driven experiments (summarized in Table 1) in which CO₂ concentrations increase by 1 percent per year from pre-industrial levels (284.3 ppm) to a quadrupling of CO₂ (1144.9 ppm), while all other forcings remain at pre-industrial levels. The spatial pattern of vegetation in these simulations comes from the pre-industrial era; this spatial pattern remains constant throughout the simulation except for in land models with dynamic vegetation (Tables B1 and B2), where the distribution of plant functional types changes based on climate and resource availability. In one set of simulations, referred to here as ‘FULL’ (CMIP6 experiment ‘1pctCO2’), both the atmosphere and carbon cycle (on land and in the oceans) experience increasing CO₂ concentrations. Additional experiments conducted as part of the Coupled Climate–Carbon Cycle Model Intercomparison Project (C4MIP; Friedlingstein et al. 2006; Jones et al. 2016) enable us to isolate how much the physiological and radiative effects of CO₂ each contribute to surface warming. In a set of C4MIP simulations, referred to here as ‘RAD’ (CMIP6 experiment ‘1pctCO2-rad’), only the atmosphere experiences increasing CO₂ concentrations, while the terrestrial and oceanic carbon cycles experience constant pre-industrial CO₂ concentrations. In another set of C4MIP simulations, referred to here as ‘PHYS’ (CMIP6 experiment ‘1pctCO2-bgc’), the radiative transfer submodels in the atmosphere experience constant pre-industrial CO₂ concentrations, while the land surface and ocean carbon cycle submodels experience the increasing CO₂ concentrations. We use the concentration-driven pre-industrial control
experiment (referred to here as ‘PI’, CMIP6 experiment ‘piControl’) as the baseline from which anomalies are calculated.

<table>
<thead>
<tr>
<th>Experiment</th>
<th>CMIP5 Experiment Name</th>
<th>CMIP6 Experiment Name</th>
<th>Influence of CO₂ Concentration on:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Land</td>
</tr>
<tr>
<td>FULL</td>
<td>1pctCO2</td>
<td>1pctCO2</td>
<td>1% per year</td>
</tr>
<tr>
<td>PHYS</td>
<td>esmFixClim1</td>
<td>1pctCO2-bgc</td>
<td>1% per year</td>
</tr>
<tr>
<td>RAD</td>
<td>exmFdbk1</td>
<td>1pctCO2-rad</td>
<td>Pre-industrial</td>
</tr>
<tr>
<td>PI</td>
<td>piControl</td>
<td>piControl</td>
<td>Pre-industrial</td>
</tr>
</tbody>
</table>

	Ocean	
		Pre-industrial
		Pre-industrial
		Pre-industrial

	Atmosphere	
		Pre-industrial
		Pre-industrial
		Pre-industrial

Table 1. Summary of CMIP experiments used

2.2. Models

We analyze output from all ESMs that had uploaded near-surface air temperature monthly data for the FULL, PI, and PHYS and/or RAD experiment to the Earth System Grid by May 13, 2020. This consisted of 8 CMIP5 models (Table B1) and 12 CMIP6 models (Table B2). These models all include interactive representations of the carbon cycle; plants in these models respond to increasing CO₂ by changing leaf area, stomatal conductance, and, in some models, the location and distribution of plant functional types (indicated in Tables B1 and B2). Three models from CMIP6 have dynamic vegetation; however, we do not believe this is a large enough set of models to draw general conclusions about the impact of dynamic vegetation. In addition, one of these three models is UKESM1-0-LL which has a significantly larger physiologically-driven temperature response relative to other models, but it is unclear if this stronger temperature response is driven by dynamic vegetation.

Ocean responses to increasing CO₂ include changes in inorganic and biological carbon cycling, which have negligible direct influences on modeled ocean surface temperature. The only potential direct influences of ocean carbon cycle responses on ocean surface temperatures in the PHYS experiments are through changes in plankton community structure which can alter (1)
ocean biogeophysical properties and (2) the emission of gases and particles which influence aerosol formation (Hense et al. 2017). These effects are not represented in most models. We calculate multi-model mean maps after re-gridding model output to a consistent 0.9424° latitude by 1.25° longitude grid.

2.3. Calculation of Climate Sensitivity Metrics TCR and T140

We calculate the TCR as the change in globally averaged near-surface air temperature during the 20-year window centered on the time of CO₂ doubling (years 61-80 of the simulation where CO₂ concentration increases by 1% per year) relative to pre-industrial CO₂ concentrations. When using the PI experiment as a control, we account for model drift by subtracting the linear trend of PI years 1-140 following Gregory and Forster (2008), where year 1 corresponds to the year at which FULL, RAD, and PHYS were branched from PI. We refer to the physiological and radiative contributions to the full TCR as TCR\text{PHYS} and TCR\text{RAD}, respectively.

We also quantify the physiological and radiative contributions to the T140 metric (Gregory et al. 2015; Grose et al. 2018). We calculate T140 as the change in globally averaged near-surface air temperature during the 20-year window that ends at the time of CO₂ quadrupling (years 121-140 of the simulation where CO₂ concentration increases by 1% per year) relative to the linearly detrended PI experiment following Gregory et al. (2015).

We assess whether our estimates of physiologically-driven warming are robust relative to variability in the Earth System by comparing TCR\text{PHYS} and T140\text{PHYS} to the distribution of 20-year running mean global temperatures in the full PI control experiments (Figure F1). In two of the CMIP6 models evaluated here (BCC-CSM2-MR and CNRM-ESM2-1), large, multidecadal (greater than 20 year) oscillations exist in the PI control (Figure F1; noted in Parsons et al. 2020). The magnitude of these oscillations greatly exceeds the magnitude of the TCR\text{PHYS} signal, and
thus we cannot confidently quantify the $T_{CR_{PHYS}}$ for these two models. These models’ large multidecadal PI oscillations also have implications for $T_{CR_{FULL}}$, as they suggest that model $T_{CR_{FULL}}$ estimates may be strongly influenced by variability rather than only representing the CO_2-forced warming signal, since for these models smoothing out variability would require an averaging period of greater than 20 years.

2.4. Isolating Physiology’s Influence on Temperature

We quantify the influence of the physiological effect in two ways: as the difference between the FULL and RAD simulations (FULL-RAD) and as the difference between the PHYS and PI simulations (PHYS-PI). Both represent physiology’s influence on the TCR, but FULL-RAD includes any nonlinear interactions between the radiative and physiological effects of increasing CO_2, while PHYS-PI does not. For example, FULL-RAD would include the interaction between CO_2 fertilization and changes in leaf area (quantified as the leaf area index, LAI) induced by radiatively-driven warming. Warming generally increases vegetation productivity in high-latitudes that are temperature-limited under current conditions (Qian et al. 2010), thereby increasing leaf area (Keenan and Riley 2018), while some ESMs suggest warming may decrease vegetation productivity and leaf area in the tropics (Mahowald et al. 2016) where current temperatures are already near plants’ optimal temperatures for photosynthesis. We focus on the FULL-RAD methodology in the main text because it emphasizes how much the physiological effect changes climate relative to what models would otherwise show from radiative forcing alone. Because FULL and RAD branch from the same point of the PI simulation, using FULL-RAD to quantify the physiological effect also avoids issues related to drift in the PI control. We discuss the nonlinearity between the radiative and physiological effects of CO_2 in more detail in Appendix C.
2.5. Partitioning Physiological Influences on Evapotranspiration

In order to partition the total physiologically-driven change in land evapotranspiration into its component physiological drivers, we derived Equation 1 (see Appendix D). The four terms on the right-hand side of Equation 1 indicate the land evapotranspiration change due to (1) changes in leaf area, (2) changes in stomatal conductance (approximated as changes in transpiration per leaf area), (3) interactions between changes in stomatal conductance and changes in leaf area, and (4) changes in land evaporation.

$$\Delta ET = (\frac{T}{L})_{REF} (\Delta L) + L_{REF} \left(\Delta \frac{T}{L} \right) + \left(\Delta \frac{T}{L} \right) (\Delta L) + \Delta E$$

Equation 1

where ET = evapotranspiration (mm/day); T = transpiration (mm/day); L = leaf area index (unitless); and E = evaporation (mm/day). The REF subscript indicates the value from the reference experiment without physiological responses to CO$_2$ (RAD for the FULL-RAD method and PI for the PHYS-PI method), and Δ indicates the physiologically-driven change (e.g. as calculated from FULL-RAD).
Chapter 3.
RESULTS

3.1. Physiology’s Contribution to the TCR and T140

The radiative effect of CO₂ is, unsurprisingly, the dominant contributor to both the TCR and T140. However, we also find that the physiological response to increased CO₂ makes a non-negligible secondary contribution to the TCR and T140 in many CMIP5 and CMIP6 models (Figures 1 and 2). In CMIP6 models, the physiological effect contributes about 0.12°C (σ: 0.09°C; range: 0.02 - 0.29°C) to the TCR, corresponding to 6.1% of the full TCR (σ: 3.8%; range: 1.4 - 13.9%) (Table 2). For a few CMIP6 models (especially UKESM1-0-LL and CESM2), the physiological contribution to warming is quite large, accounting for over 10% of the total TCR (Table 2). Physiology-driven warming increases with increasing CO₂ concentration (Figure 1c), on average contributing 0.21°C (σ: 0.12°C; range: 0.03 - 0.45°C) to the T140 metric. On a percentage basis, the physiological effect contributes proportionally less to the T140 metric (4.9%; σ: 2.5%) than to the TCR, though this varies across models.

In CMIP5 models, the physiological effect contributes 0.14°C (σ: 0.16°C; range: 0.00 - 0.51°C) to the TCR, corresponding to 6.6% of the full TCR (σ: 6.3%; range: 0.1 - 20.1%). When comparing the same subset of eight models for which we have model output from both CMIP phases, physiologically-driven warming is comparable in CMIP5 and CMIP6 (Table 2). This suggests that the increases in TCR_{FULL} from CMIP5 to CMIP6 noted for many recent models (Andrews et al. 2019; Gettelman et al. 2019; Golaz et al. 2019; Flynn and Mauritsen 2020) were driven primarily by increases in TCR_{RAD} rather than TCR_{PHYS}. Physiology’s relative contribution to the TCR decreased in most models (Table 2), due to many CMIP6 models’ increased values of TCR_{RAD}.
The multi-model mean T_{CR} values reported here are within the range of estimates from other studies (summarized in Table A1), but on the low side of this range likely for two reasons. First, many previous studies isolated the effect of the stomatal response on near-surface temperatures rather than the net effect of both the stomatal and leaf area responses (Table A1); we expect a larger temperature increase from the stomatal response alone than from the combined stomatal and leaf area responses because increases in leaf area counteract the stomatal response’s influence on evapotranspiration. Second, our study is the first to compare T_{CR} across models (12 from CMIP6 and 8 from CMIP5), and the fact that the existing literature did not capture the full spread in T_{CR} across models underscores the importance of a multi-model approach.
The global mean TCR_{PHYS} signal is small in comparison to TCR_{FULL}, and it is statistically significant relative to the pre-industrial control for only 7 of 12 CMIP6 and 5 of 8 CMIP5 models at 2xCO$_2$ (Table F1). By 4xCO$_2$, the physiologically-driven warming signal emerges from the noise for more models (Figure F1), becoming statistically significant for 9 CMIP6 and 7 CMIP5 models (Table F1). The three CMIP6 models that are not statistically significant by 4xCO$_2$ (CNRM-ESM2-1, BCC- CSM2-MR, and IPSL-CM6A-LR) are the three models with the most variability in the PI control of all the CMIP5 and CMIP6 models we analyze (Figure F1).

Figure 2. Relationship between TCR_{RAD} (RAD-PI) and TCR_{FULL} (FULL-PI). The gray 1:1 line is where we would expect all models to be if the TCR were entirely caused by the radiative effects of CO$_2$. The added warming from the physiological effect is the vertical distance between the gray 1:1 line and each point. Marker types indicate CMIP phase (CMIP5: circles; CMIP6: triangles) and colors indicate modeling center. Crosses demarcate the CMIP6 (solid) and CMIP5 (dashed) multi-model means, and the width of each cross corresponds to two times the ensemble mean standard deviation in global mean near-surface temperature from the preindustrial control.
<table>
<thead>
<tr>
<th>Modeling Center</th>
<th>Model Name</th>
<th>CMIP5 Model TCR</th>
<th>CMIP6 Model TCR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>FULL</td>
<td>RAD</td>
</tr>
<tr>
<td>Beijing Climate Center (BCC)</td>
<td>bcc-csm1-1</td>
<td>1.73</td>
<td>1.67</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canadian Centre for Climate Modelling and</td>
<td>CanESM2</td>
<td>2.34</td>
<td>2.16</td>
</tr>
<tr>
<td>Analysis (CCMa)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>National Center for Atmospheric Research</td>
<td>CESM1-BGC</td>
<td>1.68</td>
<td>1.56</td>
</tr>
<tr>
<td>(NCAR)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOAA Geophysical Fluid Dynamics Laboratory</td>
<td>GFDL-ESM2M</td>
<td>1.35</td>
<td>1.35</td>
</tr>
<tr>
<td>(NOAA-GFDL)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Met Office Hadley Centre (MOHC)</td>
<td>HadGEM2-ES</td>
<td>2.52</td>
<td>2.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Institut Pierre Simon Laplace (IPSL)</td>
<td>IPSL-CM5A-LR</td>
<td>2.00</td>
<td>1.97</td>
</tr>
<tr>
<td>Norwegian Climate Centre (NCC)</td>
<td>NorESM1-ME</td>
<td>1.56</td>
<td>1.42</td>
</tr>
<tr>
<td>Max Planck Institute for Meteorology (MPI-M)</td>
<td>MPI-ESM-LR</td>
<td>2.02</td>
<td>1.95</td>
</tr>
<tr>
<td>Commonwealth Scientific and Industrial</td>
<td>ACCESS-ESM1-5</td>
<td>1.95</td>
<td>1.79</td>
</tr>
<tr>
<td>Research Organisation (CSIRO)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centre National de Recherches</td>
<td>CNRM-ESM2-1</td>
<td>1.84</td>
<td>1.80</td>
</tr>
<tr>
<td>Météorologiques (CNRM-CERFACS)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA Goddard Institute for Space</td>
<td>GISS-E2-1-G</td>
<td>1.80</td>
<td>1.71</td>
</tr>
<tr>
<td>Studies (NASA-GISS)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Japan Agency for Marine-Earth Science</td>
<td>MIROC-ES2L</td>
<td>1.55</td>
<td>1.52</td>
</tr>
<tr>
<td>and Technology (JAMSTEC)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>All Models</td>
<td>1.90</td>
<td>1.76</td>
</tr>
<tr>
<td></td>
<td>Consistent Model Subset</td>
<td>1.90</td>
<td>1.76</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>All Models</td>
<td>0.40</td>
<td>0.30</td>
</tr>
<tr>
<td></td>
<td>Consistent Model Subset</td>
<td>0.40</td>
<td>0.30</td>
</tr>
</tbody>
</table>

Table 2. TCR_{FULL}, TCR_{RAD}, and TCR_{PHYS} by model, where TCR_{PHYS} is calculated by both PHYS-PI and FULL-RAD. The consistent model subset refers to the eight models for which the necessary model output is available for both CMIP5 and CMIP6. For the summary statistics in the last four rows, the percentages refer to the mean and standard deviations of the percent contributions across models.
3.2. Spatial Pattern of Physiologically-Driven Warming

The physiological effect only directly influences land surface properties, and thus the largest warming driven by the physiological effect occurs over land. In CMIP6 models, the physiological effect results in a land mean warming of 0.22°C at 2xCO₂ and 0.41°C at 4xCO₂, relative to a corresponding mean ocean warming of 0.09°C and 0.14°C respectively (Figure 3a). Physiologically-driven warming over land is also statistically significant for more ESMs than it is for the global mean at both 2xCO₂ and 4xCO₂ (Table F1). The spatial pattern of physiologically-driven warming that we find is consistent with other studies, which also show the greatest warming over land and modest ocean warming (Table A1).

The greatest mean physiologically-driven warming occurs over boreal forests and non-glaciated high-latitude land, followed by temperate and tropical forested regions. The agreement across models is reasonably high - at least 8 of 12 CMIP6 models agree that the physiological effect results in warming in these three biomes at 2xCO₂ (Figure E1) and 10 of 12 CMIP6 models show warming in these biomes at 4xCO₂ (Figure E2). Relative to radiatively-driven warming, physiology also contributes more to land warming than ocean warming, with physiological forcing constituting a mean 7.4% of total CO₂-forced land warming at 2xCO₂ compared to 4.5% of ocean warming (Figure 3b). The physiological effect therefore amplifies the land/ocean warming contrast: at 2xCO₂ non-glaciated land warms faster than the ocean with a mean ratio of 1.60 for the RAD simulations from CMIP6, whereas the mean land/ocean warming contrast for the FULL simulations is 1.64, due to the addition of the physiological effect (Figure 4). This physiologically-driven enhancement of the land/ocean warming contrast was previously demonstrated for Met Office Hadley Centre models (Joshi et al. 2008; Dong et al. 2009), and we
Figure 3. Spatial pattern of (a) absolute physiologically-driven warming and (b) physiological percent contribution to total warming at 2xCO₂, where physiologically-driven warming is calculated by FULL-RAD. Multi-model means include the 12 CMIP6 models. Stippling indicates regions where less than 8 out of the 12 models agree on the sign of change.
show here that this warming contrast is robust across most CMIP models. In two models the physiological effect reduces the land/ocean warming contrast (Figure 4). These outliers may result from large leaf area increases counteracting the influence of stomatal closure on evapotranspiration (resulting in minimal net physiologically-driven change in evapotranspiration or even small increases in evapotranspiration) or from large multi-decadal variability in some models (Figure F1) overwhelming the physiological signal.

Figure 4. The relationship between the land/ocean warming contrast (the ratio of the change in mean non-glaciated land near-surface air temperature to the change in mean ocean near-surface air temperature) from RAD (RAD-PI) and FULL (FULL-PI) at 2xCO₂. The gray 1:1 line is where we would expect all models to be if the warming contrast were entirely caused by the radiative effects of CO₂. Physiology’s addition to the warming contrast is the vertical distance between the gray 1:1 line and each point. Marker types indicate CMIP phase (CMIP5: circles; CMIP6: triangles) and colors indicate modeling center as in Figure 2. Crosses demarcate multi-model means, where the width of each cross is two standard deviations across models. Note that the set of models included in the average differs between CMIP5 and CMIP6.
The larger absolute and relative physiologically-driven warming over non-glaciated land is consistent with the physiological effect directly influencing land surface properties in regions with plant cover, while influencing glaciated land and oceans only indirectly through changes in heat transport, clouds, and other aspects of climate dynamics. Though the remote influence of physiological forcing on oceans and glaciated land is relatively modest, most models agree that the physiological effect results in mean warming of near-surface oceanic air and ocean surface layers. The regions of the most robust physiologically-driven oceanic warming across models are the western North Atlantic, equatorial Pacific, equatorial Indian Ocean, and high latitude Pacific.

Byrne and O’Gorman (2018) suggest that increases in the near surface land-ocean temperature contrast are causally driven by temperature change over the ocean. However, the physiologically-driven enhanced land-ocean contrast, where the only initial difference is over the land surface, shows that land surface processes can also initiate the feedback loop of decreasing relative humidity over land leading to a larger increase in temperature over land relative to over ocean. The potential to initiate this loop through land processes is noted by Byrne and O’Gorman (2016), and we further emphasize that point here. It is important to acknowledge the physiological effect’s greater relative contribution to land warming because land warming (rather than global mean warming) is the most relevant metric for many societal climate impacts.

3.3. Physiology’s Contribution to Uncertainty in CO₂-Forced Warming

The magnitude of global physiologically-driven warming varies significantly across models (Figures 1, 2, and E3) and this uncertainty contributes to the inter-model spread of TCR estimates. In the CMIP6 models analyzed here, the radiative effect alone explains about 91.9% of the standard deviation in the TCR across models (Table 3), with the physiological effect contributing the remaining 8.1%. Thus, the impact of the physiological effect on model-to-model
variability is disproportionately large relative to its contribution to the mean (8.1% for the standard deviation versus 6.1% for the mean). The physiological effect accounts for relatively less inter-model spread in the T140 metric (Table 3), consistent with other work (Geoffroy et al. 2012, Lutsko and Popp 2019) demonstrating that radiative feedbacks contribute increasingly more to inter-model disagreement in warming with increasing time in the transient 1pctCO$_2$ experiment.

<table>
<thead>
<tr>
<th>CMIP Phase</th>
<th>Region</th>
<th>2xCO$_2$ (TCR)</th>
<th>4xCO$_2$ (T140)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>FULL-PI</td>
<td>RAD-PI</td>
</tr>
<tr>
<td>CMIP6</td>
<td>Global</td>
<td>0.43°C</td>
<td>0.40°C (92%)</td>
</tr>
<tr>
<td></td>
<td>Land1</td>
<td>0.58°C</td>
<td>0.50°C (86%)</td>
</tr>
<tr>
<td></td>
<td>Ocean</td>
<td>0.38°C</td>
<td>0.36°C (95%)</td>
</tr>
<tr>
<td>CMIP5</td>
<td>Global</td>
<td>0.40°C</td>
<td>0.30°C (76%)</td>
</tr>
<tr>
<td></td>
<td>Land1</td>
<td>0.58°C</td>
<td>0.39°C (68%)</td>
</tr>
<tr>
<td></td>
<td>Ocean</td>
<td>0.33°C</td>
<td>0.27°C (81%)</td>
</tr>
</tbody>
</table>

Table 3. Drivers of inter-model spread in global mean warming, as quantified by the standard deviation.

The physiological effect contributes more to uncertainty in CO$_2$-forced warming over land. Averaged across all non-glaciated land, the physiological effect explains about 13.6% of the standard deviation in mean land warming across models at 2xCO$_2$ in CMIP6 (Table 3). In some highly forested land regions (tropical Africa, northwestern South America, and the southeastern United States), inter-model disagreement in local warming at 2xCO$_2$ is driven by approximately equal contributions of uncertainty from physiologically- and radiatively-forced warming (Figure 5). These results suggest that the physiological effect is a non-negligible contributor to inter-model spread in the TCR and regional land CO$_2$-forced warming at 2xCO$_2$.

1 Non-glaciated land
However, some of these pre-industrial forested regions are largely deforested in the present day, which means that in scenario-based future projections the physiological effect may contribute less to uncertainty in these regions than Figure 5 implies.

Figure 5. Spatial pattern of physiology’s relative contribution to inter-model spread in CO$_2$-forced warming, as quantified by the ratio of the standard deviation (σ; at each grid cell, across models) of physiologically-forced warming (calculated from FULL-RAD) to σ of radiatively-forced warming (calculated from RAD-PI) at 2xCO$_2$ for CMIP6 models, i.e. $\sigma_{\text{PHYS}}(\text{lat}, \text{lon})/\sigma_{\text{RAD}}(\text{lat}, \text{lon})$. A value of 1 means that the physiological and radiative effects of CO$_2$ contribute equally to the total uncertainty in local warming at 2xCO$_2$ across models.

The physiological effect contributes less to uncertainty in CO$_2$-forced warming over the ocean, explaining about 5% of the standard deviation of the mean ocean warming across models at 2xCO$_2$ in CMIP6 (Table 3). In all oceanic regions, inter-model disagreement in CO$_2$-forced warming is driven more by radiative processes than the physiological effect (Figure 5). However, Figure 5 suggests that physiology is a significant secondary driver of inter-model disagreement.
in the magnitude of CO$_2$-forced warming in some ocean regions (e.g. North Atlantic and North Pacific), possibly due to inter-model disagreement in the extent to which physiological responses influence cloud cover in these regions (discussed in 3.4.2).

3.4. Mechanisms of Physiologically-Driven Warming

3.4.1. Mechanisms over Land

The physiological effect increases near-surface air temperatures over land by modifying surface properties which modulate terrestrial energy fluxes (Bonan 2008; Laguë et al. 2019). This occurs through (1) changes in the partitioning between surface turbulent fluxes resulting from physiological influences on evapotranspiration, (2) radiative changes due to physiologically-driven changes in albedo, cloud cover, and column water vapor, and (3) changes in surface roughness resulting from changes in leaf area and vegetation distribution.

In most models, plants’ response to CO$_2$ causes a net decrease in mean land evapotranspiration, especially in the tropics (Figure 6), indicating that stomatal closure decreases evapotranspiration by enough to offset increases in evapotranspiration from increased leaf area, though the magnitude and sign of evapotranspiration change does vary spatially across models. In the CMIP6 multi-model mean at 2xCO$_2$, global leaf area changes increase evapotranspiration by 0.19 mm/day (σ: 0.17 mm/day; range: 0.00-0.52 mm/day), changes in stomatal conductance (approximated by the change in transpiration per leaf area) decrease global land evapotranspiration by 0.13 mm/day (σ: 0.10 mm/day; range: 0.00-0.29 mm/day), and the interaction between changes in stomatal conductance and leaf area decreases evapotranspiration by an additional 0.08 mm/day (σ: 0.10 mm/day; range: 0.00-0.29 mm/day; Figure 6c). Land evaporation changes minimally (0.01 mm/day; σ: 0.03 mm/day; range: -0.06 - +0.06 mm/day;
Figure 6c). In the multi-model mean, the net effect of these physiological responses is a decrease in evapotranspiration, with the largest and most robust decrease in the tropics (Figures 6). This physiologically-driven decrease in evapotranspiration due to increased CO₂ has previously been documented for CMIP5 models (Swann et al. 2016; Lemordant et al. 2018), and holds for the new CMIP6 models analyzed here. Under constant net radiation at the surface, this physiologically-driven decrease in evapotranspiration results in more energy leaving the land surface through sensible heating (Figure 7), thereby increasing near-surface air temperatures.

The physiological effect also increases surface and near-surface temperatures by generally increasing the net radiation at the surface (Figure 7l). Net shortwave radiation on land increases primarily through decreases in albedo and cloud cover (Figure 7d). Albedo decreases primarily in high latitudes (Figure 6), due to both increases in leaf area and decreases in snow cover due to increased temperatures. Consistent with previous studies (Doutriaux-Boucher et al. 2009; Andrews et al. 2011, 2012; Arellano et al. 2012; Lemordant et al. 2018), downwelling shortwave radiation (SW\text{down}) reaching the surface also increases as a consequence of decreases in cloud cover (especially in Northern Hemisphere mid- and high-latitudes and over the northeastern Amazon; Figure 7b), which are driven both by decreases in relative humidity from physiologically-forced reductions in evapotranspiration and by increases in air temperature. In the multi-model mean, the physiological effect causes only modest changes in clear-sky SW\text{down} (Figure 7), though some individual models do show significant SW\text{down} changes, which could be modified by changes in water vapor and aerosols (e.g., as Andrews et al. 2012 documented in HadGEM2-ES due to vegetation’s influence on dust optical depth).
Figure 6. Land zonal means of physiologically-driven changes in (a) land surface albedo and (b) evapotranspiration at 2xCO$_2$ for CMIP6 models, as calculated by FULL-RAD. (c) Zonal means of how much physiologically-driven changes in different land processes (LAI, stomatal conductance, and evaporation) contribute to the total multi-model mean physiologically-driven change in land evapotranspiration, where the partitioning is calculated with Equation 1. Multi-model means in this figure are averaged across all CMIP6 models for which model output is available, which consists of up to 12 models. Transpiration and LAI data necessary for this partitioning were not available for GFDL-ESM4, MPI-ESM1-2-LR, and ACCESS-ESM1-5 so these models are only included in the multi-model mean for the total evapotranspiration change.
Figure 7. Spatial pattern of multi-model mean physiologically-driven changes in surface energy fluxes as calculated by FULL-RAD at the point of CO₂ doubling (averaged over years 61-80) for (a) clear-sky downwelling shortwave radiation, (b) cloudy downwelling shortwave radiation, (c) upwelling shortwave radiation, (d) net shortwave radiation, (e) clear-sky downwelling longwave radiation, (f) cloudy downwelling longwave radiation, (g) upwelling longwave radiation, (h) net longwave radiation, (i) latent heat (LH), (j) sensible heat (SH), (k) heat uptake (G), and (l) net radiation (R_{net}). Because the surface energy budget is balanced, $LH + SH + G = R_{net}$. The cloudy radiative fluxes in (b) and (e) are calculated as the difference between all-sky and clear-sky radiative fluxes. Multi-model means include all CMIP6 models for which model output is available; this consists of up to 12 models. Data for some surface energy fluxes were not available for the following models: GFDL-ESM4 (panels a, b, d, and f), GISS-E2-1-G, 3 (panels c and j) and CNRM-ESM2-1 (panels e and f). Stippling indicates regions where less than 8 models agree on the sign of change.
The physiological effect also influences surface net longwave radiation (Figure 7h) through changes in surface and boundary layer temperatures, cloud cover, atmospheric column water vapor, and the partitioning of surface energy fluxes. Outgoing longwave radiation from the land surface (LW\textsubscript{up}) increases with increasing surface temperature through the Planck feedback (Figure 7g). This increase in LW\textsubscript{up} is partially offset by increases in clear-sky downward longwave radiation at the land surface (LW\textsubscript{down}; Figure 7e). Clear-sky LW\textsubscript{down} increases due to warming of the boundary layer driven by both increased sensible heating and by longwave radiation associated with surface warming (Vargas Zeppetello et al. 2019), and clear-sky LW\textsubscript{down} can also be influenced by physiologically-driven changes in atmospheric water vapor. Cloud changes resulting from reduced land evapotranspiration decrease LW\textsubscript{down} (Figure 7f). The net effect of all of these processes generally results in a decrease of net longwave radiation over most vegetated land (Figure 7h).

3.4.2. Mechanisms over Ocean

Because most models do not have any mechanism through which ocean carbon cycle responses to CO\textsubscript{2} can influence ocean temperatures, the modeled oceanic warming as calculated by FULL-RAD must be the result of remote, land-driven warming. Recognizing the oceanic component of physiologically-driven warming is important because it constitutes about half of TCR\textsubscript{PHYS} – even though the magnitude of physiologically-driven oceanic warming is much smaller than land warming on a per area basis, the TCR is a global-scale metric and ocean constitutes about 70% of the Earth’s surface area.

The physiological effect on land can alter ocean temperatures through advection of continental air that has been directly influenced by changes in land surface properties (e.g. changes in air temperature or moisture content) as well as through changes in atmospheric or
oceanic circulation. Some robust oceanic warming regions are downwind of warming land regions, which could be associated with advection of warm continental air by the prevailing winds. Cloud cover over oceans also decreases in some regions that are downwind of land, particularly in the North Atlantic, increasing ocean temperatures by increasing net radiation (Figure 7). Teleconnections likely also contribute to ocean warming, based on past work indicating that changes in large-scale atmospheric circulation and atmospheric energy transport can be induced by physiological forcing (Kooperman et al. 2018a; Langenbrunner et al. 2019; Saint-Lu et al. 2019; Park et al. 2020) or other changes in land surface properties (Swann et al. 2012, 2014; Devaraju et al. 2015; Laguë and Swann 2016; Devaraju et al. 2018). Additionally, the physiological effect has the potential to induce changes in ocean circulation (e.g., Diffenbaugh et al. 2004). Exploration of the links between land surface perturbations and ocean temperature merits further research.
Chapter 4.
DISCUSSION AND IMPLICATIONS

4.1. Magnitude of the Physiological Contribution to the TCR

The biological and ecological processes governing canopy leaf area and stomatal conductance are often considered to exist squarely in the domain of carbon cycle feedbacks (i.e., they impact the climate system through their influence on CO$_2$ concentrations themselves). Our analysis demonstrates that these terrestrial carbon cycle processes are also embedded in global climate sensitivity metrics like the TCR through plants’ impact on land surface properties and surface energy fluxes.

We quantified the plant physiological effect’s small but significant influence on CO$_2$-forced temperature changes, finding that at 2xCO$_2$ the physiological effect contributes about 0.12°C (6.1%) to the TCR and leads to about 0.22°C of warming over non-glaciated land. Recognizing this physiological component of CO$_2$ forcing is necessary for understanding forcing differences across greenhouse gases (e.g. increasing N$_2$O concentration does not induce warming from physiological responses) and has implications for estimating the TCR from historical observations. Because some of the observed historical temperature change has been driven by non-CO$_2$ forcing agents which do not induce physiological responses in plants, estimates of the TCR from historical observations may be biased low, though this is likely a small effect since CO$_2$ currently constitutes the majority of the total radiative forcing. While the physiological effect can constitute over 10% of the total TCR in some CMIP6 models, changes in the representation of plant physiology do not appear to be a driver of the increase in the TCR observed from CMIP5 to CMIP6.
The significant physiologically-driven warming at higher CO$_2$ concentrations, inter-model agreement in the sign of TCR$_{\text{PHYS}}$, and consistent spatial pattern of warming gives us confidence that we are detecting a real physiologically-driven signal and not just a residual from internal variability. However, internal variability is a large source of uncertainty in quantifying TCR$_{\text{PHYS}}$ (Figure 1c), and this uncertainty is intrinsically included in estimates of TCR$_{\text{FULL}}$. Integration of a large-ensembles approach into the next C4MIP is necessary to address this issue and to reduce uncertainties in the TCR in future work (Deser et al. 2020). This could be done through integrating a requirement for a minimum number of initial condition ensembles in the experiment.

A limitation of our study is that the C4MIP model output necessary to disentangle physiologically- and radiatively-forced warming is only available for about a quarter of the models for which we can estimate the full TCR (12 of 47 for CMIP6 and 8 of 30 for CMIP5). We therefore cannot quantify TCR$_{\text{PHYS}}$, or the physiological contribution to uncertainty in the TCR, for the remaining CMIP models. Future work could further leverage C4MIP model output to assess whether signatures of physiologically-driven warming (such as seasonal variations in the CO$_2$-forced change of the diurnal temperature range; Bounoua et al. 1999; Collatz et al. 2000) could be used to estimate the physiological contributions to mean warming from the FULL experiments alone.

4.2. Broad Implications of Carbon Cycle Uncertainty

The terrestrial carbon cycle’s influence on global warming means that uncertainty in terrestrial carbon cycle processes contributes to uncertainty in CO$_2$-forced warming. We find that in CMIP6, the physiological effect explains about 13.6% of the standard deviation in CO$_2$-forced warming over non-glaciated land. We also identify several forested land regions (tropical Africa,
northwestern South America, and the southeastern United States) for which the physiological effect contributes as much as the radiative effect (i.e. about 50% of the total) to inter-model disagreement in local warming at 2xCO₂. The spread in the magnitude of physiologically-driven warming across CMIP6 models represents real scientific uncertainty, as there are limited observational constraints to suggest that either the high or low extremes of modeled physiological responses of stomatal conductance, leaf area, and resulting evapotranspiration are within expectations (Medlyn et al. 2011; De Kauwe et al. 2013; Schimel et al. 2015).

It is also possible that ESMs do not probe the full scientific uncertainty surrounding plants’ responses to CO₂, as models may contain systematic biases. For example, many models represent stomatal conductance using the same key parameters (e.g., the same slope constant in the Ball-Berry (1987) stomatal conductance model or the g1 fitted parameter in the Medlyn (2011) model) to govern how stomatal conductance responds to increasing CO₂, despite the wide variation in these parameters across and within plant functional types (Lin et al. 2015; Wolz et al. 2017). Similarly, some studies suggest (e.g. Smith et al. 2016) that ESMs systematically overestimate the leaf area increases resulting from CO₂ fertilization, which would mean that models overestimate physiologically-driven albedo decreases and underestimate physiologically-driven evapotranspiration decreases. We would expect this to result in a true physiologically-forced temperature change that is smaller than models suggest at high latitudes (where albedo matters more) and larger than models suggest at low latitudes (where ET matters more).

Furthermore, Green et al. (2017) suggest that ESMs may systematically underestimate some feedbacks between land biosphere changes and the atmosphere.

On the one hand, acknowledging the physiological contribution to uncertainty in modeled CO₂-forced warming suggests that models agree more on the magnitude of radiatively forced
warming than the prevailing narrative implies. For atmospheric dynamicists most interested in purely radiatively-driven processes, these findings therefore motivate more deliberate consideration of plant functioning in experimental designs; RAD simulations may be more appropriate than FULL simulations for some climate dynamics questions. On the other hand, acknowledging the physiological contribution means that reducing uncertainty in the full (Earth System) TCR requires reducing uncertainty in land surface processes which are especially difficult to constrain. From this perspective, these findings provide a new motivation for further experimental studies to reduce uncertainty in terrestrial carbon cycle processes. For example, we identify that plants’ responses to CO₂ are a major driver of uncertainty in transient warming in tropical Africa, and no free-air CO₂ enrichment (FACE) experiments exist in tropical forests to constrain uncertainty in how those ecosystems will respond to increasing CO₂.

Additionally, while this study focuses on how the physiological effect influences temperature and the TCR, uncertainty surrounding plant physiological responses to CO₂ can influence many aspects of the climate system. Because plant physiological responses affect land evapotranspiration, uncertainty surrounding plant physiological responses propagates to uncertainty in the hydrologic cycle. Previous studies have demonstrated that plant physiological responses play a critical role in determining the influence of increasing CO₂ concentration on runoff (Kooperman et al. 2018b) and precipitation (Kooperman et al. 2018a; Chadwick et al. 2017, 2019), especially in the Amazon (Richardson et al. 2018; Langenbrunner et al. 2019). Our finding that plant physiology contributes to inter-model variation in CO₂-forced warming could therefore motivate further analyses of RAD and PHYS experiments to quantify the physiological contribution to uncertainty in these quantities. Carbon cycle uncertainty is not limited to the
carbon cycle, and efforts to reduce uncertainty in plants’ responses to CO₂ will also help to reduce uncertainty in the physical climate response to increasing CO₂.
BIBLIOGRAPHY

——, D. Ackerley, T. Ogura, and D. Dommenget, 2019: Separating the Influences of Land Warming, the Direct CO2 Effect, the Plant Physiological Effect, and SST Warming on

——, M. D. Fowler, F. M. Hoffman, C. D. Koven, K. Lindsay, M. S. Pritchard, A. L. S. Swann, and J. T. Randerson, 2018b: Plant Physiological Responses to Rising CO2 Modify

Appendix A.
LITERATURE REVIEW

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Experimental Setup</th>
<th>Processes Represented</th>
<th>Temperature Change (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study</td>
<td>Modeling Center(^1)</td>
<td>Model (GCM / Land Model where applicable)</td>
<td>CO(_2) Perturbation</td>
</tr>
<tr>
<td>Sellers et al. (1996)</td>
<td>NASA / CSU</td>
<td>Colorado State University GCM / SiB2</td>
<td>Abrupt</td>
</tr>
<tr>
<td>Betts et al. (1997)</td>
<td>MOHC</td>
<td>MOHC GCM / Sheffield vegetation model</td>
<td>Abrupt</td>
</tr>
<tr>
<td>Cox et al. (1999)</td>
<td>MOHC</td>
<td>HadAM3 / MOSES</td>
<td>Abrupt</td>
</tr>
<tr>
<td>Douville et al. (2000)</td>
<td>CNRM</td>
<td>ARPEGE-Climat / ISBA (incorporating output from HadAM3 / MOSES)</td>
<td>Abrupt(^5)</td>
</tr>
<tr>
<td>Levis et al. (2000)</td>
<td>Penn State University</td>
<td>GENESIS GCM / IBIS</td>
<td>Abrupt</td>
</tr>
<tr>
<td>Betts et al. (2007)</td>
<td>MOHC</td>
<td>HadSM3</td>
<td>Abrupt</td>
</tr>
<tr>
<td>Cao et al. (2009)</td>
<td>NCAR</td>
<td>CAM3.1 / CLM3.0</td>
<td>Abrupt</td>
</tr>
<tr>
<td>Doutriaux-Boucher et al. (2009)</td>
<td>MOHC</td>
<td>HadCM3LC</td>
<td>Abrupt</td>
</tr>
<tr>
<td>Boucher et al. (2009)</td>
<td>MOHC</td>
<td>HadCM3</td>
<td>Transient(^2)</td>
</tr>
<tr>
<td>Cao et al. (2010)</td>
<td>NCAR</td>
<td>CAM3.5 / CLM3.5</td>
<td>Abrupt</td>
</tr>
<tr>
<td>Pu and Dickinson (2012)</td>
<td>NCAR</td>
<td>CESM (CAM4 / CLM4)</td>
<td>Abrupt</td>
</tr>
<tr>
<td>Bala et al. (2006)</td>
<td>LLNL</td>
<td>INCCA (NCAR-DOE PCTM / IBIS2)</td>
<td>Transient</td>
</tr>
<tr>
<td>O’ishi et al. (2009)</td>
<td>University of Tokyo, NIES, and JAMSTEC</td>
<td>MIROC / LPJ</td>
<td>Abrupt</td>
</tr>
<tr>
<td>Doutriaux-Boucher et al. (2009)</td>
<td>MOHC</td>
<td>HadCM3LC</td>
<td>Abrupt</td>
</tr>
<tr>
<td>Andrews et al. (2011)</td>
<td>MOHC</td>
<td>HadCM3LC</td>
<td>Abrupt</td>
</tr>
</tbody>
</table>
TABLE A1. Summary of relevant previous work quantifying global-scale physiologically-driven warming. Studies are separated by whether they assess the physiological contribution to warming at 2xCO$_2$ or 4xCO$_2$, and studies are then listed chronologically. We do not include model estimates which include the effects of photosynthetic down-regulation, but Bounoua et al. (2010) suggest that down-regulation decreases physiologically-driven temperature changes while Pu and Dickinson (2012) suggest that down-regulation increases physiologically-driven temperature changes.

1 Modeling center refers to the modeling center associated with the development of the model used, which does necessarily correspond to the authors’ primary affiliations.

2 S = Slab ocean model; F = fixed SSTs; C = full ocean model

3 This column indicates whether the physiological contribution to warming was estimated by the difference between FULL and RAD simulations (FULL-RAD) or as the difference between PHYS and PI simulations (PHYS-PI). Appendix C discusses the differences between the FULL-RAD and PHYS-PI methods in more detail.

4 Stom. Cond. = stomatal conductance

5 2xCO$_2$ experiments used fixed SSTs obtained from a fully coupled transient experiment

6 While LAI is allowed to respond to changing CO$_2$ concentrations in these studies, LAI does not respond much during the relatively short 5-year timescale of these studies.

7 The HadCM3LC model is run from 1860-2100 under transient IS92a emission scenario, and changes are calculated as the difference between the 1970-2000 average and the 2070-2100 average. The mean atmospheric CO$_2$ concentration was about 346 ppm from 1970-2000, and scenario IS92a reaches about 700 ppm by 2100.
Appendix B.
DESCRIPTION OF MODELS USED

<table>
<thead>
<tr>
<th>Modeling Center</th>
<th>Earth System Model Name</th>
<th>Land Model Name</th>
<th>Land Model Abbreviation</th>
<th>Dynamic Vegetation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beijing Climate Center (BCC)</td>
<td>bcc-csm1-1 (Wu et al. 2014)</td>
<td>Beijing Climate Center Atmosphere – Vegetation Interaction Model Version 1.0</td>
<td>BCC-AVIM1</td>
<td>No</td>
</tr>
<tr>
<td>National Center for Atmospheric Research (NCAR)</td>
<td>CESM1-BGC (Hurrell et al. 2013; Lindsay et al. 2014)</td>
<td>Community Land Model Version 4 (Oleson et al. 2010; Lawrence et al. 2011)</td>
<td>CLM4</td>
<td>No</td>
</tr>
<tr>
<td>NOAA Geophysical Fluid Dynamics Laboratory (GFDL)</td>
<td>GFDL-ESM2M (Dunne et al. 2012)</td>
<td>GFDL Land Model 3.0 (Dunne et al. 2012)</td>
<td>LM3</td>
<td>Yes</td>
</tr>
<tr>
<td>Met Office Hadley Centre (MOHC)</td>
<td>HadGEM2-ES (Collins et al. 2011; Martin et al. 2011)</td>
<td>Top-down Representation of Interactive Foliage and Flora Including Dynamics</td>
<td>TRIFFID</td>
<td>Yes</td>
</tr>
<tr>
<td>Institut Pierre Simon Laplace (IPSL)</td>
<td>IPSL-CM5A-LR (Dufresne et al. 2013)</td>
<td>Organizing Carbon and Hydrology in Dynamic Ecosystems</td>
<td>ORCHIDEE</td>
<td>No</td>
</tr>
<tr>
<td>Max Planck Institute for Meteorology (MPI)</td>
<td>MPI-ESM-LR (Giorgetta et al. 2013)</td>
<td>Jena Scheme for Biosphere–Atmosphere Coupling in Hamburg</td>
<td>JSBACH</td>
<td>Yes</td>
</tr>
</tbody>
</table>

TABLE B1. Description of CMIP5 models used in analysis.
<table>
<thead>
<tr>
<th>Modeling Center</th>
<th>Earth System Model Name</th>
<th>Land Model Name</th>
<th>Land Model Abbreviation</th>
<th>Dynamic Vegetation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beijing Climate Center (BCC)</td>
<td>BCC-CSM2-MR (Wu et al. 2019)</td>
<td>Beijing Climate Center Atmosphere – Vegetation Interaction Model Version 2.0</td>
<td>BCC-AVIM2</td>
<td>No</td>
</tr>
<tr>
<td>National Center for Atmospheric Research (NCAR)</td>
<td>CESM2 (Danabasoglu et al.)</td>
<td>Community Land Model Version 5 (Lawrence et al. 2019)</td>
<td>CLM5</td>
<td>No</td>
</tr>
<tr>
<td>NOAA Geophysical Fluid Dynamics Laboratory (GFDL)</td>
<td>GFDL-ESM4</td>
<td>GFDL Land Model version 4.1</td>
<td>LM4p1</td>
<td>Yes</td>
</tr>
<tr>
<td>Met Office Hadley Centre (MOHC)</td>
<td>UKESM1-0-LL (Sellar et al. 2019)</td>
<td>Joint UK Land Environment Simulator</td>
<td>JULES-ES-1.0</td>
<td>Yes</td>
</tr>
<tr>
<td>Institut Pierre Simon Laplace (IPSL)</td>
<td>IPSL-CM6A-LR</td>
<td>Organizing Carbon and Hydrology in Dynamic Ecosystems, branch 2.0</td>
<td>ORCHIDEE, branch 2.0</td>
<td>No</td>
</tr>
<tr>
<td>Centre National de Recherches Météorologiques (CNRM)</td>
<td>CNRM-ESM2-1 (Séférian et al. 2019)</td>
<td>Interaction Soil-Biosphere-Atmosphere (Decharme et al. 2019)</td>
<td>ISBA-CTRIP</td>
<td>No</td>
</tr>
<tr>
<td>NASA Goddard Institute for Space Studies (NASA-GISS)</td>
<td>GISS-E2-1-G</td>
<td>GISS Land Surface Model</td>
<td>GISS LSM</td>
<td>No</td>
</tr>
<tr>
<td>Japan Agency for Marine-Earth Science and Technology (JAMSTEC)</td>
<td>MIROC-ES2L (Hajima et al. Submitted)</td>
<td>Vegetation Integrative SImulator for Trace gases model (Ito and Inatomi 2011; Hajima et al. Submitted)</td>
<td>VISIT-e</td>
<td>No</td>
</tr>
<tr>
<td>Max Planck Institute for Meteorology (MPI)</td>
<td>MPI-ESM1.2- LR (Mauritsen et al. 2019)</td>
<td>Jena Scheme for Biosphere–Atmosphere Coupling in Hamburg</td>
<td>JSBACH3.2</td>
<td>Yes</td>
</tr>
<tr>
<td>Norwegian Climate Centre (NCC)</td>
<td>NorESM2-LM</td>
<td>Community Land Model Version 5 (Lawrence et al. 2019)</td>
<td>CLM5</td>
<td>No</td>
</tr>
<tr>
<td>Commonwealth Scientific and Industrial Research Organization (CSIRO)</td>
<td>ACCESS-ESM1.5</td>
<td>Community Atmosphere Biosphere Land Exchange</td>
<td>CABLE2.4 with CASA-CNP</td>
<td>No</td>
</tr>
</tbody>
</table>

TABLE B2. Description of CMIP6 models used in analysis.
Appendix C.
NONLINEARITIES BETWEEN THE PHYSIOLOGICAL AND RADIATIVE EFFECTS OF CO₂

Nonlinearities between the physiological and radiative effects of increasing CO₂ can result in differences in physiologically-driven climate changes between FULL-RAD (which includes any nonlinear interactions) and PHYS-PI (which does not include nonlinear interactions). We refer to the effect of these nonlinear interactions as the interaction term, which we calculate as the difference between FULL-RAD and PHYS-PI. On global scales, there is poor model agreement on the sign of the interaction term. At 2xCO₂ and 4xCO₂, some models show more physiologically-driven warming in PHYS-PI than FULL-RAD and some models show the opposite, resulting in a negligible interaction term in the multi-model mean globally and over non-glaciated land (Figures C1 and C2). However, in some regions there is better model coherence on the sign of the interaction term. For example, at 2xCO₂, most models show physiologically-driven warming in the Southern Ocean, especially the Weddell Sea, in PHYS-PI but not in FULL-RAD (Figure E1). At 4xCO₂, most models show more physiologically-driven warming in PHYS-PI than FULL-RAD in the tropics and eastern United States (Figure E2), though the interaction term in these regions is much smaller than FULL-RAD or PHYS-PI.

There are several mechanisms that could drive nonlinearities between the physiological and radiative effects of increasing CO₂. The magnitude of physiologically-driven changes in evapotranspiration depends on both reference system leaf area and stomatal conductance (Equation 1), so radiatively-driven changes in these quantities can result in nonlinearities in evapotranspiration changes.
and therefore temperature. For example, radiatively-driven warming generally increases leaf area in high-latitudes (Keenan and Riley 2018), while some ESMs suggest warming may decrease vegetation productivity and leaf area in the tropics (Mahowald et al. 2016). Differences in sea ice extent between RAD and PI could also lead to nonlinearities in the Earth System response to physiologically-driven perturbations to the land surface, since sea ice feedbacks are nonlinear with temperature (Goosse et al. 2018) and multiple studies have found that vegetation changes can drive changes in sea ice extent (Laguë and Swann 2016; Kim et al. 2020; Park et al. 2020). Alternatively, internal variability of the Earth System could result in differences between FULL-RAD and PHYS-PI that do not represent a robust, physically meaningful interaction term.
FIGURE C1. Comparison of the physiological contribution to warming at 2xCO$_2$ as calculated by PHYS-PI vs. as calculated by FULL-RAD in (a) the global mean and (b) over non-glaciated land. The gray 1:1 line is where we would expect all models to be if there were no nonlinear interactions between the radiative and physiological effects of increasing CO$_2$. Marker types indicate CMIP phase (CMIP5: circles; CMIP6: triangles) and colors indicate modeling center. Crosses mark multi-model means (black) for CMIP6 (solid) and CMIP5 (dashed), and the width of each cross corresponds to two times the ensemble mean standard deviation in global mean near-surface temperatures from the preindustrial control (a) globally and (b) over non-glaciated land. NorESM2-LM is not included in this figure because PHYS model output was not available for NorESM2-LM.
FIGURE C2. Comparison of the physiological contribution to warming at 4xCO₂ as calculated by PHYS-PI vs. as calculated by FULL-RAD in (a) the global mean and (b) over non-glaciated land. The gray 1:1 line is where we would expect all models to be if there were no nonlinear interactions between the radiative and physiological effects of increasing CO₂. Marker types indicate CMIP phase (CMIP5: circles; CMIP6: triangles) and colors indicate modeling center. Crosses mark multi-model means (black) for CMIP6 (solid) and CMIP5 (dashed), and the width of each cross corresponds to two times the ensemble mean standard deviation in global mean near-surface temperatures from the preindustrial control (a) globally and (b) over non-glaciated land. NorESM2-LM is not included in this figure because PHYS model output was not available for NorESM2-LM.
Appendix D.
DERIVATION OF EQUATION 1

We derive an equation to partition the total physiologically-driven change in evapotranspiration (ET) into its component physiological drivers by first expressing ET as a function of transpiration per leaf area, leaf area, and evaporation, as shown in Equation D1:

\[ET = T + E = \left(\frac{T}{L} \right) L + E \]
Equation D1

where \(ET \) = evapotranspiration (mm/day), \(T \) = transpiration (mm/day), \(E \) = evaporation (mm/day), and \(L \) = leaf area index (unitless).

We then express the physiologically-driven change in total ET (\(\Delta ET \)) as the difference between ET in the WITH PHYS and REF experiments (\(ET_{WITH \, PHYS} \) and \(ET_{REF} \), respectively) and express these in terms of \(T/L, L \), and \(E \) as in Equation D1. WITH PHYS and REF correspond to FULL and RAD when calculating physiologically-driven changes from FULL-RAD, and WITH PHYS and REF correspond to PHYS and PI when calculating physiologically-driven changes from PHYS-PI.

\[\Delta ET = ET_{WITH \, PHYS} - ET_{REF} = \left(\left(\frac{T}{L} \right) L + E \right)_{WITH \, PHYS} - \left(\left(\frac{T}{L} \right) L + E \right)_{REF} \]
Equation D2

We then rearrange the terms in Equation D2 as shown in Equations D3 - D5.

\[\Delta ET = \left[\left(\frac{T}{L} \right)_{WITH \, PHYS} L_{WITH \, PHYS} \right] - \left[\left(\frac{T}{L} \right)_{REF} L_{REF} \right] + [E_{WITH \, PHYS} - E_{REF}] \]
Equation D3

\[\Delta ET = \left(\frac{T}{L} \right)_{REF} + \Delta \left(\frac{T}{L} \right)_{REF} (L_{REF} + \Delta L) - \left(\frac{T}{L} \right)_{REF} L_{REF} + \Delta E \]
Equation D4
This results in Equation D6 (which corresponds to Equation 1 in the main text), which expresses the total physiologically-driven change in ET in terms of physiologically-driven changes in L, T/L, and E:

$$\Delta ET = \left(\left(\frac{T}{L}\right)_{\text{REF}} + \Delta \frac{T}{L}\right) L_{\text{REF}} + \left(\left(\frac{T}{L}\right)_{\text{REF}} + \Delta \frac{E}{L}\right) \Delta L - \left(\frac{T}{L}\right)_{\text{REF}} \Delta E$$

Equation D5

$$\Delta ET = \left(\frac{T}{L}\right)_{\text{REF}} \Delta L + L_{\text{REF}} \Delta \left(\frac{T}{L}\right) + \Delta \frac{T}{L} \Delta L + \Delta E$$

Equation D6

where the four terms on the right-hand side of Equation D6 correspond to the physiologically-driven change in ET due to (1) changes in LAI, (2) changes in stomatal conductance, as approximated by transpiration per LAI, (3) the interaction between changes in LAI and changes in stomatal conductance, and (4) changes in evaporation.
Appendix E.
MODEL AGREEMENT

FIGURE E1. Spatial pattern of warming and model agreement at 2xCO₂. The top row depicts the multi-model mean of the magnitude of physiologically-driven near-surface air temperature change at 2xCO₂ (a) as calculated by FULL-RAD, (b) as calculated by PHYS-PI, and (c) the interaction term between the radiative and physiological effects of CO₂ as calculated by (FULL-RAD) – (PHYS-PI). Stippling indicates regions where less than 8 models agree on the sign of change, out of 12 CMIP6 models for (a) and out of 11 CMIP6 models for (b) and (c) The bottom row depicts model agreement on the sign of near-surface air temperature change for (a) FULL-RAD, (e) PHYS-PI, and (f) the interaction term as calculated by (FULL-RAD) – (PHYS-PI). Darker reds in (d) and (e) indicate regions where most models agree that the physiological effect results in warming, and darker blues indicate regions where most models agree that the physiological effect results in cooling. In (f), darker reds indicate regions where models agree that TOT-RAD is larger than PHYS-PI, darker blues indicate regions where most models agree that PHYS-PI is larger than TOT-RAD, and yellows indicate poor model agreement.
FIGURE E2. Spatial pattern of warming and model agreement, as in Figure E1, at 4xCO₂.
FIGURE E3. Spatial pattern of temperature change at 2xCO₂ (years 61-80) for CMIP5 (a-h) and CMIP6 (i-t) ESMs, as calculated by FULL-RAD.
Appendix F.
INTERNAL VARIABILITY AND SIGNIFICANCE TESTING

FIGURE F1. Histograms showing the distribution of the 20-year running mean global temperature anomalies in the pre-industrial control experiment (PI). Dark blue indicates the anomalies relative to the global temperature as averaged over the entire PI time series, and light blue-grey indicates the anomalies after linear detrending of the entire PI time series. Dotted and solid red lines show the physiological contribution to TCR and T140, respectively. In order to maintain consistent x-axes across subpanels, T140 for HadGEM2-ES (0.84°C) is not shown in panel h. Standard deviations of the linearly detrended 20-year mean temperature anomalies are reported for each model in the upper right corner of each panel. The first three columns (a, b, c, g, h, i, m, n) are CMIP5 models, and the third through sixth columns (d, e, f, j, k, l, o, p, q, r, s, t) are CMIP6 models.
<table>
<thead>
<tr>
<th>Model Name</th>
<th>Global (All Land and Ocean)</th>
<th>Non-glaciated Land</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre-industrial SD (°C)</td>
<td>2xCO₂ p-value</td>
</tr>
<tr>
<td>bcc-csm1-1</td>
<td>0.059</td>
<td>0.15</td>
</tr>
<tr>
<td>CanESM2</td>
<td>0.035</td>
<td><0.01*</td>
</tr>
<tr>
<td>CESM1-BGC</td>
<td>0.033</td>
<td><0.01*</td>
</tr>
<tr>
<td>GFDL-ESM2M</td>
<td>0.047</td>
<td>0.49</td>
</tr>
<tr>
<td>HadGEM2-ES</td>
<td>0.085</td>
<td><0.01*</td>
</tr>
<tr>
<td>IPSL-CM5A-LR</td>
<td>0.044</td>
<td>0.22</td>
</tr>
<tr>
<td>MPI-ESM-LR</td>
<td>0.040</td>
<td>0.03*</td>
</tr>
<tr>
<td>NorESM1-ME</td>
<td>0.024</td>
<td><0.01*</td>
</tr>
</tbody>
</table>

Number of CMIP5 Models with Significant Warming

<table>
<thead>
<tr>
<th>ACCESS-ESM1-5</th>
<th>5 of 8</th>
<th>7 of 7</th>
<th>7 of 8</th>
<th>7 of 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCC-CSM2-MR</td>
<td>0.054</td>
<td><0.01*</td>
<td><0.01*</td>
<td>0.075</td>
</tr>
<tr>
<td>CanESM5</td>
<td>0.048</td>
<td>0.01*</td>
<td><0.01*</td>
<td>0.065</td>
</tr>
<tr>
<td>CESM2</td>
<td>0.062</td>
<td><0.01*</td>
<td><0.01*</td>
<td>0.090</td>
</tr>
<tr>
<td>CNRM-ESM2-1</td>
<td>0.130</td>
<td>0.36</td>
<td>0.15</td>
<td>0.190</td>
</tr>
<tr>
<td>GFDL-ESM4</td>
<td>0.060</td>
<td>0.36</td>
<td><0.01*</td>
<td>0.046</td>
</tr>
<tr>
<td>GISS-E2-1-G</td>
<td>0.023</td>
<td><0.01*</td>
<td><0.01*</td>
<td>0.039</td>
</tr>
<tr>
<td>IPSL-CM6A-LR</td>
<td>0.092</td>
<td>0.19</td>
<td>0.39</td>
<td>0.135</td>
</tr>
<tr>
<td>MIROC-ES2L</td>
<td>0.037</td>
<td>0.15</td>
<td><0.01*</td>
<td>0.055</td>
</tr>
<tr>
<td>MPI-ESM1-2-LR</td>
<td>0.023</td>
<td><0.01*</td>
<td><0.01*</td>
<td>0.035</td>
</tr>
<tr>
<td>NorESM2-LM</td>
<td>0.059</td>
<td>0.01*</td>
<td><0.01*</td>
<td>0.101</td>
</tr>
<tr>
<td>UKESM1-0-LL</td>
<td>0.056</td>
<td><0.01*</td>
<td><0.01*</td>
<td>0.077</td>
</tr>
</tbody>
</table>

Number of CMIP6 Models with Significant Warming

<table>
<thead>
<tr>
<th>ACCESS-ESM1-5</th>
<th>7 of 12</th>
<th>9 of 12</th>
<th>8 of 12</th>
<th>11 of 12</th>
</tr>
</thead>
</table>

TABLE F1. Statistical significance of physiologically-driven warming (as calculated by FULL-RAD) for CMIP5 and CMIP6 models. Significance is tested against the distribution of 20-year running mean detrended temperatures in the PI control experiments (i.e. the distribution in Figure F1). p-values which indicate statistical significance at 95% confidence are indicated with an asterisk and emphasized in italics. Values are not reported for GFDL-ESM2M at 4xCO₂ because this model stopped increasing CO₂ concentration after reaching 2xCO₂.
VITA

Claire Zarakas is an Atmospheric Sciences graduate student and Department of Energy Computational Science Graduate Fellow in the Ecoclimate Lab at the University of Washington. Prior to joining the Ecoclimate Lab, she worked at a public sector consulting firm where she conducted research to inform climate mitigation and adaptation policies. She graduated summa cum laude from Princeton University in 2016, where she was a Geosciences major and focused on climate science, ecology, and biogeochemistry in her coursework and research.